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1. Introduction

In this paper we shall prove the following theorem.

Theorem. Let G be a 5-fold transitive permutation group on a set Q= {1,2,
«e,n}. Let P be a Sylow 2-subgroup of Giss. If P is a monidentity normal
subgroup of G35, then G is one of the following groups: S,, Ay or My,.

The idea of the proof of the theorem is derived from Oyama [7].
In order to prove the theorem, we shall use the following two lemmas,
which will be proved in Sections 3 and 4.

Lemma 1. Let G be a permutation group on Q={1,2,---,n} satisfying
the following three conditions.
(i) For any five points o, 0tz, a3, @ty and ot in K, the order of G, ..., is even.
(i1) For any five points o, oy, a3, aty and o5 in Q, a Sylow 2-subgroup of
Goyoas 18 normal in G ..o
(iii) Amny involution in G fixes at most seven points.
Then G is S, or A,.

Lemma 2. Let G be a permutation group on Q={1,2,--+,n} satisfying

2he following four conditions.
(i) For any five points ct;, o, a3, 0ty and a5 tn ), the order of G ..., is even.
(if) For any five points o, oy, o3, 4 and a5 in Q, a Sylow 2-subgroup of
Goyas 18 nOrmal in G ...,

(iii) Any involution in G fixes at most nine points.

(iv) For any 2-subgroup X fixing exactly nine points, N(X)'*) < A4,.
Then G is S, or A,.

The author thanks Professor Eiichi Bannai for his kind advice.
We shall use the same notation as in [3].
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2. Proof of the Theorem

Let G be a group satisfying the assumption of the theorem.

Let P be the unique Sylow 2-subgroup of G35 If P is semiregular
on Q-I(P) or |I(P)| >6, then G is S;, A, or M,by [2], [3], [4] and [5]. Hence
from now on we assume that P is not semiregular on Q-I(P) and that |I(P)| =
6, and we prove that this case does not arise. If [I(P)|=6, then |I(G )]
=6, a contradiction to [1]. Hence |I(P)|=5.

Let r be Max|I(a)|, where a ranges over all involutions in G. Since P
is not semiregular on Q-I(P), we have r=7.

Suppose r=7. Let t be a point of a minimal orbit of P in Q-I(P). Itis
easily seen that N(P,)'?=S,. By [6], we have a contradiction.

Suppose r=9. Let O be a subgroup of P such that the order of Q is maximal
among all subgroups of P fixing exactly nine points. By Lemma 1, N(Q)/@=
A,. Again by [6], we have a contradiction. Thus we have r=11.

Let Q be a subgroup of P such that the order of Q is maximal among all
subgroups of P fixing more than nine points. Set N=N(Q)'®. Then N
satisfies the following conditions.

(i) N is a permutation group on I(Q), and its degree is not less than eleven.
(ii) For any five points oty ctz, 3, Aty and ot in 1(Q), the order of N, ..., is even.
(iii) For any five points a,, o, a3, oy and as in 1(Q), a Sylow 2-subgroup
of Ny, ...a5 1 normal in N ...,
(iv) Any imvolution fixes at most nine points.

By Lemma 1, N has an involution fixing exactly nine points. Let X be
any 2-subgroup of NV fixing exactly nine points. Set A=I(X). Let S be the
Sylow 2-subgroup of G,. Since I(S)=A, we have Ny(S)®=4, by Lemma
1. Since S is a characteristic subgroup of G,, N satisfies the following condition.

(v) For any 2-subgroup X fixing exactly nine points, N y(X)'®) < A4,.

Considering the permutation group NN, we have a final contradiction by
Lemma 2.

3. Proof of Lemma 1

Let G be a permutation group satisfying the assumptions of Lemma 1.
If G has no involution fixing seven points, then G is S; or 4, by [8, Lemma 6]
and [2]. Hence from now on we assume that G has an involution fixing exactly
seven points, and we prove Lemma 1 by way of contradiction. We may assume
that G' has an involution « fixing exactly 1,2,---,7 and

a=(1)(2)--(7)@89) .
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Set T= C(a)ag.

(1) For any three points i,j and k in 1(a), there is an involution in T ;. Any
tnvolution in T is not the identity on I(a).

Proof. Since a normalizes Gg;;x and Gy, j; is of even order, Gy, has an
involution x commuting with @. Then x&T;;. Since |[I(a)]=7 and
I(x)=2 {8,9}, any involution in T is not the identity on I(a) by (iii).

(2) For any three points i, j and k in I(a), a Sylow 2-subgroup of T, is normal
in T i, and so a Sylow 2-subgroup of T3 is normal in T*?.

Proof. Let S be a Sylow 2-subgroup of T;j;. Since S is a Sylow 2-sub-
group of C(a)giji S is a normal subgroup of C(a)g;j: by (ii).

We have the following property from (2).

(3) If %1 and x5 are involutions in T® with | I(x1®) N I(x}®)| =3, then
x[@x1@ {5 a 2-element of T'®.

4) Since |I(a)| =7, T'® is one of the following groups.

(a) T'@ is intransitive and has an orbit of length one or two.
(b) T'@ is intransitive and has an orbit of length three.

(c) T'@™ is primitive.

(5) The case (a) does not hold.

Proof. Suppose 77 has an orbit of length one or two. We may assume

that either {1} or {1,2} is such an orbit. By (1), T3 has an involution x;.
We may assume that

x=(1)2)B)HGE6) (7).
Similarly T, has an involution x, of the form
%=(1)2)3)#H () (67) -, (1)(2) (3) (5) (4 6) (7) -+ or
OIVIOIOICM IO RS

If the first or the second alternative holds, then |I(x{)NI(x;®)|=4, and
x1@x3(@) is not a 2-element, a contradiction to (3). Thus x,=(1)(2)(3)(5)(4 7)
(6)-+-. Again by (1), Ty has an involution x; of the form

3 = (1) (2) (4) (5) (3) (6 7) -+, (1) (2) (4) (5) (3 6) (7) -+ or
(1) (2) @) (5) (3 7)(6) --- .

In every case, we get a contradiction to (3) by considering either x{x; or
xé(”)xé(”)‘
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(6) The case (b) does not hold.

Proof. Suppose 7' has an orbit of length three. We may assume
that {1,2,3} is such an orbit of length three. By (5), {4,5,6,7} is a T'®-orbit.
By (1), T4 has an involution x,. We may assume that

% =(12)3)# () (6)(7) - .
Since {1,2,3} is a T7™-orbit, T has an element y of the form
y=(123).

Set x,=x7, then x,=(2 3)(1) (4) (5) (6) (7) ---. So, |I(#{*)N I(x3?)| =4, and
x%,=(1 3 2) (4)(5) (6) (7) -+, which is a contradiction. Hence 77 has no
orbit of length three.

(7) We show that the case (c) does not hold, and complete the proof of Lemma 1.

Proof. Suppose T7@ is primitive. By (1), we have T7® >4, (cf.e.g.[10]).
Therefore for any involution x in G fixing exactly seven points, C(x)'*=4,.

Let T be any subset of Q with |T'|=5. Set I'={ay, ot, a3, 4, s}. By
(i), G,,...ss has an involution. If G, .., has an involution x, fixing exactly seven
points, then C(x)*V=A4, Hence G{j1::5)=S;s. Suppose that G, ., has
no involution fixing seven points. Let x, be an involution in G, ..,,. Let
xp=(oty)"**(ats) (B1 Ba)---. It is easily seen that C(x)p)=Ss. Hence G35
=8;s. Thus we have G{j::::55]=S; in either case. Therefore by [9, Lemma
3], G is 4-fold transitive on Q.

Let x be an involution in G fixing seven points. Let S be the Sylow 2-
subgroup of Gy). Since C(x)'*?=4,, we have N(S)'=4,. By [6], we get
a contradiction.

Thus we complete the proof of Lemma 1.

4. Proof of Lemma 2

Let G be a permutation group satisfying the assumptions of Lemma 2.
If G has no involution fixing nine points, then G is S, or 4, by Lemma 1. Hence
from now on we assume that G' has an involution fixing exactly nine points, and
we prove Lemma 2 by way of contradiction. We may assume that G has an
involution a fixing 1,2,--+,9 and

a=(1)(2) -+ (9) (10 11) --- .
Set T=C(a)y1;-

(1) For any three points i,j and k in I(a), there is an involution in T;;. Any
involution in T is not the identity on I(a).
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For any three points i,j and k in I(a), a Sylow 2-subgroup of T;j; is

normal in T;i, and so a Sylow 2-subgroup of T} is normal in TP

iGE

(3) If xi@and x5 are involutions in T'® with | I(x{®) N I(x3®)| =3, then
2195 is a 2-element of TT®.

The proofs of (1), (2) and (3) are similar to the proofs of (1), (2) and (3) in
Section 3 respectively.

*)
(a)
(b)

(©)
(d)

Q)

Since |I(a)| =9, T'® is one of the following groups.

T?® s intransitive and has an orbit of length one or two.

T'® gs either an intransitive group with an orbit of length three, or a
transitive but imprimitive group with three blocks of length three.

T'® gs intransitive and has an orbit of length four.

T {s primitive.

The case (a) does not hold.

Proof. Suppose T7(® has an orbit of length one or two. We may assume
that either {1} or {1,2} is such an orbit. By (1), T, has an involution x,.
By the assumption (iv), we may assume that

%= (1)2)3)#HG)(67)(89) .

Similarly T,y has an involution x,, We may assume without loss of generality

that

=123 O) (N (4589 a,
MO (8G9 B,
M) OB (7 HH#S) - 7,
MAECO®THE) - 5,
MR OHG7)@9) - & or
MAROHTYE Y- ¢ .

If x}® is of the form &, Eor ¢, then |I(x1)NI(x5)| =3, and x{@x5(® is not
a 2-element, a contradiction to (3). Hence x3® is of the form a. B or 7.
Ty has an involution x;. %3 is of the form

x5@ = (1)(2) (6) (9) ) (#5)(7 8) - @,
MO OBAENEG 8 - @,
MHAGOBEGE7) O,
M2 6)(NHEB5) (78 - @,
MO OHENGE8 - ®,
M@AOOHEYE 7 ®,
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M@ )G)BH (T8 @,
M@O OGB48 ®,
(1)) (6) (9 ()38 47 @,
M@ OEO)NEHES) @,
(1)(2)(6) (9) (7)) (35) (4 8) - @ .
(1) (2) (6) (9) (7) (3 8) (4 5) - @,
M2 ©6) ) BB4HGET) - ®,
(1) (2) (6) (9) (8) (3 5) (4 7) - @ or
(1) (2) (6) (9) (8) (3 7) (4 5) - ® .

If '@ is of the form @, ®, ®, ®, ® or (@, then | I(x}®)N [(x5®)| =3, and
x{x}@ is not a 2-element, which is a contradiction. Suppose x5 is of the
form ®. Then xws=(1) (2) (3 4) (58 9) (6 7)--, and (i, =(1) (2) (3) (4) (5 9 8)
(6) (7)-+-. Set y=(wxs)* and x,=x}. Then x,=(1)(2)(3)4)(9) (6 7) (5 8)--.
So, |I(x1®@)NI(xi®)| =4, and xx,=(1)(2)(3) (4) (5 8 9)(6) (7)-+, which is a
contradiction. If x5(® is of the form @), @, @), @ or @), we have a contradiction
by the same argument as in the case @. Hence x}® is of the form @), ® or @.

Suppose x5 is of the form o« or 7. Since x5 is of the form @), @ or @,
we get a contradiction by considering x5®x5(®.

Suppose x;® is of the form B . If i is of the form O or @, we get a
contradiction by considering x3@x{. Suppose x5 is of the form @. Then
tg=(1)(2) (6) (5 9) (3 47 8)-++. Set ay—(aywf, then 1=(1)(2)(6) (5) () (3 7)
(4 8)-++. So, |I(x)N I(x5)| =3, and xxs=(1) (2) (5) (3 7 6) (4 8 9)--+, which
is a contradiction. Thus 77 has neither orbit of length one nor orbit of
length two.

(6) The case (b) does not hold.

Proof. Suppose T7¢ has an orbit of length three or three blocks of length
three. We may assume that {1,2,3} is such an orbit or a blcok.

Assume that 77 has three orbits of length three or three blocks of length
three. We may assume that {1,2,3}, {4,5,6} and {7,8,9} are the orbits or
the blocks. T}, has an involution x;,. By the assumption (iv),

u=1)2)@)#HEG6) .
Similarly T,; has an involution x, of the form
%= (1)(2)(3) (5) (4 6) - .
So, [I(x{®)N I(x5®)| =3, and xx,=(1) (2) (3) (4 6 5)---, which is a contradic-

tion.

By (5) and the above, we have that {1,2,3} and {4,5,6,7,8,9} are the
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T'@-orbits. Since 3 || {4,5,:+,9} |, we may assume that T" has an element y

of the form
y=(456)-.

T4 has an involution x;. We may assume that

% = (12)(3)(45)(6)(7) (8) (9) - -

Set x,=x{, then x,=(5 6) (4) (7) (8) (9):--. So, |L(x{?) N I(x5)| =3, and xx,
=(4 6 5) (7) (8) (9):*+, which is a contradiction. Thus T7(* has neither orbit of
length three nor block of length three.

(7) The case (c) does not hold.

Proof. Suppose TV has an orbit of length four. We may assume that
{1,2,3,4} is a T'“-orbit. By (5) and (6), {5,6,7,8,9} is a T"®-orbit. Since

5 ll {5, 6,7,8,9}|, we may assume that T has an element y of the form
y=1)(2)B)(4)(56789) .
T2 has an involution x;,. We may assume that x; is of the form
1n=10)2))HE)O67)(@B9) -,
ME@)B)YHG)(68)(79) - or
M R)E)H(G)(69)(78) - .
Set x,=xJ. Then x, is of the following form respectively:
=023 #*)6)(78)(59) -,
M @)B)#H) (6)(79) (5 8) - or
MR 6)(57)(89) .
In any case, we get a contradiction by considering xi @l
(8) We show that the case (d) does not hold, and complete the proof of Lemma 2.

Proof. If T7® is primitive, then by (1) and the assumption (iv), we have
T =Ay(cf.e.g.[10]). But this contradicts (2). Thus 77 is not primitive.

Thus we complete the proof of Lemma 2.
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