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On Homeomorphiswis which are Regular Except for
a Finite Number of Points

By Tatsuo HOMMA and Shin'ichi KINOSHITA

Introduction

All spaces considered in this paper are separable metric. Let h be
a homeomorphism of a set X onto itself. Then p e X is called regular1^
under h, if for each £^>0 there exists δ^>0 such that if d(py x)<^S, then
d(hn(p)y hn(x))<^8 for every integer n. If p^X is not regular under h,
then p is called irregular.

A set X will be called a C*-set if X— A is connected for any A which
consists of a finite number of points of X. For example any ^-manifold
(^ϊ>2) is a C*-set. Then one of the purpose of this paper is to prove
the following

Theorem I. Let X be a compact C*-set and h a homeomorphism of
X onto itself. If h is regular at every χζ.X except for a finite number
of points, then the number of points which are irregular under h is at
most two.

We shall also prove the following
Theorem II.2) Let X be a compact C*-set and h a homeomorphism of

X onto itself such that
( i ) h is irregular at a, b (Φ) e X,
(ii) h is regular at every x^X—^a^b).

Then either (1) for each x^X—b hn(x) converges to a when τz->oo and

for each x^X—a hn(x] converges to b when n-+ — oo, or (2) for each
x^X—a hn(x) converges to b when n->oo and for each x^X—b hn(x)
converges to a when n->—oo.

§1-

Let X be a set and h a homeomorphism of X onto itself. Let R(h)
be the set of all points which are regular under h and I(h) the set of
all points which are irregular under h. Then

1) Introduced by B. v. Kerekjartό [5].
2) This is a converse theorem of Theorem 1 of the authors [3].
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X=R(h)^I(h) and R(h)^I(h) = 0 .

Furthermore let A(h) be the set of all points which are regular and
almost periodic^ under h and N(h) the set of all points which are regular
and not almost periodic under h. Then

R(h) = A(h)^N(h) and A(h)^N(h) = 0 .

Lemma 1. Let peR(h). Then peA(h) if and only if for each £>0
there exists a natural number n such that d(p, hn(p))<^8.

PROOF. It is clear that the condition is sufficient. We shall prove
that the condition is necessary. Let £^>0. Since peR(h), there exists
S>0 such that if d(p, #)<S, then d(hn(p), hn(x))<^8 for every integer n.
Since peA(h), there exists an integer N(φO) such that d(p, hN(p))<^8.
If JV>0, then the proof is already complete. If N<0, then d(h~N(p), p)
<^£, which completes the proof.

Similarly we have the following

Lemma V. Let p e R(h). Then p e A(h) if and only if for each £>0
there exists a natural number n such that d(p, h

Lemma 2. Let p 6 R(h). If (lim hn(p))^AR(h) Φ 0, /few £ e A(h).
n-+±°°

PROOF. Let #e (lim hn(p))^R(h). Given £>0, there exists δ>0
W-*±oo

such that if d(q, x)<^8, then d(hn(q), hn(x))<^-- for every integer n.

Since qeϊΐmhn(p), there exist integers m1 and m2 (m^m^ such that
n-*±°°

d(q, h^(p))<^S and d(q, h^(p))<^8 . Then

d(p, h™*-™ι(P))^d(p, h-^(q))+d(h-^(q)y /^2-ι(£))< J- + J_ = 6 ,

which completes the proof.

Lemma 3. For each peA(h) (Tim ^(p^^Nty) = 0.
W->±oo

PROOF. Given q e (ϊim hn(p))^R(h), it is easy to see that p G Hm hn(q).
W->±00 W->±oo

From Lemma 2 it follows that qeA(h), which completes the proof.
Now assume that p e A(h) and that U is a neighbourhood of p. Let

n(p, U) be the set of all integers «,. such that ATOί(^) e CΛ Furthermore
assume that ^0 = 0 and that n£<^ni+1 . It follows from Lemmas 1 and
V that M f is defined uniquely for every integer i. Put

3) Let h be a homeomorphism of JΓ onto itself. Then # € JSf is called almost periodic under
h, if for each £>0 there exists an integer «4=0 such that d(#, λw(*))<£.

4) lim/zw(^) = {Λ:| for each ε>0 there exist infinitely many integers n such that J(#,
0°
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A homeomorphism h of X onto itself is said to be strongly regular
at peX, if there exists a neighbourhood U of p such that A is regular
for every point of U. Then we have the following

Lemma 4. Let X be locally compact. If h is strongly regular at
peA(h), then there exists £0>0 such that n\_p, Uζ(p)^ is finite for every

PROOF. Since X is locally compact, there exists a neighbourhood U
of p such that U is compact. From the strong regularity of h at p it
follows that there exists a neighbourhood V of p such that h is regular
for every point of V. Let £0>0 be such that

Let 8<^£Q. Suppose on the contrary that n\_p, U^(p)~\ is not finite. Then

either lim m\_n^\ -— °o or lim wι\n_ϊ\ = oo.
j-»oo i-*oo

First we suppose that lim m\n^\ = oo. Then there exists a sub-

sequence {n/j} of {«,-} such that limm{j%] = oo. Since Us(p) is compact,
J + oo

there exists a subsequence {nk} of {n{5} such that limhn*(p) = q, where
fc->α

q e f/8(ί). Since q^R(h), there exists δ>0 such that if rf(#, Λ:)<Cδ, then
o

d(hn(q), hn(x})<^~^- for every integer w. Let K be a natural number such

that if k^,K, then rf(^, hn^(p))<^8. Since p^A(h), there exists a natural

number TV such that rf(/>, hn*+N(p)X^ . Then for each
ό

d(p,

But this contradicts lim m {n^\ =
fc-»oo

Now we suppose that lim m[n_i~] = oo. Then there exists a sub-

sequence {nfj} of {n{} such that lim w £w -/j] = oo. Since f/g(^) is com-
j->^

pact, there exists a subsequence {nk} of {ni3} such that lim hn-*(p) = q,
fc->oo

where q£Uε(p). Since q^R(h), there exists δ>0 such that if d(qy x)

5)
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<δ, then d(hn(q), hn(x))<^~ for every integer n. Let K be a natural

number such that if k^K, then d(qy h"-*(p)χs. Then for each k^K

d(P, hn-*-n

But this contradicts lim m\n_^\ = oo. Thus the proof of Lemma 4 is
fc->oo

complete.

Lemma 5. Let X be locally compact. Suppose that I(k) is a closed
subset of X. Then for each p e A(h)

PROOF. Let p e A(h). Then there exist open subsets U and V such
that U3p, V^I(h) and jjnV—Q- Since h is strongly regular at p,
it follows from Lemma 4 that there exists £0^>0 such that n[py U^p)']
is finite for every £<^£0. Let 6^0 be such that S^SQ and that

U. Since h(I(h)) =

for every integer n. Put

\ n = 0 1, .-. , n[_p,

Then t/o is an open subset of X and UQ/ΛI(h) = 0. From the definition
of n[py Uε1(p)'] it follows that hn(p) e U0 for every integer n. Then

which completes the proof.

By Lemmas 2, 3 and 5 we have immediately the following

Theorem 1. Let X be locally compact and h a homeomorphism of X
onto itself. Suppose that I(h) is a closed subset of X and that p£R(h).
Then

(1 ) peA(h) if and only if lim hn(p)^A(h) and lim

( 2 ) pe N(h) if and only if lim hn

W->±oo

Lemma 6. Let h be a homeomorphism of X onto itself. Suppose that
I(h) is a closed subset of X. Then N(h) is an open subset of X.
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PROOF. Since I(h) is a closed subset of X, we are only to prove
that if peR(h)^A(ti), then pzA(h). Let £>0. Since p£R(h), there

exists δ>0 such that if d(p, *)<δ, then d(hn(p)y #•(*))<-|- for every

integer n. Since peA(h), there exists qeA(h) such that d(p,

Since # e A(A), there exists an integer Λfsuch that d(q, /^%))< - Then
o

<%, hN(p))<d(py q)+d(q, hN(q))+d(hN(q), λ"(£))<J- + J- + A = έ? .

Therefore /> e -A(A) and the proof is complete.

Lemma 7. Let X be locally compact. Suppose that I(h) is a closed
subset of X. Then A(h) is an open subset of X.

PROOF. Let peA(h). Let U be a neighbourhood of p such that Ό
is compact and that Z7A/(λ) = 0. Then there exists £}>0 such that
U9(p)(^U. Since peR(h), there exists δ>0 such that if d(p, *)<δ,
then d(hn(p), hn(x))<^ 8 for every integer w. Now we are only to prove
that if ^ € f/δ(/0, then q e A(A). Since ^ €-A(A), there exist infinitely many

nf such that rf(/>, hnί(p))<^^. Then

d(P, *"'

Since C78(/>) is compact, (lim A"(0))Aί7β(/))=t=0. Then (lim h"
n-++°° n->+°°

From Lemma 2 it follows that # e -A(A) and the proof is complete.
By Lemmas 6 and 7 we have immediately the following

Theorem 2. Let X be locally compact and h a homeomorphism of X
onto itself. Suppose that I(h) is a closed subset of X. If R(h) is con-
nected, then A(h) = 0 or N(h) = 0.

By the definition of the regularity we have clearly that if p G R(h),
then p^R(hm) for every integer m. Conversely we have the following

Lemma 8. Let X be compact. If p^R(hm] for some integer m(φθ),
then peR(h).

PROOF. Without loss of generality we may assume that m^>l. Let
£^>0. Since X is compact, h is uniformly continuous on X. Then there
exists δ0>0 such that if d(x,yχso, then d(hk(x), hk(y))<^8 for k = Q, 1,
• •• , ra-1. From the regularity of hm it follows that there exists δ^>0
such that if d(py *)<δ, then d(hmn(p), hmn(x))<^SQ for every integer n.
Then it is easy to see that if d(p9 Λ:)<δ, then d(hn(p)y hn(x))<^S for
every integer n, and the proof is complete.
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Let X be compact. From the above Lemma and the definition of
A(h) it follows clearly that if peA(hm) for some integer m(φθ), then
p e A(h). Conversely we have the following

Lemma 9. If peA(h), then pζA(hm) for every integer m(Φθ).
PROOF. This follows immediately from the theorem of P. Erdos

and A. H. Stone [2].
By Lemma 8 and 9 we have immediately the following
Theorem 3. Let X be compact and h a homeomorphism of X onto

itself. Then I(h)^=I(hm)y A(h)=^A(hm) and N(h) = N(hm) for every integer

§2.

Let h be a homeomorphism of X onto itself. An isolated point of
the set I(h) is said to be an isolated irregular point of h and further-
more if h(p)--=p, then p is said to be an isolated irregular fixed point.

Lemma 10. Let h be a homeomorphism of X onto itself. Suppose that
there exists an isolated irregular fixed point p of h and that X is locally

compact at p. Then there exists a point q G R(h) such that lim hn(q) 3 p.
n-+±oo

PROOF. Since p is an isolated irregular point of hy there exists a
neighbourhood U of p such that h is regular for every point of U—p.
Since h is irregular at p and h(p)=p, there exists £0>Ό which satisfies
the following condition : Given £<^£0, for each δ<^0 there exists a point
x with d(p, x)<^S such that there exists an integer n(S) with d(p, hn^(x))
:>£. Since X is locally compact at p, there exists a neighbourhood V

of p such that V is compact. Then there exists ^^0 such that

Since h(p)=p, there exists £2(<^81) such that

From this it follows that if xeUε2(p) and hn(x)rΛU£l(p)--=0 for some
integer n, then there exists an integer n' such that hu'(x) e U£ί(p)—Uε2(p).

Let δχ>0) be a sequence such that 81 = €29 δ1>δ2>δ3> and
limδn = 0. Then for each 8n there exists xn with d(p, xn)<^δn such that

d(p, /zmcw)(#w) ):><?! for some integer m(n). Therefore there exists an
integer m'(n) such that hm^n\xn) e U£ί(p)— Uε2(p) Then there exist a

q^Uεl(p)—Uε2(p) and a subsequence {«,.} such that lim hm^n^(xni} — q.
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Now we shall prove that lim hn(q) 3 p. Given £'>(), there exists a
W->+oo

natural number nQ such that δ^^θ'. Since h is regular at q, there
exists S'>0 such that if d(qy *)<δ', then d(hn(q), Λw(*))<£'— δWo for every
integer rc. Since lim hm/<-n^(Xm) — #, there exists an integer NC>n0) such

that d(hm^N\xN}, #)<δ'. Then

d(j>, h-m'^(q))<d(p, xN)+d(xNj h~m'^(q))<:SN + (S'-δnQ)<:€'.

This proves that lim/zw(#)3/> and the proof of Lemma 10 is complete.
W->±oo

Lemma 11. Let X be locally compact and h a homeomorphism of X
onto itself. Suppose that I(h) is a closed subset of X and that there exists
an isolated irregular fixed point p of h. Let qζR(h). If lim hn(q) 3p,
then p = lim hn(q).

n-^ oo

PROOF. Suppose on the contrary that hn(q) does not converge to p
when n->oo. Then there exists ^^>0 such that for infinitely many
natural numbers n{ d(py hnί(q))^S^ Let θ(^^) be such that ΊMp) is
compact and that Us(p)^I(h) = p. Since h(p)=p, there exists δ«6)
such that h(U8(p))(^U,(p). Then it is easy to see that there exist
infinitely many natural numbers n/ such that

Since Uζ(p)-Us(p) is compact, lim hn(q)r\U,(p)-Us(p)=^0. Since

Ut(p)—Uι(p)nI(h) = Q, lim/f(tf)AJ?(/z)φO. From Lemma 2 it follows

that qeA(h) and therefore lim An(0)A/(A) = 0 by Theorem 1. This con-
W->oo

tradiction completes the proof.

Lemma 12. Let X be locally compact. Suppose that I(h) is a closed
subset of X and that there exists an isolated irregular fixed point p of h.
Put

P=^ {x\\imhn(x)=py x
n-*°°

Then P is an open and closed subset of R(h).

PROOF. To prove that P is an open subset of R(h) : There exists
£<0 such that Us(p) is compact and that Us(p)^I(h)=p. Let x^P.
Then x^N(h) by Theorem 1. Since N(h) is an open subset of X by
Theorem 2, there exists a neighbourhood U(x) of x such that
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Then there exists S>0 such that if d(xy y)<δ, then d(hn(x},
ί-l

for every integer n and that U5(x)ζ^U(x), Since lim hn(x)= p, there
W->oo

exists a natural number N such that for each n^>N d(p,

Then for each n>N, if rf(*,;y)<S,

rf( A ^(y)) ^d(p, hn(x)) +d(hn(x), t

Since U9(p) is compact, lim hn(y)^ U,(p)φ0. Since y 6 N(h), lim hn(y)=p
W->oo W-> oo

by Theorem 2 and Lemma 11. Therefore P is an open subset of R(h).
To prove that P is a closed subset of R(h): Suppose xeR(h) — P.

From Lemma 11 it follows that Hm hn(x)^p = 0. Then \J^ίf\x) Aί = 0.
?Z->oo

Put

« - <*(P> W-o

Since x£ R(h), there exists δ^>0 such that if d(x, y)<^δ) then d(hn(x)J

^ for every integer n. Then

\J«-o

Therefore ϊίϊn hn(v)r\P — O Hence R(h) — P is an open subset of
M-»oo

and the proof is complete.
By Lemmas 10, 11 and 12 we have immediately the following
Theorem 4. Let X be locally compact and h a homeomorphism of X

onto itself. Suppose that I(h) is a closed subset of X and that R(h) is
connected. If there exists an isolated irregular fixed point p of h, then
either for each x e R(h) lim hn(x) =p or for each x e R(h) lim h*(x) —p.

W->oo ^^-oo

Theorem 5. Let X be compact and h a homeomorphism of X onto
itself. Suppose that I(h) is a closed subset of X and that R(h) is connected.
Let p be an isolated irregular point of h. If hm(p)=p for some natural
number m, then p is an isolated irregular fixed point of h.

PROOF. We are only to prove that h(p)=p. Suppose on the contrary
that h(p)^pp. It follows from Theorem 3 that I(h) = I(hm). Therefore
p is an isolated irregular fixed point of h™. Then it follows from
Theorem 4 that either for each x e R(h) lim hmn(x) =p or for each x e R(h)

?Z->oo

lim hmn(x) = p. Without loss of generality we may assume that lim hmn(x)
??,-> — oo ?i -> oo

= p for each χζR(h). Then we have that

lim hmn+1(x) = lim h(hmn(x)) = A(lim hmn(x)} = h(p) =\=p.



On Horn com orphisms which are Regular Except for a Finite Number of Points 37

On the other hand we have that

lim hmn+1(x) = lim hmn(h(x)) = p .
n-*oo n-+oo

This is a contradiction and the proof is complete.
PROOF OF THEOREM I. Let X be a compact C*-set and h a homeo-

morphism of X onto itself which is regular for every x e X except for
a finite number of points. Put I(h)= {pQ, p19 ••• , pm}. Then I(h) is a
closed subset of X and all />,•(!<!/ <Iw) are isolated irregular points of A.
Furthermore R(h) is connected. It is easy to see that for each p{ there
exists a natural number nf such that λnί(ί, )=A It follows from
Theorem 5 that all £,. are isolated irregular fixed points of h. Then by
Theorem 4 either for each xe jR(A) lim hn(x) =pi or for each χ ζ R ( h )

n->oo

lim /Γ(:*;) —^-(1 <lz <ίm). Therefore the number of points which are
?ί_>-00

irregular under h is at most two and the proof is complete.

PROOF OF THEOREM II. This is clear from the proof of Theorem I.

By the theorem of the authors £4] we have the following
Theorem 6. If h is α homeomorphism of S3 onto itself such that (i)

h is irregular at a, έ(φ)eS3, (it) h is regular at every xeS3 — (a^Jb)y

then h is topologically equivalent to the dilatation in S3.

Remark 1. B. v. Kerekjartό [5~] proved that if h is a homeomor-
phism of S2 onto itself which is regular for every x G S2 except for a
finite number of points, then h is topologically equivelent to a linear
transformation of complex numbers.

Remark 2. For the case where h is a homeomorphism of Sn onto
itself which is regular except for only one point see H. Terasaka [7].

Remark 3. It is proved by R. H. Bing [Y] and D. Montgomery
and L. Zippin [6] respectively that there exist a sense-reversing and a
sense-preserving homeomorphisms /^ and h2 of S3 onto itself with period
2 (then they are regular for every jcGS 3 ) such that h1 is not topologi-
cally equivalent to the reflexion and h2 is not topologically equivalent
to the rotation in S3.

(Received March 20, 1955)
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