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1. Introduction

Let Q be a domain in R* with generic point x=(x,, --+,%,). We denote by
a=(a,, --*,a,) a multi-index of length |a|=a,+ ---+a, and use the notations

D* =D - D+, Dy = —/—10/0x, .

For an integer m=0 H,(Q) is to be the set of all functions whose distribution
derivatives ot order up to m belong to L*(Q) and we introduce in it the usual norm

[l = 1l 0 = ({33 1D%u12ax).
QdI=m
When m=0 we simply write || || instead of || ||,, which is the norm of L*Q).

ﬁ,,,(ﬂ) denotes the closure of C5(Q) in H,,(Q).
Let B be a symmetric integro-differential sesquilinear form of order 7 with
bounded coefficients

Blu, v] =S up(%) D°uDPodx

Q |, |Bl<m
satisfying
Blu, u] = §||ull7 for any ucV a—(1)

where & is some positive constant and V' is some closed subspace of H,(Q)
containing H #(Q). Let A be the operator associated with this sesquilinear from:
an element u of V' belongs to D(A) and Au=fe< L*(Q) if Blu, v]=(f, v) is valid
for any ve V. Asis well known 4 is a positive definite self-adjoint operator
in L’(Q). In this paper assuming that Q is a bounded domain possessing the
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restricted cone property (p. 11 of [1]) we investigate the asymptotic distribution
of eigenvalues of the operator A, and under various smoothness assumptions
on the coefficients of B deduce formulas mainly with remainder estimates which
are similar to those obtained by S. Agmon [2] (see also R. Beals [5]).

In our result it is assumed that 2m>n; however, we do not require the
following inclusion relation which was assumed and essentially used by many
authours®:

D(A)cH,,(Q). (1.1)

An example of an operator which does not satisfy (1.1) can be constructed with
the aid of the following considerations. Let Q be a bounded domain of R? with
smooth boundary 8Q=T,UT,, T,NT,=¢, and denoting by (x,y) the generic
point of R? let

Fudv 0u 0 | ud
Blu,v] = $Q<6? o2+ 0x0y 0x0y + 0y’ 5§2)dxdy

and V be the closure in H,(Q) of
{usC=(Q): u=0onT, and 9u/dv = 0 on T,}

where v is the outer normal to 8Q). The function u=Im(x-}3y)**=7**sin (36/2)
satisfies Au=0 and hence A*=0 in the upper half plane y>0. For x>0, y=0
u=0°u/0y’=0 and for x<<0, y=0 0u/0y=0°4/0y*=0. Near the origin ueH,
although u= H, there. Hence assuming that 8Q contains a part of the x-axis
having the origin in its interior we can easily construct a function which belongs
to D(4) but not to H,(Q2). We also note that (1.1) is not valid under boundary
conditions of nicer type when the coefficients of B are not differentiable.

A great number of papers have been published on the eigenvalue distribu-
tion of elliptic operators, a survey of which is found in the introduction of [2].
In [3] S. Agmon devised an “indirect method” of estimating resolvent kernels
of operators considered whereas these kernels were always estimated directly by
many authors before that. This indirect method is remarkably effective in
obtaining global estimates of the resolvent kernels without any complicated cal-
culations and based upon these estimates numerous important results were
derived (([1], [2], [3], [4], [5]). In this paper we follow this method; however,
we need some modification since (1.1) is not necessarily satisfied as was mentioned
above. To this end we extend the operator A to a mapping on V' to V* where
V* is the antidual of I'(i.e. the space of continuous conjugate linear functionals
on V). This extended operator which is again denoted by 4 is defined by

Some related results without remainder estimates are obtained for degenerate operators.
See [9] for example.
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Blu, v] = (4u, v) for any veV

where the bracket on the right stands for the duality between V* and V in this
case. Identifying L*(Q) with its antidual we may consider V' C L}(Q)C V'* alge-
braically and topologically, and as is easily seen V' is a dense subspace of V'*
under this convention. The resolvent of A thus extended is a bounded linear
operator on V* to V, and in virtue of the assumption 2m>n we can estimate the
kernels of this class of operators pointwisely by various kinds of their norms with
the aid of Sobolev’s inequality (Lemma 3.2 below).

In the proof of our main theorem the results of S. Agmon and Y. Kannai
[4] as well as the method of S. Agmon [2] play an important role. In section 2
the main theorem is presented. In section 3 lemmas which will be used fre-
quently in the subsequent sections are proved. In sections 3-7 the kernels of
A are estimated in comparison with those of operators with smooth coefficients
approximating the original ones and also with those of operators defined in a
larger domain with smooth boundary. In section 8 the main theorem is proved.

It is obvious that our result remains valid when B has some boundary
integrals containing derivatives of order<m—1. It is also easy to verify that
some part of the main theorem can be extended to non-symmetric cases.

2. Main theorem

For x€Q let §(x)=min{1, dist(x, 0Q)}. Suppose that
S 8(x)?dx< oo 2.1
Q

for some positive number p<<1 which will be specified later. Since all coefficients
a4 belong to L=(Q), there is a constant K such that for any u, ve H,,(Q)

| Blu, v]| = Kllull,,|2]],, - a-(2)

For an integer k=0 we denote by C*(Q) the set of all % times continuously dif-
ferentiable functions in Q. For an integer k and a positive number 2<<1 we
denote by C**#(2) the subclass of functions in C*(Q) whose derivatives of
order k are Hoelder continuous of order % in Q.

We consider the following various types of smoothness assumptions:

s-(1) For |a|=|B|=m aus is uniformly continous.

s-(2) For |a|=|B|=m aug is uniformly Hoelder continuous of order 4.

s-(3) For |a|=|B|=m aup belongs to C'*#Q,), and for |a|+|B|=
2m—1 agg is uniformly Hoelder continuous of order #. Here and
in what follows Q, is a domain containing Q.

s-(4) For |a|=|B|=m a.s belongs to C***(Q,), for |a|+ |B|=2m—1
asg belongs to C'*(Q,), and for |a|+|B|=2m—2 aws is uni-
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formly Hoelder continuous of order A.
s-(5) For |a|=|B|=m as is constant in Q, and for |a|+|B|=
2m—1 aug belongs to C=(Q,).

Throughout the paper we assume that Q is a bounded domain having the
restricted cone property (p. 11 of [1]) and that 2m>n.
For t>0 let N(#) be the number of eigenvalues of 4 which do not exceed ¢.

Main Theorem. In the situation stated above the following asymptotic
formulas for N(t) hold as t— oo :

N(t) = c,t™*™+o(t"*™) under s-(1),
N(t) = ct"*-0(zn= 01

for any number 0 satisfying

0<0<h|(h+3) under s-(2),
0<o<(h+1)/(h+4) under s-(3),
0<d<(h+2)/(h+5) under s-(4),
0<b<1 under s-(5)

where

= gq};%ﬁm) SQ co(x)dx

o) = (zn)-"s {3 am@E" P+ 1) 2.2)
R" =n

RemaRrk. If s-(4) is satisfied for A=1 the above formula coincides with the

one of Agmon [2]. Under the assumption s-(2) the formula is the same as that

of Beals [5].

3. Some lemmas

To begin with we shall prove four lemmas of which we make frequent use
in the subsequent sections. Let A be a complex number which is not on the
positive real axis. According to Lax-Milgram theorem A4—2\ has a bounded
inverse defined in the whole of I*. Let d()\) be the distance from the point A
to the positive real axis. For a bounded operator S on V* to V' we use the
notations ||S||y+,v, ||S|lv*512, etc. to denote the norms of S considered as an
operator on V* to V, V* to L}(Q)., etc.

Lemma 3.1. There exists a constant C such that

@) A=N) ez rz=1/d(N),
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() I A—2) T2y <C A 2/d(N),
@) [ A—2)lpy =CIA] AN,
() I A=2)"lyesr2SC N d(N) .

Proof. The statement (i) is clear since 4 is a positive definite self-adjoint
operator in L} Q). If u=(A—2\)7Y, feL*Q), then by the definition of 4

Blu, u] = (f, u)+\u, u) . 3.1)
In view of a-(1) and (i) we get

Slleel m =11 A1 MNeal [+ In ] Tleel
=FIP[A)+ INLF I AN
=2In[ (1A 11/

from which (ii) follows. Since B[u, u] is real we get from (3.1)

Im Ml = —Im(f, ),
whence it follows that

Tm ] [l P =1 (v [ (3.2)
which implies

d) [l = 1 f 1wl el
if ReA=0. From (3.1) we get also
0=B[u, u] = Re(f, u)+Rer|[u|]?,
and hence if Re A<<0
|Re M [Jul]* = —Re Mlul[*<Re (f, u) || fllv+] ] -
Combining this inequality with (3.2) we obtain
Al =/ 2 || fllvelull, - 3.3)

It follows trom (3.1) and (3.3) that

Sl fuel =1 f v lNoal |t I el
S|l 2 I f e el /A (V)
=14V 2) I IS llve llull /(N

from which (iii) follows immediately. ~ Finally with the aid of (iii) and the follow-
ing inequality
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IM el < Kl 11 f v el

which is a simple consequence of (3.1) we can easily show (iv).

Lemma 3.2. Let S be a bounded operator on V* to V. Then S has a
kernel M in the following sense:

() (%) = LM(x, W)y  for fELXQ).

M(x, y) is continuous in Q X and there exists a constant C such that for any
x, yEQ

| M(x, y)|

2 2 2 2 2 2 2
SCIISIyaam ISI13em e (IS |72y e S| Gz

Proof. That S has a kernel of the type stated in the lemma is a consequence
of the general theory of Hilbert-Schmidt operators (see p. 211 of [1] where
these operators are called operators of finite double norm). Applying Sobolev’s
inequality to M(x, y) considered as a function of y we get

| M(x, y)| < vl M(x, - )|l | M (x, - )72 3.4

Next applying the same inequality to Sf

[(SF) ()| < o ||:SF | |22 || Sf||*~ "2

= vlISIIyem ISz 1 fllvs -

V*>V V*>L2
Hence noting that V is reflexive we find that M(x,-)e V for any fixed x=Q and

1M, )l = (1M (=, )y = vIIS12m IS 3.5)

V>V VE>L2*

In a similar manner we obtain

1M, )| S yIISIF2m S | s - 3. 6)

L2>V L2>L2
Combining (3.4), (3.5) and (3.6) we complete the proof of the lemma.
Lemma 3.3. There exists a constant C such that for any integer 0 <k=m

IA—N)FLSCINE# 0 fllye  for fEVE, (3.7)
IA=X) L= C I Fmd) 1] for fELXQ). (3.8)
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Proof. Under our assumption on Q the following interpolation inequality
is true:

el < eloal |37 ] |* 5 . (3.9)

Applying this inequality to (A—X\)"'f and then using Lemma 3.1 we easily
obtain (3.7) and (3.8).

Lemma 3.4. There is a constant C such that for any integer 0Sk=m
[0l CIN =22 (||o]]y+ IN#l0l])  for vEV.

Proof. In view of the interpolation inequality (3.9) and Young’s inequality
we conclude

olle= (I X1~ o] ], )M (| 0 | 2 o] ) Fm

Sc| TR o] |t I ] -

4. Estimates of resolvent kernels - 1

In this section we shall estimate the difference between the resolvent kernels
of A4 and those of the operator 4, associated with B under the Dirichlet boundary

conditions. By definition for any u, veH »(Q) we have
Blu, v] = (4w, v)

where the bracket on the right denotes the pairing between the antidual H_,,(Q)
of H,, (Q) and H,,(€) this case. Under our convention of identifying L*(Q) with
its antidual there is no fear of confusion if we use the notation (, ) standing for
the L*-inner product to denote also the pairing between V'* and V as well as that

between H _,(Q) and I;Vm(ﬂ) Obviously for the operator 4, the analogues of
Lemmas 3.1-3.4 hold. We denote by A a class of functions in C7(R") the sup-
ports of which are contained in the set {x& R":|x| <1} and which take the value
1 at the origin. We fix a point x,=Q. For the sake of simplicity we put
&=35(x,) for the time being and & (x)=&((x—x,)/€) for E&A. Let S,, be the
operator defined by

Suef = E{(A—N)f=(4—2) ()}

for any f & V* where 7f is the restriction of f& V'* to I;Tm(Q). Obviously S,, is
a bounded operator on V* to H,(Q) and hence a fortiori to V.

Lemma 4.1. If &' |\|"*"<1, then for any positive integer j there is a
constant K ; such that

ISxellvesy S K (ETINTd(N) ) [N ] [d(N)
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1Sellyes 2
1Sxe 1225w
1Saellzzs 2= K (€7 [N *77d(N) Y [d(N) -
Proof. Let u=(4A—\)"'f—(4,—X\)"'(rf) and v=Eu=S,.f. Now
B[v, v]—\ (v, v)
= Blv, v]—B[u, 9]+ B[u, £E,v]—\(u, £E.2)
= {B[v, v]— By, £,0]}+B[(A—N)"f, 0] —M(A—N)7, £x0)

— B[(4e—2)"(1f), E]HM(A—2) (), Ee0)
= Blv, v]—B[u, £9] .

bk ety y )

Noting that B[u, #] =0 and d(\)/| 1| =sin(arg\)| we get for some constant C

| Blo, v] =M, v)| 2max{B[v, o], |1 (2, ©)}d(N)/| M|
ZC(llollm+ Mol 1] (#.2)
Next from (4.1) it follows that
| B[2, ] —\(v, v)| = | B[v, v]—Bl[u, £.2]|
[, .32 aus()(D*(Ea)DPo — Du DFE )|

Q (@], |Bl=m

I

={ = a,ﬂ(x)ag(g)mwgemup_%dm

Q |®], |alsm

1], 3 au(x)3(2)DuDPE Do | = LA L, (4.3)
Q || B>Y\Y

@, @ sm

We shall proceed inductively and at first consider the case j=1. Noting that
l17fll - =||fllv* we get from Lemma 3, 3

[[ull e < C N 2H27d(0) Y| fllys  for fETH, 4.4
[lulle= C | N #27d(N) | £1] for feL*(Q) 4.5)
if 0<k<m. Clearly for some constant C independent of x and x, we have

| DE(x)| <Ce&™ M, (4.6)
From (4.4), (4.5) and (4.6) it follows that

L=C e lullul o,

< C & A A 0 dO) 7 £yl
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for any f& V'* and
L= ek n| &m0 | el
for any fe L*(Q2). Hence using the assumption £7'| 1| 7/*” <1 we get
LECIA e d0) | fllylell., for feV*, — (4.7)
L=CIn[7 e dN) T IN T2 fl o]l for fELXQ). (4.8)
Next in view of (4.6) and Lemma 3.1

L=CIMAN) flly 26 llells  for fE V¥,

LECIM#O)IfIIG e el for fELXQ).

Using here Lemma 3.4 and the assumption £7'|A| "*”<1 we easily obtain
L=CIx e dN) 7| fllvs(lollmt N2 (#.9)
L=CINTEmed0) T I (o]t IV 1) (4. 10)

for any fe V'*, f € L(Q) respectively. Combining (4.2). (4.3). (4.7) and (4.9)
or combining (4.2), (4.3), (4.8) and (4.10) we get

oI+ Ml S K(I0 272 d(N) ) (I (@) ve
or

[0l 220 S K (TN 72 d(0) ) (I 2 [dO))I ]

according as f& V* or f & L*(Q) where K, is some constant independent of x, x,
and A. Recalling the definition of v we can easliy establish the desired estimates
for j=1 with the aid of these two inequalities. Assume that the lemma has been
proved for some k. We pick another function »& A such that »(x)=1 for any
x<supp & and write 7,(x)=n((x—x,)/€). Now, by the easily verified inequality

L=1{, 3 au@)5(3)DED" (ra)DPods|

Q |, [Bl=m

m-1
= cEemmaldloll
we get using Lemma 3.4 and the assumption £7*|A| """ <1
L=Ce N7 (|Ingullt- [N el ][9], - (4. 11)

From the induction assumption with 7 in place of £ it follows that
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[l | N 12 ]|
~ [KWEIAPTEmAN) Y I ) I f e (4. 12)
T KLET NN T ] ()7 ] (4.13)

Therefore, in virtue of (4.11), (4.12) and (4.13) we get
L=CEINMT AN Y fllvel ol » (4. 14)
L=CE A dA) 7 I 2 f I 2 - (#.15)
On the other hand

11, o) s
< Cllnullw 3364~ [ol s - (+.16)

Combining (4.12), (4.13) and (4.16), and again using Lemma 3.4 and the assump-
tion €7*|A| """ <1, we find that I, is dominated by the right member of (4.14)
or (4.15) with ||2],,+ | X | /*||2|| in place ot ||v]],, according as } € V* or f = L Q).
Hence combining (4.2), (4.3) and the estimates for I, and I, just obtained we
conclude there is a constant K, such that

[P S PR
S Ky (€T INTmA(N) TR UM AN T S v
or

S K (€T TR () A

according as fe V* or feL*Q). Thus recalling the definition of v again we
finish the proof of the present lemma.

Let M,,, K, and K°, be the kernels of the operators S,,, (4—A)"* and
(4,—2) " respectively. Then clearly we have the relation

M (%, y) = Ee(x){KA(x! )—K\(x, y)} . (4.17)
Lemma 4.2. For any p>0 the following inequality holds:

C I)\‘|n/2m Ihll—llzm ?
oA \8(x0)d(N)

| K0, %6) — K A%, %) | = A =1, (4.18)

where C , is a constant depending on p but not on x, and \.

Proof. First let us assume that p is an integer. If 8(x,)|x["*”=1, then
in view of Lemmas 3.2 and 4.1 we know
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|7\,|"/2m | X,l—l/Zm »
'M)\e(x’ y)l écﬂ d 7\‘) B(xo)d(h) (4 19)

and therefore recalling (4.17) we obtain (4.18). In general for any A we have

IKA(xm xo)_KO)\(xO’ xo)l
= K%y %) |4 [ KOA(%0y %) | S CIN[™*7d(N)7 (4. 20)

by Lemmas 3.1 and 3.2. So if 8(x,)|2|"*"<1, (4.18) trivially follows from
(4.20). 'Thus (4.18) is proved when p is an integer. 'That (4.18) also holds for
non-integral vlaues of p follows by interpolation.

5. Approximation of coeflicients by smooth functions

We shall approximate the coefficients aag by functions in C*(R") so that we
may apply the results of S. Agmon [2].

Let p be the real valued even function in Cy(R") the support of which is
contained in the set {x: |x|<n""?}. We write for x=(x,, -+, x,)ER"

plx) = P+ p(x,), px) = & p(x[€)

and
pf@) = pla—)f)dy.

Here &€ is an arbitrary positive number. Moreover we use the notation 92=
(0/0x,)*1- - (0/0x,)* for a=(ay,**, a,). First we shall prove the following

Lemma 5.1. Let feC*Q), x, be a point of Q, and & be any positive
number. We set

—(x —%)"05f (%),  if |x—ax,| <8

lels2 ¢

folx) = (5.1)
la'sz——(xl—xo)‘”a“f(xo) if |x—x,] >8
where x, is the point of intersection of the sphere |x—x,|=38 and the line segment
connecting x, and x. Then
(1) pexfois a function in C=(R");
(ii) when €<, we have pxfy(x)=fy(x)+ C.(x,) in the set {x= R*:
|x—x,| <8—E} where Cy(x,) which is independent of x satisfies

|Cx)] € 33 1037w (5.2)

(ii) for any x= R"



334 K. Maruo aND H. TANABE

| poxf )=/
<8 33 10%f(x)|+8 33, 103/(w)] (5.3)

Proof. (i) is obvious.
(ii) Noting that |x+2z—x,| <8 if |2| <<€ and |x—x,| <8—& we know by
the change of variables

Pt fol %) —fo(x)
= ot opde— i)

= pe) 33 L irra—n)—(x—w)05f (v)ds

o=z oy )
= 33 02f(w) Sm pua)s st 3 %a; £(%0) SR” 3p(2)dz
+ 20 3 () )| e

= Il+12+13 .

It is easy to see that J,=0 and I,=0 in virtue of the eavenness of the function p.
Thus by a suitable change of variables in the integral of I, we get the following

relation:
pex fo(%)—fo(x) = Ce(x,)
where
Cy(x) =& i' 82 f(x,) Sz"’p(z)dz . (5.4)
1é=2 ot |

Clearly C,(x,) dose not depend on x and we easily find that (5.2) is valid.
(iii) follows from the fact that | f(y)—f(x,)| is dominated by the right
hand side of (5.3) throughout R”*.

Lemma 5.2. Let f be a function in C*(Q)). We set
20 (x—x0)"05f (%)) for |x—x,| =8,

1#[=1

T =1 Sy (e 0sf(x)  Jor |w—sy] > G-)

1aT=1
where x, is the point defined in Lemma 5.1. Then
(1) pexf, is a fuction in C=(R");
(ii) when €<8 pxfy(x)=Ff(x) in the set {xER": |x—x,| <5—E},
(i11) for any x=R*
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|petfu) — f) | 8 33 10°f(w)).

Proof is similar to that of the preceding lemma.
It is known that for some constant ¢,>>0 we have

ragtan GNP Z G EIT (5.6)

for any x= ) and £ R" under the condition a—(1) (see [1]).

Now suppose that the coefficients of B satisfy the smoothenss condition
s—(4). Let x, be an arbitrary fixed point of O and 0<&’<<8. We shall apply
Lemma 5.1 to @ap, || =|B|=m, and Lemma 5.2 to @ag, ||+ |B|=2m—1.
For |a|=|B|=m let als and C2f(x,) be the function and the constant defined
by (5.1) and (5.4) with f and & replaced by a.s and & and set azg=py*ads
—C2(x,). For |a|+|B|=2m—1 letting adg be the function defined by (5.5)
with a,s in place of f we set alg= ps*ads. For |a|+|B|=2m—2 or
la|+|B| <2m—3 we put azp(x)=aa.p(x,) or ais(x)=0 respectively. We shall
consider the following symmetric sesquilinear form:

B, v]= 3 Snaba(x)D“uE@dx.

@, gl =™

Lemma 5.3. There are two positive constants ¢t and C such that
Bi[u, u] = cgllulln—Cllu|l*
for any ueﬁm(ﬂ) provided that § and & are sufficiently small independently of x,.

Proof. We write

azp(x)E*P

|m|=-|p|=-m

= 3 a3 (aky()—aan(x)}
and then use (5.6) and Lemma 5.1 in order to estimate both sums in the right
hand side. It then follows immediately from the assumption s-(4) that if § and
& are sufficiently small independently of x, then for any x€Q and £ R*
W3 A@EZ (D) |1
Since clearly the coefficients ot B, are all uniformlly bounded it is a well known
fact that the assertion of the lemma is true. q.e.d.

Next consider the case where the coefficients a.g satisfy s-(3). For
| | = | 8| =m letting agg be the function defined by (5.5) with aag in place of f we
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put aZg=p*ags. According as |a|+|B|=2m—1 or |a|+|B|<2m—2 we
put a2g(x)=aap(x,) or a3g(x)=0. Difining the coefficients a3 in this way we set

B,u, v] = aap(x)D"uDPodx .

I“!,Iﬂ!émgﬂ

In case where the coefficients of B satisfy s-(2) let B, be the sesquilinear form de-
fined by

B;[u, v] = Qaa,ﬁ.(xo)D"’uﬁf’de .

m1=|s(=mg
Then the following lemma can be proved analogously to Lemma 5.3.

Lemma 5.4. There exist positive constants c; and C such that for i=2
and 3

Bjlu, u] zcillullm—Cllull®

for any ueﬁm(ﬂ) provided that § and & are sufficiently small independently of x,.

6. Estimates of resolvent kernels - 2

From now on we fix constants § and & in the range specified in Lemmas 5.3
and 5.4. Let &§=dist(Q,0Q,). Let A, be the operator associated with B,
restricted to H,,(Q) X H,(Q), that is,

B\[u, v] = (Awu, v) for any u, vEI—j’m(Q) .

We intend to estimate the difference between the resolvent kernels of 4, and
those of A,. To this end we define

Skef = E{(A—N) ' —(Ai—N) T} f

for fe H_,(Q) where £ is again a function in A and & is an arbitrary positive
number. We note here that the range of S}, is contained in I;Vm(ﬂ) whether the
support of £, is contained in O or not. For an operator S on H_,(Q) to
H,(Q) we denote by |11l s 11l o, 1Sk, . 1S]l,» the norms of S
considered as an operator on H_,(Q) to I;Tm(ﬂ), on H_,(Q) to L*Q), on L*(Q)
to I-OI,,,(Q), on L*(Q) to L*(Q)) respectively.

Lemma 6.1. If &'\ |""*"d(\)"'<1, then for any positive integer j there
is a constant K ; independent of x,, € and \ such that
”S?{a”(-m,m)ngR{ex HS)](el |(-m,0) ngR{e l 7\' | _1/2)
S Rellco, mo S K RE AN T2, [1SRello, 0 S K RE N T
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where
R}, = &%+ 1R Y s A o
d(\) +< &d(\) dn)

Proof. First consider aqg with |a|=|8|=m. Let 0< §<min(E, §—¢").
Then in view of Lemma 5.1 we get for |x—x,| <<€

k() = aba(s) = 33 T (v Olaon()

1=z ey !

whence it follows from the Taylor expansion of aag at x, that
| awp(x)—azg(x)| S CE+E, 6.1)

Replacing C by another constant if necessary we find that (6.1) is true without
any restriction on £>0. Similarly for |a|+ |8 =2m—1 we get

| @ug(x) —asg(x)| = CE™** 6.2)
and for |a|4 |B|=2m—2
| aun()— ako()| < Ce" 6.3)

if |x—ux,| <E.
Now let us write u={(4,—A)"'—(4,—\)""}} and v=Eu=S3,f. Then we
find
Blv, v]—(v, v)
= Blu, £9v]—\u, £20)+ B[v, v]—B[u, £.9]
= B[(4,—N)"f, £0]—B[(4:—N) 7', E2]
— M(A—N)7, E)+HM(A— N, E0)
+ Blv, v]—Blu, &.2]
= (Bi—B)[(4,—7)7"f, &v]+B[v, v]—Blw, £.2] . (6.4)

We shall proceed by induction. When j=1, using (6.1), (6.2) and (6.3) we get

|(B,(—B)[(A:—N\)7'f, £2]

= (aws(x)—azg() D((4,—N) "' 1) DP(E ) dx |

SQIG‘I +ipl22m-2

H1f. 3 am(®D(A—N) DA D)

Qla| +|fl=2m-3

< Ce (A2 " flllIEo
+ & SN s 0l s CE* 2 (AN - lEc0 st
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+ C'Z;o||(A1—7\')_1f”m—k||gez)|Im—3+k = L+1L+1,+1,.
Using Lemma 3.4 and writing
0 = (IA:=2) " fllw+ IMZI(A=2) D) (10l |N 162
we find
L=Cerhg, L=Ce|\| "m0
L<Cer |\ "0, L[<C|\|7*"0.

Applying Leibniz’s formula and using the interpolation inequality (3.9) we
easily verify

HEevllmt M IE0l = C(ll0]]mt [N 1211) - (6.5)

Hence from Lemma 3.1, (6.5) and the hypothesis of the present lemma it follows
that for fe H_,(Q)

[(B.—B)[(4,—7)7Yf, 2]l
=CEEIN ANl m(l[2]l+ 1N ]2 (6.6)
Next by the same argument as in Lemma 4.1 we find that if fe H_,(Q)
| Blu, £,9]—BJ[v, v]| is dominated by the value of the same form as the right
member of (4.9) except for the replacement of ||f||y« by ||f||-,,. From (4.2),

(6.4), (6.6), and the estimate for B[u, £,v]— B[v, v] just mentioned we easily
conclude that for some constant K,

ol M2 S KR fll - for fEH_,(Q).
Similarly if f € L*(Q) we get
[ollmt XVl < K Ry I £

Thus the lemma has been proved when j=1. Assume now the lemma has been
proved for some k. Let » be a function in A such that 7(x)=1 for any
xesupp &, and set 7,(x)=n((x—x,)/€). Then we find

IB[u’ Ee‘v]_B[‘v’ ’Z)]l él‘ll—i—IIZ

where I1, and II, have the same from as I, and I, which appeared in the proof
of Lemma 4.1 (see the relation just before (4.11) as well as (4.16)). With the
aid of Lemma 3.4 and the hypothesis ot the present lemma we get

IL=Ce7 N (Il [NV el D[], 5
IL=CE N Ingul (|21t M (1001
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and hence using the induction hypothesis applied to ||7.ul|,,+ | X | ¥?||7.u|| for any
feH_(Q)

IL=Ce™ [N TV RN f1] -l 0]l » (6.7)
IL=CE MR f |- (|0l [ 2 [ J2]1) - (6. 8)
Combining (4.2), (6.4), (6.6), (6.7) and (6.8) we get for some constant K,
[2llnt M2l < Kya R HI f1] -
In an ahalogous manner if f € L¥(Q) we obtain
o]l A0l S K7 paaRGHN T A

for some constant K},, which may be assumed to coincide with K,,;. Thus
the lemma has been completely proved.
Let A; be the operator associated with B, considered as a sesquilinear form

defined onf]m(ﬂ)x I;’,,,(Q) for 7=2 and 3, i.e.
Bi[u, v] = (Au, v)  for any u, ve H,(0Q). (6.9)
We denote by Kf(x, y) the resolvent kernel of 4, for i=1, 2 and 3.

Lemma 6.2. There exists a constant C depending on j but not on x,, &€ and \
such that if |\ (0TI

K(x,, %) —KX(%5, %) | SC|N|**" 'R}, under s-(4), (6. 10)

| KR(%5, x0)— K3(%0, x5)| <C | N|**™ 2R, under s-(3), (6. 11)

| KR,y %) — K3 (% %,)] <C|N|™*™ 1 *R{, under s-(2) (6. 12)
where R}, was defined in Lemma 6.1 and for i=1 and 2

LY (I
d(x) ed(n)

82 i+

Proof. The inequality (6.10) follows from Lemmas 3.2 and 6.1. The re-
maining inequalities can be proved analogously and we omit the proof.
7. Estimates for resolvent kernels - 3

Let Qg be the spherical domain {|x| <R} containing . It is clear by the
argument of the preceding sections that for i=1, 2, 3

anp E"P 2| E™"

la|=|p|=m
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holds in Qp for some positive constant ¢ independent of x,&Q. Let B,,
i=4, 5, 6, be the symmetric sesquilinear form

B/, 0] =S SV alz¥(x)D*uDPodsx
a 1 BISm
and 4,;, i=4, 5, 6, be the operator associated with B; considered to be defined
on ﬁm(ﬂg)xflm(ﬂle). For the sake of simplicity we write €= 8(x,)=
min {dist(x,, 0Q), 1} in the following two lemmas. For a function ueI:;m(Q)
let #=u in Qand #=0 in Qr—Q. Then # belongs to f}m(ﬂR)o and by this

correspondence ﬁm(ﬂ) may be considered as a closed subspace of H,,(Qg). For
=4, 5, 6 let

Skef = Ef(Aies—2) ' (#f))"—(4:—2) 7 f}
for fe H_,,(Qr) where rf is the restriction of f to I-}m(ﬂ) Evidently S¥, is a
bounded linear operator on H_,,(Qp) to H,(Qp).

Lemma 7.1. If €' |\|7""<]1, then for any integer j =0 there exists a
constant K ; independent of x, and \ such that for i=4, 5, 6

1SRellc—m, mo S K (INTVE71A(N) T [N [d(N)
”S{s%l(o,m)

”S{e”(—m,o)
1S%ello, 0 S K (IN 72772 d(N) ) [d(N) -

} éK_,( N 1—1/2m8—1d(>\‘)-—1)j ] 1/2/d()\') ,

Proof. Let v=§,u=S).f. Noting that the support of v is contained in
Q we find

B[v, v]—\(v, v) = B,[v, v]—B,[u, £0] .

The present lemma can be proved just as Lemma 4.1 based upon this equality.
Let K be the resolvent kernel of A4;, i=4, 5, 6.

Lemma 7.2. For any p =0 there exists a constant C , depending on p but not
on x, and ) such that

S )KL [ (]
K )K= €, ST ()

for i=4, 5, 6.

The lemma can be proved analogously to Lemma 4.2 applying Lemma 3.2
to S¥..

The following lemma is a consequence of Theorem 3.1 of S. Agmon and Y.
Kannai [4] on the asymptotic expansion of the resolvent kernels in the interior
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of the domain considered.

Lemma 7.3. For any positive number € there is a constant C depending on
€ but not on x,=Q such that the following inequality holds for d(\)= |\ |*~/*"+¢,
[N 21 and x=Q and for i=4, 5, 6:

| KX(%, ®)—ci(x)(—A)/m | S C [N | mnem=
where c§(x) is a function defined by (2.2) with asg replaced by alz®.
REMARK. ci(x,) =c(x,) for i=4,5, 6.
Using the results proved up to now we get the following theorem.

Theorem 7.1. Suppose that s-(4) is satisfied. Then for any number p=0
and 0 (0, (h+2)/(h+5)) we have
| Kn(, %) —co(x)(—2)™™ |

<oy | ’{}('x/)m( g?,j)d(;';)p}

for any x€Q and A satisfying d(\)=|N|'"%", |\| =L where C, is a constant
depending on p and 6 but not on x and N, and L is some constant depending only on
B, Q and Q,. Under the assumption s-(3) or s-(2) the same conclusion remains

valid for 0<0<<(h+1)/(h+4) or 0<<O<<h|(h+3) respectively.

Proof. First suppose s-(4) is satisfied. If we take &= |\ | ~%/#"%+D then
we can apply Lemma 6.2 in the region d(A)=|\|'"%*", |A| =L to otbain

| KR(%0y %) — K (%9, %) | SC [N IR, < C |\ | #-O2m=1

choosing j sufficiently large depending on §. Combining this with Lemmas 4.2,
7.2 and 7.3 we get the assertion of the theorem. The remaining part of the
theorem can be proved in parallel taking &= |\ |~%2”®+D in case of s-(3) and
E=|N|7%/™k in case of s-(2).

8. Proof of the main theorem

In this section we shall prove the main theorem essentially following the
method of S. Agmon [2]. The resolvent kernel K,(x, y) of A is continuous in
Ox80 and since A is selfadjoint it is symmetric: K,(x, y)=Kj(y, x). Let
{r,} and {¢,} be the sequence of eigenvalues and the corresponding sequence
of orthonormal eigenfunctions of A respectively. Evidently the proof of
Mercer’s theorem applies to our case and we have

K )= 5200840, .1)
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the series on the right being convergent absolutely and uniformly in QX Q tor
any fixed A in the resolvent set of A. Let o,(t)= ét |¢(x)|%. Then
i

26,01 _ (*doylt)
= ¢.2)

We introduce here Pleijel’s formula which was used in his simple proof of
Malliavin’s tauberian theorem.

Lemma 8.1. Suppose o(t) is a non-decreasing function defined on [0, o).
Let

f(2) = Sm‘j"_(tz , (8.3)
and
I(8) = 2_71” S S (8. 4)

where L(E) is an oriented curve in the complex plane from & to E=t+iT not
intersecting [0, oo). Then for t>0, 7>0

| L(£)—(7/7) Re f(§)—o(t)+0(0) | =7 Im f(£) -
Proof is given in [6].
Lemma 8.2. There exists a constant C such that for any t>0 and xE Q)
o) S CPm

Proof. The assertion follows from

_1_ 2 l¢1(x)lz n/2m—1
2122, 195 = 2 Sty SKm w= e

Lemma 8.3. Suppose that the assumption s-(2), s-(3) or s-(4) is satisfied.
Then there exists a constant C independent of x and t such that

o 1(£)— ()~ SDOT[21) |y | < Cpen-vam ) -0 (8.5)
nw[2m

for any sufficiently large t>>0 and any x = Q where 0 is the same number as the one
defined in the main theorem.

Proof. 1st case: t/*”§(x)<1. The above estimate is trivial in virtue of
Lemma 8.2.
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2nd case: ##"§(x)>1. We shall prove the assertion with the aid of Lemma
8.1. Let f,(2) and I,(£) be the functions defined by (8.3) and (8.4) with o, in
place of . Then in virtue of (8.1) and (8.2) we have

fx(z) = Kz(x) x) ° (8‘ 6)
Using Lemma 8.1 and noting (8.6) and o,(0)=0 we get
| I(E)—(7/m) Re Ki(x, x)—o.,(t)| <7 Im Kiy(x, x) . (8.7)

From (8.7) it follows that

__1_ o \n/2m-1
o) =5 ()i SLA, (5.9)
where

L= || K, 5 —afw) (— 2yl

1 2” L z\"" 0! ’

I, = (T/”)IRC K&(x» x),+7 Ing(x, x)
=< (14277 K(x, x))].

We define 7,(t)=ct(t,/*"5(x))® where c is a constant satisfying ¢ =(14-¢*)@~¢2™/2,
In the above inequality we take 7=7,(¢) and

L(E) = {e=t-Hiu: 7(0)< |u] <t}
U {z: |2| = (14c*)"*t, Re 2t} .

Then on account of the present assumption ¢ ¥*#§(x)>1 and the choice of ¢ we
get L(E)c{n: d(\)= |1 |*"%™} and hence in view of Theorem 7.1

Iz§CTx(t){|Kg(x, x)—co(x)(_;::)n/z»hll_i_ lco(x)| lgl”/Zm—l}

T (n—9)/2m—1 [E|™™ (g |1\ njem—1
scm|lgieormp BT (ELY g

S L G RO S

Noting that ¢< || <(1+¢%)Y*t we get

L=< C {t"2m(/2m§(x)) ™ =0 - = 0/2m( ) =0}
from which we obtain
I,< Ctr=0rmg(x)~0 8.9)

taking p=0(1—#@). On the other hand again by Theorem 7.1
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e, s e
ct

éC'[Sct du't("_s)/zm-l"l_ S u——p—ldu.tn/2m+p(t1/2m8(x))—p

T (O T2 (D

Slzl=(1+¢:2)1/21 I dz ] {t(n—o)/zm- 1+ t”/zm—l(tl/zma(x))"’}:l

é C{t(n— 0)/2m+ tn/zm(tllzms(x)) —p(1-0)+ tn/zm(tl/zms(x)) —p}
< Cn-0rmy ()6 (8. 10)

where we again used the choice of p=60/(1—60)(=6). Combining (8.8), (8.9)
and (8.10) we get

o) — L,g co(¥) (—2)"m x| < Crn-ormy(x)0 |
27t L

Finally noting that

L[ (—aymeids g sin/2m)
27wt d Ld e |2m

< Crn=ormg(x) 0

we obtain the desired estimate.

If (2.1) is satisfied for § in Lemma 8.3, then integrating (8.5) over Q we
immediately obtain the asymptotic formula for N(t) described in the main
theorem in case of the condition s-(2), s-(3) or s-(4).

If the condition s-(5) is satisfied, then we can make use of the part of Theo-
rem 3.1 of S. Agmon and Y. Kannai [4] for the case of constant coefficients in
the principal part. Considering the sesquilinear from having the following func-
tions as coefficients:

agp(%) = aap(x)(= constant) for |a|=|B|=m,
agze € C5(Qg) and agp(x) = awp(x) in Q for
lal+ |81 =2m—1,

we can verify that (8.5) is true for any positive number §<<1. Therefore if
(2.1) is satisfied for any p<<1, then we obtain the desired formula for N(2).
Finally the assertion of the main theorem under s-(1) can be proved in a similar,
but a simpler, manner. We need only investigate the asymptotic behaviour of
K,(x, x) for A real and ——co and apply the tauberian theorem of Hardy and
Littlewood.
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