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On Homeomorphisms which are Regular Except for
a Finite Number of Points

By Tatsuo HommaA and Shin’ichi KINOSHITA

Introduction

All spaces considered in this paper are separable metric. Let % be
a homeomorphism of a set X onto itself. Then pe X is called regular®
under %, if for each & >0 there exists § >0 such that if d(p, x)<_§, then
d(W"(p), h"(x))< & for every integer n. If pe& X is not regular under #,
then p is called ¢rregular.

A set X will be called a C*-sef if X— A is connected for any A which
consists of a finite number of points of X. For example any x#-manifold
(n==2) is a C*-set. Then one of the purpose of this paper is to prove
the following

Theorem 1. Let X be a compact C*-set and h a homeomorphism of
X onto itself. If h is regular at every x € X except for a finite number
of points, then the number of points which arve irvegular under h is at
most two. '

We shall also prove the following

Theorem IL* Let X be a compact C*-set and h a homeomorphism of
X onto itself such that

(i) & is irregular at a, b (==)e X,

(i1) & is regular at every x € X—(a\Vb).
Then either (1) for each xc X—b h'(x) converges to a when n— ~ and
for each xe X—a h'(x) converges to b when n— —oo, or (2) for each
xe X—a h'(x) converges to b when n—co and for each xc X—b h'(x)
converges to a when n——co,

§1.

Let X be a set and % a homeomorphism of X onto itself. Let R(%)
be the set of all points which are regular under %2 and I(k) the set of
all points which are irregular under 4. Then

1) Introduced by B. v. Kerékjarto [5].
2) This is a converse theorem of Theorem 1 of the authors [3].
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X = R(h)VIh) and R(k)~I(h) =0.

Furthermore let A(Z) be the set of all points which are regular and
almost periodic® under i and N(%) the set of all points which are regular
and not almost periodic under 4. Then

R(h) = A(h)VYN(h) and A(B)ANE)=0.

Lemma 1. Let pe Rh). Then pe A(h) if and only if for each € >0
there exists a natural number n such that d(p, k'(p))<&.

Proor. It is clear that the condition is sufficient. We shall prove
that the condition is necessary. Let & >0. Since p € R(k), there exists
§>0 such that if d(p, x)< 8, then d(%"(p), h"(x))< & for every integer .
Since p € A(k), there exists an integer N(==0) such that d(p, AY(p))<é.
If N >0, then the proof is already complete. If N< O, then d(h N(p), p)
<&, which completes the proof.

Similarly we have the following

Lemma 1. Let pe R(h). Then pe A(h) if and only if for each &€ >0
there exists a natural number n such that d(p, h™"(p))<é&.
Lemma 2. Let pe Rh). If (lim A"(p))° A R(k)==0, then pc A(h).

Proor. Let ge (lim A"(p))~R(h). Given &>0, there exists 8 >0
such that if d(g, x)<’8, then d(4"(g), h”(x))<% for every integer .

Since g¢e lim /#%(p), there exist integers m, and m, (m,-==m,) such that

N> oo

d(q, "™(p))<8 and d(q, k"x(p))< 8. Then
d(p, h"2"™(p)) <d(p, h™"(q)) +d(h™™(q), h’"z‘”l(p))<§+% =g,

which completes the proof.
Lemma 3. For each p € A(h) (Iim h*(p)) A N(h) = 0.
N> oo
Proor. Given ge¢ illg () A R(h), it is easy to see that p e lim 4*(q).

7> oo

From Lemma 2 it follows that g€ A(%), which completes the proof.

Now assume that p € A(k) and that U is a neighbourhood of p. Let
n(p, U) be the set of all integers #; such that %%(p) e U. Furthermore
assume that #, =0 and that n,<»;,,. It follows from Lemmas 1 and
1’ that #n; is defined uniquely for every integer ;. Put

3) Let 2 be a homeomorphism of X onto itself. Then x € X is called almost periodic under
h, if for each €>0 there exists an integer #==0 such that d(x, #*(x))<e.

4) gﬁh"(p)=(x| for each €>0 there exist infinitely many integers z such that d(x,
>too

kP (p))<el
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m["z] =N, —N;

nlp, Ul=1 u b m[n]].
n€n(p, U)

A homeomorphism % of X onto itself is said to be strongly regular
at pe X, if there exists a neighbourhood U of p such that % is regular
for every point of U. Then we have the following

Lemma 4. Let X be locally compact. If h is strongly regular at
p € A(h), then there exists & >0 such that n{p, U, (p)V’ is finite for every

&8, .

Proor. Since X is locally compact, there exists a neighbourhood U
of p such that U is compact. From the strong regularity of % at p it
follows that there exists a neighbourhood V of p such that % is regular
for every point of V. Let & >0 be such that

Us( D) CUA V.

Let §<&,. Suppose on the contrary that #[ p, U,(p)] is not finite. Then
either lim m[#;] == co or lim m[n_/] = .

Fir:tw we suppose th;wgrﬁ m[n;] = . Then there exists a sub-
sequence {#n;;} of {#n;} such thaota 11112 m[ni] = co. Since U,(p) is compact,
there exists a subsequence {n,} of {#;;} such that }cim I p) = q, where
ge UJ(p). Since ge R(h), there exists § >0 such th;;tmif d(q, x)<8, then
d(h"(q), h”(x))<“§f for every integer n. Let K be a natural number such

that if 2> K, then d(q, A"(p))< 8. Since p € A(h), there exists a natural
number N such that d(p, h”K+N(p))<%. Then for each k> K

d(p, WetN(p)) <d(p, W'EN(p)) +d ("= N(p), h™(q))

+d(hMq), h”k*”(p))<§ +*§- +'§ =&.

But this contradicts ’}121 m[n,] = .

Now we supposé that E?m[n_,-] =oo. Then there exists a sub-
sequence {#i;} of {»n;} such lthat 1}12 m[n-i;] = co. Since U,(p) is com-
pact, there exists a subsequence {n,} of {n;;} such that }gg n-w(p) = g,

where g€ U,(p). Since g€ R(h), there exists §>0 such that if d(q, x)

5 Ue(p)={x]d(p, x)<le}
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<3, then d(K'(q), h”(x))<% for every integer n. Let K be a natural
number such that if 2> K, then d(q, #"-#(p))< 8. Then for each k> K
d(p, W*-v""-x(p)) <d(p, b "-x(q)) +d(h™"-x(q),
h"-r"—x(p))<§+§ —¢.

But this contradicts lim m[#_,] = . Thus the proof of Lemma 4 is
k>oo

complete.

Lemma 5. Let X be locally compact. Suppose that I(h) is a closed
subset of X. Then for each p e A(h)

Tm (#'(9) Ik = 0.

Proor. Let pe€ A(h). Then there exist open subsets U and V such
that Usp, VDOI(h) and [~ V=0. Since % is strongly regular at p,
it follows from Lemma 4 that there exists & >0 such that z[ p, U,(p)]
is finite for every &<&. Let & >0 be such that &<(¢& and that
Ue(p)CU. Since h(I(h)) = I(k),

W(Ue(p) A I(h) =0
for every integer n. Put
Uo = {xlx ehn(Ufl(p))) n=20 17 R n[l), Ufl(p)]—l} .

Then U, is an open subset of X and U, I(k) =0. From the definition
of n[ p, Ug(p)] it follows that A*(p) e U, for every integer ». Then

im /"(p) A I(h) = 0,

which completes the proof.

By Lemmas 2, 3 and 5 we have immediately the following

Theorem 1. Let X be locally compact and h a homeomorphism of X
onto itself. Suppose that I(h) is a closed subset of X and that p e R(h).
Then

(1) peAh) if and only if@ n(p)Ah) and Eﬁ r($) =0,

(2) peN() if and only if@ W py_I(h).

Lemma 6. Let & be a homeomorphism of X onto itself. Suppose that
I(h) is a closed subset of X. Then N(h) is an open subset of X.



On Homeomorphisms which are Reguladr Except for a Finite Number of Points 33

Proor. Since I(k) is a closed subset of X, we are only to prove
that if peR(h)AA(h), then pcA(h). Let &>0. Since p € R(h), there

exists 8 >0 such that if d(p, x)<§, then d(%"(p), h”(x))<% for every

integer n. Since p e A(h), there exists g€ A(k) such that d(p, q)< 8.
Since g € A(k), there exists an integer N such that d(q, AN(g))<_ g. Then

d(g, W¥(p)) <d(p, 9)+d(q, @) +d¥(@), BNPN < g+ 5+ 5 =¢.

Therefore p € A(k) and the proof is complete.

Lemma 7. Let X be locally compact. Suppose that I(h) is a closed
subset of X. Then A(h) is an open subset of X.

Proor. Let pe A(h). Let U be a neighbourhood of p such that U
is compact and that U~ I(k) =0. Then there exists €>0 such that
U, (p) " U. Since pe€ R(h), there exists § >0 such that if d(p, x)<_§,
then d(#"(p), W'(x))<_ & for every integer n. Now we are only to prove
that if ¢ € Uy(p), then g € A(h). Since p € A(h), there exist infinitely many

n; such that d(p, h”"(p))<—§-. Then

d(p, (@) Zd(p, B*(p) +d(h™(B), h(g) <5+ = €.

Since U,(p) is compact, (lim #*(q)) ~ U(p)==0. Then (lim %#"(q)) ~ R(%) = 0.

From Lemma 2 it follows that ¢ € A(k) and the proof is complete.
By Lemmas 6 and 7 we have immediately the following

Theorem 2. Let X be locally compact and h a homeomorphism of X
onto itself. Suppose that I(h) is a closed subset of X. If R(h) is con-
nected, then A(h)=0 or N(h)=0.

By the definition of the regularity we have clearly that if p € R(%),
then p e R(#™") for every integer m. Conversely we have the following

Lemma 8. Let X be compact. If pe R(I™) for some integer m(==0),
then p € R(h).

Proor. Without loss of generality we may assume that m >1. Let

&>0. Since X is compact, # is uniformly continuous on X. Then there
exists 8, >0 such that if d(x, ¥)<[§,, then d(k*(x), h*(y))< & for k=0, 1,
.., m-1. From the regularity of %™ it follows that there exists 6§ >0
such that if d(p, x)<8, then d(Z™"(p), i""(x))<_8, for every integer .
Then it is easy to see that if d(p, x)<'8, then d(A"(p), h"(x))< & for
every integer #, and the proof is complete.
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Let X be compact. From the above Lemma and the definition of
A(h) it follows clearly that if p € A(k™) for some integer m(==0), then
peA(h). Conversely we have the following

Lemma 9. If pec A(h), then p e A(R™) for every integer m(==0).

Proor. This follows immediately from the theorem of P. Erdos
and A. H. Stone [2]. ‘

By Lemma 8 and 9 we have immediately the following

Theorem 3. Let X be compact and h a homeomorphism of X onto
itself. Then I(h)=IK"), A(h)=A(I") and N(h)= N(K™) for every integer
m(==0).

§ 2.

Let % be a homeomorphism of X onto itself. An isolated point of
the set I(%) is said to be an isolated irregular point of h and further-
more if A(p)=p, then p is said to be an isolated irregular fixed point.

Lemma 10. Let &k be a homeomorphism of X onto itself. Suppose that
there exists an isolated irregular fixed point p of h and that X is locally

compact at p. Then there exists a point q € R(h) such that lim h'(q)> p.

PrOOF. Since p is an isolated irregular point of 4, there exists a
neighbourhood U of p such that % is regular for every point of U—p.
Since # is irregular at p and i(p)=2p, there exists & >0 which satisfies
the following condition : Given <&, for each 8<0 there exists a point
x with d(p, x)<8 such that there exists an integer #(8) with d(p, 2"®(x))
>¢&. Since X is locally compact at p, there exists a neighbourhood V
of p such that V is compact. Then there exists & >0 such that

Ue(p) CUA Ue( VAV .
Since A(p)=p, there exists &(< &) such that
h(Ue(p)) Y B (Ue9)) C Ue (D) -

From this it follows that if x e Us(p) and A"(x) A Us(p)=0 for some
integer #, then there exists an integer #’ such that %“(x) e Us,(9p)— Ue,( p).

Let 6,C>0) be a sequence such that §,=§¢,, 8, >§, >8, >+ and
lim §,=0. Then for each ¢, there exists x, with d(p, x,)< 3, such that

d(p, "(x,)) = ¢, for some integer m(n). Therefore there exists an
integer m’(n) such that hm/("’(xn)eUel( p)—Ue(p) Then there exist a

g € Us(p)— Us,(p) and a subsequence {#,} such that lim h’”/(”")(xm)=q.
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Now we shall prove that lim #"(g)> p. Given & >0, there exists a

natural number #, such that 8,< &. Since & is regular at g, there
exists & >0 such that if d(q, x)<[&, then d(#"(g), n"(x))< & —8u, for every
integer #. Since lim B O(xn,) = gq, there exists an integer N(>n,) such

that d(h™™(xy), g)<_&. Then
d(p, ™M) < d(p, %) +A(% g, B N(g)) < S+ (&' — Bnp) <&

This proves that lim 4*(¢g) >p and the proof of Lemma 10 is complete.
N> too

Lemma 11. Let X be locally compact and h a homeomorphism of X
onto itself. Suppose that I(h) is a closed subset of X and that there exists
an isolated irregular fixed point p of h. Let g€ Rk). If lim h'(q) > p,
then p = lim k"(g). e

PrOOF. Suppose on the contrary that 4"(q) does not converge to p
when #n—oo. Then there exists & >0 such that for infinitely many
natural numbers #n; d(p, i"(q))=¢&,. Let &< &) be such that Us(p) is
compact and that Uy(p)~ (k) =p. Since h(p)=p, there exists 8(< &)
such that A(Us(p))C U, (p). Then it is easy to see that there exist
infinitely many natural numbers #;/ such that

H(q) € Uy(p)— Us(p) .

U.(p)— Us(p) A I(h)=0, lim h*(g) A R(h)==0. From Lemma 2 it follows
that g€ A(h) and therefore lim /4%(g) A I(h)=0 by Theorem 1. This con-

tradiction completes the proof.

Lemma 12. Let X be locally compact. Suppose that I(h) is a closed
subset of X and that there exists an isolated irvegular fixed point p of h.
Put

P = {x|lim /"(x) = p, x€ R(h)}.

N> oo

Then P is an open and closed subset of R(h).

Proor. To prove that P is an open subset of R(%): There exists
<0 such that U,(p) is compact and that U,(p)~I(h)=p. Let x€P.
Then x € N(h) by Theorem 1. Since N(k) is an open subset of X by
Theorem 2, there exists a neighbourhood U(x) of x such that U(x) N(h).
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Then there exists § >0 such that if d(x, y)<(§, then d(4"(x), h”(v))<7§'
for every integer »# and that Uyx) U(x), Since ling 1" (x)=p, there
exists a natural number N such that for each n>1Z;V d(p, h”(x))<§f.
Then for each #» >N, if d(x, y)<3, .

d(p, I(y)) <d(p, K'(x))+d(K'(x), K'( y))<7§4+w2~:8_

Since U,(p) is compact, lim %"(y) A U.(p)==0. Since y € N(k), lim A"(y)=p
by Theorem 2 and Lemma 11. Therefore P is an open subset of R(k).

To prove that P is a closed subset of R(%): Suppose x¢ R(h)—P.
From Lemma 11 it follows that lim #"(x) np = 0. Then \ /;_,#"(x) ~2=0.

el

Put
a = d(P, U:=o h"(TC)) .

Since x € R(h), there exists 8 >0 such that if d(x, )<8, then d(#"(x),
H( y))<% for every integer n. Then

\Jamo (9 C U5 (Unzo H'(x)) -
Therefore lim #"(y) np=0. Hence R(k)—P is an open subset of R(%),

and the proof is complete.
By Lemmas 10, 11 and 12 we have immediately the following
Theorem 4. Let X be locally compact and h a homeomorphism of X
onto itself. Suppose that I(h) is a closed subset of X and that R(h) is
connected. If there exists an isolated ivvegular fixed point p of h, then
either for each x € R(h) lnlm W (x)=p or for each x¢ R(h)lim W'(x)==p.

Theorem 5. Let X be compact and h a homeomorphism of X onto
itself. Suppose that I(h) is a closed subset of X and that R(h) is connected.
Let p be an isolated irvregular point of h. If W (p)=p for some natural
number m, then p is an isolated irregular fixed point of h.

Proor. We are only to prove that k(p)=p. Suppose on the contrary
that A(p)==p. It follows from Theorem 3 that I(h)=I(4"). Therefore
p is an isolated irregular fixed point of #”. Then it follows from
Theorem 4 that either for each x € R(k) lim 2”"(x)=p or for each x¢< R(h)

lim 2™ (x)=p. Without loss of generality we may assume that lim %”"(x)

N> —oo n-> o0

= p for each x€ R(h). Then we have that
lim A" (x) = lim A(A™(x)) = h(lim A" (%)) = h(p) == p.

n->co 7 -»oo
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On the other hand we have that
lim /2™ (x) = lim Z"™"(h(x)) = p .

n-» oo 7

This is a contradiction and the proof is complete.

Proor or THEOREM I. Let X be a compact C*-set and % a homeo-
morphism of X onto itself which is regular for every x€ X except for
a finite number of points. Put I(h)= {p,, p., -, P,.}- Then I(h) is a
closed subset of X and all p;(1 <i <m) are isolated irregular points of 4.
Furthermore R(%) is connected. It is easy to see that for each p, there
exists a natural number #; such that A" (p;,)=p;. It follows from
Theorem 5 that all p; are isolated irregular fixed points of 2. Then by
Theorem 4 either for each x€ R(k)1lim A" (x)=p,; or for each x¢& R(h)

lim A"(x) = p1 <i <m). Therefore the number of points which are

U>—oo

irregular under % is at most two and the proof is complete.
Proo¥ oF THEOREM II. This is clear from the proof of Theorem I.

By the theorem of the authors [4] we have the following

Theorem 6. If & is a homeomorphism of S* onto itself such that (i)
h ois irvegular at a, b (==)€ S%, (it) h is regular at every x€ S*—(aVb),
then h is topologically equivalent to the dilatation in S°.

Remark 1. B. v. Kerékjart6 [5] proved that if %z is a homeomor-
phism of S? onto itself which is regular for every x€ S* except for a
finite number of points, then % is topologically equivelent to a linear
transformation of complex numbers.

Remark 2. For the case where % is a homeomorphism of S” onto
itself which is regular except for only one point see H. Terasaka [7].

Remark 3. It is proved by R. H. Bing [1] and D. Montgomery
and L. Zippin [67] respectively that there exist a sense-reversing and a
sense-preserving homeomorphisms /%, and #, of S*® onto itself with period
2 (then they are regular for every x¢€ S?) such that %, is not topologi-
cally equivalent to the reflexion and 7%, is not topologically equivalent
to the rotation in S°.

(Received March 20, 1955)
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