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Table 1. Morphometric Dara of Oralis Neurons with Respect to Soma-Dendritic Features

Case' Soma No.of Dendritic exten? Dendritic transverse area ( x100pm?)
No.  diameter primary (1m) Total Medial Lateral Ratio® .
(4m) dendrites R-C D-V M-L : (large/small)

DL-neurons

Typel ,
K21 (G)* 37.1

6 960 640 1540 882(s)* 360 522 145
Ki2(PL,GL)44.1 7 980 1190 1370 839(1) S09 330 154
K23 (PL) 336 7 880 1200 1350 432(s) 285 147 195
K6 (TP,T) 343 6 1100 1210 1310 852(1) 525 326 1.61
K13¢ 265 6

5

K20 (T) 35.8

430 1010 1490 712(s) 441 271 1.63

Type Ila
K18 (PL) 36.8 6 1680 770 1320 563(l) 246 317 1.29

Type IIb
K39 (L) 359 6 880 1190 1320 525(s) 238 288 1.21

VM-neurons

Typel
K30 (L) 49.1 7 1500 950 1870 803(l) 555 248 224

Type Ila
- K42 (PL) 40.8 5 800 730 1260 462() 328 133 2.46

K40°(PL) 463 6 - o e () e e
K5 (G) 434 7 1200 730 1100 730(s) 497 233  2.13
Other neurons |
K41 (PL) 238 4 830 760 1310 359(s) 244 115  2.13
K9 (L) 389

n

1020 1150 1420 626(1) 330 296 1.11

1 Neurons K6 and K20 are nociceptive. The others are low-threshold mechanoreceptive, and
all, except neuron K5 which responded in a slowly adapting fashion, responded in a rapidly
adapting fashion.

2 R-C, D-V and M-L indicate the rostrocaudal, dorsoventral and mediolateral directions,
respectively.

3 The large value is divided by the small one.

4 Receptive field of each neuron stained is indicated in parenthesis. G, PL, L, T, and TP
indecate the gingiva, periodontal ligament, lip, tangue, and tooth pulp.

5 The size of receptive fields is indicated by large (1) and small (s) in parentheses.

6 Morphometric data of dendritic extent are not presented because of weak labeling of distal
dendrites. Note that axons of both neurons are labeled.



Table 2 Projection Sites of Oralis Neurons!

Case
No. Pb sC Vint Vmo.dl Vmo.vm Vp Vo.r Vjux PRf GRd VIImo

DL-neurons

K21 9 43 35 1978 (52) 208 390 10 15

K12 10 989 37 30 512 163 9 65
K23 20 176 4) 35 23
K6 ++ €] ' ++ +
K13 + + ++ (+) + ++ +

K20 12 2051 (23) + 5 187 10 230

Ki8 5 20 24 811 (21) 45 269 91

K39 97 40 27 355 (62) 19 60
VM-neurons

K30 9 (3% 504 42 14 6

K42 (20) 178 6 2

K40 + ) 47 +

K5 (+) ++ + + o+

1 Projection sites of DL and VM neurons have been determined by detecting
boutons or collateral branches. Observed boutons are represented by
numbers. Moderate density of terminal arbor is indicated as ++ and sparse
ones as +. Note that boutons or collateral branches considered to extend from
the main arbor in Vmo.dl or Vmo.vm are parenthesized. Abbreviations as in
the List of Abbreviations.
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Figure 1

The locations of Vo.r neurons (A, B) and diagrams of axonal trajectories of the individual types of DL and
VM neurons (C-H). Neurons located at levels between 240-960 um and between 1080-1800 gm from the
caudal tip of Vmo arc plotted in Aand B, respectively. DL and VM ncurons are represented by cireles and
squares, respectively. L(large) and S (small) indicate the size of the RF. Note that neuron K20 is not
illustrated because it is located in Vo.dm. The's', 'u', 'a’, and 'd' in C-H indicate soma, stem axon,
ascending axon, and descending axon, respectively. The un, an, and dn represent collaterals arising from
the stem axon, an ascending axon, and a descending axon, respectively. The 'x' indicates the midline.
Abbreviations here and in other figures as in the List of Abbreviations.
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. DLType ' (K21) dorsal

l—— lateral

Figure 2

Reconstructions of a type I DL neuron and terminal arbors in Vmo.dl, Vp, Vo.r and Vjux. A: The location
of the RF is indicated by the dark shading on a picture of the cat's mouth. B: Intracellular potentials
following stimulation of the inferior alveolar nerve at suprathreshold (upper) and maximal intensity
(lower). An arrowhead indicates artifact of the electrical stimulation. C: Camera lucida drawing of the
soma and dendrites and parts of stem axon (indicated by arrows) . D: Camera lucida drawing at the level
where stained cell body is located. E: Camera lucida drawing of terminal arbors in Vmo.dl, Vint and Vp,
which are reconstructed from seven serial transverse sections (80 um thick). F: Camera lucida drawing of
collaterals arising from the stem axon in which the cell body is indicated by 'S'. G: Camera lucida
drawing at the level where the ascending axon projects toward the contralateral Vmo across the midline in
which the axon is indicated by an arrow.
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:‘k é\:\-q.

i \\ &0 vy
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3, \\
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Figure 3

Reconstructions of a type I DL neuron in Vo.dm and its terminal arbors in Vmo.dl and VIImo. A: The
location of the RF is indicated by the dark shading. B:Intra-axonal potentials induced by electrical
stimulation applied to the RF. C: Camera lucida drawing of the soma and dendrites and parts of stem axon
in which the axon is indicated by arrows. D: Camera lucida drawing at the level where the cell body is
located. E: Camera lucida drawing of terminal arbors in Vimo.dl, which are reconstructed from four serial
transverse sections (80 um thick). F: Camera lucida drawing at the level where a collateral sends terminal
arbors into VIImo. G: High magnification camera lucida drawing of the terminal arbors that are illustrated

inF
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DL Type lla (K18) S
C < \ dorsal

527 > lateral
gy ‘y\ \\ g

0.2 mm Q‘;

Figure 4

Reconstructions of a type Ila DL neuron and its terminal arbors in Vmo.dl. A: The location of the RF is
indicated by arrows. B: Intracellular potentials induced by stimulation of the inferior alveolar nerve at
maximal intensity. C: Camera lucida drawing of the soma and dendrites and parts of the stem axon
(indicated by arrows). D: Camera lucida drawing at the level where the cell body is located. E: Camera
lucida drawing of terminal arbors in Vmo.dl, Vint and Vp, which are reconstructed from all serial

transverse sections (70 gm thick) containing labeled boutons or branches.
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DL Type llb (K39)
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Figure 5
Reconstructions of a type IIb DL neuron. A: The location of RF is indicated by the dark shading. B:
Intracellular potentials induced by stimulation of the RF at increasing intensities. C: Camera lucida
drawing of the soma and dendrites and parts of the stem axon (indicated by arrows). D: Camera lucida
drawing at the level where the cell body is located. E: Camera lucida drawing at the level where terminal
arbors are located in MPb. F: High magnification camera lucida drawing of the terminal arbors that are
illustrated in E. G: Camera lucida drawing at the level where stained descending axon is located in PGd

(see arrow).
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VM Type | (K30) C

dorsal

lateral

Figure 6
Reconstruction of atype I VM neuron. A: The location of the RF is indicated by the dark shading. B:

Intracellular potentials induced by stimulation of the inferior alveolar nerve at suprathreshold intensity

that generates a soma-dendritic potential. C: Camera lucida drawing of the soma and dendrites and parts of
the stem axon (indicated by arrows). D: Camera lucida drawing at the level where the cell body is located.
E: Camera lucida drawing of terminal arbors in Vmo.vm, which are reconstructed from all serial transverse

sections (100 uzm thick) containing labeled boutons or branches.
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VM Type lla (K42)

0.2 mm

dorsal

\ l‘lateral

N,
\
N

Figure 7

Reconstructions of a type lla VM neuron. A: The location of the RF is indicated by arrows. B:
Intracellular potentials induced by stimulation of the inferior alveolar nerve by increasing stimulus
intensities. C: Camera lucida drawing of the soma and dendrites and parts of the stem axon (indicated by
arrows). D: Camera lucida drawing at the level where stained cell body is located. E: Camera lucida
drawing of terminal arbors in Vmo.vm, which arc reconstructed from all scrial transverse sections (90 um
thick) containing labeled boutons or branches.
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Histograms illustrating the rostrocaudal distribution of labeled boutons in Vmo.dl (A-D) and Vmo.vm
(E,F) illustrated in Figures 2-7. In the histograms each column represents the number of boutons per

section.
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Vmo.dl neurons
a

lateral

Figure 9

Labeled boutons from four DL neurons illustrated in Figures 2-3 are plotted in three transverse sections at
the rostral (a), middle (b) and caudal (¢) levels of Vmo. Boutons found in serial sections at levels of
rostral, middle and caudal one-third of Vmo are superimposed in one representative section, respectively.
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Vmo.vm neurons

a
A Type | (K30)

B Type lla (K42)

dorsal

0.3 mm

lateral

Figure 10
Labeled boutons from two VM neurons illustrated in Figures 6 and 7 are plotted in three transverse
sections at the rostral (a), middle (b) and caudal (c) levels of Vmo. Further explanations as in Figure 9.
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Figure 11

Reconstructions of two Vo.r neurons in case K41(A-D) and K9 (E-H). AE: Location of the RF indicated
by an arrow (A) and the dark shading (E). B,F: Intracellular potentials induced by stimulation of the RF
by increasing intencities (B), and of the inferior alveolar nerve (¥). Note that the upper and lower traces
in F show responses to maximal and submaximal stimulus intensities, respectively. C,G: Camera lucida
drawing of the soma and the dendrites and parts of the stem axon in which the axon (an arrow). D,H:
Camera lucida drawing at the level where the cell body is located. ‘
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Figure 12
Photomicrographs showing representative examples of the soma and parts of the dendrites of DL neurons

(A-D) and VM neurons (E and F) examined in this study. A: Type I DLneuron (K21) illustrated in Figure 2.
B: Type I DL neuron in Vo.dm (K20) illustrated in Figure 3. C: Type Ila DL neuron (K18) illustrated in
Figure 4. D: Type IIb DL neuron (K39) illustrated in Figure 5. E: Type I VM neuron (K30) illustrated in
Figure 6. F: Type 1la VM neuron (K42) illustrated in Figure 7. The stem axon arising from the base of
- primary dendrite is indicated by arrows (B, Cand D). Sections A, B, D and E are counterstained with

Neutral red. Scale bar in Findicates 0.1 mm and applics also to others.
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