<table>
<thead>
<tr>
<th>Title</th>
<th>On homeomorphisms which are regular except for a finite number of points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Homma, Tatsuo; Kinoshita, Shin’ichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Mathematical Journal. 7(1) P.29–P.38</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1955-06</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/3917</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/3917</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
On Homeomorphisms which are Regular Except for a Finite Number of Points

By Tatsuo Homma and Shin’ichi Kinoshita

Introduction

All spaces considered in this paper are separable metric. Let \(h \) be a homeomorphism of a set \(X \) onto itself. Then \(p \in X \) is called regular\(^1\) under \(h \), if for each \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \(d(p, x) < \delta \), then \(d(h^n(p), h^n(x)) < \varepsilon \) for every integer \(n \). If \(p \in X \) is not regular under \(h \), then \(p \) is called irregular.

A set \(X \) will be called a \(C^* \)-set if \(X - A \) is connected for any \(A \) which consists of a finite number of points of \(X \). For example any \(n \)-manifold \((n \geq 2)\) is a \(C^* \)-set. Then one of the purpose of this paper is to prove the following

Theorem I. Let \(X \) be a compact \(C^* \)-set and \(h \) a homeomorphism of \(X \) onto itself. If \(h \) is regular at every \(x \in X \) except for a finite number of points, then the number of points which are irregular under \(h \) is at most two.

We shall also prove the following

Theorem II.\(^2\) Let \(X \) be a compact \(C^* \)-set and \(h \) a homeomorphism of \(X \) onto itself such that

(i) \(h \) is irregular at \(a, b \ (\neq) \in X \),
(ii) \(h \) is regular at every \(x \in X - (a \cup b) \).

Then either (1) for each \(x \in X - b \) \(h^n(x) \) converges to \(a \) when \(n \to \infty \) and for each \(x \in X - a \) \(h^n(x) \) converges to \(b \) when \(n \to -\infty \), or (2) for each \(x \in X - a \) \(h^n(x) \) converges to \(b \) when \(n \to \infty \) and for each \(x \in X - b \) \(h^n(x) \) converges to \(a \) when \(n \to -\infty \).

§ 1.

Let \(X \) be a set and \(h \) a homeomorphism of \(X \) onto itself. Let \(R(h) \) be the set of all points which are regular under \(h \) and \(I(h) \) the set of all points which are irregular under \(h \). Then

1) Introduced by B. v. Kerékjártó [5].
2) This is a converse theorem of Theorem 1 of the authors [3].
Furthermore let \(A(h) \) be the set of all points which are regular and almost periodic\(^3\) under \(h \) and \(N(h) \) the set of all points which are regular and not almost periodic under \(h \). Then
\[
R(h) = A(h) \cup N(h) \quad \text{and} \quad A(h) \cap N(h) = \emptyset.
\]

Lemma 1. Let \(p \in R(h) \). Then \(p \in A(h) \) if and only if for each \(\varepsilon > 0 \) there exists a natural number \(n \) such that \(d(p, h^n(p)) < \varepsilon \).

PROOF. It is clear that the condition is sufficient. We shall prove that the condition is necessary. Let \(\varepsilon > 0 \). Since \(p \in R(h) \), there exists \(\delta > 0 \) such that if \(d(p, x) < \delta \), then \(d(h^n(p), h^n(x)) < \varepsilon \) for every integer \(n \). Since \(p \in A(h) \), there exists an integer \(N(\phi) \) such that \(d(p, h^n(p)) < \delta \). If \(\delta > 0 \), then the proof is already complete. If \(N < 0 \), then \(d(h^{-N}(p), p) < \varepsilon \), which completes the proof.

Similarly we have the following

Lemma 1'. Let \(p \in R(h) \). Then \(p \in A(h) \) if and only if for each \(\varepsilon > 0 \) there exists a natural number \(n \) such that \(d(p, h^{-n}(p)) < \varepsilon \).

Lemma 2. Let \(p \in R(h) \). If \((\lim_{n \to \pm \infty} h^n(p)) \cap R(h) = \emptyset \), then \(p \in A(h) \).

PROOF. Let \(q \in (\lim_{n \to \pm \infty} h^n(p)) \cap R(h) \). Given \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that if \(d(q, x) < \delta \), then \(d(h^n(q), h^n(x)) < \frac{\varepsilon}{2} \) for every integer \(n \). Since \(q \in h^n(p) \), there exist integers \(m_1 \) and \(m_2 \) (\(m_1 \geq m_2 \)) such that \(d(q, h^{m_2}(p)) < \delta \) and \(d(q, h^{m_2}(p)) < \delta \). Then
\[
d(p, h^{m_2-m_1}(p)) \leq d(p, h^{-m_1}(q)) + d(h^{-m_1}(q), h^{m_2-m_1}(p)) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,
\]
which completes the proof.

Lemma 3. For each \(p \in A(h) \), \((\lim_{n \to \pm \infty} h^n(p)) \cap N(h) = \emptyset \).

PROOF. Given \(q \in (\lim_{n \to \pm \infty} h^n(p)) \cap R(h) \), it is easy to see that \(p \in \lim_{n \to \pm \infty} h^n(q) \).

From Lemma 2 it follows that \(q \in A(h) \), which completes the proof.

Now assume that \(p \in A(h) \) and that \(U \) is a neighbourhood of \(p \). Let \(n(p, U) \) be the set of all integers \(n \) such that \(h^n(p) \in U \). Furthermore assume that \(n_0 = 0 \) and that \(n_i < n_{i+1} \). It follows from Lemmas 1 and 1' that \(n_i \) is defined uniquely for every integer \(i \).

3) Let \(h \) be a homeomorphism of \(X \) onto itself. Then \(x \in X \) is called almost periodic under \(h \), if for each \(\varepsilon > 0 \) there exists an integer \(n=0 \) such that \(d(x, h^n(x)) < \varepsilon \).

4) \(\lim_{n \to \pm \infty} h^n(p) = \{x\} \) for each \(\varepsilon > 0 \) there exist infinitely many integers \(n \) such that \(d(x, h^n(p)) < \varepsilon \).
A homeomorphism h of X onto itself is said to be strongly regular at $p \in X$, if there exists a neighbourhood U of p such that h is regular for every point of U. Then we have the following

Lemma 4. Let X be locally compact. If h is strongly regular at $p \in A(h)$, then there exists $\varepsilon_0 > 0$ such that $n[p, U_\varepsilon(p)]$ is finite for every $\varepsilon < \varepsilon_0$.

Proof. Since X is locally compact, there exists a neighbourhood U of p such that U is compact. From the strong regularity of h at p it follows that there exists a neighbourhood V of p such that h is regular for every point of V. Let $\varepsilon_0 > 0$ be such that

$$U_{\varepsilon_0}(p) \subset U \cap V.$$

Let $\varepsilon < \varepsilon_0$. Suppose on the contrary that $n[p, U_\varepsilon(p)]$ is not finite. Then either $\lim_{i \to \infty} m[n_i] = \infty$ or $\lim_{i \to \infty} m[n_{-i}] = \infty$.

First we suppose that $\lim_{i \to \infty} m[n_i] = \infty$. Then there exists a subsequence $\{n_{i_j}\}$ of $\{n_i\}$ such that $\lim_{j \to \infty} m[n_{i_j}] = \infty$. Since $U_\varepsilon(p)$ is compact, there exists a subsequence $\{n_k\}$ of $\{n_{i_j}\}$ such that $\lim_{j \to \infty} h^{n_k}(p) = q$, where $q \in U_\varepsilon(p)$. Since $q \in R(h)$, there exists $\delta > 0$ such that if $d(q, x) < \delta$, then $d(h^n(q), h^n(x)) < \frac{\varepsilon}{3}$ for every integer n. Let K be a natural number such that if $k \geq K$, then $d(q, h^{n_k}(p)) < \delta$. Since $p \in A(h)$, there exists a natural number N such that $d(p, h^{n_K+N}(p)) < \frac{\varepsilon}{3}$. Then for each $k \geq K$

$$d(p, h^{n_K+N}(p)) \leq d(p, h^{n_K+N}(p)) + d(h^{n_K+N}(p), h^N(q)) + d(h^N(q), h^{n_K+N}(p)) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

But this contradicts $\lim_{k \to \infty} m[n_k] = \infty$.

Now we suppose that $\lim_{i \to \infty} m[n_{-i}] = \infty$. Then there exists a subsequence $\{n_{i_j}\}$ of $\{n_i\}$ such that $\lim_{j \to \infty} m[n_{-i_j}] = \infty$. Since $U_\varepsilon(p)$ is compact, there exists a subsequence $\{n_k\}$ of $\{n_{i_j}\}$ such that $\lim_{j \to \infty} h^{-n_j}(p) = q$, where $q \in U_\varepsilon(p)$. Since $q \in R(h)$, there exists $\delta > 0$ such that if $d(q, x)$

5) $U_\varepsilon(p) = \{x \mid d(p, x) < \varepsilon\}$.

$<\delta$, then $d(h^n(q), h^n(x))<\frac{\varepsilon}{2}$ for every integer n. Let K be a natural number such that if $k \geq K$, then $d(q, h^{-k}(p))<\delta$. Then for each $k \geq K$

\[
d(p, h^{-k}(p)) \leq d(p, h^{-k}(q)) + d(h^{-k}(q), h^{-k}(p)),
\]

\[h^{-k}(p) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

But this contradicts $\lim_{k \to \infty} m[n-k] = \infty$. Thus the proof of Lemma 4 is complete.

Lemma 5. Let X be locally compact. Suppose that $I(h)$ is a closed subset of X. Then for each $p \in A(h)$

\[
\lim_{n \to \pm \infty} (h^n(p)) \cap I(h) = 0.
\]

Proof. Let $p \in A(h)$. Then there exist open subsets U and V such that $U \ni p$, $V \ni I(h)$ and $\overline{U} \cap \overline{V} = 0$. Since h is strongly regular at p, it follows from Lemma 4 that there exists $\varepsilon_0>0$ such that $n[p, U_\varepsilon(p)]$ is finite for every $\varepsilon<\varepsilon_0$. Let $\varepsilon_1>0$ be such that $\varepsilon_1<\varepsilon_0$ and that $U_{\varepsilon_1}(p) \subset U$. Since $h(I(h)) = I(h)$,

\[h(\overline{U_{\varepsilon_1}(p)}) \cap I(h) = 0
\]

for every integer n. Put

\[U_\varepsilon = \{x \mid x \in h^n(U_{\varepsilon_1}(p)), n = 0, 1, \ldots, n[p, U_{\varepsilon_1}(p)]-1\}.
\]

Then U_ε is an open subset of X and $\overline{U_\varepsilon} \cap I(h) = 0$. From the definition of $n[p, U_{\varepsilon_1}(p)]$ it follows that $h^n(p) \in U_\varepsilon$ for every integer n. Then

\[\lim_{n \to \pm \infty} h^n(p) \cap I(h) = 0,
\]

which completes the proof.

By Lemmas 2, 3 and 5 we have immediately the following

Theorem 1. Let X be locally compact and h a homeomorphism of X onto itself. Suppose that $I(h)$ is a closed subset of X and that $p \in R(h)$. Then

(1) $p \in A(h)$ if and only if $\lim_{n \to \pm \infty} h^n(p) \subset A(h)$ and $\lim_{n \to \pm \infty} h^n(p) \neq 0$,

(2) $p \in N(h)$ if and only if $\lim_{n \to \pm \infty} h^n(p) \subset I(h)$.

Lemma 6. Let h be a homeomorphism of X onto itself. Suppose that $I(h)$ is a closed subset of X. Then $N(h)$ is an open subset of X.

PROOF. Since $I(h)$ is a closed subset of X, we are only to prove that if $p \in R(h) \cap A(h)$, then $p \in A(h)$. Let $\epsilon > 0$. Since $p \in R(h)$, there exists $\delta > 0$ such that if $d(p, x) < \delta$, then $d(h^n(p), h^n(x)) < \frac{\epsilon}{3}$ for every integer n. Since $p \in A(h)$, there exists $q \in A(h)$ such that $d(p, q) < \delta$. Since $q \in A(h)$, there exists an integer N such that $d(q, h^N(q)) < \frac{\epsilon}{3}$. Then

$$d(q, h^N(p)) \leq d(p, q) + d(q, h^N(q)) + d(h^N(q), h^N(p)) < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Therefore $p \in A(h)$ and the proof is complete.

Lemma 7. Let X be locally compact. Suppose that $I(h)$ is a closed subset of X. Then $A(h)$ is an open subset of X.

Proof. Let $p \in A(h)$. Let U be a neighborhood of p such that $\overline{U} \cap I(h) = 0$. Then there exists $\epsilon > 0$ such that $U_p \subset U$. Since $p \in R(h)$, there exists $\delta > 0$ such that if $d(p, x) < \delta$, then $d(h^n(p), h^n(x)) < \epsilon$ for every integer n. Now we are only to prove that if $q \in U_p(p)$, then $q \in A(h)$. Since $p \in A(h)$, there exist infinitely many n_i such that $d(p, h^{n_i}(p)) < \frac{\epsilon}{2}$. Then

$$d(p, h^{n_i}(q)) \leq d(p, h^{n_i}(p)) + d(h^{n_i}(p), h^{n_i}(q)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Since $U_p(p)$ is compact, $(\lim_{n \to \infty} h^n(q)) \cap U_p(p) = 0$. Then $(\lim_{n \to \infty} h^n(q)) \cap R(h) = 0$.

From Lemma 2 it follows that $q \in A(h)$ and the proof is complete.

By Lemmas 6 and 7 we have immediately the following

Theorem 2. Let X be locally compact and h a homeomorphism of X onto itself. Suppose that $I(h)$ is a closed subset of X. If $R(h)$ is connected, then $A(h) = 0$ or $N(h) = 0$.

By the definition of the regularity we have clearly that if $p \in R(h)$, then $p \in R(h^m)$ for every integer m. Conversely we have the following

Lemma 8. Let X be compact. If $p \in R(h^m)$ for some integer $m(>0)$, then $p \in R(h)$.

Proof. Without loss of generality we may assume that $m > 1$. Let $\epsilon > 0$. Since X is compact, h is uniformly continuous on X. Then there exists $\delta_0 > 0$ such that if $d(x, y) < \delta_0$, then $d(h^k(x), h^k(y)) < \epsilon$ for $k = 0, 1, \ldots, m-1$. From the regularity of h^m it follows that there exists $\delta > 0$ such that if $d(p, x) < \delta$, then $d(h^{m^m}(p), h^{m^m}(x)) < \delta$ for every integer n. Then it is easy to see that if $d(p, x) < \delta$, then $d(h^n(p), h^n(x)) < \epsilon$ for every integer n, and the proof is complete.
Let X be compact. From the above Lemma and the definition of $A(h)$ it follows clearly that if $p \in A(h^m)$ for some integer $m(\neq 0)$, then $p \in A(h)$. Conversely we have the following

Lemma 9. If $p \in A(h)$, then $p \in A(h^m)$ for every integer $m(\neq 0)$.

Proof. This follows immediately from the theorem of P. Erdös and A. H. Stone [2].

By Lemma 8 and 9 we have immediately the following

Theorem 3. Let X be compact and h a homeomorphism of X onto itself. Then $I(h) = I(h^m)$, $A(h) = A(h^m)$ and $N(h) = N(h^m)$ for every integer $m(\neq 0)$.

§ 2.

Let h be a homeomorphism of X onto itself. An isolated point of the set $I(h)$ is said to be an isolated irregular point of h and furthermore if $h(p) = p$, then p is said to be an isolated irregular fixed point.

Lemma 10. Let h be a homeomorphism of X onto itself. Suppose that there exists an isolated irregular fixed point p of h and that X is locally compact at p. Then there exists a point $q \in R(h)$ such that $\lim_{n \to +\infty} h^n(q) = p$.

Proof. Since p is an isolated irregular point of h, there exists a neighbourhood U of p such that h is regular for every point of $U - p$. Since h is irregular at p and $h(p) = p$, there exists $\varepsilon_0 > 0$ which satisfies the following condition: Given $\varepsilon < \varepsilon_0$, for each $\delta < 0$ there exists a point x with $d(p, x) < \delta$ such that there exists an integer $n(\delta)$ with $d(p, h_{n(\delta)}(x)) \geq \varepsilon$. Since X is locally compact at p, there exists a neighbourhood V of p such that V is compact. Then there exists $\varepsilon_1 > 0$ such that

$$U_{\varepsilon_1}(p) \subseteq U \cap U_{\varepsilon_1}(p) \cap V.$$

Since $h(p) = p$, there exists $\varepsilon_2(\leq \varepsilon_1)$ such that

$$h(U_{\varepsilon_2}(p)) \cup h^{-1}(U_{\varepsilon_1}(p)) \subseteq U_{\varepsilon_1}(p).$$

From this it follows that if $x \in U_{\varepsilon_2}(p)$ and $h^n(x) \cap U_{\varepsilon_1}(p) = 0$ for some integer n, then there exists an integer n' such that $h^{n'}(x) \in U_{\varepsilon_1}(p) - U_{\varepsilon_2}(p)$.

Let $\delta_i (\geq 0)$ be a sequence such that $\delta_0 = \varepsilon_2, \delta_1 > \delta_2 > \delta_3 > \cdots$ and $\lim \delta_n = 0$. Then for each δ_n there exists x_n with $d(p, x_n) < \delta_n$ such that $d(p, h^{m(n)}(x_n)) \geq \varepsilon_1$ for some integer $m(n)$. Therefore there exists an integer $m'(n)$ such that $h^{m'(n)}(x_n) \in U_{\varepsilon_1}(p) - U_{\varepsilon_2}(p)$ Then there exist a $q \in U_{\varepsilon_1}(p) - U_{\varepsilon_2}(p)$ and a subsequence $\{n_i\}$ such that $\lim_{i \to +\infty} h^{m'(n_i)}(x_{n_i}) = q$.

Now we shall prove that $\lim_{n \to +\infty} h^n(q) \ni p$. Given $\varepsilon' > 0$, there exists a natural number n_0 such that $\delta < \varepsilon'$. Since h is regular at q, there exists $\delta' > 0$ such that if $d(q, x) < \delta'$, then $d(h^n(q), h^n(x)) < \varepsilon' - \delta$. For every integer n. Since $\lim_{n \to \infty} h^n(x_n) = q$, there exists an integer $N(> n_0)$ such that $d(h^n(x_n), q) < \delta'$. Then

$$d(p, h^{-n(N)}(q)) < d(p, x_N) + d(x_N, h^{-n(N)}(q)) < \delta_N + (\varepsilon' - \delta) < \varepsilon'. $$

This proves that $\lim_{n \to +\infty} h^n(q) \ni p$ and the proof of Lemma 10 is complete.

Lemma 11. Let X be locally compact and h a homeomorphism of X onto itself. Suppose that $I(h)$ is a closed subset of X and that there exists an isolated irregular fixed point p of h. Let $q \in R(h)$. If $\lim_{n \to +\infty} h^n(q) \ni p$, then $p = \lim_{n \to +\infty} h^n(q)$.

Proof. Suppose on the contrary that $h^n(q)$ does not converge to p when $n \to +\infty$. Then there exists $\varepsilon_i > 0$ such that for infinitely many natural numbers n_i, $d(p, h^n(q)) > \varepsilon_i$. Let $\varepsilon(\leq \varepsilon_i)$ be such that $\bar{U}_\varepsilon(p)$ is compact and that $U_{\delta} \cap I(h) = \emptyset$. Since $h(p) = p$, there exists $\delta(\leq \varepsilon)$ such that $h(U_{\delta}(p)) \subset U_{\delta}(p)$. Then it is easy to see that there exist infinitely many natural numbers n_i such that $h^{n_i}(q) \in U_{\varepsilon}(p) - U_{\delta}(p)$.

Since $U_{\varepsilon}(p) - U_{\delta}(p)$ is compact, $\lim_{n \to +\infty} h^n(q) \cap U_{\varepsilon}(p) - U_{\delta}(p) \ni 0$. Since $U_{\varepsilon}(p) - U_{\delta}(p) \cap I(h) = 0$, $\lim_{n \to +\infty} h^n(q) \cap I(h) = 0$. From Lemma 2 it follows that $q \in A(h)$ and therefore $\lim_{n \to +\infty} h^n(q) \cap I(h) = 0$ by Theorem 1. This contradiction completes the proof.

Lemma 12. Let X be locally compact. Suppose that $I(h)$ is a closed subset of X and that there exists an isolated irregular fixed point p of h. Put

$$P = \{ x \mid \lim_{n \to +\infty} h^n(x) = p, \ x \in R(h) \}.$$

Then P is an open and closed subset of $R(h)$.

Proof. To prove that P is an open subset of $R(h)$: There exists $\varepsilon < 0$ such that $\bar{U}_\varepsilon(p)$ is compact and that $\bar{U}_\varepsilon(p) \cap I(h) = \emptyset$. Let $x \in P$. Then $x \in N(h)$ by Theorem 1. Since $N(h)$ is an open subset of X by Theorem 2, there exists a neighbourhood $U(x)$ of x such that $U(x) \subset N(h)$. Then $U(x) \cap \{ x \mid \lim_{n \to +\infty} h^n(x) = p \} = \emptyset$. This proves that P is an open subset of $R(h)$.
Then there exists $\delta > 0$ such that if $d(x, y) < \delta$, then $d(h^n(x), h^n(y)) < \frac{\varepsilon}{2}$ for every integer n and that $U_\delta(x) \subset U(x)$. Since $\lim h^n(x) = p$, there exists a natural number N such that for each $n > N$ $d(p, h^n(x)) < \frac{\varepsilon}{2}$. Then for each $n > N$, if $d(x, y) < \delta$,
\[d(p, h^n(y)) \leq d(p, h^n(x)) + d(h^n(x), h^n(y)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \]

Since $U_\delta(p)$ is compact, $\lim h^n(y) \cap U_\varepsilon(p) \neq 0$. Since $y \in N(h)$, $\lim h^n(y) = p$ by Theorem 2 and Lemma 11. Therefore P is an open subset of $R(h)$.

To prove that P is a closed subset of $R(h)$: Suppose $x \in R(h) - P$. From Lemma 11 it follows that $\lim h^n(x) \cap \bar{p} = 0$. Then $\bigcup_{n=0}^{\infty} h^n(x) \cap \bar{p} = 0$. Put
\[a = d(p, \bigcup_{n=0}^{\infty} h^n(x)). \]
Since $x \in R(h)$, there exists $\delta > 0$ such that if $d(x, y) < \delta$, then $d(h^n(x), h^n(y)) < \frac{a}{2}$ for every integer n. Then
\[\bigcup_{n=0}^{\infty} h^n(y) \subset U_\frac{a}{2}(\bigcup_{n=0}^{\infty} h^n(x)). \]
Therefore $\lim h^n(y) \cap \bar{p} = 0$. Hence $R(h) - P$ is an open subset of $R(h)$, and the proof is complete.

By Lemmas 10, 11 and 12 we have immediately the following

Theorem 4. Let X be locally compact and h a homeomorphism of X onto itself. Suppose that $I(h)$ is a closed subset of X and that $R(h)$ is connected. If there exists an isolated irregular fixed point p of h, then either for each $x \in R(h) \lim h^n(x) = p$ or for each $x \in R(h) \lim h^n(x) = p$.

Theorem 5. Let X be compact and h a homeomorphism of X onto itself. Suppose that $I(h)$ is a closed subset of X and that $R(h)$ is connected. Let p be an isolated irregular point of h. If $h^m(p) = p$ for some natural number m, then p is an isolated irregular fixed point of h.

Proof. We are only to prove that $h(p) = p$. Suppose on the contrary that $h(p) \neq p$. It follows from Theorem 3 that $I(h) = I(h^m)$. Therefore p is an isolated irregular fixed point of h^m. Then it follows from Theorem 4 that either for each $x \in R(h) \lim h^{mn}(x) = p$ or for each $x \in R(h) \lim h^{mn}(x) = p$. Without loss of generality we may assume that $\lim h^{mn}(x) = p$ for each $x \in R(h)$. Then we have that
\[\lim h^{mn+1}(x) = \lim h(h^{mn}(x)) = h(\lim h^{mn}(x)) = h(p) = p. \]
On the other hand we have that
\[\lim_{n \to \infty} h^{m+1}(x) = \lim_{n \to \infty} h^m(h(x)) = p. \]
This is a contradiction and the proof is complete.

Proof of Theorem I. Let \(X \) be a compact \(C^* \)-set and \(h \) a homeomorphism of \(X \) onto itself which is regular for every \(x \in X \) except for a finite number of points. Put \(I(h) = \{ p_0, p_1, \ldots, p_m \} \). Then \(I(h) \) is a closed subset of \(X \) and all \(p_i (1 \leq i \leq m) \) are isolated irregular points of \(h \). Furthermore \(R(h) \) is connected. It is easy to see that for each \(p_i \) there exists a natural number \(n_i \) such that \(h^{n_i}(p_i) = p_i \). It follows from Theorem 5 that all \(p_i \) are isolated irregular fixed points of \(h \). Then by Theorem 4 either for each \(x \in R(h) \lim h^n(x) = p_i \) or for each \(x \in R(h) \lim h^n(x) = p_i (1 \leq i \leq m) \). Therefore the number of points which are irregular under \(h \) is at most two and the proof is complete.

Proof of Theorem II. This is clear from the proof of Theorem I.

By the theorem of the authors [4] we have the following

Theorem 6. If \(h \) is a homeomorphism of \(S^3 \) onto itself such that (i) \(h \) is irregular at \(a, b \) \((=) \in S^3 \), (ii) \(h \) is regular at every \(x \in S^3 - (a \cup b) \), then \(h \) is topologically equivalent to the dilatation in \(S^3 \).

Remark 1. B. v. Kerékjártó [5] proved that if \(h \) is a homeomorphism of \(S^3 \) onto itself which is regular for every \(x \in S^3 \) except for a finite number of points, then \(h \) is topologically equivalent to a linear transformation of complex numbers.

Remark 2. For the case where \(h \) is a homeomorphism of \(S^n \) onto itself which is regular except for only one point see H. Terasaka [7].

Remark 3. It is proved by R. H. Bing [1] and D. Montgomery and L. Zippin [6] respectively that there exist a sense-reversing and a sense-preserving homeomorphisms \(h_1 \) and \(h_2 \) of \(S^3 \) onto itself with period 2 (then they are regular for every \(x \in S^3 \)) such that \(h_1 \) is not topologically equivalent to the reflexion and \(h_2 \) is not topologically equivalent to the rotation in \(S^3 \).

(Received March 20, 1955)
References