Title	CO2レーザーの最適設計とその応用に関する研究
Author（s）	大道，博行
Citation	大阪大学，1981，博士論文
Version Type	VoR
URL	https：／／hdl．handle．net／11094／394
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．Library．osaka－u．ac．jp／

CO_{2} レーザーの最適設計とその応用に関する研究

昭和 56 年 1 月

大 道 博 行

内容梗概
本論文は，著者が大阪大学大学院工学研究科在学中に行
 と，それを用いたターゲット照射寒験による研究成果の大略をまとめたものである。

核融合研究用 CO_{2} レーザーシステム開発研究の中心課題 は， CO_{2} レーザ一媒質の量子エレクトロニクス的特性の解明，発振器増幅器等のシステム構成要素の技術開発，シス テムとしての動作特性解析の諸点である。システム総合特性としての要点は，高出力，短パルスレーザー光を効率よ く発生し，精度よく核融合ターゲットに集中，投射しうる ことであり，レーザー光照射ターゲット上のプラズマの諸特性と一体となってレーザーシステムの最適化を行わなけ ればならない。
要素の技術開発を行うとともに，計算機シミュレーション の技術をレーザーシステム解析に導入することに努め，タ一ケッツト照射の核融合実験システムとしての動作特性の解明を行った。

本諸文は8章及び付録より搆成されている。
第｜章は緒論であって，慣性核融合研究における本研究 の重要性を述べ位置づけを行った。

第2章では，開発したラダー型TEACO2レーザーにつ いて述べ，核融合研究用 CO_{2} レーザーシステムの発振器，前置増幅器として用いた時の性能評価を行った。

第3章には，最高15気圧まで動作可能な高気圧 CO_{2} レー ザー装置の開発，及びこれを用いて行った小信号利得の圧力依存性，受動モードロック発振特性等に関する実験結果 について述べた。

第4章では，ターゲットとしーザーシステム中，スペー

シャルフィルター，モードセレクターを兼ねた Beam Expander のピンホールとの結合による穿生発振の動的過程に関する解析結果について述べた。ターゲットと最終増幅器の間の距離，増幅器の利得立ち上がり時間に対する寄生発振の依存性を明らかにしている。

第5章は，大規模 CO_{2} レーザーシステム構成要素のモデ ル化と，それを用いたシステムのシミュレーション結果に ついて述べた。非線形伝播特性によるレーザーパルス波形 の変形と，これのターゲット照射核融合実験に及ぼす影響 について解析している。
第6章では，単一パス増幅システムとマルチパス増幅シ ステムの最適設計に関する考察を行い，核融合炉用 CO_{2} レ ーザーシステムのエ学的検討を行った。
 て述べた。ターゲットからのふき出しプラズマの運動量を ふり子により測定し，Charge Collector により得られた值 と比較した。これにより， CO_{2} Lーザーによる高効率ペし ツト圧縮の可能性が示された。

第8章は結諞であり，得られた結果をまとめ，本誨文の綕括を行った。

付録においては，パルス幅1ns以下のパルス伝播シミュレーション コードの開発状況と問題点を述べる。

目 次
内容梗概
第1章 緒 論
参考文献
第2章 ラダー型予備放電ブルムライン式TEACO2レーザー の開発
2－1 緒言
2－2 装置
2－3 動作特性
2－3－1 動作原理と放電特性
2－3－2 発振特性
2－3－3 増幅特性
2－4 結論
参考文献
第3章 高気压 CO_{2} レーザーの開発
3－1 緒言
3－2 レーザー装置
3－3 小信号利得特性
3－3－1 小信号利得の圧力依存性
3－3－2 実験結果の検討
3－4 受動モードロック発振特性
3-4-1 ダブルキャビティ

3－4－2 シングルキャビティ
3－4－3 モードロックの安定性に関する検討
3－4－4 モードロックパルス短縮に関する検討
3－5 結論
参考文献

第4章 哥生発振の動的特性とその抑制に関する研究
4－1 緒言
4－2 理論
4－3 数値計算結果
4－4 結論
参考文献
第5章 CO_{2} 短パルスレーザー光の非線形伝搬特性に関 する研究
5－1 緒言
5－2 レーザーシステム構成要素のシミュレーション モデル
5－2－1 レーザー 増幅器
5－2－2 可䬶和吸収ガス
5－2－3p－Ge可飽和吸収体
5－2－4 線形損失要素
5－3 シミュレーション結果
5－4 複数ライン増幅コードの開発
5－4－1 計算モデル
5－4－2 計算結果
5－5 結論
参考文献
第6章 核融合用 CO_{2} レーザーシステムの最適設計に関 する研究
6－1 緒言
6－2 烈光巡号 $\mathrm{CO}_{2} レ ー サ ゙ ー シ ス テ ム ~$
6－3マルチパス増幅100kJレーザーシステム
6－4 結論参考文献

第7章 レーザー光炤射ふき出しプラズマの運動量測定
7－1 緒言
7－2 実験装置
7－3 実験結果
7－4 結論
参考文献

第 8 章 結 論

謝 辞

業樍目録
付録

第1章 緒 論
核融合エネルギー関発をめざして大型核融合実験装置の建設が各国で進められている。1980年代には，これらの大型装置により科学的ブレークイーブンが蓬成されようとし ている。現在進められている核融合方式は大きく分けて2種類ある。第1は強力磁場により，超高温プラズマを安定 に閉じ込め熱核融合反応をおこそうとするものである。こ の方式を代表するトカマク炉は，我が国においては日本原子力研究所を中心に取り組まれている。第2の方式は，核融合反応をおこす標的に超短時間にエネルギーを投射し，憤性でそれが留まっている間に核融合反応をひきおこそうと するものである。一般に慣性閉じ込め方式と呼ばれている。 この方式は，我が国においては大阪大学し一ザー核融合研究センターが中枢研究機関となって推進されている。

レーザーによる核融合の可能性は，1962年Basov らによ り提案されだ。1968年にBasov らはLiDをターゲットに用 いた実験により中性子の発生を報告した。その後，フラン ス，日本，ドイツで固体重水素を用いた実験が行われ 10^{5}／ shotの中性子が観測された。しかし，この時点で考えられ ていた方式は，固体密度のプラズマによる核融合でプラズ マ 加熱は逆制動輻射過程（古典吸収）のみでおこると考え られていたため，ローソン条件を満すには10～100MJのレ ーザーエネルギーが必要とされた。1972年大阪大学のグル ープによりレーザー光強度を一定以上増加したとき吸収率 が増大する現象の存在することが発表されだ。この現象は古典吸収では説明加つかず異常吸収現象と呼ばれている。 また，照射ターゲットを高密度に爆縮する概念が提案され ${ }^{4}$ しーザー核融合の実現性が極めて高くなつた。諸外国にお いても，この頃から本格的な慣性核融合研究が開始された。

現在，核融合研究用しーザーシステムとして技術が最も確立しているのは，ガラスレーザーである。世界の高出力 ガラスしーザーをTable1－1に示ず。1982年より米国ローし

Table 1－1 世界の高出カガラスレザー

ンスリバモア国立研究所のSHIVA－NOVAにより科学的実証実験が行われる予定である。ただし，ガラスレーザーは総合効率が 0.1% と小さい。またがラスの熱伭導率が低く且つ固体しーザーであるため繰返し動作に適してないなど核融合炉まで展望した場合は技衍的問題点が多い。

がラスレーザーについで技術の確立しているしーザーは CO_{2} レーザーである。世界の高出力 CO_{2} レーザーをTablel－2 に示す。1983年より米国ロスアラモス科学研究所で100 kJ レーザーANTARESが稼動を開始する予定である。CO2レーザー は放電励起を用いることができるため高効率動作が可能で あり総合効率 20% 程度が得られるものと期待されている。

Table 1－2 世界の高出力 CO_{2} レーザー

また，に一ザーガスを偱環させることにより高速冷却が可能であり高繰返し動作が行いえる。ただし波長が $10 \mu \mathrm{~m}$ と長 くプラズマに対する臨界密度が低い。この点は核融合ター ゲットを高密度圧縮する際には，一般的には不利と考えられ るが，爆縮の物理の解明等今後の実験結果に待つベき事柄 が多い。爆縮の波長依存性が明らかにされれば，しーザー特性としては十分核融合炉用しーザーとなりうる長所を有 している。

この他核融合研究用しーザーとしては，西ドイツ，マッ クスプランク研究所で1TW級のよう素しーザーが開発さ れており，ターゲット照射実験に用いられている。）基砬実験としてはKrFレーザー等が核融合炉用新しーザーとして の可能性を明らかにすべく研究開発されている。7）しーザー核融合用各種しーザー物筫のパラメータをTable1－3に示す。

大阪大学レーザー核融合研究センターでは，ガラスしー ザー激光， CO_{2} しーザー烈光がターゲット照射実験に用い られており，爆縮の波長依存性等が精力的に研究されてい る。著者は，主として CO_{2} レーザーの開発研究とそれを用 いたターゲット照射実験を行った。

本論文は8章，謝辞，業績目録，付録より構成されてい る。

Table 1－3各種にザ゙－物貿のパラメーター

σ ：Stimulated emission cross－section ，λi Laser wavelength，Fi flux density
第2章では，開発したラダー型TEACO2しーザーについ て述べ，核融合研究用 CO_{2} レーザーシステムの発振器，前置増幅器として用いた時の性能評価を行った。

第3章には，最高15気圧まで動作可能な高気压 CO_{2} レーザー装置の開発，及びこれを用いて行った小信号利得の圧力依存性，受動モードロック発振特性等に関する実験結果につ いて述べた。

第4章ではターゲットとしーザーシステム中，スペーシ ャルフィルター，モードセレクターを兼ねた Beam Expander のピンホールとの結合による寄生発振の動的過程に関する解析結果について述べた。ターゲットと最終増幅器の間の距離，増幅器の利得立ち 土がり時間に対する寄生発振の依存性を明らかにしている。

第5章は，大規模 CO_{2} レーザーシステム構成要素のモデ ル化と，それを用いたシステムのシミュしーション結果に ついて述べた。非線形伀播特性によるしーザーパルス波形 の变形と，これのターゲット照射実験に及ぼす影響につい て解析している。

第6章では，単一パス増幅システムとマルチパス増幅シ ステムの最適設計に関する考察を行い，核融合炉用 CO_{2} L ーザーシステムの工学的検討を行つた。

第7章では， CO_{2} しーザーによるターゲット照射実験に ついて述ベた。ターゲットからのふき出しプラズマの運動量をふり子により測定し，Charge Collectorにより得られた値 と比較した。これにより， CO_{2} しーザーによる高効率ペレ ット压縮の可能性が示された。
第8章は結論であり，得られた成果をまとめ本論文の総括を行った。

付録においては，パルス幅1ns以下のレーザーパルス伝播シミュレーションコードの開発状况と問題点を述べる。

第1章の参考文献
1）N．G．Basov and O．N．Krokhin；Soviet Phys．JETP 19，123（1964）
2）N．G．Basov，P．G．Kriukov，S．D．Zakharov，Yu．V．Senatsky and S．V．Tchekalin ；IEEE J．Quantum Electron．，QE－4， 864 （1968）

3）C．Yamanaka，T．Yamanaka，T．Sasaki，K．Yoshida，M．Waki and H．B．Kang ； Phys．Rev．A6， 2335 （1972）

4）J．Nuckolls，L．Wood，A．Thiessen and G．Zimmerman ； Nature，239，139（1972）

5）核融合研究企画情報センター核融合炉作業委員会「慣性閉じ込め核融合炉の可能性と問題点」 P .53 1979年8月

6）G．Brederlow，R．Brodmann，K．Eidmann，M．Nippus，R．Petsch，S．Witkowski， R．Volk，and K．J．Witte：IEEE J．Quantum Electron．，QE－16， 122 （1980）

7）S．Watambe，A．Obara，T．Sate，and H．Kashiwagi，A．Endoh； Appl．Phys．Lett．，35， 365 （1979）

第2章 ラダー型予備放電ブルムライン式TEACO2 レーザーの開発
2－1 緒言
CO_{2} Lーザーは，増幅媒質に適当な予備電離を行うことに より，1気王またはもれ以上の高気无しーザーガスで安定に動作させることができる。放電体積全体にわたつて均一に予備電離を行わせることがその要点である。代表的な ものに，強力な電子ビームを用いる方法 ${ }^{\prime \prime 2}$ と，紫外線によ る光電㒀を用いる方法がある。後者は比較的簡単に安定な レーザー動作を得ることができる点で，小型し—ザー装置 に適している。著者は，核融合研究用短パルス大出力レー ザーシステムの発挀器，および前置増幅器として，高い安定性を持ち，比較的高い $\mathrm{CO}_{2}, ~ \mathrm{~N}_{2}$ 分圧で動作するTEAレー ザーの開発を行ってきた。本章ではその成果について述べ る。ラダ一放電によりレーザー媒質全体にわたつて均一に紫外線を照射し，予備電離を行う。これに速い電流立ち上 がりを持つ放電回路を用い， $\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}_{\mathrm{e}}=1: 2: 3$ の混合 \boldsymbol{m}^{\prime} ス中で安定にレーザー励起のためのグロー放電を得た。 工 ネルギー密度 $265 \mathrm{~J} / 2 \cdot \mathrm{~atm}$ の高い励起放電メカが可能とな つた。さらに紫外線電㒀に効果的なシードがスとして，ト リームープロピルアミン添加の効果年を調べた。别のTEALーザ一を発振器として増幅特性を調べた・パルス幅7ons のQ スイッチパルスに対する飽和パラメータ，および2ns短パ ルスに対する飽和パラメータを測庻した。このタイプの丁 EAレーザー3台を増幅器として使用して3mJの2nsパル スを 400 mJ まで増幅することができた。

2－2 装置
㑲置の写真をFig．2－1に，構成をFig．2－2に示す。Fig．2－2 はこの装置をレーザー光朝に対し重直方向に切断した図に なっている。主放霓回路はC s_{1} ，$C s_{2}$ 及び主放電電極間のレ

ーザー励起放䉓路より構成され ている。Cs1，C92 は単体容量2000 PF耐圧 30 kV の セラミックコン デンサを，光軸方向に9個の列 と10個の列を交互に 6 段，合計 57個使用してい る。 $C_{s_{1}}$ ， Cs2 は，2

Fig．2－1 Photograph of blumline TEA CO_{2}
laser with ladder－
type preionization
discharge．

電極 $P_{1}, ~ P_{2}, P_{3}$（材質 C_{4} ，厚士 1 mm ，光軸方向長 520 mm ，光軸垂直方向長 $P_{1} 520 \mathrm{~mm} P_{2}, P_{3} 585 \mathrm{~mm}$ ）間でパルス成形回路（ P FN）を形成し，P_{2} に対し上下対称に配置してPFNゴルムラ インを構成している。これにより電流の高速立上がりを実現した。加圧スパークギャップ（SG）はインダクタンス20nH

> Fig.2-2

Schematic diagram of excitation circuit．
C_{S} ：storage capacitors， $\mathrm{C}_{S 1}, \mathrm{C}_{\mathrm{S} 2} 2000 \mathrm{pF} \times 50$
$C_{s} 3: 2000 \mathrm{pF} \times 25, C_{t}:$ ladder dischage capacitor， 2000pF，SG：pressurized spark gap；
TC：trigger cable，RG8U 5m；SS：thyratron switch 2G22P．

の電界歪型のものを製作し，PFNとして動作させるため に必要な高速スイッチングを行った。TCは充電されたト リガーケーブルで長さ5mのRG8Uである。SSのサイラト ロン2G22Pの導通により，SGの中間雷極にケーブル充電電壬11．2kVの2倍のトリがパルス電圧を印加した。また SGによるエネルギー損失を補償するため，2000 PFのセ ラミックコンデンサを合計15個 $P_{2} P_{3}$ 間につけ加之た。 $C_{3 s}$ でこれを表わす。
ラダー放電用キ ヤパシタCtは， 2000PFのセラミ ＂クコンデンサ であり，それぞ れ 30 cm のラダ一放電回路に接続された。合計 4個のラダー效電により主放電

Fig．2－3 Ladder type preionization discarge electrode．

電極の両側に60
cmの長さにわたって一連のア
一ク火花（長さ 2.5 mm ）が発生 L，UV光予備電離源の役割を果たした。なお，ラダー放電電極の概形をFig．2－3に示し， その等価回路をFig．2－4に示す。 ラダ一電極は両面しい嶚着のプ リント基盤にエッチングをほ どこして作成した。等洒回路

Fig．2－4．Equivalent circuit of the ladder discharge electrode．

中のCeは7．5阬になる。
主放電電極としては，コン

パクトでかつ電界均一性の良好なcosh型の断面をもつたソ リッド電極をを採用した。材質は真鋳で，表面は充分に研磨されている。放電断面 $2 \times 2 \mathrm{~cm}$ で長さ 60 cm にわたつて均一な電界を形成する。また主放電電極とラダー放電電極間 で直接放電がおこるのをさけるため，両者の間隔を約 3 cm にしてある。そして，この主放電及びラダー放電をおさめ る放電箱は，高さ 100 mm ，光軸方向長 1384 mm ，光軸重直方向長 150 mm ，厚さ15 mmのアクリル板を使用した。接合部 には接着材を用い，ネジ止めが必要な場所にはゴム板，あ るいぱリングを使用し，ガスもれのおこらないように組 みたてた。

レーザーガスは CO_{2} ， N_{2} ，Heを任意の割合で混合し，ふき流し，圧力は大気圧で動作させた。またUV 電離を効率良 く行わせるためのシードガスとしてトリーnプロピルアミンを添加した。

レーザー窓はイルトランブリュースター板を使用した。 その大きさは，縦54mm，横 24 mm である。 共振器は外部鏡とし，曲率半径5mのAu蒸着全反射ミラーと片面AR コート，ゲルマニウム平板により構成されている。共振器長は1．15mである。

2－3 動作特性
2－3－1 動作原理と放電特性
加圧スパークギャップ（SG）の導通によりCs2の電压は反転し，その結果充電電圧の2倍の電圧がラダー放電電極 および主放電電榅に印加される。Cs1，Cs2はPFNを構成 している。SGの高速立ち上がりにより発生する電圧の立 ち上がりは急峻である。ブルムライン部の1段あたりのイ ンダクタンスしおよびキャパシタンスC1は，それぞれ平均 7．4nHおよび17nFであり，特性インピーダンス $\sqrt{L_{1} / C_{1}}$ は 0.66Ω である。最初ラダー放電が起こリ，各スパークは，

一連の紫外線源となってレーザーガスを一様に光電澈する。 ラダー放電は自身の放電電流により2000阬のCtを充㤟する時間だけ持続する。予備電離により主放電がトリガーされ る。

放電電流はロゴスキーコイルにより，また主放電電極間 の電圧はコンデンサ分王器により観測した。観測された電压波形は100nsの鋭い立ち上がりを持ち，PFNとして働い ていることがわかった。がス混合比を変え電流波形を観測 した結果をFlg，2－5に示す。純䊀 のHeでは放電部のインピーダン スは位く，電流値は大きいが振動した。レーザー動条件のが ス混合比では，インピーダンス は高く電流値が低い。28 kV充電 のとき，Cs1，Cs2に充電された工 ネルギーの 80% が放電中に消費 された。ラダーによる予備電離 の効果は大きく，純䊀の CO_{2} が ス中でも一样なグロ一放電が実現した。ラダ一放電を行わない場合は主放電は起こらなかった。
 gphan $(0: 1: 2.5)$

 （0：0：1） sweep： $2 \mu \mathrm{~s} / \mathrm{div}$
2－3－2 発振特性
Fig．2－6にしーザーガス混合 Fig．2－5

Current wave form of the main discharge．
比をパラメータとした発振出力変化を示す。 $\mathrm{CO}_{2}: \mathrm{N}_{2}$ の比 をそれぞれ固定し，He分圧の変化に対する出力エネルギー を測定した。 $\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}=1: 1: 3$ で最大エネルギーを得た。 つま゙にレーザーガスに0．5Torrのトリームープロピルアミンを添加して同様の実験を行った。トリームープロピルアミンは低 いイオン化電圧（7． 73 eV ）を持ち，レーザーガスではほとん ど吸収のない1700 A 程度の輻射をよく吸収し荅易に雷離す

る。結果をFig．2－7
に示す。トリームープ ロピルアミンを添加することで，よ り任い He分圧で最大レーザー出力が得られるようにな り，各混合比でそ れぞれ $25 \sim 30 \%$ 出力エネルギーが増加した。混合比
1：2：3で最大エネ ルギー2丁を得た。出力変動率はshot ごとに5\％以下で安定であった。充電電圧 28.2 kV のと きの実際の放電入力は64丁であり，
放電体積を $2 \times 2 \times 60$ cmとして単位体積当たりの放電入カ は $265 \mathrm{~J} / 2 \cdot \mathrm{~atm}$ と なる。発振パター ンより発振体積の平均断面耫は1，6 cm^{2} と考えられ。 レーザー出力とし
て取り出されるエ ネルギーは単位体

Fig．2－6 without output energy vs．gas mixture without tri－n－propylamine．Charged voltage 28.2 kV ．

Fig．2－7

Laser output energy vs．gas mixture with 0．5 Torr tri－n－propylamine． Charged voltage 28.2 kV ．

積当たり21J／l•atmとなる。これより発振体積でのレーザ一効率は7\％となる。またトリームープロピルアミンが添加さ れなかった場合，Fig，2－6の結果より，単位体積当たりの発振出力は1ワJ／Z•atmでありレーザ一効率は6，3\％となる。

応㝓時間0．4nsの7ォトンド ラッグディテクタで発振波形を観測した。典型的なしーザーパ ルスの観测例をFig．2－8に示す。最初のセルフQヌイツチによる ビークに続き，$N_{2} の v=1 レ ヘ ゙ ル ~$ からの緩和による発振が見られ る。波形全体にわたつて，1気圧TEALーザーにレばしば起

The wave form of laser oscillation． sweep： 50 ns／div．
laser gas：
$\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}=1: 1: 3$ ． こるモードビートが䂓測された。 ゲイン幅の圧力広がリにより，多数のキャビティ緃モード が不賛則にチ渉した結果と考えられる・トリームープロピルア ミンを添加しない場合に，ガス混合比を変えて波形の変化 を観測した。 $\mathrm{CO}_{2}: \mathrm{N}_{2}$ ：Heが2：1：4の場合に最大ピークパワー が得られ，セルフのスイッチピークの半值幅は60ns，ピー ク值は10MWであった。最大出カエネルギーは1：1：3の場合に得られ，N2レベルからの緩和により発振没形尾部で エネルギーが増大していることがわかった。

つま゙に連続緯り返し䡃作テストを行った。繰り返し1～ 2ppsで4万回の動作テストを行つた。レーザーは安定であ り，ラダ一電極表面に若干の放電による損傷が見られた。䌖り返り速度は現在充電器能力で制限されている。レーザ ーガスは数shotごとに交換される割合で供給された。

2－3－3 増幅特性
トリーズ゚ロピルアミこを添加しないレーザーガスでの増幅特性を2通りの方法で調べた。なお，この節の動作条件はすべ

で充電電圧28．2 kV，レーザーがス混合比 $\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}_{\mathrm{C}}=1: 1: 3$ である。

最初に共振器内に可変䪱失を挿入し，発振閾値での損失 の値より小信号利得を求めた。

Fig．2－9に剆定系を示す。キャビティは長さ1．15mで，Au コート全反射ミラーと片面ARコート 38% 反射出力ミラーに より構成されている。この共振器中に，可変損失として両面研唐したSi平板及びイルトラン結晶板を用い，傾き角を変えることで損失量を変化させた。角度は He－NeLーザー を結晶板中央に照射し，その反射光を反対倒のボード上の ものさしに写し出すことにより測定した。光強度に対する透過率をT，反射率をRで表わすと，共振器1往復あたり の摃失と利得は次のように表わせる。

$$
\begin{aligned}
& L_{\text {oss }}^{-1}=T_{s i}^{4} \cdot T_{I r}^{4} \cdot T_{w}^{4} \cdot R_{\text {out }} \\
& G_{\text {ain }}=\exp \left(2 \alpha_{0 l}\right)
\end{aligned}
$$

ここで $T_{\text {si }}, T_{I_{r}}, T_{w}$ ，Rout はそれぞれ $\mathrm{S}_{\text {板の透過率，} I_{r} \text { 板の }}$透過率， NaCl 窓の透過率，出力ミラーの反射率を表わす。 \downarrow 。

は小信号利得係数，lは活性媒莫の長さである。発振閭値 では Gain＝Lossである。二れからよ。は次のように表わせる。

$$
\alpha_{0}=\frac{-1}{2 \ell} \ln \left(T_{s i}^{4} \cdot T_{I r}^{4} \cdot T_{w}^{4} \cdot R_{\text {out }}\right)
$$

実験により $\ell=60 \mathrm{~cm}, \quad T_{s i}=0.68, \quad T_{I_{r}}=0.86, \quad T_{w}=0.8, R=0.36$ が得られた。これから α_{0} として $3.4 \% / \mathrm{cm}$ が得られた。なお Si板，Ir板の透過率は屈折率から理論的に求め，レーザー窓による損失は，結晶板の表面あらさによる散乱ロスが無視できないので，別のTEALーザー光を入れレーザー本体の前 後のエネルギーを測定することより求めた。

別のTEALーザーを用いてパルス増幅特性を則定した。
 ーの出カエネルギーは48m丁に固定した。到定はラダー放電型レーザーの主放電の立ち上がりを時間原点にとリ，入 カレーザーパルスのタイミングを変えて増幅率及びその時間変化を則定した。

その測定系をFig．2－10に示す。そして測定結果をFig．2－11

Time Controller
Fig．2－10 Schematic diagram of pulse amplification measurement system．

に示す。利得は，励起放電後1．5 $\mu \mathrm{s}$ で最
大となりその後減少 した。

パルス幅70nsの入射しーザー光エネル ギーを変化させるこ とにより，増幅幸の変化を測定した。そ の測定系をFig．2－12 に示す。＝の測定は V2入板の角度を変化 させることによりレ
ーザー光の偏向方向
を変化させ，その後
のブリュースタース
タックと組み合わせ

Fig．2－11．Amplified laser energy vs．timing of input laser pulse．
laser gas； $\mathrm{CO}_{2} ; \mathrm{N}_{2}: \mathrm{He}=1: 1: 3$

ることにより，ラダープリアンプ の入射しーザー光エネ ルギーを変化させた。入射レーザー光エネルギーはBS（ビ ームスプリッタ）によりCal．meterIで測定し，Cal．meterII でラダープリアン70増幅光エネルギーを測定した。測定の精密性を保つため，発振器の放電電流とラダープリアンプ の放電電流をオシロスコープで钼則し，放電タイミングの良好なもののみをデータとした。

測定結果を

Fig．2－13に元す。
レーザービーム
断面を一定とし，
増幅器を通過す
る間の損失を無視すると，パル
ス増幅特性は次式で表わせる ${ }^{9}$ 。

$$
E_{0}=E_{s} \ln \{1+\exp (\alpha \cdot l)
$$

$$
\left.\cdot\left[\exp \left(\frac{E_{i}}{E_{s}}\right)-1\right]\right\}
$$

$=こ て ゙ E_{0}$ ，E_{i} は出力及び入力エ ネルギー密度， く。 。 $_{\text {s は小信号 }}$利得係数及び飽和パラメータで ある。 しは增幅媒質の長さであ
る。ビーム径は アパーチャー及

Fig．2－13
Saturation amplification measurements for a 70 ns normal Q－switched pulse．the The solid curve is the best fit on the experimental data using a value of $\dot{\alpha}_{0}=3.4 \% / \mathrm{cm}$ and $\mathrm{E}_{\mathrm{S}}=400 \mathrm{~mJ} / \mathrm{cm}^{2}$ ．

びビームパターンの測定より $0.49 \mathrm{~cm}^{2} \quad \ell=60 \mathrm{~cm}$ である。図中実緣は $\alpha_{0}=3.4 \% \cdot \mathrm{~cm}^{-1} と し, ~ E_{S}=400 \mathrm{~mJ} / \mathrm{cm}^{2}$ とした計算値を示す。実験値は実線のカーブと比較的一致している。回転準位間の緩和時間は大気区で $0.15 n s$ 程度であり，パル ス幅に比べ充分短い。このような場合の計算により求めら れた飽和パラメータの值は $100 \mathrm{~mJ} / \mathrm{cm}^{2}$ である。ゲインQス イッチにより得られたパルスによる他の増幅特性の測定で も，Esとして $200 ~ 400 \mathrm{~mJ} / \mathrm{cm}^{2}$ の値が得られている。ゲイ ンQスイッチングレーザーパルスはメインピークに続いて $1 \mu \mathrm{~s}$ 程度の尾部を持っており，緩和時間 $90 n s$ の $N_{2}(V=1)$ か ら CO_{2}（001）ヘのエネルギー移行が，大きな饱和パラメー夕を与える原団と考えられる。蓄耫エネルギー α_{0} •Esは $1.36 \mathrm{~J} / \ell$ となる。
次に短パルスに対する増幅特性を測定した。入カレーザ一パルスはポッケルセルシャッターにより整形され，半值幅 $2 n$ Sの単一パルスとなった。垍幅器として同型の3台の ラダー放電型レーザーを接綕し，同時に動作させた。入力 エネルギーに対する増幅結果をFig．2－14に示す。図中実線 は，$\alpha_{0}=3.4 \% \mathrm{~cm}^{-1}, E_{s}=35 \mathrm{~mJ} / \mathrm{cm}^{2}$ とした計算值を示す。 ただし，3台のレーザー増幅器のラち，最初の2台では飽和は起こっていないため，3台目のレーザーのみが飽和増幅を行うものとした。3台目のレーザー増帕器におけるビ一ム断面は3， $2 \mathrm{~cm}^{2}$ であった。

入射パルスのExtinction比は 10^{3} であったが，増悓パルス では5×102まで低下した。パルス半値幅は変化しなかった。回転準位間の緩和時間による制限のため飽和パラメータが减少した。

2－4 結論
ラダー放電を紫外線源とする光予備電離TEAし一ザー にPFNブルムライン型放電回路を組み合わせることにより，高効率でかつ安定な動作が得られた。ラダー效電による光予備電離効果は大きく，純粋の CO_{2} ガス中でもグロ一放電 が実現した。 $\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}=1: 1: 3$ で小信号利得係数3，4 $\% \mathrm{~cm}^{-1}$ が得られ，通常のゲインQスイッチング波形に対し飽和パラメータ $400 \mathrm{~mJ} / \mathrm{cm}^{2}$ が得られた。2nsパルスに対 して飽和パラメータ $35 \mathrm{~mJ} / \mathrm{cm}^{2}$ が得られた。堌幅器とし て 3 台並べて，2ns $400 \mathrm{mJの力}$ 出力を得た。またシードガス

としてトリークープロピルアミンの添加により放電入力は265 J／l．atmまで可能であり，レーザー発振エネルギー21 J／Latm が得られた。コンパクトな装置で出力10MW，出力エネル ギー 2 丁が得られ，出力変動率は 5% 以下で安定であった。連続繰り返し動作を4万回行って，なお動作は安定であっ た。以上によって，本しーザー装置を核融合レーザーシス テムの発振器，前置増幅器として用いる際の設計パラメー夕が得られだ。

第2章の参考文献
1）C．A．Fenstermacher et al．：Appl．Phys．Letters， 20 （1972）56．

2）藤田尚徳，他：レーザー研究，3（1975） 34 。
3）M．C．Richardson et al．：IEEE J．Quantum Electron．，$Q E-9$（1973）934．

4）J．D．Shipman Jr．：App7．Phys．Letters， $10(1967) 3$.
5）M．Geller，D．E．Altman，and T．A．DeTemple：Appl． Opt．，1（1968） 2232.

6）B．Godard＇：IEEE J．Quantum Electron．QE－6 （1973） 645 ．

7）B．J．Reits et，al．：App7．Phys．Letters， 26 （1975） 335 ．
8）T．Y．Chang：Rev．sci．Instrum．， 44 （1973） 405.
9）L．M．Frantz and J．S．Nodvik：J．Appl．Phys．， 34 （1963） 2346 ．

10）A．Girard：Opt．Commun．， $8(1973) 68$ ．
11）的場幹史，大道博行，中井桌雄，山中千代衛；応用物理 45,869 （1976）

第3章 高気压 CO_{2} レーザーの開発
3－1 緒言
レーザーによる爆縮核融合の研究は，短パルスによろ衝撃圧縮（exploding pusher mode）から成形パルスによる等エント ロピー圧縮（ablative modeによる Isentropic compression）へと推移しつつある。パルス幅数ナ）秒の成形パルスを搆成する ための単位パルスとしては，サブナノ秒のパルス幅が要求 される。

これまで CO_{2} レーザーによるサブナノ秒パルスの発生に関しては種々の方式が報告されている。通常のゲインQス イッチ波形を高速光スイッチを用いて切り出す方法 ${ }^{1 \text { ³）}}$ ，光学的フリーインダクションデイケイによる方法が，モードロ ックによる方法 ${ }^{\text {5N7）}}$ ，等である。

著者は，高気压 CO_{2} レーザーの広帯域利得スペクトル幅 を利用し，これの受動モードロックによるサブナノ秒パル ス発生の研究を行った。その結果，測定最短パルス幅670 pSを得た。またモードロックパルス幅の観則から，それが発振時間全域にわたり過疫状態にあることが判明した。さ らにパルス列の再現性に関する実験•考察を行い，核融合研究用レーザーシステムの発振器として導入する際の間題点 を明らかにした。また開発した高気圧しーザ一装置を用い て，小信号利得の圧力依存性を則定し，スペクトル幅の街突広がり係数 $4.6 \mathrm{GHz} / \mathrm{atm}$ を得た。二の結果により， 10 気圧の CO_{2} レーザーの利得スペクトル幅がサブナノ秒パルス発生に十分なまで広がつていることが確認できた。
3-2 レーザー装置

開発したレーザー装蓸は，5気圧から15気圧までの活性媒質圧力で動作するように設計されており，電子ビーム制御放電を採用している。この放電方式の特幑は，「放電を維持する機能」としーザー媒質を励起する機能」が分離されてい

ることでぁる。これにより高気圧における通常の放電維持電压よりも低い領域で，且つレーザー媒質の励起に最適な電圧において放電加可能になった。

Cold Cathode

Fig．3－1
Block diagram of the electron beam controlled high pressure CO_{2} laser．The dimension of the excited volume was 15 cm in length and $3 \mathrm{~cm} \times 3 \mathrm{~cm}$ in cross section．

レーザー装置の構成をFig．3－1に，装置の写真をFig．3－2 に示す。装置は次の要素により構成されている。
（A）電子ビーム発生部
（a）電子ビーム発生用真空チャンバー（ガンチャンバー）
（b）電界放出型電子鋶（ガンカソード）
（C）電子ビーム加速用高電圧発生装置
（B）耐高気区電子ビーム透過部
（a）電子ビーム透過気密ホイル
（b）ホイル支持機構
（C）L ー ザー 励起部
（a）レーザーチャンバー及びレーザー空
（b）主励起放電電極
（c）主励起放電電源

Photographic view of the high pressure CO_{2} laser．

電子銃からの電子 はー 300 kVの電圧で加速され，高気圧し ーザーガスと真空と を分離しているホイ ルを透過し高気圧し ーザーガス中に入射 し，これを電䧲する。 このようにして電離 されてできた70ラズ マ中を流れる伝導電流により，レーザー ガスが励起される。
（A）電子ビーム発生部
（a）電子ビーム発生用真空チャンバー（ガンチャンバー）
電子銃がマウントされた真空チヤンバーは，回転ポン70 と油拡散ポンプにより～10 0^{-6} Torrまで真空度を上げることが できる。真空度は電離真空計を用いて測定した。本装置の場合，千官ンバー内の真空度が10 Torrから10 Torrにわたつ て変化しても，電子銃の特性にはほとんど影響が見られな かった。電子銃には冷陰極電界放出型を用いているが，寝界放出型に通常要求されるような高莫空度は本装置の場合必要でない。
（b）電界放出匡電子銃（ガンカソード）
大電流用の冷陰極電子銃では，陰極表面に発生したプラ ズマが実効的な電子放出面として作用する。いわゆるプラ

ズマカソードが形成される。プラズマは熱速度で膨張し，壁面に達すると同時にアーク放電となる。プラズマの膨張速度は，著者のグループで測定した結果によると，4タニ ウムで $3 \mathrm{~cm} / \mu \mathrm{s}$ ，タンタルでは $1.5 \mathrm{~cm} / \mu \mathrm{s}$ である。電子銃 として，チタニウムまたはタンタルの金属ブレードを1本 または业行に2本並べ，アノードとカソードの間隔を変化 させ性能の変化を測定した。その結果，本装置の場合タン タル1本ブレードでガンアノード，カソード間隔 94 mm を採用した。
（C）电子ビーム加速用高電圧発生装置
電子ビーム加速用高電圧発生装置として，12段マルクス電源を開発した。最大出力電圧－300 kVの電子ビーム加速電圧を発生する。回路四をFig．3－4に示す。回路のストレ ーインダクタンスを低く抑えるため同軸形に配置し，1 1 s以下の高速の電圧立ちあかりを得た。また全体をコンパク トにするため，絶縁油を満たした高さ 190 cm ，直径 45 cm のステンレス製円筒容器に収納した。

電源の定格

全容量
最大蓄積エネルギー
公称電圧
極性
充雷抵抗
放電抵抗

$$
1934 \mathrm{PF} \text { (20000 PF×12段) }
$$

90 J
300 kV
負極性
$1 M \Omega$
$50 \mathrm{k} \Omega$

放電ギャップ：N2加圧電界歪型ギヤップ

Fig．3－3

Circuit diagram of the gun power supply， which is 12 stages Marx genarator．

Fig．3－4
Voltage wave form of the gun power supply． sweep： $10 \mu \mathrm{~s} / \mathrm{div}$ vertical： $50 \mathrm{kV} / \mathrm{div}$

回路図（Fig．3－3）に示すように下6段を トリガギャップにし Fig．3－4に示す電圧波形を得た。測定は $5 \mathrm{k} \Omega$ 電圧モニター用抵抗を負荷にして行 なった。
（B）耐高気圧電子 ビーム透過部
効率よく電子ビー ムをレーザ一媒質に注入するためには，小さな減衰で高工ネ ルギー電子が透過し

且つ，高圧力のレーザーがス圧力に耐える機械的強度が必要とされる。

透過部は，真空隔膜と膜支持機構により構成される。そ して両者の組み合わせにより電子ビーム透過特性が決まる。

一般に，機械的強度を上げると透過特性が悪化する関係に あるので，実用上十分な強度と透過特性を得るように実験的改良を重ねた。本装置の場合，透過特牲はガンカソード をアノードから最も離し，且つ，ブレード材料にはタンタ ルを用い，1本ブレードで動作させたとき最も良好になっ た。一般には，Gun力ソードをアノードから遠ざけると電子ビームの発散が顕著になり，透過ビーム量が减少するの であるが，本装置の場合そうはならなかった。その原因は ガン電源の容量が比較的小さく，カソードアノード間隔の小さいほど加速電圧が急速に低下することによると考えら れる。すなわち，一般に高エネルギー電子ビームほどホイ ルの透過特性は良く，電圧の急速な降下は高エネルギー電子の全数を少なくする。その結果，ホイルの透過率が低下 するのである。本装置の場合，前者の効果よりもガン電源 の容量に制限された後者の効果の方が支配的であった。

透過窓の開口率として 83% ，透過可能な電子ビーム散乱角 $\tan \theta=0.5$ ，真空隔膜として $\mathrm{Ti}^{2} 25 \mu \mathrm{~m}$ A70を採用し，強度透過特性とも良好な結果を得た。

Fig．3－5
Photograph of the foil window．

電子ビーム透過部を
Fig．3－5に示す。また
Fig．3－6に電子ビーム透
過部にマイラ膜をはリ
つけ，電子ビームによ る蛍光の写真を示す。
この時のGun印加電圧
は300kVである。ほぼ
一様な電子ビーム強度
になっているものと考 えられる。

Fig．3－6
F1uorescense of mylar sheet by high energy electron beam．

Fig．3－7
Characteristics of the gun current and the electron beam current passing through the titanium thin foil as a function of the applied gun voltage．

測定した電子ビーム電流特性をFig．3－7に示す。図中電子銃電流（gun current）はアノード，カ ソード間に流れる電流で ある。電子銃印加電圧の 1.5 乗に比例し，空間電哬制限領域の電圧一電流特性に一致した。電子ビ －ム電流（e－beam current）
は電子銃電流のうち，克空隔膜を透過しレーザーガス中に入射した癿流値であり，電子銃印加電圧の 2.2 乗に比例し た。電子ビームの透過特性は真空喎膜とその支持機構，電子ビームの発散等により決まる。本装置の場合。電子銃印加電圧の0．7乗に従って透過率が増加した。最高15気圧の活性媒質圧力に耐えうるよう電子ビーム透過部を設計した ので，電子銃尖頭電生 300 kV のとき透過率 1% となった。

（c）レーザー励起部

レーザーガスチヤンバーは機械的強度を考虑して補強り づを備えた鉄製とし，レーザ一怒には厚さ 50 mm の NaCl結晶板を用いた。レーザー光軸に対し数度傾けて固定され ている。

レーザ一媒質の励起部分の体積は可変であり，最大 3 cm $\times 3 \mathrm{~cm} \times 15 \mathrm{~cm}$ である。

主放電電極は，電界分市の一様性が $\pm 5 \%$ 以内，電極端部の最大電位傾度がレーザー媒質の絶縁破境電圧以下にな るように設計した。電子ビーム制御放電は，自己放電維持電圧よりも低い電圧でレーザ一励起放電を行わしめるため電界分布の一様性は，アーク放電防止というより小信号利

＇（a）

（b）
Fig．3－8
sweep： $1 \mu \mathrm{~s}$
（a）Gun current waveform 235A／div
（b）Main discharge current wave form．
Laser gas pressure： 6 atm Applied voltage： 32.4 kV $0.2 \mathrm{kA} / \mathrm{div}$

得の空間的一檥性を確保するため必要になる。

また，アークスポットにより薄膜 が破壊するのを防止するため，電子 ビーム透過膜の前に格子状のスクリ ーンを取りつけ，これを陰極とした。 レーザー放電電源にはコンデンサ ーバンクを用いた。

また Fig．3－8にガン電流波形と主放電電流波形を示す。

レーザーガス圧力8気圧，電子銃尖頭電圧 300 kV で測定した励起入力 エネルギーをFig．3－9に示す。横軸 はレーザーガス圧力で規格化した実効的電界（E／P，kV／cm•atm）であり縦軸は励起放電入カエネルギーであ る。放電入カエネルギーは菓界の2乗に比例しており，放電インピーダ

ンスが電子ビー ムにより制御さ れた完全伝導モ ードで動作して
いることを示し
ている。
本装置の場合放電入カエネル ギーは，レーザ
一がス混合比
$\mathrm{CO}_{2}: \mathrm{Na}: \mathrm{He}=1: 1: 3$
のとき最大 220 $\mathrm{J} / 2 \cdot \mathrm{~atm}, \mathrm{CO}_{2}: \mathrm{N}_{2}$
$: H e=1: 2: 6$ のと
き最大300J／2•atm
まで可能であっ
た。ガス温度上
异による反転分
布の减少を考慮
すると，最大利
得を得るための電気入力として十分な値である。

Characteristics of the discharge pumping input vs．effective main discharge electric field intensity（ E / P ）as a function of laser gas mixture ratio．

3－3 小信号利得特性
3－3－1 小信号利得の圧力依存性
一般に10 Torrまでの低圧 CO_{2} ガス中では，利得スペクト ルの広がりはドツプラ一広がりが支配的であり，レーザー ガス圧力増加に伴って小信号利得が増加する。10Torr以上 のガス圧では，街突による広がりが支配的になる。 5 気王 までは圧力増加とともに小信号利得のスペクトル幅が広が リ，小信号利得はほぼー定に保たれる。5気圧以上の高圧領域では，約50 GHz間隔で业んでいる回転準位の衔突によ る広がりが隣接回転準位にまで及ぶ。小信号利得は利得ス ペクトルの重なりにより再び圧力増加とともに上异する。著者は5気压以上の レーザーガスの小信号利得の刓定を行っ た。

実験で得た小信号利得特性の圧力依存性より，スペクトル の圧力広がり係数を求めることができる。実験結果を同一放電入カに対する小信号利得の圧力依存性と してFig．3－10に示す。四中実線は，実験結果（点線）に最も近い傾きを与えるよう衔

Fig．3－10
Pressure dependence of small signal gain． Each broken line is the experimental data of same input discharge energy．The solid line is the best fit on the experimental data using a value of collision broadening coefficient of $4.6 \mathrm{GHz} / \mathrm{atm}$ 。突広がり係数を与え て行った小信号利得 の圧力依存性の計算

結果である。こうして求めた10．4 4 mのバンドの街突広が リ係数は4．6 GHz／atmである。計算にあたっては次のこと を仮定した。ラインの形状はローレンツ形であり，半值幅 $\Delta \nu_{L}$ を用いて次式のように表わされる。

$$
\begin{equation*}
g\left(\nu-\nu_{J}\right)=\frac{2 \Delta \nu_{L}}{\pi} \frac{1}{\left.4\left(\nu-\nu_{J}\right)^{2}+\Delta \nu_{L}^{2}\right)} \tag{3-1}
\end{equation*}
$$

ここで目は丁準位の周波数，とは任意の周波数である。さ らに圧力Pのとき，半值幅 $\Delta レ$ は衔实広加り係数 $\beta_{\text {effを用い }}$ て $\Delta \nu_{L}=\beta_{\text {eff }} \cdot P$ と表わされる。また \ddagger ブランチ丁準位の小信号利得 Jは次式で与えられる $^{(2)}$

$$
\begin{align*}
\alpha_{J}(\nu)= & \Delta \nu_{J} \cdot J\left\{R \operatorname { e x p } \left[-B_{2} J(J-1) \frac{h c}{k T}\right.\right. \\
& \left.-\exp \left[-B_{1} J(J+1) \frac{h c}{k T}\right]\right\} g\left(\nu-\nu_{J}\right) \tag{3-2}
\end{align*}
$$

$==て ゙ R=\left(N_{2} B_{2} / N_{1} B_{1}\right), B_{1}, B_{2}$ は回䎐定数であり，それ ぞれ $0.3866 \mathrm{~cm}^{-1}, 0.3897 \mathrm{~cm}^{-1}$ を用いた。 $13, ~ C, ~ k は そ れ$ ぞれプランク定数，光速度，ボルツマン定数である。Tは回転温度であり325Kを用いた。

任意の周波数レでの小信号利得 $\alpha(\nu) は, ~$ 隣接準位の重な リを考虑し次式で与えられる。

$$
\begin{equation*}
\alpha(\nu)=\sum_{J} \alpha_{J}(\nu) \tag{3-3}
\end{equation*}
$$

Fig．3－10の実線は，街突広がリ係数4，6GHz／atmとしたとき の $\alpha(\nu)$ の計算値である。

3－3－2 実験結果の検討
前䬣で求めた衝突広がり係数 $\beta_{\text {eff は混合がスに対する実 }}$効的な値であり，次式で表わすことができる。

$$
\begin{align*}
\Delta \nu_{L} & =\beta_{\text {eff }} \cdot P_{\text {tot }} \\
& =\beta_{\mathrm{CO}_{2}} \cdot P_{\mathrm{CO}_{2}}+\beta_{\mathrm{N}_{2}} \cdot P_{\mathrm{He}}+\beta_{\mathrm{H}_{e}} \cdot P_{\mathrm{He}} \tag{3-4}
\end{align*}
$$

ここで $\mathrm{P}_{\mathrm{CO}_{2}}, \mathrm{P}_{\mathrm{N}_{2}}, \mathrm{P}_{\mathrm{He}}$ はそれぞれ $\mathrm{CO}_{2}, \mathrm{~N}_{2}$ ，Heの分圧を表わす。
表わす。

各ガスに対する 3 の値は，主に低任がスの吸収を則定す ることにより種々求められている。Abramsは波長可変 CO_{2} レーザーを用いて，数十Torrの低圧がスの吸収ラインスペ クトルの形状を測定した。これにより以下の $\beta_{\mathrm{co}_{2}}=7.61 \mathrm{MHz} /$ Torr，$\beta_{\mathrm{N}_{2}}=5.58 \mathrm{MHz} /$ Torr，$\beta_{\mathrm{H}_{e}}=4.88 \mathrm{MHz} /$ Torr． これらの值はPatty 5）McCubbin $5^{(6)}$ ，Drayson 5 ${ }^{(7)}$ ，Boulet $5^{(8)}$ が行 つた吸収による衔突広がり係数の測定値によく一致してい る。著者の行つた実験に用いたガス混合比 $\mathrm{CO}_{2}: \mathrm{Nz}: \mathrm{He}=$ 1：1：3の場合の衝突広がり係数をAbramsの求めた β 值より求めると $4.2 \mathrm{GHz} / \mathrm{atm}$ となった。この値は著者が小信号利得の圧力依存性を測定することにより求めた値に 10% 程度 の差でー致した。

Alcockらは，レーザーガス圧力15気圧までのUV光予備電離形高気压 $\mathrm{CO}_{2} レ ー サ ゙ ー を$ 用いて小信号利得の圧力依存性 を則定し， $10.4 \mu \mathrm{~m}$ バンドの衡突広がり係数として5．3 GHz／atmを得だ。このとき，レーザーガス混合比は CO_{2} ： $N_{2}: H e=1: 1: 8$ である。この値は吸収兒定から予想される值に比べて 50% 程度上回っている。

著者の実験結果とATCockらの実験結果の違いは，励起放電方式の違いによると考えられる。すなわち，著者の用い た電子ビーム制御放電形では，レーザー上準位（ $00^{\circ} 1$ ）＾最 も効率よく励起することのできる実効的電界（E／P～4．0）の もとでレーザーを動作させることができるが，Alcockらの用いたUV光予備電離形では放電が自己維持されなければなら ず，最適な実効的電界の数倍から十数倍の値で動作させざる を得ない。この高いE／Pの値により，UV光予備電離形し ーザーでは，レーザ一上準位（ $00^{\circ} 1$ ）以外にホットバンド
（01＇1）やシーケンスバンド $\left(00^{\circ} 2\right)\left(00^{\circ} 3\right) に$ 多くの励起エネ ルギーが注入されてしまう。10気圧程度の高圧レーザー媒質では，これらのバンドのレギュラーバンド（ $00^{\circ} 1 ~ 10^{\circ} 0$ ， $02^{\circ} 0$ ）小信号利得へ与える影響が無視し得なくなる。Reid らは，UV光予備電離形の放電条件でシーケンスバンドがレ ギュラーバンドの小信号利得の増加に与える効果を定量的 に検討した。その結果，Reidらはレーザーガス圧カ14気正 の小信号利得はレギュラーバンドのみ考虑した場合の1．4倍になることを示した。

以上から，著者が用いた電子ビーム制御放電形レーザー では，最適E／Pで動作させることにより選択的にレーザー上準位（ $00^{\circ} 1$ ）に励起エネルギーが注入されることが明らか になった。これらの，より詳細な定量的解明は，レーザーガ ス圧力数気圧の電子ビーム制御放雷形大容量レーザー增幅器の最適励起との関連で研究を進めている。衝突広がり係数 4.6 GHz ／atmを用いた $10.4 \mu \mathrm{~m}$ バンドの小信号利得のスペク トルをFig．3－11に示す。横軸は周波数（THz），縱軸は小信号利得（任意尺度）を表わす。図中，上の曲線は9気圧，下の曲線は3気圧の場合の利得スペクトルである。

3－4 受動モードロック発振特性
一般にモードロックパルスの最短パルス幅ては，レーザ
 る。

$$
\begin{equation*}
\tau \sim 1 / \Delta \nu \tag{3-5}
\end{equation*}
$$

前節で述べたように，約50GHz間隔の CO_{2} 分子の回転準位は，5気圧以上で重なり合いの効果が現われる。10気圧程度のしーザーガスでは，衔突による回転準位の広がり睤 と回転準位の間隔が等しくなるため，実効的な利得スペク トル幅が数百GHzにも達する。利得スペクトル幅はピコ利 パルス発生に十分な値まで広がっている。
CO_{2} Small Signal Gain Characteristics

再現性よく。かつ可能な限り短いパルス幅を有するモー ドロックパルス列を発生するためには，以下の条件が必要 とされる ${ }^{20}$ 。
（1）可飽和吸収体は共振器の端か中央に配置する。
（2）レーザーは単一横モード（TEM0。モード）でかつ発振閖値のごく近傍で動作させる。
（3）可飣和吸収体が共振兴の中で支配的な損失になるよ う共振器を構成する。
これらの条件に従って2とおりの共振器を構成し，受動 モードロック発振特性の観測を行った。

3－4－1＝重共振器
開発したレー ザー装置を用い
てFig．3－12（a）に示す共振器でも
一ドロック発振 を試みた。反射率 100% ，曲率半径 10 m の金蒸着 ミラーMに対し ARコートしてい ない可飽和吸収体p—Ge（反射率 35% ）と反射率 89% ゲルマ＝ウ ム平板ミラー M2

Photon Drag
（b）
Fig．3－12
Schematic diagram of the resonators and observation systems．
（a）$M_{1}: 10 \mathrm{~m}$ radius of curvature gold coated mirror．
M_{2} ：Plane reflector having 89% reflectivity． $\mathrm{p}-\mathrm{Ge}: 3 \mathrm{~mm}^{\mathrm{t}} 1 \mathrm{~cm} \mathrm{p}$－type germanium absorber． $\mathrm{L}_{1}=\mathrm{L}_{2}=201.5 \mathrm{~cm}$
（b）$M_{1}: 5 \mathrm{~m}$ radius of curvature gold coated mirror．
M_{2} ：Plane reflector having 89% reflectivity． p －Ge：AR coated p －type germanium absorber． $\mathrm{L}_{2}=119 \mathrm{~cm}$
ム平板である。
レーザーのがス
圧力は9気圧，がス混合比は $\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}=1: 1: 3$ であった。 また $L_{1} \div L_{2}=201.5 \mathrm{~cm}$ とした。ミラーM2によりp－Geの表面反射損失を実効的に抑制し，p－Geの非線形吸収が支配的な損失になるように共振器を構成することができた。

二の共振器で得た典型的なモードロック波形をFig．3－13 に示す。㒂軸1divは50nsである。波形観測はテクトロニ クス7904オシロスコープ（重直プラグインクA24）と7ォ

トンドラッグ検知器を用いて行 つた。観到装置の周波数帯域幅 はオシロスコープで決まり350 MHzであった。

この共振器の問題点としてシ ョツトごとの再現性が軎いこと があげられる。共振器ミラーの傾き角度，共振器中のp－Geの位置をそれぞれ 0.25 mrad ， 1 mm ず つ変化させて発振特性を調べた。単一包絡線状のパルス列を再現性よく得ることはまれであった。

Fig．3－13
A typical pulse train detected by a photon drag detector and Tektronics 7904 oscilloscope（50ns／div）． The CO_{2} gas pressure was 9atm and the gas mixture ratio was $\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}=1: 1: 3$.実用上十分な再現性を得るには光路長しと L_{2} が波長程度の精度で安定に保たれなければな らないが，技術的に困難であった。

3－4－2 単一共振器
光路長 L_{1} ，L_{2} に起因する再現性の䭴さを改善するため，両面 ARコートp－Geを共振器ミラー近傍に配置し実験を行った。共振器と測定系の構成をFig．3－12（b） に示す。Miとして曲率半径5m の金蒸着ミラー，Mュとして反射率 89% のゲルマニウム平板ミラ一，p－Geとして両面ARコートし た厚さの異なる2種類の形ゲ ルマニウム平板を用いた。吸収係数はいずれも $1.3 \mathrm{~cm}^{-1}$ である。 キャビティ長（ L_{2} ）は 119 cm であ る。波形観測装置は二重共报器

Fig．3－14
A typical pulse train detected by a photon drag detector and Tektronics 7904 oscilloscope（50ns／div）． The CO_{2} gas pressure was 8atm and the gas mixture ratio was $\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}=1: 2: 6$.

の実験と同じものを用いた。この共振器で得た典型的なも ードロック波形をFig．3－14に示す。このときがス圧力は8 気圧，ガス混合比は $\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}=1: 2: 6$ であった。 H － Ge の厚さ は，4．07mmであった。測定パルス幅は2nsであり，ダブル エンベロープのモードロックパルス列が極めて発生しやす かった。この頂因は，p－Geと共振器ミラーが 6.2 cm 離れて おり，その差だけ時間酌にシフトした2個のモードロック パルス列が同時に発生しやすいことによると考えられる。

単一も絡線状でかつ再現性よくモードロックパルスを発生させるためには，パルス列の時間シフトが単一パルスの パルス幅に比べて無視できるまでp－Geを共振器ミラーに接近させる必要がある。このためp－Geを共振器ミラーのごく近傍（間䧞 1 mm）まで接近させ，かつ単一横モード化のため直径 9 mm のアパー4ャーを出カミラー（M2）近傍に配置し たときのモードロック発振特性を呞べた。M1として曲率半径 3 m の金蒸着ミラー，M2として反射率 89% のゲルマ＝ウ ム平板ミラーを用いた。レーザーガス圧力は9気圧，ガス混合比は $\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}_{\mathrm{C}} 1: 2: 6$ であった。p－Geとして吸収係数 $1.3 \mathrm{~cm}^{-1}$ の両面 $A R コ ー ト し た$ 厚さの異なる C なeを用い。房さ 1.13 mm ， $1.65 \mathrm{~mm}, ~ 2.27 \mathrm{~mm}$ の順にモードロッ7発振特性を調べた。この実験の場合，厚さが垍すに従って単一包絡緣状でかつ再現性の良いモードロックパルス列を得る ことができた。一般に厚さが増すに従ってp－Geの非線形損失が共振器中で支配的になるので妥当な結果といえる。た だし，実用的には厚さが増すに従い発振閾値が上がり，高 い励起入力エネルギーが必要となる。

P－Geとして厚さZ， 27 mm のものを用いたときの典型的な モードロック波形をFig．3－15に示す。（a）は横軸1 1 divが5ns，（b） は1 nsである。パルス幅は（a）のパルス列中後ふから2思目 のパルスで1，0nsであり，パルス列の後部になるに従って

短縮されている。このパルス幅は測定系の応答時間により制限された值である。

次に，より詳細にパルス幅 を測定するためRoffin 社製か ツトホール検知器（MODEL 7460） とテワトロニクス7904オシロ スコープ（垂直プラグイン7 19）を用いて波形観測を行っ た。観波形をFig．3－16に示す。測定パルス幅は670psであっ た。なお測定に際して入力光 がゼロのとき，オシロスコ一 プのビームを目盛り板水平線 に合わせておいた。水平線の上下に振れている小振幅の波形は測定ノイズと考えられる。 オシロスコ一70垂直アン70の周波数帯域幅は500 MHz であ リ，これにより制限されたパ ルス幅が観測できた。

3－4－3 モードロック
の安定性に関する検討
前郎で过べた共振器につい
てモードロック発振の安定性 を調べた。単一包絡線状で再現性の良いモードロック波形 を得ることのできる共振器は単一共振器で共振器ミラーと P－Geの間隔が1mmg場合であ

（a）

Fig．3－15（b）
A typical pulse train． detected by a photon drag detector and Tektronics 7904 oscilloscope． The CO_{2} gas pressure was 9atm and the gas mixture ratio was $\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}=1: 2: 6$ ． （a）5ns／div（b）${ }^{2}$ ns／div．

Fig．3－16 deal pulse train detected by a hothole photoconductive detector and Tektronics 7904 oscilloscope（5ns／div）． The CO_{2} gas pressure was 9 atm and the gas mixture ratio was $\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}=1: 2: 6$.

つた。この共振器で得たモ一ドロック波形を，レーザ一出力エネルギー值ごとに整理し，再現性に関する検討を行った。このkきp－Ge は厚さ 2.27 mm のものを用 いた。各エネルギ一値に対応する典型的な波形をFig。 3－17に示す。

これから発振閾値のごく近傍（出カエネルギー5mJ） において，単一包絡線状で かつ再現性の良いパルス列 の得られることがわかった。出力エネルギー值 10 m 丁以上

5 mJ

13 mJ

Sweep 5 nsec
27 mJ
Fig．3－17
Typical pulse trains detected by a photon drag detector and Tektronics 7904 oscilloscope（5ns／div）．

では，ショツトごとの再現性は悪化しパルス幅も数ns以上になり，複数包絡線状のパルス列の発生する制合も増加した。この結果は，レーザ一の利得を発振閾値のごく近傍に固定したとき最も大きな確率で単一パルスの選択がお こり，再現性よく単一包絡線状のパルス列加発生すること を示，したGTennの受動モードロックに関する理論解析結果 に一致している。

以上から，レーザー出カエネルギーの値を発振閾値のご く近傍の5m丁程度に厳密に固定しなければならないことが結論できる。発振出力測定により，本装置ではショットご との主励起放電エネルギーの変動を 0.5% 以下に抑えること が最低限必要である。

3－4－4モードロックパルス短縮に関する検討
モードロックパルスが発振時間全域にわたり過渡状態に

あることを観測した。すなわち，Fig．3－15のモードロック波形に典型的に現われているように，パルス列の後部にゆ くに従いパルス幅が短縮されている。ダーグルキャビティの実験で得た典型的なモードロック波形を用いてパルス短縮 に関する検討を行った。Fig．3－18にこの奻果を示す。横軸 はパルス列中最前部の パルスを1 とし，後部 に向かって順に番号を対応させた。緃軸はパル ス幅で対数目盛りであ る。最前部 のパルス幅 が2．9ns， 14番目加0．9ns であり，パ ルス幅はパ ルス列の後部にゆくに従い指数関数的に短縮 されている。 あるパルス
とその一つ

Fig．3－18

Pulse duration as a function of pulse number in the train．

前のパルスのパルス幅の比（短縮比）は0．92である。 p－Geの飽和110ワー密度は約4 MW／cm²である。また緩和時

間は数psである。20）—方，10気圧程度のレーザーガスの飽和 パワー度は，パルス幅1ns程度のとき約 $150 \mathrm{MW} / \mathrm{cm}^{2}$ であ る。レーザ一出カエネルギーから見積もったキャビティ内の ピークパワー密度は10 MW／cm²である。钼測されたパルス列 については，パルスのピークパワーはパルス列全体にわた りほぼオーダーは一致している。これらのことから，増幅媒質は線形増幅の笣囲にあり，パルスがP－Geを通過するご とに，ほぼ一定の割合でその両端が削りとられている 吸収 されている）と考えられる。この結果は，同様の仮定のも とに短縮奻果を解析した Feldmanらの結果と定性的に一致し た。

モードロックが過渡状能にあることは次のように説明さ れる。 CO_{2} レーザー上準位の寿命は数 μ s程度であり，利得 の存在している時間内に光子のキャビティ往復回数がせい ぜい 10^{2} 回程度しかない。したがって，増湢媒質の利得スペ クトル幅で制限される値までパルスが短縮される前に発振 が停止してしまうことになる。レーザーガス圧力を高める と，それにほぼ反比例してレーザー上薄位の寿命は短くな る。したがって利得スペクトル幅の広がりの効果が一方で利得時間幅の短縮の効果を合わせ持っていることになる。

以上から，可能な限り短いパルス幅でかつ安定にモード ロックパルス列を発生するためには，レーザーガス圧力を高く保った状態で，できるだけ利得の時間幅が長く保たれ るようにする必要がある。このため，たとえば N_{2} がス分王 $^{\text {而 }}$ を高めるなどして，レーザーガス混合比を最適化すること が考えられる。またFig，3－18に示したパルス短縮効果を示 す直線の傾きができるだけ大きくなるように P－Geの最適化を行えば，一定発振時間内で，より短いパルスが期待で きる。p－Geのパルス短縮比が最も大きくなるのは，飽和 パワー密度の約10倍の入射光パワー密度の場合である。再

現性に関する検討から，レーザーの動作は発振閾值近傍に固定しなければならず，短縮比が最も大きくなるように共振器中のパワ一密度を上げることはできない。このことか ら． $\mathrm{P}-\mathrm{Ge}_{\mathrm{C}}$ の飽和パワー密度を $\mathrm{MW} / \mathrm{cm}^{2}$ 程度まで低下させる ことが必要になる。一般に飽和パワー密度工sは次式で表わ される。 $I_{s}=h \omega / 2 \sigma \tau$ 。ここでのは吸収断面積，τ は緩和時間，んはプランク定数，レはレーザ一光の周波数である。 これから，より大きなのお値を持つようp－Geの物性的検討 を行う必要がある。これらは今後に残された研究課題であ る。

3－5 結論
最高15気圧までのレーザーガスで動作可能な高気压 CO_{2} レーザーを開発した。これを用い小信号利得の圧力依存性 を測定し，スペクトル幅の街突広がり係数4．6GHz／atmを得た。また，この装置を用いて受動も一ドロック発振特性 を実験的に明らかにした。
核融合研究用しーザーシステム発振器に必要な特性とし ては，サフッナノ秒パルス発生とその再現性が要点である。 モードロックパルス列におけるパルス短縮を観測し，短パ ルス発生のための技術的問題点を明らかにした。測定最短 パルス湢670 psを得た。また再現性よく単一包絡線状のモ一ドロックパルス列を発生させるための問題点を明らかに した。その一つは，飽和吸収特性をもつ，受動モートロッ ク素子を共振器ミラーのごく近傍（器を構成することである。次に励起放電入カエネルギーの変動を 0.5% 以下に抑え，発振閾値のごく近傍にレーザー動作を固定しなければならないことである。

これらの結果より，高気圧レーザーの受動モードロック発振により，実用上十分な再現性をもってサブナノ紗パル スを発生するための技㣩的問題点，可能性が明らかになった。

第 3 章の参考文献
1）M．C．Richardson：Opt．Commun． 10 （1974）， 302 ．
2）中塚正大，久保宇市：電気学会電子装置研究会饻料 EDD－75－78（1975）

3）中井貞雄，的場幹史，鳥家秀照，山中千代衛，他：電気学会電子装置研究会資料EDD－74－72（1974）。

4）H．S．Kwok and Eli Yablonovitch：Appl．Phys．Lett， 30 （1977）158．
5）A，J，Alcock and A．C，Walker ：Appl．Phys．Lett 25 （1974） 299.
6）P．B．Corkum，A，J．A7cock，D．F．Ro7lin and H．D．Morrison： Appl．Phys．Lett． $32(1978) 27$.

7）T．Sakane：Opt．Commun． 12 （1974） 21.
8）的場幹中，大道博行，中井員雄，山中千代衛：電気学会電子装置研究会資料EDD－76－98（1976）。

9）的場幹史，藤田尚德。中井貞雄，山中千代衙 レーザー研究6（1978）47。

10）大越孝敬：基礎電子回路（オーム社，1967）P．12．
11）高出力レーザ装置調查専門委員会技術報告［II］，電気学会技術報告（II 部）第 68 号（電気学会，1978）p． 24 。
12) A.J. Alcock, R. Fedosejevs and A, C, Walker: IEEE J. Quantum Electron. $Q E-11(1975) 767$.
13) N, C, chang and M,T. Tavis: IEEE J. Quantum Electron. $Q E-10(1974) 372$.
14) R.L.Abrams: App7. Phys. Lett, $25(1974) 609$.
15) R.R, Patty, E, R. Manring and J. A, Gardner: App7. Opt. 7 (1968) 2241.
16) T. K. McCubbin and T. R. Mooney: J. Quantum Spectrose Radiant. Transfer 8 (1968) 1225.
17) S.R.Drayson and C. Young: J. Quantum Spectrosc. Radiat. Transfer 7 (1967) 993.
18) C. Boulet, E.Arie, J. P. Bouunich and N. Lacome: Can. J. Phys. $50(1972) 2178$.
19) J. Reid and K.J. Siemsen: IEEE J.Quantum Electron, QE-14 (1978) 217.
20) $A, F, G i b s o n, M, F, K i m m i t t$ and B. Norris'. Appl. phys. Lett. 24 (1974) 306.
21) W, H. GTenn: IEEE J, Quantum Electron. QE-11(1975)8.
22) LASL Progress Report LA-6982-Pk (1977) p. 32.

23）B，J．Feldman，J．F．Figueira：App7．Phys．Lett， 25 （1974）301．
24）大道博行，小出利幸，的場幹史，中井桌雄，山中千代衛；応用物理 48,424 （1979）

第4章 寄生発振の動的特性とその抑制に関する研究 4－1 緒言
多段の高利得增幅器よりなる高出力 $\mathrm{CO}_{\mathrm{O}} \mathrm{O}$ レーザーシステ ムにおいては，わずかな反射面の存在で容易にフイードバッ クループが形成され，寄生発振が生じる。フィードバック ループの違いによる異なったモードの鶱生発振が実験的に確認されている！。すなわち。
（1）増蝠段相互の結合による守生発振
（2）レーザー光照射ターゲットと主増幅段Beam Expander中共焦点位置に配置されたピンホールの結合によ る寄生発振
（3）最終垍幅器内部の奇生発振）
等である。
従来行われてきた（1）のモードの害生発振の抑制法は，適当 な可飽和吸収体を増幅段間に插入し實奻的小信号利得を減少させる方法 ${ }^{2 / 3)}$ ，レーザー光路中のシステム構成要素の反射率を減少させる方法などである。実験的には，任意の複数台の増幅器と可飽和吸収体の組み合せにより構成される レーザー光路中において，小信号利得係数から小信号吸収係数を差し引いた值（正味の利得係数）が10を越えないよ うに増幅段を構戊する必要があることが判明している。（3） のモードの寄生発振は，増幅器チャンバー内面，主放電電極に光学的ARコートをほどこすことにより抑制する方法が ある。

本章では，（2）のモードの寄生発振の動的過程の解析結果 を述べる。また。これまでの寄生発振抑制法は，フィード バックループの小信号利得と損失に着目した静的な䂓点か らの抑制法であったが，本章では寄生発振の動的過程に着目した抑制法について述べる。

4－2 理論
Fig．4－1にターゲットと Beam Expanderのピンホールの結合 による寄生発振の解析に用いるモデル図を示す。 基整方程

式は次のとおりである。

$$
\begin{equation*}
\frac{d n}{d t}=\frac{c n \lg (t)}{L}+\frac{c n \ln \left(R_{1} R_{2}\right)}{2 L}+A K g(t) \tag{4-1}
\end{equation*}
$$

ここでCは光倳，nは光子数密度，Lは完効的共振器長， そしてR1，R2はピンホールの反射率，ターゲット面の反射率をそれぞれ表わしている。 しは増幅媒質の長さであり。 lくくである。g（t）はレーザー励起の時間に侬存した利得係数である。AはアインシュタインのA係数，そしてKは增幅器から見込んだターゲットの集光光学系の立体角に等 しい幾何学定数さである。モデルよりKは実効的共振答長 の二乗に反比例することになる。Akg（t）は自然放出光を表

わし発振のソースになる。（cn／2L）ln（ $R_{1} \cdot R_{2}$ ）は光子密度 に対する損失項を表わし，（ch／L）lg（t）は増幅媒質による光子密度の增加を表わす項である。動的過程に着目した寄生発振抑制法の基本的な考え方は，次のとおりである。実効的共振器長しを長くするか，または増幅器の利得立ち上 がり時間を速くすれば（4－1）式の光子数増加項（C／L） $\lg (t)$ が減少するということである。

蹇生発振によるターケッット表面のダメージ閥値は数m丁 である。一方 CO_{2} レーザ一増幅器の飽和エネルギーは数百 $\mathrm{mJ} / \mathrm{cm}^{2}$ である。それ故，計算は非常に低い発振工ネルギ一領域，すなわち線形増幅領域で行えばよい。この仮定の下では，時間に依存した利得g（t）は光子密度んに独立とな る。（4－1）式は常微分方程式となり，解は次のように解析的に求まる。

$$
\begin{aligned}
& n(t)= \exp \int_{0}^{t}\left[\frac{c \lg (t)}{L}+\frac{c}{2 L} \ln \left(R_{1} R_{2}\right)\right] d t \\
& \int_{0}^{t} A K g(t) \exp \left\{\int_{0}^{t}\left[\frac{c}{L} \lg (t)+\frac{c}{2 L} \ln \left(R_{1} R_{2}\right)\right] d t\right\} d t \\
&(4-2)
\end{aligned}
$$

ここで解折を簡单にするため，利得時間波形を三角形で近似する。これは，実際の利得波形の良い近似である ${ }^{5}$ 。寄生発振の波形は数値 積分を実行することにより求まる。こ の解析に用いたパラメータは次のとおりである。ターゲッ ト表面の反射率は 5% である。レーザーシステム中の来面反射率は1 \％以下である。実効的共振器の反射率 R_{1}, R_{2} は 10^{-2} と仮定した。増幅媒質長ては 2 m である。ターゲット と最終增幅器間の距離にほぼ等しい。実効的共振铪長しは 30 m ， 50 m ， 100 m の 3 通りとした。垍幅器の利得係数 $\mathrm{g}(\mathrm{t})$ のピーク植は $2, ~ 2.4, ~ 2.8, ~ 3 \% / \mathrm{cm}$ の4通りとした。利得の立ち上がりからピークまでの時間（利得立ち上がり時

間）は2，3，5 usとした。これらのパラメータを用いてそ れぞれのケースについての数值計算を行った。

4－3 数値計算結果
典型的な寄
生発振の波形 をFig．4－2に示 す。増幅器の エネルギー取 り出し効率を高くするため
発振段で得た短パルスしー ザー光は增幅器利得のピー ク時に到着す
るように放電 タイミングが調節してある。寄生発振波形 の斜線部分（利得波形ピーク
值より前の部

Typical oscillation waveform and the gain Fig．4－2 history of the amplifier．Shaded region represents the irradiation energy for the target before a main laser pulse arrives．

ルスエネルギ
ーと定義され
る。これは,

高出力短パルスレーザー光が到着する前にターゲット表面 にダメージを生じさせるエネルギーに対応している。重ね書きした三角波形は利得波形を示している。

Fig．4－3に異なった小信号利得をパラメータにした時の

共振器長に
対するプリ パルスエネ ルギーの値 を示してい る。縦軸は任意目盛の
プリパルス エネルギー値を表わす。 しかし，Fig。 4－4と同一 の単位の任意目盛を採用している のでそれら の間での比較は可能で
ある。ヒター
ク利得2，4 $\% / \mathrm{cm}$ はこ のシステム の寄生発振 の静的な利
得閥值を示
す。共振器長を 30 m から 100 m に延ばしたら，許容される ピーク利得は $0.4 \% / \mathrm{cm}$ 増加することがわかる。

Fig．4－4に利得立ち上がり時間に対するプリパルスエネ ルギーの特性を示す。ピーク利得 $2.8 \% / \mathrm{cm}$ に着目する。利得立ち上がり時間を5 5 Sから $2 \mu \mathrm{~s}$ に短縮すると， 70 リパ

ルスエネル ギーは共振器長 100 m の とき 50% に なり，共振器長50mの とき 25% に なる。

（a）

Fig．4－4
Prepulse energy characteristics as a function of the gain rise time． In（a）and（b）the． effective cavity lengths are 100 and 50m，respectively．

4－4 結論
ターゲットとレーザーシステム中の Beam Expanderのピン ホールの結合による寄生発振の動的洄程について，簡単化 したし一ト方程式モデルを用い数値計算を行った。害生発振の立ち上がりの動的過程に着目し，その抑制法について考察を加えた。結果は次のとおりである。すなわち，ター ゲットから最終増幅器までの光路長をできるだけ長くとる こと，できるだけ速い利得立ち上がり時間を採用すること である。光路長を 30 m から 100 m まで長くすると，許容 されるピーク利得は $0.4 \% / \mathrm{cm}$ 増加し，利得立ち 上がり時間 を5 H sから $2 \mu \mathrm{~s}$ に短縮すると光路長50mのときプリパルス エネルギーば 25% になる。高速利得立ち上がりは大電流高速励起により得られ，励起電源設計に必要とされる壮様加 この解析からも得られる ${ }^{6)}$ 。

これらの結果により，レーザ一核融合用高出力 CO_{2} レー ザーシステムの大規模化に伴う寄生発振抑制に着目した設計基準が得られた。

第4章の参考文献
1）Annual Progress Report on Laser Fusion Program， ILE－APR－78（1978），P． 69.

2）M．D．Montgomery et，al．，App7．Phys．Lett． 32,324 （1978）．
3）S．J．Czuch Tewski，A．V．Nowak，E．Foley，and J．F．Figueira，Opt．Lett．2， 39 （1978）．

4）H．Maeda and A．Yariv，Phys．Lett．A．43， 383 （1973）．
5）C，B，Mills，J，App T．Phys． 45,1336 （1974）．
6）H．Daido，S．Ido，M．Matoba，S．Nakai，and C．Yamanaka Appl．Opt．，19， 3181 （1980）

第5覃 短パルスレーザー光の非線形伝播特性に関する研究
5－1 緒言
核融合研究用高出力COュLーザーシステムの特性を定量的 に解析し，所定の特性を両足する最適なレーザーシステム の設計基準を得ることを目標に，シズテムの電算機之ミュ レーションを行った。これまで，増幅媒質中のパルス伝播特性は種々報告されてきだ～5）し かし，これらの報告では大
 ルス伝播特性は含まれていない。飽和増幅と飽和吸収の結合したパルス伝播特性は，高出力 CO_{2} Lーザーシステムの解析にとっで本質的重要性を持っている。

本章第2䈱では，レーザーシステムを構成する個々の要素のシミュレーションモテルについて述べる。第3節では開発した構成要素のシミュレーションコードを用いて行っ たレーザーシステム全体の動作シミュレーション結果につ いて述べる。特にパルス波形変形について測定結果との比䡈対比を行い，これのターゲット照射実験に及ぼす影瞕に ついて考察する。第4即は，複数の回転準位スペクトルラ イン増幅コードの計算モテッルとその計算結果について过べ る。なお，パルス幅1ns以下のパルス伝播シミュレーショ ンについては，シミュレーションモデル，コード手法に検討すべき点が多い。これらについての研究成果と，問題点 を一括して付録で述べる。

5－2 レーザーシステム構成要素の
シミュレーションモデル

しーザーシステム構成要素の中で，非線形伝播特性を有 するのは，増蝠器と可飽和吸収体である。他は線形損失要素として取り极之る。

5－2－1Lーザ一増幅器

横緩和時間Tとを考虑に入れたコヒーレント効果を含んだ方程式については付録で述べるが，大気圧以上のCO2Lー ザーではT2が100ps以下であり，数わSのパルス伝播を論じ る際には通常この効果は問題にならない。また， CO_{2} 分子 の振動染位間， N_{2} 分子の振動洹位と CO_{2} 分子の振動準位の間の緩和時間は，大気圧程度のガス圧力では数十ns以上あ リ，レーザーパルス幅数nsに比べて十分長くこれも無視し得3。計算に含まなければならないのは，レーザー上準位 と下準位の回転準位間の緩和時間のみである。ここでは， 3nsのパルス幅の光パルスの伝搬の基礎方程式に用いたFrantz， Nodvik型のレート方程式モデル ${ }^{176}$ について述べる・計算モデルの エネルギー潐位をFig．5－1に示す。 $J_{0} \rightarrow J_{0}+1$ 遷移の単一回転響仕ス ペクトルを有する平面波パルス の伝搬を記述する方程式は次の ようになる。

$$
\begin{aligned}
& \frac{\partial n}{\partial t}+c \frac{\partial n}{\partial x}=\sigma c n \delta^{J_{0}}(5-1) \\
& \frac{\partial \delta^{J_{0}}}{\partial t}=-2 \sigma c n \delta^{J_{0}}-\frac{\delta^{J_{0}}-k\left(J_{0}\right) \Delta}{\tau_{k}}(5-2) \\
& \frac{\partial \Delta}{\partial t}=-2 \sigma c n \delta^{J_{0}} \quad(5-3)
\end{aligned}
$$

ここで艮は回転緩和時間であり レーザー上準位，下準位で等し

い値を有するとした。また，各回転準位が一様に熱平衡状態を回復するように緩和がおこるとした。 τ_{R} は増幅媒質の壬力，ガス混合比，ガス亚進温度の関数であり，次式で与 えられる ${ }^{77}$ 。

$$
\begin{equation*}
\tau_{R}=\left[\left(1.3 \psi_{C}+1.2 \psi_{N}+0.6 \psi_{\mathrm{He}_{e}}\right) \cdot P \cdot\left(300 / \mathrm{Tg}_{g}\right)^{1 / 2} \cdot 10^{\pi}\right]^{-1} \tag{5-4}
\end{equation*}
$$

$==て ゙ \psi_{C}, \psi_{N}, \psi_{\mathrm{He}_{\mathrm{e}} は \mathrm{CO}_{2}, ~ \mathrm{~N}_{2} \text { ，Heの規格化されたがス分圧を }}$表わす。Pはがスの全圧（Torr）である。Tgはがス並進温度（K） である。 $n(x, t)$ は媒質中の位置 x ，時刻 t たおける光子数密度を表わす。 δ^{J}（ x, t ）は，レーザー上準位中 J。番目の回転荤位と，F準位中（ $J_{0}+1$ ）番目の回䎐準位間の反䎐分布密度を表わす。 $k\left(J_{0}\right)$ は，1つの振動準位中のBoltzmann 分布し た回転準位の中で，Jo番目の回転準位がしめる割合である （Boltzmann Partition Fraction），式（5－1）は光子の伝般を表わ し，式（5－2）振動準位中の回転準位の違動方程式を表わす。式（5－3）は振動準位の逼動方程式を表わす。

5－2－2 可飽和吸収がス
寄生発振防止のためレーザー増幅器段間に可飽和吸収体 が插入される。插入された可铇和吸収体はS／N比の向上に も寄与する。ここでは可铇和吸収がスの中で，現在最も特性が良く，数多くのパルス透過実験のデータが得られてい るSF6について述べる。SF6可飽和吸収がスを透過したレ一ザーパルスは，非線形吸収特性により波形変形がひきお こされる。

実験結果の解析からレーザーパルス幅が数いSの場合，数 TorrのSFbがスのレーザーパルス透過特性は，入射しーザー パルスエネルギーにのみ依存すると伖定した。このことは SF6の吸収ラインの分布の回復時間が，数nsのレーザーパル ス幅に比べて十分長いことを意味する。

レーザー光強度に対する透過率を与える関数は，実験的 に次のように定めた。

$$
\begin{equation*}
T=T_{L}-\left(T_{L}-T_{S}\right) \exp \left(-E_{i n} / \Delta\right) \tag{5-4}
\end{equation*}
$$

ここで T は大信号透過率であり，実験結果から定められた。
$T_{\text {sは小信号透過率であり，} T_{s}=\exp \left(-\alpha_{0} \cdot P \cdot L\right) \text { の値から定め }}$ られた。ここで α 。は小信号吸収係数，P は吸収ガスの圧力 そしてしは吸収がスの光伝播方向長であっる。 Eimは入射レ一 ザーパルスエネルギー值であり，次式で与えられる。

$$
E_{i n}=\int_{-\infty}^{t-L / c} c h \nu n(t) d t \quad(5-5)
$$

$=こ て ゙, ~ n(t) は$ 光子数密度，hはプランク定数，ν はレー
 した透過率が測定点に合うように定めたパラメータであり媒質の飽和エネルギー密度に対応する量である。A．Zembrod らの測定では，1 TorrのSF6の横緩和時間は20nsである。 しかし CO_{2} Lーザー $10.4 \mu \mathrm{~m}$ バンドの $P(20)$ から $P(16) ラ$ ラン のスペクトルを有する入射しーザーパルスにおいては，SF6 の共嗎隼位の縮退の効果により，オパルス効果が打ち消し合って，透過レーザー光波形には現われてこない。それ故 $10.4 \mu \mathrm{~m}$ バンドの P （20）回転ラインスペクトルを有する光パル スの伝搬を解折する場合は，SFbのコヒーレント伝播効果 はそれほど重要ではない。

実験的に与えられた透過率を与える関数（5－4）式の物理的意味は，次のように考えられる。入射レーザーパルス幅 より十分長い分布の回復時間を有する，2準位システムにお けるレーザ一光強度に対する透過靑を与える関数は，次 とおりであ $3^{6 / 8)}$ 。

$$
\begin{equation*}
T=\left\{1-\left(1-T_{s}^{-1}\right) \exp \left(-E_{i n} / E_{s}\right)\right\}^{-1} \tag{5-6}
\end{equation*}
$$

ここで，TsとEinは（5－4）式と同様である。Esは可铇和吸収体 の飲和エネルギ一密度であり，Es＝hレ／2のでよえられる。 ここでのは光吸収断面積である。この関数を用いて計算す ると，入射し一ザーパルスエネルギーが增大するに従って透温率は実験結果より急倳に増大してしまう。すなわち，

Fig．5－2 Calculated transmission curve and measured points of SF_{6} saturable absorber as a function of incident laser pulse energy．The gas pressure is 2 Torr and the absorbing length is 13 cm ．The incident laser pulse width is 3 ns ．

Fig．5－2の透過率を与え3曲線が，実験結果に比べて急速 に立ち上がってしまうのである。SFb颜和收収がスの場合，多光子吸収，多隼位にみたる夏移の効果等のため，2䧳位モデルでは报えないのである。式（5－6）は，こういっ た効杲を含めうるように変更されなければならない。突験結果を近似的に表現するため導入した（5－4）式は，入射し ーザー光強度の增大に伴ない，ス準位モデルに比べて，ゆっ くり飽和してゆく効果を実効的に含んでいる。

Figif－2は，测定点に一致するように（5－4）式のパラメー ターを定めた時の，計算で与えられた曲線と到定点を表わ

す。この場合，Tは 0.65 である。 $T_{\text {sは小信号吸収率の測定 }}$ により与えられた値を用いて計算した値であり，2．6×10－4 で ある。SF6がス圧力は2Torr であり，光の伝濖方向の長さ は13cmである。 Δ の値は $80\left(\mathrm{~mJ} / \mathrm{cm}^{2}\right)$ を用いた。このモデル に従うと，入射レーザーパルスの立ち上がり部分は強力に吸収され，吸収体透過後バルス波形の急峻化がおこってい る。入射レーザ一光エネルギー $0.1 \mathrm{~J} / \mathrm{cm}^{2}$ の場合の典型的な レーザー光波形の計算結果を，Fig．5－3（a）に示す。実験で得られた典型的なレーザー波形をFig．5－3（b）に示す。ほほ同様な波形変形のおこっていることがわかる。

5－2－3 p－Ge 可飽和吸収体
 ら $10 \mu \mathrm{~m}$ にかけて，ほぼ一様な吸収特性を有する。両面AR コートしたp－Ge板の小信号吸収スペクトルをFig．5－4に示す。

Fig．5－4 Small signal absorption spectrum of AR coated $\mathrm{p}-\mathrm{Ge}$ plates．

No．1からNo．5までのp－Geは厚さがそれぞれ $1.13,1.65,2.27,4.07,7.10 \mathrm{~mm}$ である。吸収飽和特性も良く，増幅段間のアイソレータとしてきわ めて良好な特性である。ただし，光強度に対するダメージ成值が数十MW／ $\mathrm{mm}^{2} と$ 低く，高出力段では使用できない。 こではp－Ge中の短バルス透過特性を記述する方程式を導 き，計算コ一ドの中での取扱法について述べる。

均一広がりの吸収スペクトルを有する2準位系の吸収体 とレーザ一光の相互作用を記述する基硅方程式は次のよう に表わせる。

$$
\begin{align*}
& \frac{d N_{1}}{d t}=-\frac{I \sigma}{h V_{L}}\left(N_{1}-N_{2}\right)+\frac{N_{2}}{\tau} \tag{5-7}\\
& \frac{d N_{2}}{d t}=\frac{I \sigma}{h \nu_{L}}\left(N_{1}-N_{2}\right)-\frac{N_{2}}{\tau} \tag{5-8}\\
& \frac{d I}{d t}=\frac{\partial I}{\partial t}+\frac{c}{\eta} \frac{\partial I}{\partial x}=-\frac{c}{\eta} I \sigma\left(N_{1}-N_{2}\right) \tag{5-9}
\end{align*}
$$

ここで，$N_{1}, ~ N 2$ は下準位，上洹位の分布密度，ては上潐位 の緩和時間である。工はレーザー光強度，hはプランク定数，人は莩移周波数である。Cは光速度，そは屈折㖕，σ は吸収断面積である。（5－7）式（5－8）式は吸収体の下染位上準位の分布の時間变化を記述する遧動方程式，（5－9）式 は吸収体中のレーザー光の伝播を記述する方程式である。

$$
\begin{array}{ll}
n \triangleq N_{1}-N_{2}, N=N_{1}+N_{2} と \text { お }<と \\
\frac{d n}{d t}=-\frac{2 I \sigma}{h \nu_{L}} n+\frac{N-n}{\tau} & (5-10) \\
\frac{\partial I}{\partial t}+\frac{c}{\eta} \frac{\partial I}{\partial x}=-\frac{c}{\eta} I \sigma n & (5-11)
\end{array}
$$

$p-G e の \tau は$ は数ps程度であり，レーザー光パルス幅（～ns） に比べて十分短いから $\frac{d}{d t}=0$ とおける。（5－11）式より

$$
\frac{d I}{d x}=-I \sigma n
$$

$$
(5-12)
$$

一方（5－10）式より

$$
n=\frac{h V_{L} N}{2 \sigma \tau I+h V_{L}} \quad(5-13)
$$

故に

$$
\frac{d I}{d x}=\frac{-I \sigma h V_{L} N}{2 \sigma \tau I+h \mathcal{V}_{L}} \quad(5-14)
$$

$=こ て ゙$ 飽和 $レ ー サ ゙ ー$ 光強度 $I_{s} \triangleq h V_{L} /(2 \sigma \tau) を$ 定義すると

$$
\frac{d I}{d x}=\frac{-\sigma I}{1+I / I s} I \quad(5-15)
$$

上式において 1 方向の長さ（吸収体の光伝播方向長）が十分小さいときは，一よN／（1＋I／Is）の変化が無視できて次式のように表わされる。

$$
\begin{equation*}
I(x=l)=I(x=0) \cdot \exp \left(\frac{-\sigma N l}{1+I / I_{s}}\right) \tag{5-16}
\end{equation*}
$$

不均一広がりの吸収スペクトルを有する吸収体の場合，
レーガー光透過特性は次のように表わされる。

$$
I(x=l)=I(\lambda=0) \cdot \exp \left(\frac{-\sigma N l}{\sqrt{1+I / I_{s}}}\right) \quad(5-17)
$$

電子計算機を用いたp－Ge极のレーザー光透過特性の解析 は，2準位系の定常モデルを基礔にし，最大透過率を1．0以下の一定值に抑えるように線形損失を加えた。（5－16）（5－17）式が成立するように，p－Ge板を仮想的に汲長程度（ $10 \mu \mathrm{~m}$ ）の厚さのスライス片に分割した。そのスライス状p－Ge 板を所定の厚さに達するまで，レーザーパルスが何度も入射，透過を終り返すモデルを用いた。計算により求めた典型的 なしーザー波形をFig．5－5 に示す。図の条件はFig．5－3 と同じである。2潐位定常 モデルを基礎にしているの で，パルス波形中p－Geの飽和レーザ一光強度以下の部分が左右対称に強力に吸収 されているのがわかる。こ のとき入射し—ザー光エネ ルギーは $30 \mathrm{~mJ} / \mathrm{cm}^{2}$ である。 またp－Ge板の厚さ ℓ は 0.5 cm小信号吸収係数 σN は3．2／ cm ，飽和L—甘゙一光強度 I_{5} は $2 \mathrm{MW} / \mathrm{cm}^{2}$ とした。

Fig．5－5 Calculated waveforms of incident and transmitted laser pulse．The waveform of incident pulse is Gaussian． The absorbing medium is $\mathrm{p}-\mathrm{Ge}$ ．

5－2－4 線形損失要素
線形損失要素中の出力光パルス波形は，入射光パルス波形に透過率をかけあわせることにより与えられるとした。 レーザーシステム中の線形損失要素とその透過率をTable 5－1に示す

Table 5－1 線形損失要素

5－3 シミュレーション結果
この節では，前節で述べた各構成要素を用いてシステム を構成した場合の。短パルスレーザ一光の伝搬特性につい て述べる。LEKKOIIシステムの最終増幅段である3パス増幅器をFig．5－6に示す。このシステムのシミュレーション モテルルは，前笛で述べたように，非可干渉性の非線形伝播 を基礎にしている。このシステムのパラメータをTable5－2 に示す。増幅されるレーザーパルスは，10．4 $\mu \mathrm{m}$ P（20）四転 ラインのスペクトルを有する。Fig．5－7は，3パス増幅シス

Fig. 5-6 Schematic diagram of the triple pass amplification system.

Table 5-2 Parameters of the triple pass amplification system

Absorbers				
Press.Length	T_{L}	T_{s}	$\Delta\left(\mathrm{~mJ} / \mathrm{cm}^{2}\right)$	
1.4 Torr 13 cm	0.65	0.0031	57.6	
0.9 Torr 13 cm	0.65	0.024	37.2	
0.82 Torr 13 cm	0.65	0.034	34.0	
1.5 Torr 13 cm	0.65	0.0021	62.0	
Press. Length	Amp 7 fiers			
1.5 atm .120 cm	Small Signal Gain	Saturation Energy		
1.5 atm .120 cm	$4.4 \% / \mathrm{cm}$	$132 \mathrm{~mJ} / \mathrm{cm}^{2}$		
1.5 atm .200 cm	$4.4 \% / \mathrm{cm}$	$132 \mathrm{~mJ} / \mathrm{cm}^{2}$		

テムの入射レーザー パルスエネルギーに対する出カレーザー パルスエネルギーの依存性を示している。図中，白丸は実験值 であり，実線は計算結果である。強い飽和増幅特性は，計算 の結果と良く一致し た。

観測された典型的 なレーザー波形と，計算されたレーザー波形の一例をFig．5－8 に示す。このとき，出カレーザーパルス エネルギーは約100J

Fig．5－7 The measured output laser puise energy and the calculated laser pulse energy as a function of incident laser pulse energy system．

であった。ガウス型の時間波形を有する入射レーザーパル スは，4台の可飽和吸収がスセルを含む3パス増幅器を通過することにより，強峻化がおこる。レーザーパルスの立 ち上がり部分は，SF6 可飽和吸収がスの非線形透過特性に より強く吸収され，その結果急峻化がおこる。急峻になつ たパルスの立ち上がり部分は，増幅器の非線形増幅特性に より，多くの場合さらに急峻になる。このようにレーザー パルスの急峻化が可飽和吸収体と増幅器の相乗効果により進行する。

Fig．5－9に3種の異なった入射しーザーパルス波形を示 す。実線はがウス型波形を示し，一点顉線と破線で示す波形は，がウス型から少しずれた左右非対称な波形を示す。
（EXPERIMENT）

（SIMULATION）

INITIAL WAVEFORM

AFTER TRIPLE－PASS AMPLIFICATION
Fig．5－8 ．The computed and the measured waveforms of incident and output laser pulse of the triple pass amplification system．The output laser pulse energy is about 100 J ． （Sweep： 5 ns／div．）

Fig．5－9 The incident laser pulse waveforms．The solid line represents a Gaussian waveform and the others represent slightly distorted wave－ forms from a Gaussian． These have same incident energy and pulse width．

3 㮔の波形は，パルスエネルギーとパルス幅（FWHM）が等し い。計算結果の出力レーザーエネルギー值は，入射レーザ一波形が異なっているのにもかかわらず，Fig．5－7で示さ れた実線にほぼ一致した。

出力レーザーパルスエネルギーに対する側定されたパル ス幅（FWHM），パルス立ち上がり時間（ $10 \% \sim 90 \%$ ）と計算結果 との比較をFig．5－10に示す。四中，実線，破線，一点鎖蟣 は，Fig．5－6に示したパルス波形を入射パルスとしたとき の出カパルスに対応する。100丁までのレーザーパルスエネ ルギーでは，パルスエネルギーが増加するに従って，パル スの立ち上がり時間は短縮され，パルス幅（FWHM）は広がる。計算された曲線は測定点に良く一致している。
ニのシステムの

非線形伝播特性に起因する他の効果 についても調べた。入射レーザーパル スエネルギー 0.15 Jの場合，主にSF6可飽和吸収がスの非線形吸収特性に よりパルスのピー クが実効的に遅れ る。他方，入射レ ーザーパルスエネ ルギー 10 J の場合主に増幅器の非線形増幅特性により パルスのピーク值 が実効的に進む。 これらの効果をFig． 5－11（a），（b）に示 す。パルス伝搬に伴い，このような
現象が現われるのは， CO_{2} レーザーがエネルギー蓄積型の飽和増幅器として働くからであり，線形増幅システムでは現われないっ一般に，エネルギー蓄積型の飽和増幅器は，励起エネルギーに対する取り出しレーザーエネルギーの比率（取り出し効率）が高く，また高い取り出し効率を得る ためのエネルギー取り出し（増幅）法も比較的容易である が，そうであるが故に，支払わなければならない代償と考 えられる。

（a）

（b）
（a）Incident laser pulse energy is 0.15 J and the delay time of the pulse peak is about
（b）Incident laser pulse energy is 10 J．and the forward time of the pulse peak is about 1.8 ns ．

Fig．5－11 Normalized incident and output laser pulse waveforms．

このレーザーパルスピークの突効的な遅れと進みの効果 を3パス増幅システムの入射エネルギーに対して，定量的 に計算した結果をFig．5－12に示す。ここで寞線は，増幅器の利得が $4.4 \% / \mathrm{cm}$ のときのパルスピークの時間シフト量を示す。破線と一点鎖線は，増幅器の利得がそれぞれ4．3 $\% / \mathrm{cm}$ と $4.5 \% / \mathrm{cm}$ の場合のパルスピークの時間シフト量 である。入射しーザーパルスエネルギーが1丁和とき，増幅器と可飽和吸収体の非線形伝播特性が打ち消し合う。入射しーザーパルスエネルギーが1丁の近辺では，増幅器の利得が $0.1 \% / \mathrm{cm}$ 変化すると，パルスピークの時間シフトは約100psになる。一方，入射レーザーパルスエネルギー1 J の近辺では，入射レーザーパルスエネルギーが 10% 変化す

ると，パルスピ
ークの時間シフ
トは約70psにな
る。以上から，
ターゲット照射
に必要とされる
精度で，十分正
確な増幅器の動作条件の制限と
入射しーザーパ
ルスエネルギー
の分割が，多ビ
ーム CO_{2} Lーザ
ーシステムには
必要とされる。

Fig．5－12 Delay time and forward time of the pulse peak of the output laser pulse in comparison with the incident pulse as a function of the incident laser pulse energy． The laser amplifier gain of $4.5 \% / \mathrm{cm}, 4.4 \% / \mathrm{cm}$ and $4.3 \% / \mathrm{cm}$ represent the dotted line， the solid line and the broken line，respectively．

5－4 複数ライン増幅コードの開発
5－4－1計算モデル
複数ライン増幅コードを開発した。2バンド複数ライン増幅の基礎方程式は次のとおりである3）。

$$
\begin{equation*}
\partial n_{j} / \partial t+c \partial n_{j} / \partial x=\delta^{j} \sigma_{j} c n_{j} \tag{5-18}
\end{equation*}
$$

$$
\begin{align*}
& \partial \delta^{j} / \partial t=-2 \sigma_{j} c_{j}-\left\{\delta^{j}-k(j) \Delta_{j}\right\} / \tau_{r} \\
& \partial \Delta^{\prime} / \partial t=-c\left(2 \Sigma_{j} \delta^{j} \sigma_{j} n_{j}+\sum_{i^{\prime}} \delta_{j_{j}^{\prime}}^{j^{\prime}} n_{j^{\prime}}\right) \tag{5-20}\\
& \partial \Delta / \partial t=-c\left(2 \Sigma_{j^{\prime}} \delta^{j^{\prime}} \sigma_{j^{\prime}} n_{j^{\prime}}+\sum_{j} \delta^{j} \sigma_{j} n_{i}\right) \tag{5-21}
\end{align*}
$$

$$
(5-19)
$$

$==て ゙ \tau_{\text {rは回転準位の熱綬和時間，nは光子数密度，} 1 \text { は }}$光速度，k（j）は1つの振動準位中の熱平衡分布した回転染位の中で，j番目の回転準位がしめる割合である。
振動草位の反転分布密度である。式（5－18）はレ—ザー媒筫中の光子の伝搬を表わし，式（5－19），（5－20），（5－21）はそれぞ れ回転準位の㯰動方程式，10．4 $\mu \mathrm{m}$ バンドと $9.4 \mu \mathrm{~m}$ バンドの振動準位の運動方程式を表わす。Fig．5－13は10．4 $\mu \mathrm{m}$ と $9.4 \mu \mathrm{~m}$遷移の振動準位の構造 を示す。 CO_{2} とN2の他の振動準位の分布は無視 し得る。す
なわち，そ れらの分布 の緩和時間 は，レーザ ーガス圧力
 が大気压程
度では数百
nsであり，著者の研究に用いたレーザーパルス幅数nsに比 ベ十分長い。レーザ一上準位の分布はN」とした。しーザー下淮位である $10^{\circ} 0$ 準位， $02^{\circ} 0$ 潐位はそれぞれ $N_{2}, ~ N_{3} と し た 。 ~$
$10^{\circ} 0$ 洹位と $02^{\circ} 0$ 準位の間の緩和時間は，回転潐位の緩和時間を除けば，比較的速いことに注意しなければならない＂。 それ故， $10^{\circ} 0$ 準位と $02^{\circ} 0$ 準位の間は励起時間（数 $\mu \mathrm{s}$ ）に比ベ十分速く熱平衡に達している。この仮定を採用すると，N_{1} / N_{2} $=a, ~ N_{3} / N_{2}=\exp \left(E_{23} / T_{v}\right)=b$ を既知とすれば，潐位ノと準位2の間の反転分狮密度 ΔN_{13} は次式のように与えられる。

$$
\begin{equation*}
\Delta N_{13}=(a-b) /(a-1) \cdot \Delta N_{12} \tag{5-22}
\end{equation*}
$$

ここで，ΔN_{12} は準位1と準位2の間の反転分布密度，E23は $10^{\circ} 0$ 哖位と $02^{\circ} 0$ 洘位の間のエネルギー差である。パラメー夕（ともは励起条件に依存しており，複数バンドのレーザ ーエネルギーの取り出し効率も，厉起条件に依存している ことになる。複数バンド増幅における取り出し可能なエネ ルギーは，1バンドのそれに比べて4／3倍より小さいこと になる。

5－4－2 数値計算結果
Fig．5－14（a）（b）に取リ出しエネルギーの数値計算結果を示 す。このときレーザーがス圧力は1．5 気质，ガス混合比は $\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}_{\mathrm{e}}=1: 1: 3$ である。10．4 $\mu \mathrm{m}$ バンド P （20） 7 亿 ン の小信号利得は $4 \% / \mathrm{cm}$ である。回転潐位の温度は 350 K とした。Fig．5－14（a）（b）は，入射しーザーパルス幅がそれ ぞれ0．7nsと3nsa場合に対応する。直線（1a）と（1b）は10．4从mバンドの最大取り出しエネルギーを表わす。曲線（2a）と （2b）は2バンド4本ラインの場合の取り出しエネルギーを示す。すなわち，10．4 $\mu \mathrm{m}$ バンド $P(20), ~ P(16) ラ イ ン と, ~$ $9.4 \mu \mathrm{~m}$ バンド P（22），$P(18)$ ラインで， $9.4 \mu \mathrm{~m}$ バンドの反転分布密度に対す $310.4 \mu \mathrm{~m}$ バンドの反転分布密度の比率は0．95 と仮定した。曲線（3a）と（3b）は（2a），（2b）と同じ回転ラ 亿ン で，9．4 4 のバンドの反転分㘵密度に対する $10.4 \mu m$ バン ドの反転分布密度の比率が0．87の場合の取リ出しエネルギ

(a) Incident laser pulse width is 0.7 ns .

(b) Incident laser pulse width is 3 ns .
Fig.5-14 Computed output laser pulse energy as
a function of incident laser pulse energy.

一を示す。（4a）と（4b）は10．4 यm バンド4本テインの場合の取り出しエネルギーを示す。すなわち，10．4 ヶ ル バンドア（20）
 に対する入射し—ザーパルスエネルギーは，すべて等しい值にして計算を行った。（5a）と（5b）は，10．4 ム m バンドア（20） ラインのエネルギー取出しを示している。（6a）と（6b）は， レーザーパルスが坦幅されずに透過するときの特性を示し ている。これらの結果は，透過率0．92と仮定された2つの NaCl 公の透過が含まれている。2ハンド4本ラインの場合と，1 バシド4本ラインの場合のK（j）の和が等しくなる ように回転ラインを選んだ。こうすると，1バンドから2 バンドにバンドの数を増やした時のエネルギー取り出し効率の変化が比較しやすくなる。入癿レーザーか゚ルスのパル ス幅が 3 ms のときの方が，パルス禹 0.7 ms のときより2 ンドにした効果が大きくなった。回㶿準位緩和時間は約0．2 nsである。入射パルス幅 $3 n \mathrm{n}$ 」のときは，しーザ一潐位を個々の回転潐位と考えるよりもそれらが強く結合した全体 すなわち1つの振動準位と考えた方が適切な位十分パルス幅が広い。一方，入射ハ・ルス幅0．7ms のときは回転漸位緩和時間にヒヒベてパルス幅が十分方いとはいえない。これら のことは，Fig．5－14（a）の（2a）と（4b），Fig．5－14（b）の（2b）と （4b）を比較すれば明らかである。

取り出しエネルギーの䅐点から見た複数回転ライン增幅 の効果は，入射レーザーパルスのパルス幅が0．7nsの方が パルス幅3nsのときより大きい。パルス幅0．7nsのとき。個々の回転うインは相対的に孤立しており，回転嬡移の数 を増やせば取り出しエネルキーは大きくなる。

10．4ヶmバンド4本ラインのときの，レーザ一増幅器伝播後の全パルスエネルギーに対する個々の回転ラインのパル スエネルギーの比率をFig．5－15に示す。増幅器のパラメー

Fig．5－15 The ratio of the pulse energy of the individual rotational line to whole pulse energy after passing through the laser amplifier in the case of $10.4 \mu \mathrm{~m}$ band four lines．

タはこれまで述べたものと同ーである。個々の回転ライン のパルスエネルギーに対する入射レーザーパルスの割合は次のとおりである。 $\quad P(20)$ ラインは $62.5 \%, P(18), ~ P(16), P(4)$ はそれぞれ 12.5% である。入射パルス幅 0.7 ms のとき，佃 マの回転ラインの出力パルスエネルギーの比率はパルス幅 3 ns のときに比べて均等化の程度が大きい。パルス幅が0．7 ns のときは回転ライン間の結合は弱い。それで実効的な各

回転ラインの飽和エネルギーは小さくなり，孙立した1本 の回転ラインの飽和エネルギーに近づく。この効果が入射 パルスエネルギーの大きい回転遷移の増幅を抑え，全体と して各回転遷移出力エネルギーの全パルスエネルギーに対 する比率を均等化していると考えられる。

5－6 結論
 デル化した。増幅器はFrantz，Nodvik型のレート方程式モ ルを用いた。SF6可飽和吸収体は，測定結果を基礎にした突験的モデルを用いた。これらのモテッルを用いて烈光元号 システム，3パス増幅システムのパルス伝播特性の計算機 シミュレーションを行った。パルスエネルギー，パルスの立ち上がり時間，そしてパルス幅（FWHM）について実験結果と計算結果が比較対比された。出力パルス波形は入射パ ルス波形に敏感に依存するが，出力エネルギーは入射パル ス波形には，ほとんど影響を受けないことが明らかになっ た。また，小さい入射パルスエネルギーの範井では，SF6可飽和吸収体の非線形吸収特性によりパルスのピーク值が実効的に遅れる。一方，大きい入射パルスエネルギーの範囲では， CO_{2} Lーザーの非線形増幅特性により，パルスの ピーク值が実効的に進む。パルスの進み，遅れが生じない レーザー光強度は非線型吸収と非線型増幅の効果が祖互に打 ちけしあうところであり，システム設計上重要な意味をも つ。レーザーパルスピーク值の遅れ進みの効果が多ビーム ターゲット照射実験に与える影䭗を定量的に模討した。

複数回転ラインスペワトル増幅コードを開発し数值計算 を行った。次に过べる3点について考察した。第1に1 バ ンドと2バンドの場合の取り出しエネルギーの比較，第2 に回転ラインの数により，取り出しエネルギーがどの様に変化するかということ，第3にレ一ザ一増幅器伝播後，全

パルスエネルギーに対する棝々の回転ラインのパルスエネ ルギーの比率が，どの様に変化するかということである。結果は，取り出しエネルギー向上に寄与する主要な効果は パルス幅 $0.7 n \mathrm{~s}$ 程度では回転ラインの本数を増すことであ リ，パルス幅3ns程度では，2バンドにすることである。 また個々の回転ラインエネルギーの全パルスエネルギーに対する比率は，レーザーパルス幅が短くなるに従い均等化 される度合が強くなることがわかった ${ }^{131}$

数値計算と実験値の詳細な比較，検討は今後に残された課題である。

第5章の参考文歒
1）G．T．Schappert；Appl．Phys．Lett． 23,319 （1923）
2）J．C．Goldstein and F．A．Hopf；Opt．Commun．，11，118（1974）
3）B．J．Feldman ；IEEE J．Quantum Electron．，QE－9， 1070 （1973）
4）B．B．McFarland；IEEE J．Quantum Electron．，QE－9， 731 （1973）
5）B．J．Feldman；Opt．Commun．，14， 13 （1975）
6）L．M．Frantz and J．S．Nodvik；J．Appl．Phys．，34， 2346 （1963）
7）A．Zembrod and Th．Gruhl ；Phys．Rev．Lett．，27， 281 （1971）
8）J．D．Macomber ；J．Appl．Phys．，38， 3525 （1967）
9）A．Penzkofer ；$\theta_{\text {pto－electronics，6，} 87 \text {（1974）}}$
10）A．Yariv著，多田邦雄，神浴武志訳；光エしクトロニクスの基礎
丸善（1974）P． 100
11）E．E．Stark，Jr．；Appl．Phys．Lett．，23，335（1973）
12）H．Daido，J．Okehara，S．Ido，M．Matoba ，S．Nakai，and C．Yamanaka； Jpn．J．Appl．Phys．，19， 1487 （1980）

13）H．Daido，J．Okehara，S．Ido，M．Matoba，S．Nakai，and C．Yamanaka； Technol．Repts．Osaka Univ．，30， 45 （1980）

第6章 核融合用 CO_{2} レーザーシステムの最適設計に関 する研究

6－1 緒言
本章では，増幅効率に着目した CO_{2} レーザーシステムの最適設計について述べる。

核融合研究用 CO_{2} しーザーの短パルス増幅効率を向上す るため，次の 3 種類の方法が提案されている！
第1の方法は，最も効率が改善されると考えられるマル チパス法である。この方法は，同ーレーザー媒質中に何度 も短パルスしーザー光を入射しく筑のみならず N_{2} 振動準位 に畜積されたエネルギーをも取り出そうとするものである。第3節に述べるように総合効率 10% 以上が期待できる。

第2の方法は，レーザー媒質圧力を高くすることである。第3章3節で述べたように，レーザーガス圧力が大気圧程度では圧力増加に比例して利得スペクトル幅加広がり，反転分布密度が増加しているにもかかわらず小信号利得はほ ぼ一定に保たれる。これから誘導放出断面積のはレーザー媒質圧力が高くなるのに反比例して低下していることがわ
数，ν をし一ザー光周波数とすれば $E_{s}=h \nu /(2 \sigma k(J))$ と表 わされるので圧力増加に伴ってEsが増加することになる。 ここでK（J）は振動準位中の丁番目の回転準位分布密度のし める割合である。レーザー媒質単位体積あたり取り出せる レーザーエネルギーの上限はEs $g_{0} と$ 表わせる。ここで g_{0} は小信号利得である。また回転緩和時間では压力増加に反比例して小さくなり，回転緩和の効果が十分発揮されること になる。このような機構により，レーザーガス圧力上畀に伴って短パルス増幅効率が向上する。ただしレーザーガス の光パルスによる破壊しーザー光強度は，ガス圧力増加に

> Figo6-1 Computed small signal gain spectrum of CO_{2} laser $10.6 \mu \mathrm{~m}$ band. The gas pressure is 1.5 atm and the inversion ratio is assumed to be 4.

伴って低下する。このためガス圧力の上限は3気圧程度で制限されている。

第3は方法は，第5章4節で述ベた10．4 4 mバンドと 9.4 μm バンドにわたり複数回転遷移スペクトルを有する光パ ルスを発生し，増幅する方法である。計算により求めた10．4 μm バンドの小信号利得スペクトルをFig．6－1に示す。ガ ス圧力は1．5気圧，回転温度は 350 K ，レーザー上淮位と下潐位の反転分布密度比は4とした。図に示された回転う インのう」複数本を同時に増幅し，実効的に回転緩和時間 を減少させ増幅効率を高めるのである。また2バンドにわ たるスペクトルを有するパルスの場合は，1バンドのそれ に比べて増幅効率が約4／3倍になることが期待される。

これら短パルス増幅効率の改善法のうち，第2，第3は
CO_{2} 分子の振動準位中に畜積されたエネルギーのうち，レ ーザー上準位の各回転準位に畜えられたエネルギーを有効 に取り出そうとするもので，シングルパス増幅での効率改善に有効である。 CO_{2} 分子のみならず N_{2} 分子の桭動エネルギ一をも有効に利用するためには第1のマルチパス増幅を用 いることになる。
本章第2節では，開発のほぼ終了した8ビー410kJシス テムである烈光VIII号システムの計算機シミュレーション結果について述べる。このシステムは現在綄動中の CO_{2} レー ザーの中では，米国ロスアラモス研究所のヘリオスと业び世界最大級のものである。第5章で述べたシミュレーショ ン手法を用い最終増幅器出口のレーザーパルスエネルギー， パルス幅（FWHM），パルス立ち上がり時間（ $10 \%-90 \%$ ）， S／N比を求めた。また増幅器のエネルギー取り出し効率も求めた。

本章第3節では，実用核融合炉を展望しうる1MJレーザ ーの1モジュールであるマルチパス増幅法を用いた高効率 （総合効率 210% ） CO_{2} レーザーシステム増幅特性の計算結果について述べる。

本章第4節では，得られた結果をまとめ本章の総括を行 う。

6－2 烈光VIII号 CO_{2} レーザーシステム
烈光VIII号システムの構成回をFig．6－2に示す。最終増幅器の写真をFig．6－3に示す。電子ビーム制御放電双頭型増幅器である。写真の中のレーザー窓のう」最大のものの口径は 27 cm である。

発振器で得られた滑らかなゲインQスイッチパルスを電気光学シャッターで任意のパルス幅の短パルスレーザー光に整形する。このパルスをTEA前置増幅器，双頭型電子 ビーム制御前置増幅器に尊き，最終増幅器をドライブする

に十分なまで増幅する。最終増幅器は同ーしーザーチャン バー内に3回レーザー光を通すことによりシステムの簡単 STAGING OF LEKKO VIII

OSAKA UNIVERSITY

Fig．6－2 Schematic diagram of the Lekko VIII system．

Fig．6－3：Photograph of the final amplifier of
Lekko VIII．system．

化と効率向上を計った3パス増幅器になっている。図中増幅器の下の数字はしー
ザー
－ のロ径（mm ）である。 しーザー
システム中
の各増幅器吸各可体の入口，出口の パルス増幅特性， S / N比をFig．6－4 に示す。
1本の回転
ラインスペ
クトルを有
するパルス
の場合，出
カエネルギ
－ $1 k J$ が期待でき，
2 バンドで
4本の回転
ライソスペ
クトルを有
するパルス。
の場合，出力

Fig．6－4 Computed laser pulse energy，S／N ratio and the energy extraction ratic of the amplifiers as a function of the position of the Lekko VIII system．

エネルギー 1.25 kJが期待できる。また S / N 比は最終増幅器出口で約 80 dB になった。 S / N 比の計算では，電気光学 シャッター出口での值が約 $35 \mathrm{dBとし}$, は増幅器，吸収体で小信号増幅，吸収されていくとした。 シミュレーションコードで得られた主パルスのピークレー ザー光強度をノイズ成分の光強度で割リS／N比とした。ペ レット爆縮実験に十分な S / N 比が得られている。 1 本の回転ラインスペクトルを有するパルスに対する各増幅器のエ ネルギー取り出し効率を棒グラフで示す。最終増幅器のレ ーザーエネルギー取り出し効率が 72% 程度で前段の増幅器 ほど取り出し効率が低い。 CO_{2} レーザー は飽和増幅器 であるから， システム全体 の効率は媒質容量が最大の最終増幅器の効率で決まっ てしまう。こ の点を考慮す ると，ほぼ理想的なシステ ム構成になっ ていることが わかる。Fig．6－5
にレーザーパ
ルスがシステ ム中を伀播す

ることにより生ずるパルス変形のシミュレーション結果を示す。横軸はFig．6－4と同じである。パルス立ち上がり時間は増幅器，可飽和吸収体を通過するごとに短くなってい る。電気光学シャッター出口におけるレーザーパルスのパ ルス幅1ns，立ち上がり時間 $0.72 n s, カ ゙ ウ ス$ 型とすると，最終増幅器出口でパルス幅は約1ns，立ち上がり時間は0．4 nsになり波形の急峻化がおこる。

なお計算に用いた小信号利得係数は，前置増幅器1 が 3.5 $\% / \mathrm{cm}$ ，前置增幅器 2 が $4 \% / \mathrm{cm}$ ，主増幅器 1 ， 2 ， 3 が 5 $\% / \mathrm{cm}$ である。主増幅段のレーザーがスは励起効率の良い混合比 $\mathrm{CO}_{2}: \mathrm{N}_{2}=4: 1,2$ 気圧加用いられている。また寄生発振防止のため，可飽和吸収体としーザー増幅器との任意の組合わせにより構成されるしーザー光路中において，小信号利得係数から小信号吸収係数を差し引いた値（正味 の利得係数）が10を越えないように可飽和吸収体が増幅段間に配置されている。

この烈光VIIシステムの全電気入力エネルギーに対するし ーザー出カエネルギー（総合効率）は 1.2% である。理想的に CO_{2} レーザー上潐位に蓄積されるエネルギーの放電入力エネルギーに対する割合が 4% 程度であるから2），体積利用効率，電源効率，電子銃に消費されるエネルギー等種々 の効率を考えれば，この値はシングルパス増幅システムと してはかなり高い値であり，マルチパス増幅により 10% 以上の効率実現の見通しが得られるものである。

6－3マルチパス増幅100kJレーザーシステム
緒言で述べたように短パルス CO_{2} レーザー増幅効率の根本的向上は，同－しーザー媒質中に何度もしーザーパルス を入射し CO_{2} 分子， N_{2} 分子の振動準位に畜積されたエネル ギーを有効に取り出す必要がある。

シングルパス増幅の場合，最大取り出しエネルギー密度
$E^{\text {ext }}$ はレーザ－上準位に畜積された値の半分，すなわち $E_{\text {ext }}^{S}=E_{s} g_{0}$
で与えられる。一方マルチパス法による最大取り出しエネ ルギー密度 $E_{\text {ext }}^{m}$ は， N_{2} 分子の振動準位に蓄積さ れたエネルギー
に加えてレーザ
一下淮位の分布 の緩和により，
おおまかに次の
ように与えられ る。
$E_{\text {ext }}^{m}=4 E_{s} g_{0}$
CO_{2} 分子， N_{2} 分子の
振動旉位のエネ
ルギーダイヤグ
ラムをFig．6－6
に示す。またこ
の図に対応する
CO_{2} 分子と N_{2} 分
子の振動哖位間
の緩和時間を
Table 6－1に示す。振動準位の緩和
を有効に用いて
蓄積エネルギー の取り出しを行 うためには，そ れぞれの緩和時

Table 6－1 Relaxation time of the CO_{2} vibrational levels

間程度の入射しー ザーパルス間隔を採用する必要があ る。

最初に利得回復過程を簡単化され

Fig．6－7 Schematic diagram of the multi－pass amplification system．

たレート方程式で
記述したときのマルチパス増幅特性の計算について述べる。 レーザーガスはHeを多く含む場合に限定する。計算に用い たモデル図をFig．6－7に示す。採用した仮定は次のとおり である。短パルスしーザー光のレーザー媒質中の伀播を記述する式は，Schappertの式を用いだ。それを次式に示す。

$$
\begin{equation*}
E_{0}=E_{s} \ln \left[1+\exp \left(g_{0} L\right)\left\{\exp \left(E_{i} / E_{s}\right)-1\right\}\right] \tag{6-1}
\end{equation*}
$$

ここで $E_{s} は$ 飽和工ネルギー束，E_{i} ，$E_{0} は そ れ そ ゙ れ レ ー サ ゙ ー ~$入射エネルギー，出力エネルギー，名はレーザー媒質の小信号利得係数，Lは増幅器長である。
レーザー光が媒質中に無いときは，振動準位間の緩和によ り利得の回復がおこるが，これを記述する式は次のように簡単化して表わした。レーザー上準位の緩和は N_{2} との間で のみおこると仮定した。Heを多く含むしーザーガス中では レーザー上準位と CO_{2} 分子の他の振動準位の間の緩和が10
$\mu \mathrm{S}$ 以上になり，それ以外の緩和時間に比べて十分長い。He を多く含むレーザーガスの小信号利得波形をFig．6－8に示 す。またマルチパスによりエネルギーを取り出せる時間は しーザーパルスの往復光路長の制約もありせいぜい1 Ms程度である。これらから仮定は寽当であると言える。

$$
\begin{align*}
& \frac{d N_{2}}{d t}=P_{12} N_{1}-\frac{1}{\tau_{23}}\left(N_{2}-N_{2}^{0}\right)-\frac{N_{2}}{\tau_{21}}+\frac{1}{\tau_{32}}\left(N_{3}-N_{3}^{0}\right) \tag{6-2}\\
& \frac{d N_{3}}{d t}=P_{53} N_{5}+\frac{1}{\tau_{23}}\left(N_{2}-N_{2}^{0}\right)-\frac{1}{\tau_{32}}\left(N_{3}-N_{3}^{0}\right) \tag{6-3}\\
& \frac{d N_{4}}{d t}=P_{54} N_{5}-\frac{1}{\tau_{45}}\left(N_{4}-N_{4}^{0}\right) \tag{6-4}
\end{align*}
$$

ここでNは振動準位の分布密度，ては振動淮位間の緩和時間である。また ${ }^{\circ}$ 时は熱平衡状態における分布密度である。 ＿Pはポンピング定数である。 添字の数字はFig．6－9に示

Fig．6－8 Gain history of the CO_{2} laser．Laser gas pressure is 1.5 atm and $\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}=1: 1 / 4: 3$ ．

す振動準位に対応する。ここで解析を簡単にするためレー ザー励起終3後のマルチパス増幅特性について計算する。 Pはすべて無視できる。また N_{2} 分圧と CO_{2} 分圧加等しいと して， $\mathrm{CO}_{2}\left(00^{\circ} 1\right)$ 潐位と $\mathrm{N}_{2}(V=1)$ 潐位間のエネルギー差が $18 \mathrm{~cm}^{-1}$ と小さいので無視し $N_{2}^{0}=N_{3}^{0}$ と置く。 $N_{4}^{0}=0$ と置く。 こうすると各準位の分布密度の時間变化が解析的に求まる。 それを次に示す。

$$
\begin{align*}
& N_{2}(t)=\frac{-N_{3}^{i}+N_{2}^{i}}{2} \exp \left(\frac{-2}{\tau_{23}} t\right)+\frac{N_{2}^{i}+N_{3}^{i}}{2} \tag{6-5}\\
& N_{3}(t)=\frac{-N_{2}^{i}+N_{3}^{i}}{2} \exp \left(-\frac{2}{\tau_{23}} t\right)+\frac{N_{2}^{i}+N_{3}^{i}}{2} \tag{6-6}\\
& N_{4}(t)=N_{4}^{i} \exp \left(-\frac{t}{T_{43}}\right) \tag{6-7}
\end{align*}
$$

ここで添字ては初期値を

表わしている。初期反転分布比をR，初期小信号利得をま。とすればそれぞ れ次のように与えられる。

$$
\begin{array}{ll}
R=N_{3}^{i} / N_{4}^{i} & (6-8) \\
g_{0}=\left(N_{3}^{i}-N_{4}^{i}\right) \sigma k(J) & (6-9)
\end{array}
$$

計算手順は次のとおりで ある。 goとRの初期値 を决める。短パルスしー Fig．6－9 $\begin{gathered}\text { Simplified energy level } \\ \text { diagram of } \mathrm{CO}_{2} \text { and } \mathrm{N}_{2} .\end{gathered}$

式で計算する。短パルス増幅時には振動準位間の緩和は無視しうる まずそを次のように定義す る。

$$
\eta=\frac{E_{0}-E_{i n}}{E_{s} g_{0} L}
$$

こうすると CO_{2} レーザ上準位の短パルス加入射する直前の分布密度を N_{3}^{0} ，短パルス伭播直後のそれを $N_{3}^{n} と し, ~$ 同様に下潅而の分布密度を $N_{4}^{0}, ~ N_{4}^{n} と し て$ 次式が得られる。

$$
\begin{aligned}
& N_{3}^{0}+N_{4}^{0}=N_{3}^{n}+N_{4}^{n} \\
& (1-\eta)\left(N_{3}^{0}-N_{4}^{0}\right)=N_{3}^{n}-N_{4}^{n}
\end{aligned}
$$

また

$$
N_{2}^{0}=N_{2}^{n}
$$

これらから，新しい振動淮位の分布密度が求まる。
これらの値を初期値にして振動準位分布密度の時間変化を求め，入射し一ザーパルスの時間間隔に対応する利得の回復過程を計算する。以下必要な回数だけこの計算を繰返す ことによりマルチパス増幅特性が計算できる。

計算結果をFig．6－10に示す。横軸にレーザー増幅器中の短パルスの通過回数を表わし，㙡軸に増幅パルスエネルギ一を示す。また小信号利得の回復過程も合わせて示す。実線はパルスの間隔が50nsのときに対応し，破線はパルスの間隔が100nsのときに対応する。レーザーガスは $\mathrm{CO}_{2} こ \mathrm{~N}_{2}$ ン He ＝1：1： 4 であり2気圧である。パルス間隔 50 ns のと き短1゚ルスレーザー光を19回同ーレーザー媒質に入射する と総合効率 10% が得られた。小信号利得 3% 筑を得るために は，主放電入力エネルギーが100J／l．atm必要であるこ とが実験により得られている。2）この値を効率の見積りに用いた。

次に利得回復過程に5温度モデル年を用いて計算を行った。短パルス伀播時の取り扱いは前述した式を用いた。5温度 モデルの式は次のように表わせる。

$$
\begin{align*}
\frac{d E_{1}}{d t}= & N_{e}(t) N \cos _{2} h \nu_{1} x_{1}-\frac{E_{1}-E_{1}^{e}(T)}{T_{10}(T)}-\frac{E_{1}-E_{1}^{e}}{T_{12}\left(T_{2}\right)}+\frac{h \nu_{1}}{h V_{3}} \frac{E_{3}-E_{3}^{e}\left(T, T_{1}, T_{2}\right)}{\tau_{3}\left(T, T_{1}, T_{2}\right)} \\
& +h \nu_{1} \Delta N W I_{\nu} \tag{6-10}
\end{align*}
$$

Fig.6-10 Multi-pass amplification property and gain recovery process. The solid lines and the broken lines correspond the pulse to pulse time interval of 50 ns and 100 ns respectively。

$$
\begin{align*}
& \frac{d E_{3}}{d t}=N_{e}(t) N_{C O_{2}} h V_{3} X_{3}-\frac{E_{3}-E_{3}^{e}\left(T, \pi, T_{2}\right)}{\tau_{3}\left(T, T_{1}, T_{2}\right)}+\frac{E_{4}-E_{4}^{e}\left(T_{3}\right)}{\tau_{43}} \quad-h \nu_{3} \Delta N W I_{\nu} \quad \text { (6-12) } \\
& \frac{d E_{4}}{d t}=N_{e}(t) N_{N_{2}} h V_{4} X_{4}-\frac{E_{4}-E_{4}^{e}}{\tau_{43}(T)} \tag{6-13}\\
& \frac{d T}{d t}=\frac{1}{C_{p}}\left\{\frac{E_{1}-E_{1}^{e}(\tau)}{\tau_{0}(T)}+\frac{E_{2}-E_{2}^{e}(\tau)}{\tau_{20}(T)}+\left(1-\frac{h h_{2}}{h h_{3}}-\frac{h \mu}{h V_{3}}\right) \frac{E_{3}-E_{5}^{e}\left(\tau, T_{1}, T_{2}\right)}{T_{3}\left(T, T_{1}, T_{2}\right)}\right\} \tag{6-14}\\
& C_{\mathrm{P}}=\left(\frac{5}{2} N_{\mathrm{N}_{2}}+\frac{5}{2} N_{\mathrm{CO}_{2}}+\frac{3}{2} N_{\mathrm{He}}\right) k \tag{6-15}
\end{align*}
$$

Fig.6-11 Gain recovery process of multi-pass using 5 temperature kinetic equations.

添字1，2，3はそれぞれ CO_{2} 分子の振動モード V_{1}, ν_{2}, ν_{3} に対応 している。また添字 4 は N の の振動モードに対応している。 また（6－14）式はガス並進温度の時間変化を記述する方程式である。各振動モードエネルギーの熱平衡値，各缓和時間は（6－14）式と結合して計算されている。（6－10）式と（6－12）式の右辺の最後の項は誘導放出を表わしている。この項が短パルス増幅における分子の振動エネルギーから光子エネ ルギーへの変換を表わしている。レーザーガス漫合比 CO_{2} ： N_{2} ： $\mathrm{He}=1: 1: 3$ ，ガス压力 1.5 気盾のときのマルチパス増幅に伴なう利得回復過程の一例をFig．6－11に示す。このモデルを用いた各ガス圧，ガス混合比に対する計算，それの実験結果 との比較検討は今後に残された課題である。

6－4 結論
シングルパス増幅システムである烈光VII号のシミュしー ションを行いシステム設計手法を開発した。各増幅段のエ ネルギー取り出し効率の評価からシステム配置の最適化に関する検討を行った。寄生発振を抑制し高S $/ N$ 比を保つた システム配置で単一回転ラインスペクトルを有するパルス で1ビームあたり1kJ，複数回転ラインパルスで1ビー
達成できることを示した。

次に核融合炉用しーザーシステムを念頭に置いてマルチ パス増幅システムの解析を行った。Heを大量に含むレーザ －ガスのとき，同一増幅媒質に対ししーザー光を19回通過 させることにより効率 10% 加得るれることを示した。これ
性が明らかにされた。

第6章の参考文倖
1）B．J．Feldman ；IEEE J．Quantum Electron．，QE－9， 1070 （1973）
2）K．Okamura；H．Fujita，M．Matoba，S．Nakai，and C．Yamanaka； Technol．Repts．of the Osaka Univ．，29， 449 （1979）

3）G．T－Schappert ；Appl．Phys．Lett．， 123,319 （1973）
4）A．R．Davies，K．Smith，and R．M．Thomson ；
Computer Physics Communication，10， 117 （1975）

第7章レーザ一光照射ふき出しプラズマの運動量測定
7－1 緒言
CO_{2} レーザー光は波長 $10 \mu \mathrm{~m}$ と長く，低いプラズマの臨界密度を有し，ペレットターゲットの高密度圧縮には㮔々の問題が伴うことが予想される。その一つに多量の高速電子 の発生が上げられる。これまで高速電子の発生，伝播等が詳しく調べられてきだ。 $\mathrm{CO}_{2} レ ー サ ゙ ー を$ 用いたペレットタ一ゲットの高密度厈縮には，この高速霓子をうまく利用す るようにターゲット構造の最適化を行う必要がある。この ため，㮔々の構造のターゲットに対する長波長しーザー光 による照射を行い，ふき出しプラズマの反作用によるパル ス超高圧発生のメカニズムを解明し，ターゲット構造の最適化を行う目的でターゲット加速実験を行った。

7－2 実験装置

照射に用いたLーザーは $\mathrm{CO}_{2} レ ー サ ゙ ー$ 烈光正号である。 2 ビームのうち1ビームのみ照射実験に用いた。レレーザー パルス幅1ns，レーザ一出力エネルギー10J～100Jであ る。ターゲットチャンバー内の測定装置の配置等をFig．7ーノ に示す。集光系として，直径 35 cm ，焦点距離 30 cm の放物面鏡を用いた。ターゲットチャンバー内につり下げられた振り子をターゲットとしてレーザー光を照射し，その振れ の大きさからふき出しプラズマの運動量を求め，ふき出し圧力を質出した。振り子の振れはTV力メラとVTRを用いて モニターした。カメラはターゲットの振れる面に対して垂直方向に配置した。ター

Fig．7－2 Schematic diagram of the target pendulum．

ゲットの質量は1gr，振 リ子の長さは 100 cm （周期は2秒）とした。同時 に，チャージコレクター （C．C．）をターゲット前面 に4個配置し，ふき出し 1オン一の速度成分，角度分布を測定した。

振り子ターゲットの構造をFig。7－2に示す。 Brassの大きさは2．5×4．5x $9.0 \mathrm{~mm}, ~ P b は 2.5 \times 4.5 \times$ $0.5 \mathrm{~mm},\left(\mathrm{CHz}_{2}\right)$ n は $2.5 \times$ $4.5 \times 0.5 \mathrm{~mm}$ である。 7 ーゲットをつリ下げる系 は材質がテグスで太さ200 リmの極細のものを用い た。系の質量は $7.2 \mathrm{mg} / \mathrm{m}$ である。

（a）

（b）

Fig．7－3 Schematic diagram of the target pendulum．
a）When the target is irradiated．
b）When the target is moving after irradiated．

レーザ一光照射プラズマによるふき出し圧力の測定原理因をFig．7－3に示す。Fig．7－3（a）はターゲットにレーザー光 が照射された瞬間である。このとき光圧力は無視しうるの でふき出しプラズマとターゲットの間で運動量保存則が成立している。

$$
\begin{equation*}
m v_{0}=\Delta m u \tag{7-1}
\end{equation*}
$$

ここでふき出しプラズマの質量はターゲット質量のうちご く微少な部分であるから，振り子の質量の変化は無視しう る。この実験はふき出しプラズマによろパルス起高圧の発

生を測定するためのモデル実験であるから，流体力学的効率については考虑せずふコリ子の質量mを圤に比べて十分大きくした。（7－1）式より

$$
\begin{equation*}
v_{0}=\Delta m u / m \tag{7-2}
\end{equation*}
$$

となる。真空チャンバー中に十分細い糸でターゲットをつ り下げているので摩擦は無視しうる。Fig．7－3（6）にターゲ ットが最大角度 θ までふれた瞬間の図を示す。このとき， ターゲットの運動エネルギーが位置エネルギーにすべて変換されているので次式が成立する。

$$
\begin{equation*}
\frac{1}{2} m v_{0}^{2}=m g h \tag{7-3}
\end{equation*}
$$

ここでgは重力加速度である。（7－2）式，（7－3）式より

$$
\begin{equation*}
h=\Delta m^{2} u^{2} /\left(2 g m^{2}\right) \tag{7-4}
\end{equation*}
$$

一方 $h=\ell(1-\cos \theta)$ だから θ が十分小さいとしてターゲッ トのふれの大きさ $\ell \theta$ は次式のように与えられる。

$$
l \theta=\frac{\Delta m}{m} u \sqrt{\frac{l}{g}} \quad(7-5)
$$

m, l, g は既知であるので $l \theta$ を測定することによりふき出しプラズマの運動量 $\Delta m u$ が求まる。

7－3 実験結果
ターゲットにレーザー光を照射するとターゲットが並進運動をするだけでなく回転運動をともなった。そこで回転 エネルギー分を並進運動エネルギーに加える必要が生じた。 ターゲットの慣性モーメントを計算により求め補正を行っ た。回転の角周波数はモニターT．V．画面上で測定し回転工 ネルギーを求めた。これをErotとすると補正項は次式のよ うに求まる。

$$
\begin{equation*}
x_{\text {rot }}=\sqrt{2 \ell E_{\text {rot }} / \mathrm{mg}} \tag{7-6}
\end{equation*}
$$

$x=l \theta$ とすると亚進運動に換算したターゲットのふれ $x_{\text {tot }}$ は次式で与えられる。

$$
\begin{equation*}
x_{\text {tot }}=x+x_{\text {rot }} \tag{7-7}
\end{equation*}
$$

この値を用いてふき出しプラズマの運動量を求めた。この運動量からふき出しプラズマの圧力が次式のように求まる。

$$
\begin{equation*}
P=m v_{0} /\left(\tau_{L} S\right)=\frac{m}{\tau_{L} S} \sqrt{\frac{g}{l}} x_{t o t} \tag{7-8}
\end{equation*}
$$

一ザー光パルス幅にほぼ等しいものとする。Sは照射しー ザー光のスポット面積である。スポット径は300 mm である
一ザー光強度は，ターゲット集光光学系の透過率（ $\eta_{T R}$ ）タ ーゲットの吸収率（ Mab）に照射レ—ザー光強度をかけること により求まる。 $\eta_{T R}=0.6, ~ \eta_{a b}=0.8$ とした。こうして求めた

Absorbed intensity（ $\mathrm{w} / \mathrm{cm}^{2}$ ）
Fig．7－4 Ablation pressure as a function of absorbed laser pulse intensity． The solid lines represent the ex－ perimental results and the dotted broken line represents the Glass laser result at N．R．L． 104

吸収レーザー光強度に対するふき出し圧力の依存性をFig． 7－4に示す。吸収し一ザ一光強度 $10^{13} \mathrm{~W} / \mathrm{cm}^{2}$ で約 10 Mbar の パルス超高圧が発生しているのがわかる。ターゲット材料 に高を材料である $\mathrm{Pb}(\mathrm{Z}=82)$ と低 Z材料である $\left(\mathrm{CH}_{2}\right)_{n}(\overline{\mathrm{Z}} \cong 2)$ を用いた。同一吸収光強度のとき高Z材料であるPbの方が ふき出し圧力は大きくなった。波長 $1.06 \mu \mathrm{~m}$ のガラスレーザ ーを用いた同様な実験で得られたふき出し圧力の吸収レー ザ一光強度依存性は，波長 $10.6 \mu \mathrm{~m}$ の CO_{2} レーザーの値に ほぼ一致した。

チャージコレクターの信号中，ピーク値をその速度成分 に対応する平均電荷量で割算し加重平均してイオンの平均 ふき出し速度を求めた。（ $\left.\mathrm{CH}_{2}\right)_{\mathrm{n}}$ は $1.9 \times 10^{7} \mathrm{~cm} / \mathrm{s}, ~ \mathrm{~Pb}$ は 3×10^{6} cm / s であり，吸収レーザー光強度にはほとんど依存しな かった。

また，同様にしてふき出し Mass Rateを求めた。次にその手順を述べる。チャージコレクターは飛んでくる荷電粒子 を電流としてとらえ，それを時間分解するものであるから速度分布 $d N / d v$（単位速度あたりの粒子数）を求めること
体角，単位速度あたりの速度 $v に$ 対するイオン数 $d N / d v$ は次式で与えられる。

$$
\begin{equation*}
\frac{d N(v)}{d v}=\frac{I(t) t^{2}}{g l \Delta \Omega}=\frac{I(t) t^{2}}{Z e l \Delta \Omega} \tag{7-9}
\end{equation*}
$$

ふき出しイオンの平均電荷数（Z）は次のように定めた。 $\left(\mathrm{CH}_{2}\right)_{n}$ に対しては，トムソンパラボラによる測定結果から高速成分のをは5，熱化された成分のをはほぼ完全電離している として 2.7 を用いた。さらに低速成分に対しては，Cが1価から6価まで均等に電離しているとしてZ 2 2を用いた。 Pbに対しては，トムソンパラボラによる測定結果から，高速成分のをは41とした。また，低速成分はコロナモデルを

用いてZ $=13$ とした。これらの区值を仮定して $\left(\mathrm{CH}_{2}\right)_{n}, \mathrm{~Pb}$ の信号をLaser出力，チャージコレクターの方向（ターゲ ＊卜垂直方向に対し $7.5^{\circ}, 22.5^{\circ}, 37.5^{\circ}$ ， 52.5° ）別にイオン速度に対するdN／dvのグラフを作成した。ここでイオンは等温膨張すると仮定した。こうして各方向成分のイオン数 Noを求めた。チャージコレクター窓の立体角を考虑してふ き出しイオンの総数をふき出し方向全体にわたって立体角積分して全イオン数を求めた。なおイオンのふき出しは タ ーゲット前面方向に対し円周対称とした。及き出し質量mabl は（ CH_{2} ）n に対してはイオン 1 個あたりの平均質量をかけ合 わせて求めた。またPbも同様にして求めた。ふき出し Mass Rate $m_{\text {MR }}$ はスポット面積をS，ふき出し時間を $\mathrm{l}_{\text {abl }}$ とし

Fig．7－5 Ablation mass rate as a function of absorbed laser pulse intensity．

て次式のように与えられる。

$$
\begin{equation*}
m_{M R}=m_{a b l} /\left(s \cdot \tau_{a b l}\right) \tag{7-10}
\end{equation*}
$$

こうして求めた吸収レーザ一光強度に対するふき出しMass Rateの依存性をFig．7－5に示す。四中丸印（白抜き，黑塗り） は，辰り子のふれから求めた連動量を，4ャージコレクタ一の信号解析から求めたイオンの平均ふき出し遣度で割算 することにより求めたふき出し Mass Rate \qquad ある。三角印（白抜き，黒ぬり）は，前述した方法に徙ってタ ーゲットの周囲に取りつけられた4個のチャージコレクタ一の信号解析のみ行うことにより永めたふき出し Mass Rate の値である。このようにして求めたふき出しMassRateの値 は，振り子のふれから求めた値にほぼ等しくなった。これ から，振り子のふれより求めたふき出しプラズマの運動量 はペレットターゲットの圧縮に有効な成分にほぼ等しいこ とがわかった。

7－4 結論
開発された CO_{2} レーザー烈光丘号を用いターゲット照射実験を行った。振り子状ターゲットを用いてふき出しプラ ズマの迬動量を測定した。同一吸収レーザー光強度に対す るふき出し圧力は，波長1 1 mと $10 \mu \mathrm{~m}$ のレーザ一光でほぼ一致した。 $10^{13} \mathrm{~W} / \mathrm{cm}^{2}$ で 10 Mbar である。これらから CO_{2} レーザ一でもガラスレーザー亚みの高効率圧縮の可能性が示された。

第7章の参考文献
1）H．Nishimura et al．；Phys． $\operatorname{Rev} A$ to be published．
2）B．H．Ripin et al．；NRL Memorandum Report 4212
3）阪部周ニ；レーザー核融合プラズマの研究
（大阪大学工学部修士論文，昭和50年3月）

第8章 結論
CO_{2} レーザ一の核融合用レーザーとしての高出力高効率動作の可能性，長波長し一ザー光によるペレット爆絔核融合の間題点を明らかにするべく高出力レーザーシステムの開発，波長10ミクロンのCO2レーザーによるターゲット照
器，前置増幅器として用いられるTEAレーザーの開発研究を行い，システム設計に必要とされる動作パラメータを則定し，合わせて発振過程，増幅過程の量子エレクトロ二 クス的解明を行った。ついで計算袎シミュレーションの枝術をレーザーシステム解析に導入した。寄生発振，レーザ一パルス増幅，吸収過程の計算機シミュレーションコード を開発しシステム設計を行い種々の工学的間題点をあきら
計手法を確立し，システム開発の指針を得ることができた。

得られた結果を各章ごとにまとめると次のようになる。
第2章 ラダー放電を紫外線源とする光予備電離と侸 N ブルムライン型回路による主放電を組み合わせることによ リ，高効率でかつ安定に動作するTEACO2Lーザーの開発に成功した。レーザーガス混合比 $\mathrm{CO}_{2}: \mathrm{N}_{2}: \mathrm{He}_{\mathrm{e}}=1: 1: 3$ のとき，小信号利得係数 $3.4 \% / \mathrm{cm}$ ，2nsレーザーパルスに対する飽和パラメータ35 mJ／cm ${ }^{2}$ 加得られた。これにより多段高出力 CO_{2} レーザーシステムの発振器及び前置増幅器段に関する技術が確立した。

第3章最高以気圧までのレーザーガスで動作可能な高気圧 $\mathrm{CO}_{2} レ ー サ ゙ ー を$ 開発した。小信号利得の圧力依存性を測定し，この結果よりレーザースペクトルの衡突広がり係数 $4.6 \mathrm{GHz} / \mathrm{atm}$ を得た。さらに可飽和吸収素子としてAR コートのか型ゲルマニウム板を用いた受動モードロック発振により最短パルス幅670psが得られた。単一包絡線状の

モードロックパルス列を安定に発生するための条件として 1）受動モードロック素子を共振呰ミラーにできるだけ近づ け 2）励起放電入力エネルギーの変動を 0.5% 以下に抑え，か つ3）発振閾值のごく近傍にレーザー動作を固定する必要が あること等が得られた。これらの結果より実用上十分な再現性をもってサブナノ秒パルスを発生するための技術的問題点，可能性が明らかになった。

第4章レーザーシステム中のスペーシャルフィルター に用いられているピンホールとレーザー光照射ターゲット との結合による䆑生発振の動的過程について数値計算によ る解析を行った。ターゲットから最終増幅器までの光路長，増幅器の利得立ち上がり時間に対するプリパルスエネルギ一の依存性を求めた。光路長を 30 m か 100 m まで長くする と，許容されるピーク利得は $0.4 \% / \mathrm{cm}$ 増加し，利得立ち上がり時間を $5 \mu \mathrm{~s}$ から $2 \mu \mathrm{~s}$ に短縮すると光路長 50 m のとき プリパルスエネルギーは 25% になった。

第ち章 高出力，短パルス CO_{2} レーザーシステムの構成要素を，その物理過程を考虑した数値モデルとして記述し た。これを用いて核融合用レーザーシステムのパルス伝播 シミュレーションを行った。その結果によると，出カパル ス波形は入射パルス波形に敏感に依存するが，出カエネル ギーは入射パルス波形にはほとんど影響を受けない。また非線形増幅吸収特性によりパルスピーク值が実効的に進み遅れの効果を示すことを明らかにした。この効果の多ビー ムターゲット照射実験に及ぼす影響について検討した。そ の結果，ターゲット照射に必要とされる範囲でできるだけ厳密に各ビームのレーザ一動作条件が設定されなければな らないことが明らかになった。複数うイン増幅コードを作成し取り出しエネルギーに着目した数値計算を行った。そ の結果，取り出しエネルギーにちえる回転ラインとバンド

の効果が明らかになった。取り出しエネルギー向上に寄与 する主要な効果はパルス幅0．7ns程度では回転ラインの本数を増すことであり，パルス幅3ns程度では2バンドにす ることである。また増幅パルスの各回転ラインエネルギー の全パルスエネルギーに対する比率を調べた。その結果パ ルス幅が短くなるに従いその比率が均等化されることがわ かった。

第6章 単一パス増幅システムである烈光丘号のシミュ レーションを行い。システム設計手法を開発した。実用炉級システムを念頭に置いてマルチパス増幅システムの解析 を行い，同じ增幅媒質に対しレーザー光を回通過させる二とにより効率 \％が得られることを示した。これにより核融合炉実用レーザーとしてのCO2レーザーの可能性が明 らかにされた。

第7章 CO_{2} レーザーシステム烈光丘号を用いターゲッ ト照射実験を行った。ターゲット表面からのふま出しプラ ズマの運動量を測定した。この結果よりターゲット吸収し ーザー光強度 $10^{13} \mathrm{~W} / \mathrm{cm}^{2}$ で約10 Mbarn圧力の発生が推定 され，波長 $10 \mu \mathrm{~m}$ の場合韻出プラズマの反作用としての爆縮圧力が波長1 $\mu \mathrm{m}$ のそれにほぼ一致した。この結杲により CO_{2} レーザーによるペレットターゲットの高効率圧縮が可能で あることが示された。

以上により高出力，高効率の核融合研究用 CO_{2} レーザー の動作特性が解明され，高出力化に向けた設計指針が得ら れた。CO2レーザーの高効率，高䌏返し動作等，核触合用 レーザーとしての優れた特徴よりみて，ペレット爆縮効率 の波長依存性を明らかにすることがしーザー核融合研究推進の現下の最重要課題であろう。これに関する予備的実験結果も，長波長レーザー光による効率よい圧縮力発生の可能性を示している。この研究が CO_{2} レーザーによるペレッ

ト爆縮核融合へ向けての研究推進のいしづえとなれば著者 として喜びに耐えない次第である。

謝 辞

本研究の遂行に際し，終始懇篤なる御指導，御鞭達を賜 わりました山中千代衛教授，中井卓雄教授に深厚なる謝意 を表します。

あわせて大学院在学中御指導，御教示を戴いた木下仁志教授，西村正太郎教授，大石嘉雄教授，故川辺和夫教授，滕井克彦教授，鈴木胖教授，横山昌弘教授，山中龍彦教授 に謝意を表します。

終始御指導，討論，激励を戴いた井沢靖和助教授，加藤義章助教授，佐々木孝友助教授，望月孝晏助教授，西原攻修助教授，三間㐭興助教授，中塚正大助教授に謝意を表し ます。

研究室において，研究生活の苦楽を共にし，熱心な討論激励を戴いた的場幹史助于，藤田尚徳助手，井門俊治助手北川米喜助手をはじめとするレーザー核融合研究センター のスタッフの方々に，衔意を表します。
本研究に協力して戴いた，河村良行民，岡村勝也氏，鳥家秀照氏，をはじめとする卒業生の方々，业びに并上満夫福丸文雄，沢井清信，桶原準喜，寺井清寿，大田一羲，䯅山隆治の各氏に謝意を表します。

業績目録

発表論文

（1）高気圧 CO_{2} レーザーの受動モードロック発振特性 応用物理48，PP．424（1979）大道博行，小出利幸，的場幹史，中井冥婎，山中千代衛
（2）Computer Simulation of Nonlinear Propagation of CO_{2} Laser Pulse Technology Reports of Osaka University Vol． 30,45 （1980）

H．Daido，J．Okehara，S．Ido，M．Matoba，S．Nakai，and C．Yamanaka
（3）Computer Simulation of Nonlinear Propagation Characteristics of CO_{2} Laser Pulse
Japanese Journal of Applied Physics Vol．19，1487（1980） H．Daido，J．Okehara，S．Ido，M．Matoba，S．Nakai，and C．Yamanaka
（4）Analysis of Dynamic Characteristics of Parasitic Oscillation Applied Optics Vol．19， 3181 （1980） H．Daido，S．Ido，M．Matoba，S．Nakai，and C．Yamanaka
（5）ラダー型予備放電ブルムライン式TEACO2レーザー。応用物理45，PP．869（1976）的場幹史，大道博行，中井貞雄，山中千代衛
（6）Nonlinear interaction processes between a CO_{2} laser and plasma Physical Review Vol．A17，1133（1978）

S．Nakai，M．Matoba，H．Fujita，H．Nishimura，H．Daido，N．Banjyoya， K．Iba，and C．Yamanaka
（7）Thermo Nuclear Fusion Plasma Produced by CO_{2} Laser Technology Reports of the Osaka University Vol． 28,185 （1978） H．Nishimura，H．Fujita，Y．Kawamura，N．Banjoya，H．Daido，Y．Yanase， T．Seki，K．Iba，M．Matoba，S．Nakai，and C．Yamanaka
（8）High－Fower CO_{2} Laser System for Plasma Research（Lekko I） IAEA Advisory Meeting on the Technology of Inertial Confinement Experiments（Dubna USSR）Jun． 1976

S．Nakai，M．Matoba，H．Fujita，H．Nishimura，N．Banjyoya，H．Daido， T．Seki，K．Iba，and C．Yamanaka
（9）Anomalous Interaction of Laser with Plasma
IEEE International Conference on Plasma Science
（Rensselear Polytech．Inst．Troy，N．Y．USA）May．23－25，1977
M．Matoba，H．Fujita，H．Nishimura，H．Daido，N．Banjyoya，Y．Yanase， K．Iba，S．Nakai，and C．Yamanaka
（10）Suppression of Parasitic Oscillation and Analysis of System Performance of CO_{2} Laser

Topical Meeting on Inertial Confinement Fusion （San Diego，California USA）Feb．26－28， 1980

H．Fujita，Y．Kawamura，H．Daido，K．Okamura，M．Inoue，F．Fukumaru， S．Ido，M．Matoba，S．Nakai，and C．Yamanaka
（11）電子ビーム制御高気圧 CO_{2} レーザ 電気学会電子装置研究会的場幹史，大道博行，中井貞雄，山中千代衛 資料番号 EDD～76－98
（12）高出力炭酸ガスレーザーシステム用赤外光学コンポーネント 電気学会レーザーエ学研究会的場幹史，䁬田尚徳，河村良行，岡村勝也資料番号 LEG－78－27大道博行，加藤正和，坂尻正，中井貞雄，山中4代衛

学会報告

発表年月日	題 目	発表場所	発表機関
1976.4 .3	200J電子ビーム制御 CO_{2} レーザणा（烈光I号）一発振器一	東京電機大学	電気学会全国大会
1976.11 .8	CO_{2} レーザー（烈光工号）の特性	大陌付立大学	電気関係学会関西支部連合大会
1977．3．28	核融合研究用高出力電子どーム制御 $\mathrm{CO}_{2} \mathrm{~L}-\mathrm{H}^{2}-$ （烈光2号）T_{1} 一電子ビーム制御高気圧発振器一	㥛応大学	応用物理学会
1977 ．7．31	核融合研究用 2 ビームCO2Lーザシステム（烈光I）一発振段—	地海道大学	電気学会全国大会
1977．4．5	高気圧 CO_{2} Lーザーによる超短パルス発生	山口大学	物理学会春の分科会
1977．10．11	高気压CO2レーザーによる超短パルス発生	束京理科大学	物理学会年会
1977．10．14	高気压CO2レーザーのモードロック発振特性	岡山大学	応用物理学会
1978．4．1	高気圧 CO_{2} Lーザーによる超短パルス発生	東比大学	物理学会年会
1978．3．28	高気圧 CO_{2} Lーザーのモードロッ7発振特性	武＇蔵工業大学	応用物理学会
1978．11．5	短パルスCO2レーサー－増幅特性の電算機 シミュレーション	近畿大学	応用物理学会
1979．4．1	烈光 II号－Vシステム計算機シミュレーションー	大阪大学	物理学会年会

発表年月白	題 目	発表場所	発表機関
1979.4 .4	核融合研究用レーザーシステム（烈光2号）I ーシステムシミュレーション一	近畿大学	電気学会全国大会
1979.10 .3	高出力 CO_{2} Lーサー一烈光 II号［II］ ーシステム計算機シミュレーション	愛媛大学	物理学会 分科会
1980．3．29	高出力 CO_{2} レーサー・烈光II号（II） —システム計算機シミュレーションー	早稲田大学	物理学会年会
1979．11．4	核融合研究用レーザーシステム（烈光近号） II．システム計算機シミュレーション	同志社大学	㫣気関係学会関西支部連合大会
1980．10．1	高出力 CO_{2} Lーザー烈光巫号（II） ーシステム計算機シミュレーションー	福井大学	物理学会分科会
1980．9．23	Computational Analysis of CO_{2} Laser Amplification	関西地区大学 セミナーハウス（神戸）	Workshop on New Lasers and Laser Interaction with Matter
1976.3 .27	200丁電子ビーム制御CO2L－ザーTV（烈光2号）－発振器－	早稲田大学	応用物理学会
1976．3．27		早榴田大学	応用物理学会
1976.4 .7	E beam CO_{2} Lーザ（烈光2号）による核融合 プラズマの研究 L Lーザ装置	名古屋大学	物理学会年会
1976．4．7	Eビーム CO_{2} Lーザ（腎光2号）による核融合 プラズマの研究 II プラズマ実験	名古屋大学	物理学会年会
1976.4 .4	電子ビーム制御 CO_{2} Lーザー（烈光2号）	名古屋大学	物理学会年会

発表年月日	題 目	発表場所	発表 機 関
1976．10．1	200丁電子ビーム制御CO2LーザーV（烈光2号）	東北大学	心用物理学会
1976．10．7	CO_{2} レーザー（烈光1号）によ3核融合プラズマ の研究 I	山形大学	物理学会 分科会
1976．10．7	CO_{2} レーザー（烈光1号）による核融合70クスマ の研究 II	山形大学	物理学会 分科会
1976．10．5	CO_{2} Lーザ－（烈光1号）の特性	山形大学	物理学会 分科会
1976.11 .9	CO_{2} レーザー（烈光1号）による核融合の研究	大拓府立大学	電気関係学会関西支部連合大会
1977．3．28	核融合研究用高出力電子ビーム制御 CO_{2} レーザー（烈光 2 号）VI（1）ーシステム 一	慶応域塾大学	応用物理学会
1977．4．4	CO_{2} Lーザヒよ3核融合の研究工（烈光2）	山口大学	物理学会 分科会
1977.4 .4	CO_{2} レーザによる木欬融合の研究II （ターゲット照射）	山口大学	物理学会 分科会
1977.4 .5	核融合用 CO_{2} Lーザシステム（烈光乙号）	山口大学	物理学会 分科会
1977.7 .31	CO2レーザによる核融合の研究I （烈光システム）	北海道大学	電気学会全国大会
1977.7 .31	CO_{2} レーザによる核融合の研究II （レーザプラズマ相互作用）	北海道大学	電気学会全国大会

発表年月日	題 目	発表場所	発表機関
1977．7．31	核融合研究用2ビームCO2L－ザシステム （烈光皿）一増幅段一	北海道大学	電気学会全国大会
1977．10．10	$\mathrm{CO}_{2} \mathrm{~L}$－ザー烈光による核融合の研究工 — レーザーシステム—	東京理科大学	物理学会年会
1977．10．10	CO_{2} レーザー烈光による核融合の研究II 一相严作用一	東京理科大学	物理学会年会
1977．10．10	CO_{2} Lーザー烈光による核融合の研究血 ——エネルギー輸送—	東京理科大学	物理学会年会
1977.11 .6	CO2Lーザによる核融合の研究I — レーザシステム—	大阪市立大学	電気関保学会関西支部連合大会
1977．11．6	CO_{2} Lーザによ 3 核融合の研究 II — X 線計測—	大阪市立大学	電良関䋆学会関西支部連合大会
1977．11．6	CO_{2} レーサッによる核融合の研究皿 \qquad エネルギー輸送—	大阪市立大学	要気関係学会関西文部連合大会
1978.4	CO_{2} Lーザーによる核融合の研究工 ——烈光2号システム —	棟．工学院専門学校	電気学会全国大会
1978.4	CO_{2} Lーザーによる核融合の研究II ーターゲット照射実験—	棟 工学院専門学校	電気学会全国大会
1978．10．4	烈光工号—マルチライン增幅による エネルギー取り出し効率の改善	静岡大学	物理学会分科会

発表年月日	題 目	発表場所	発表機関
1978．10．4	烈光 III号—システム動作解析	静岡大学	物理学会分科会
1978．10．5	CO_{2} レーザ烈光II号による核融合の研究I — Lーザーシステム —	静岡大学	物理学会分科会
1978．10．5	CO_{2} L－サ・烈光五号による核融合の研究 II — ペレット 照射 実験—	静岡大学	物理学会分科会
1978．10．5	CO_{2} Lーザ烈光正号によろ核融合の研究II ——ーザプラズマ相互作用—	静岡大学	物理学会分科会
1978．10．29	CO_{2} Lーザー烈光 II号によるぺレット人爆縮 の研究	京都工芸瀻維 大学	電気関保学会関西支部連合大会
1978．11．5	$\begin{aligned} & 2 \text { ビームCO2Lーザシステム"烈光II号" } \\ & \text { に於る寄生発振の防止 } \end{aligned}$	近载大学	応用物理学会
1979．3．30	CO_{2} Lーザー烈光I号のシステム解析と動作特性	学習院大学	応用物理学会
1979．4．1	烈光II号—Vシステム動作特性	大阪大学	物理学会年会
1979．4．3	烈光I号による核融合の研究I ——ーザーシステム—	大服大学	物理学会年会
1979.4 .3	烈光 II号による核融合の研究 TV \qquad ペレット圧縮——	大阪大学	物理学会年会

発表年月 1	題 目	発表場所	発表機関
1979.4 .4	CO_{2} レーザー烈光2号による核融合の研究I —レーザーシステム —	近㵶大学	重気学会全国大会
1979．4．4	CO_{2} レーザー烈光2号によ3核融合の研究II ——ペレット 照射実験—	近畿大学	電気学会全国大会
1979．10．1	ナノ秒パルス炭酸ガスレーザーにおける マルチライン増幅特性の研究	北海道大学	応用物理学会
1979．10．3	ガラスレーサーー激光による爆縮核融合研究VIII（計算機によるデラー夕处理）	愛媛大学	物理学会分科会
1979．10．3	高出力 CO_{2} Lーザー烈光五号II ーシステム鿁算機シミュレーション！	愛媛大学	物理学会分科会
1979．11．4	核融合研究用しーサーシステム（烈光项） I．レーザーシステム	同志社大学	鍵関係学会関西支部連合大会
1980．3．29	高出力 CO_{2} レーサー烈光攻号I ーシステム動作特性—	早稲田大学	物理学会年会
1980.4 .4	混合がスアイソレータにおける炭酸がス レーザーの波形変形	山梨大学	応用物理学会
1980.4 .4	核融合研究用レーザーシステム（烈光项）	棟 工学院専門学校	電気学会全国大会
1980．10．2	慣性閉じ这め核融合炉の設計研究历－d （火户用エネルギードライパーの概念設計）	福井大学	物理学会分科会

付録
A1コヒーレント方程式
本文第5章では，非可干涉性の非線形パルス伝搬につい て述べた。レーザー光と物質の相互作用にコヒーレント奻果を含むためには，レーザー光をMaxwell方程式に従う古典的波動として取り扱い，物質を密度行列で記述する必要 がある。

本節では2準位系の物質とレーザー光の相互作用を記述 する基礎方程式を与え，それを拡張してCO2Lーザー光増幅過程の基礎方程式を導く。また，コヒーレント方程式に近似を導入してレート方程式を導く。最後に開発したCO2 レーザーコヒーレント増幅コ一ドの計算結果とレート 方程式に従う増幅コードの計算結果の比較対比を行う。

Z方向に伝搬する電場 $E_{x}(Z, t)$ ，磁場 $H_{y}(z, t)$ の直線偏光した光平面波パルスと訜電率を，透磁率1の物筫との相互作用を記述するMaxwell 方程式はガウス電磁単位系を用 いると次のように表わせる。

$$
\begin{align*}
& \frac{\epsilon}{C_{v}} \frac{\partial E_{x}}{\partial t}=-\frac{\partial H_{y}}{\partial z}-\frac{4 \pi}{C_{v}} \frac{\partial P}{\partial t} \\
& \frac{1}{C_{v}} \frac{\partial H_{y}}{\partial t}=-\frac{\partial E_{x}}{\partial z}
\end{align*}
$$

ここで C_{V} は真空中の位相速度，Pは分極である。計算を簡单化するため次の量を定義する。

$$
\begin{align*}
& E^{+}=\sqrt{\epsilon} E_{x}+H_{y} \tag{Al-3}\\
& E^{-}=\sqrt{\epsilon} E_{y}-H_{y}
\end{align*}
$$

E^{+}は（A1－1）式の分極の項を無視したとき，Z方向に同一波形を保ったまま進む波動を表わす。そのときE－はぜロに なる。分極がある場合巨゙はゼロにはならないが，E＋に比べ

て十分小さく無視しうる。このときエネルギー密度しは次 のように表わせる。

$$
u=E^{+2} / 16 \pi \quad\left(\mathrm{~J} / \mathrm{cm}^{3}\right)
$$

またポインティグベクトルの大きさSは媒質中の位相速度を Cとして次のように表わせる。

$$
S=\frac{c}{16 \pi} E^{+2} \quad\left(W / \mathrm{cm}^{2}\right)
$$

（ $A 1-1$ ），（ $A 1-2$ ）式は E^{\dagger} を用いると次のように表わされる。

$$
\frac{1}{c} \frac{\partial E^{+}}{\partial t}+\frac{\partial E^{+}}{\partial Z}=-\frac{4 \pi}{c \sqrt{\epsilon}} \frac{\partial P}{\partial t}
$$

ここで分極の項は光パルスと物質の相互作用を表わしてい る。次にこの分極の項を量子力学的に求める。2準位系の密度行列は次のように表わせる。

$$
\rho=\left(\begin{array}{ll}
\rho_{11} & \rho_{12} \\
\rho_{12}^{*} & \rho_{22}
\end{array}\right)
$$

永久双極子モーメントを持たない物質の電気双極子演算子行列は次のように表わされる。

$$
\mu=\left(\begin{array}{ll}
0 & \bar{\mu} \\
\bar{\mu} & 0
\end{array}\right)
$$

ここで戸は実効的電気双極子行列要素を表わす。すなわち電気双極子行列要素の電場方向成分の統計平均である。分布差（Population difference）行列は次のように表わされる。

$$
\eta=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

これらを用いて分極 P は次のように表わされる。

$$
\begin{equation*}
P=N \operatorname{Tr}(\mu \rho)=N \bar{\mu}\left(\rho_{12}^{*}+\rho_{12}\right) \tag{A1-9}
\end{equation*}
$$

分布差密度nは次のように表わされる。

$$
n=N \operatorname{Tr}(\eta \rho)=N\left(\rho_{22}-\rho_{11}\right)
$$

ここでNは活性分子密度である。

密度行列の時間変化を記述する微分方程式は次のようにな る。

$$
\begin{equation*}
i \hbar \frac{\partial P_{i j}}{\partial t}-\left(E_{i}-E_{j}\right) P_{i j}=\left[H^{\prime}, \rho\right]_{i j}+[\Gamma, \rho]_{i j} \tag{A1-11}
\end{equation*}
$$

ここで $H^{\prime}=-\mu E x は$ 電気双極子相互作用ハミルト＝アンで ある。「は現象論的緩和定数行列を表わす。この式より2準位系の密度行列を記述すると次のようになる。

$$
\begin{align*}
& \frac{\partial \rho_{12}}{\partial t}+\left(-i \omega_{0}+T_{2}^{-1}\right) \rho_{12}=\left(\frac{i \bar{\mu}}{2 \hbar \sqrt{\epsilon}}\right)\left(\rho_{12}-\rho_{12}^{*}\right) E^{+} \\
& \frac{\partial \rho_{22}}{\partial t}+\frac{\rho_{22}-\rho_{22}^{0}}{T_{1}}=\left(\frac{i \mu}{2 \hbar \sqrt{\epsilon}}\right)\left(\rho_{12}-\rho_{12}^{*}\right) E^{+} \\
& \frac{\partial \rho_{11}}{\partial t}+\frac{\rho_{11}-\rho_{11}^{0}}{T_{1}}=\left(\frac{i \bar{\mu}}{2 \hbar \sqrt{\epsilon}}\right)\left(\rho_{12}^{*}-\rho_{12}\right) E^{+} \tag{A1-14}
\end{align*}
$$

$$
(A 1-12)
$$

T1は縦緩和時間，T2は横緩和時間である。（A1－13），（A1－14）式にNをかけて差をとると次式を得る。

$$
\begin{equation*}
\frac{\partial n}{\partial t}+\frac{n-n^{0}}{T_{1}}=\frac{i \bar{\mu} N}{\hbar \sqrt{\epsilon}}\left(\rho_{12}-\rho_{12}^{*}\right) E^{+} \tag{A1-15}
\end{equation*}
$$

$==て ゙ n^{0}=N\left(\rho_{22}^{0}-\rho_{11}^{0}\right)$ であり，熱平衡状態における分布差を表わしている。E2，E1を2薄位系の上準位，下奖位の
共鳴線中央の角周波数を示す。
ここで規格化を行う。

$$
\begin{align*}
& E^{\prime}=\sqrt{\frac{c}{16 \pi \hbar \omega_{0}} E^{+}}(A 1-16) \\
& \rho_{12}^{\prime}=i \frac{4 \pi \omega_{0}}{c} \sqrt{\frac{c}{16 \pi \epsilon \hbar \omega_{0}}} \rho_{12} \\
& \sigma_{0}=\sigma\left(\omega_{0}\right)=\frac{4 \pi \omega_{0} T_{2}}{\hbar c \in} \bar{\mu}^{2}
\end{align*}
$$

二れらの規格化された変数を用いると（A1－5），（A1－12），（A1－15）式は次のように書ける。

$$
\begin{align*}
& \frac{1}{c} \frac{\partial E^{\prime}}{\partial t}+\frac{\partial E^{\prime}}{\partial z}=-(1+i \delta) N \bar{\mu} P_{12}^{\prime}+C \cdot C . \quad(A \mid-19) \tag{A1-19}\\
& \frac{\partial P_{12}^{\prime}}{\partial t}+\left(-i \omega_{0}+\frac{1}{T_{2}}\right) P_{12}^{\prime}=-\frac{1}{2}\left(T_{2} N \bar{\mu}\right)^{-1} \nabla_{0} n E^{\prime} \quad(A 1-20) \\
& \frac{\partial n}{\partial t}+\frac{n-n^{0}}{T_{1}}=4 N \bar{\mu}\left(P_{12}^{\prime}+P_{12}^{\prime *}\right) E^{\prime} \quad(A 1-21) \tag{A1-21}
\end{align*}
$$

$=こ て ゙ \delta=\left(w_{0} T_{2}\right)^{-1}$ であり，ポインティグベクトルの大き さは $S=\hbar \omega_{0} E^{\prime 2}$ である。キャリア周波数 ω_{c} の光パルスを仮定すると，光パルスの包絡線が光の周期，波長に比ベ十分 ゆっくり変化していればEx，Hy，pは一は般的にf（z，t）cos （ $\omega_{c} t+\phi$ ）と表わせ る。ここで，$f(z, t)$ は光周波数の周期，波長に比べて十分ゆっくり変化する。これにならってE＇， P12を次のように定義する。

$$
\begin{align*}
& E^{\prime}=\varepsilon(z, t) \exp \left[i\left(\omega_{c} t-k z\right)\right]+c \cdot c . \tag{A1-22}\\
& N \bar{\mu} \rho_{12}^{\prime}=P_{(z, t)} \exp \left[i\left(\omega_{c} t-k z\right)\right] \tag{A1-23}
\end{align*}
$$

ここでk＝$\omega_{c} / C て ゙ あ る 。 一$ 般に光の周期に比べ T_{2} はずっ と大きいので $\delta=\left(\omega_{0} T_{2}\right)^{-1} \simeq 0$ である。（Al－22）式，（Al－23）式を （Al－19）式に代入し $\delta=0$ とおき回転波近似を導入すると次式 が導ける。

$$
\frac{1}{c} \frac{\partial E}{\partial t}+\frac{\partial \varepsilon}{\partial z}=-\rho \quad(A 1-24)
$$

同樣に（ $\mathrm{Al}-20$ ）式，$(A /-21)$ 式より次の方程式が導ける。

$$
\begin{align*}
& \frac{\partial P}{\partial t}+\left\{i\left(\omega_{c}-\omega_{0}\right)+\frac{1}{T_{2}}\right\} P=-\frac{\sigma_{0} n \varepsilon}{2 T_{2}} \tag{A/-25}\\
& \frac{\partial n}{\partial t}+\frac{n-n^{0}}{T_{1}}=4\left(P \varepsilon^{*}+c_{1} c .\right) \tag{A1-26}
\end{align*}
$$

 の CO_{2} Lーザー光の增幅過程を記述する方程式を煎く。要点は2準位系を基礎にして回転淮位相至間の緩和過程をと リ入れることである，Fig．5－1にエネルギー潐位図が示さ

れている。レーザー上浑位である $\left(00^{\circ} 1\right)$ 準位内の回転準位入量動方程式はレーザー要移をP（J゙）とすると次のように表わせる。ここでア（ J＇，丁）は丁から丁準位への緩和定数で ある。

$$
\begin{align*}
& \frac{d}{d t} n^{v}\left(J^{\prime \prime}-1\right)+n^{v}\left(J^{\prime \prime}-1\right) \sum_{J=0}^{\infty} \Gamma^{v}\left(J, J^{\prime \prime}-1\right) \\
& \tag{A/-27}\\
& -\sum_{J=0}^{\infty} n^{u}(J) \Gamma^{v}\left(J^{\prime \prime}-1, J\right)=2\left(\rho_{J^{\prime \prime}} \varepsilon_{J^{\prime \prime}}^{*}+c_{1} c_{,}\right)
\end{align*}
$$

同様に下準位（ $10^{\circ} 0$ ）または（ $02^{\circ} 0$ ）準位中の回転準位の運動方程式は次のように表わせる。

$$
\begin{align*}
& \frac{d}{d t} n^{L}\left(J^{\prime \prime}\right)+n^{L}\left(J^{\prime \prime}\right) \sum_{J=0}^{\infty} \Gamma^{L}\left(J, J^{\prime \prime}\right)-\sum_{J=0}^{\infty} n^{L}(J) \Gamma^{L}\left(J^{\prime \prime}, J\right) \\
& =-2\left(P_{J^{\prime \prime}} \varepsilon_{J^{\prime \prime}}^{*}+c . c .\right) \quad(A /-28) \tag{A/-28}
\end{align*}
$$

熱平衡状態における密度Nの振動準位中で個々の回転準位 の密度は，ボルツマン分布 $Z(丁) に$ 従う。丁番目の回転渾位の密度は次式で表わされる。

$$
\begin{aligned}
& n(J)=N Z(J) \\
= & =\tau " Z(J)=\left(2 h c B_{r} / k T g\right)(2 J+1) \exp \left[-h c B_{r} J(J+1) / k T_{g}\right]
\end{aligned}
$$

またTgはガスの业進温虔である。詳細均合の原理ょり, 振動準位中の回転緩和定数は次式を満足しなければならない。

$$
\frac{P\left(J^{\prime}, J\right)}{P\left(J, J^{\prime}\right)}=\frac{n^{0}\left(J^{\prime}\right)}{n^{0}(J)}=\frac{N Z\left(J^{\prime}\right)}{N Z(J)}=\frac{Z\left(J^{\prime}\right)}{Z(J)} \quad(A 1-29)
$$

ここで丁から丁＇への緩和定数厂（J＇，丁）が初期の準位丁に無関係に決まるとする。すなわち「に選択則がないとする。規格化の条件から次式が与えられる。

$$
\sum_{J=0}^{\infty} z(J)=1
$$

また（A1－29）式より次の関係式が求まる。

$$
\sum_{J=0}^{\infty} z(J) \Gamma\left(J^{\prime}, J\right)=\sum_{J=0}^{\infty} Z\left(J^{\prime}\right) \Gamma\left(J, J^{\prime}\right)
$$

$$
\begin{equation*}
\Gamma\left(J^{\prime}, J\right) \sum_{J=0}^{\infty} Z(J)=Z\left(J^{\prime}\right) \sum_{J=0}^{\infty} \Gamma\left(J, J^{\prime}\right) \tag{A1-30}
\end{equation*}
$$

故に $\Gamma\left(J^{\prime}, J\right)=Z\left(J^{\prime}\right) \Gamma_{0}$

$$
==\tau^{\prime \prime} \Gamma_{0}=\sum_{j=0}^{\infty} \Gamma\left(J, J^{\prime}\right)
$$

任意の回転準位の他の全回転準位に対する緩和定数は選択則がないとしたので等しいことになる。この結果を用いて （Al－27）式，（Al－28）式を書き直すと次のようになる。

$$
\begin{aligned}
& \frac{d}{d t} n^{v}\left(J^{\prime \prime}-1\right)+\Gamma_{0}^{v}\left[n^{v}\left(J^{\prime \prime}-1\right)-Z^{v}\left(J^{\prime \prime}-1\right) N^{v}\right]=2\left(\rho_{J^{\prime \prime}} G_{J^{\prime}}^{*}+c . c_{0}\right) \\
& \text { (} A \mid-31 \text {) } \\
& \frac{d}{d t} n^{\prime \prime}\left(J^{\prime \prime}\right)+\Gamma_{0}^{L}\left[n^{L}\left(J^{\prime \prime}\right)-Z^{L}\left(J^{\prime \prime}\right) N^{L}\right]=-2\left(P_{J^{\prime \prime}} \varepsilon_{J^{\prime \prime}}^{*}+\text { c.c. }\right) \\
& \text { (A1-32) } \\
& =こ て ゙ \\
& N^{U}=\sum_{J=0}^{\infty} n^{U}(J), \quad N^{L}=\sum_{J=0}^{\infty} n^{L}(J)
\end{aligned}
$$

である。N0，NLはそれぞれレーザー上準位，下準位振動準位の密度である。ここでさらに次の仮定を導入する。

1）回転緩和定数は上準位，下染位で同一の值「。である。
2）$J \gg 1$ では $z^{\prime}(J-1) \approx Z^{L}(J)$
$P(J)$ 遷移の回転準位反転分布密度は次のように表わせる。

$$
n_{J}=n^{\prime}(J-1)-n^{L}(J)
$$

これを用いると丁》1として次の $P(J)$ 回転遷移に村する方程式が得られる。

$$
\begin{align*}
& \frac{1}{c} \frac{\partial \varepsilon_{J}}{\partial t}+\frac{\partial \varepsilon_{J}}{\partial z}=-\rho_{J} \tag{A1-33}\\
& \frac{\partial P_{J}}{\partial t}+T_{2}^{-1} \rho_{J}=-\frac{1}{2} T_{2}^{-1} \sigma_{J} n_{J} \varepsilon_{J} \tag{A1-34}\\
& \frac{\partial n_{J}}{\partial t}+\frac{n_{J}-n_{J}^{0}}{\tau_{R}}=4\left(\rho_{J} \varepsilon_{J}^{*}+c_{1} c_{.}\right) \tag{41-35}
\end{align*}
$$

$$
\begin{aligned}
=\text { で } \quad M_{J}^{0} & =Z(J)\left(N^{V}-N^{L}\right) \\
\tau_{R} & =T_{1}=\Gamma_{0}^{-1}
\end{aligned}
$$

（Al－31）式，（Al－32）式を丁に関して総和をとると次の振動哖位分布密度の時間変化に対する方程式が求まる。

$$
\begin{array}{ll}
\frac{d}{d t} N^{v}=2 \sum_{J}\left(P_{J} \varepsilon^{*}+C . C .\right) & (A /-36) \\
\frac{d}{d t} N^{L 10}=-2 \sum_{J}\left(P_{J} \varepsilon_{J}^{*}+C . C .\right) & (A \mid-37 \\
\frac{d}{d t} N^{L 9}=-2 \Sigma_{J}\left(P_{J} \varepsilon_{J}^{*}+C . C .\right) & (A 1-3
\end{array}
$$

（Al－33）式から（A1－38）式までが，短パルスCO2レーザー パルスの増幅過程を記述するコヒーレント方程式である。 （ $00^{\circ} 1$ ）準位と $\left(02^{\circ} \circ\right.$ ）準位の反転分布密度を与える式は（ $1 /-36$ ） から（Al－37）を引くことにより求まる。

$$
\frac{d N}{d t}=4 \sum_{J}\left(P_{J} \varepsilon_{J}^{*}+C . C .\right) \quad(A /-39)
$$

レーザーパルスの光強度（W／ cm^{2} ）の計算結果のみ知リたい ときは＂Zero Phase＂解を求めればょい。すなわち，と と C を実数として取り报い，分散に関しては無視するので ある。基礎方程式を（A／－33）式（A／－34）式，（A／－35）式，（A／－38）式とすると＂Zero Phase＂方程式は次のように書き直せる。

$$
\begin{array}{ll}
& \frac{1}{c} \frac{\partial \varepsilon_{J}}{t}+\frac{\partial \varepsilon_{J}}{\partial z}=-P_{J} \\
& \frac{\partial \rho_{J}}{\partial t}+T_{2}^{-1} \rho_{J}=-\frac{1}{2} T_{2}^{-1} \sigma_{J} n_{J} \varepsilon_{J} \quad(A /-40) \\
& \frac{\partial n_{J}}{\partial t}+\frac{n_{J}-n_{J}^{0}}{\tau_{R}}=8 \rho_{J} \varepsilon_{J} \\
& \frac{\partial N}{\partial t}=8 \sum_{J} \rho_{J} \varepsilon_{J} \\
= & (A /-41) \\
& (A /-42) \\
& (A /-43)
\end{array}
$$

である。次に（Al－40）式から（Al－42）式までの方程式に近似を用いてレート方程式を導く。 ε_{j} ，$P_{丁}$ の時間変化が T_{2} に比べ て十分遅いとき（Al－41）式の時間微分項は無視することが できる。（Al－41）式から次式が導ける。

$$
P_{J}=-n_{J} \sigma_{J} \varepsilon_{J} / 2 \quad(A 1-44)
$$

また（ Al －43）式より

$$
\varepsilon=\sqrt{c n_{p} / 2}
$$

と表わせる。こ こで片は光子の数密度である。 $n_{p を}$ 用いて とを書き直し，かつ（Al－44）式の関係を用いると次のレー ト方程式が求まる。

$$
\begin{align*}
& \frac{\partial n_{p}}{\partial t}+c \frac{\partial n_{p}}{\partial x}=c \sigma_{J} n_{p} n_{J} \quad(A l-45) \\
& \left.\frac{\partial n_{J}}{\partial t}+\frac{n_{J}-n_{J}^{0}}{\tau_{R}}=-2 c \sigma_{J} n_{J} n_{p} \quad(A)-46\right) \tag{A1-46}\\
& \left.\frac{\partial N}{\partial t}=-2 c \sigma_{J} n_{J} n_{p} \quad(A)-47\right) \tag{A1-47}
\end{align*}
$$

（Al－40）式から（Al－42）式までのコヒーレントオ程式と （Al－45）式から（Al－47）式までのレート方程式の数値計算結果の比較をFig．Al－1に示す。実線がレート方程式の結果を示し，破線がコヒーレントン程式の結果を示す。 CO_{2} レーザ一増幅器は增幅長 2 m ，増幅利得は $4 / \mathrm{m} と し た 。 レ ー サ ゙ ~$一がス圧は1気圧でありがス混合比は $\mathrm{CO}_{2}: \mathrm{N}_{2}$ ： $\mathrm{He}=1: 1: 3$ と した。また入射し一ザーパルスは半値幅 1 nsのガウス波形 とした。このとき T_{2} は 81.8 ps である。なおT2は次式を用 いて決めた。＂

$$
\begin{aligned}
\Delta \nu_{H}= & \left(\pi T_{2}\right)^{-1} \\
= & 7.61\left(\psi_{c}+0.733 \phi_{N}+0.64 \psi_{H}\right) \\
& \cdot P \cdot\left(300 / T_{g}\right)^{\frac{1}{2}}\left(M H_{z}\right)
\end{aligned}
$$

ここでPはガス圧（Torr）であり，Tgはガスの並進温度（K）で ある。 $\psi_{c} \psi_{N}, \psi_{\mathrm{He}}$ はそぞれ $\mathrm{CO}_{2}, ~ \mathrm{~N}_{2}$ ， He ガス分圧である。

結果は増幅エネ ルギーは両方程式 でほぼ一致してい るが，パルス立ち上がり時間は，コ ヒーレントコード の方が 20% 短くな っている。コヒー レント方程式の場合，レーザーパル スが媒質に入射す ると分極が誘起さ れ，それから急速 に応答し立ち上が り部分を急峻化し ているものと考え られる。このよう すをさらにはっき

Fig．Al－1 Pulse width（FWHM）τ p and $10 \%-90 \%$ rise time τ_{R} of output laser pulse as a function of incident laser pulse energy and the calculated laser pulse energy Ep as afunction of incident laser pulse energy．

りさせるため，下
を100ps として両方程式で計算した出カパルス波形をFig。 Al－2に示す。破線がコヒーレント方程式の計算結果，実線 がレート方程式の計算結果であり，それぞれのパルスピー ク値ですべて規格化されている。このときレーザーの利得 は $4 / m$ ，入射しーザーパルスの半值幅は1ns，エネルギー は0．01 J／cmである。1ns以下のレーザーパルスの伝播 の際には，両方程式を使いわけれるようにコードは整備さ れている。実験結果との比較検討等は今後に残された課題 である。

A2 差分方程式の改良
前節で达べたコヒーレント方程式を電子計算機を用いて

Fig．Al－2 Pulse propagation characteristics using a coherent equation（broken line）and a rate equation（solid line）．

計算するため差分方程式の改良を行った。
CO_{2} レーザー増幅過程を記述する（ $A /-40$ ）式から（ $\mathrm{A} /-43$ ）式 または，（Al－45）式から（41－47）式の解は解析的には求まらな いので，同様に伝播方程式に非線形ソ一ス項をもち，かつ解析解のわかっている Frantz Nodvik型の方程式を用いて差分方程式の精度を検討した。方程式は次のように書ける。

$$
\begin{align*}
& \frac{\partial n}{\partial t}+c \frac{\partial x}{\partial x}=\sigma c n \Delta \tag{A2-1}\\
- & \frac{\partial \Delta}{\partial t}=-2 \sigma c n \Delta \tag{A2-2}
\end{align*}
$$

ここで，物理的にはnは光子数密度，σ は誘導放出断面積
Δ は反転分布密度，Cは光速度を表わす。この方程式に対

する解析解は次のように表わせる。

$$
\begin{equation*}
n(x, t)=\frac{n_{0}(t-x / c)}{1-\left\{1-\exp \left[-\sigma \int_{0}^{x} \Delta_{0}\left(x^{\prime}\right) d x^{\prime}\right]\right\}\left\{\exp \left[-2 \sigma c \int_{-\infty}^{t-x c} n_{0}\left(t^{\prime}\right) d t^{\prime}\right]\right\}} \tag{A2-3}
\end{equation*}
$$

差分方程式の空間メッシュ δx と時間メッシュ δt は基礎にな る微分方程式固有の変化のスケールより十分小さくし，か $つ c \delta t / \delta x$ は差分方程式の安定性の条件を満たすように決 められなければならない。しかし，メッシュ間隔を小さく して時間発展のステップ数を多くすると計算機の有限桁計算に制約されて丸目誤差が増大し，計算時間も増加する。 それ故，メッシュ間隔を小さくすればするほど良いとは言 えない。メッシュ間隔を一定にして（A2－1）式と（A2－2）式を種々の差分方程式を用いて解き，解析解（A2－3）式と比較 した。Fig．A2－1には通常のLax Wendroff法笙を用いたとき の計算結果と解析解との比較を示す。パルスは回中中央失印の方向に伝播する。

次に通常のLax Wendroff 法の精度の解析を行ったとき，最初に現われる空間3階微分に起因する分散の効果を取り除いた差分方程式を作成した。この式を用いて計算した結果をFig．A2－2に示す。Fig．A2－1に比べてやや改善されて いるが，パルスピーク值の位置，その大きさともに解析解 からずれており満足な結果は得られなかった。

次に街擊波の伝播解析によく用いられるFCT法4）を用い て計算を行った。最初差分方程式の中に大きな散逸項を入 れ波形を十分くずし，次のステップでその散逸性を打ち消 すためcorrectionを行う方法である。結果をFigA2－3に示す。 Fig，A2－2とほぼ同じ結果になった。

A，Bを規格化のための定数として（A2－1）式と（A2－2）式 を次のように書き直す。

$$
\begin{align*}
& \frac{\partial n}{\partial t}+c \frac{\partial n}{\partial x}=A n \Delta \tag{A2-3}\\
& \frac{\partial \Delta}{\partial t}=-2 B n \Delta \tag{A2-4}
\end{align*}
$$

$\frac{c \delta t}{\delta x}=\varepsilon$ と置いてLax Wendroff法により差分方程式に直すと
次のように書ける。

$$
\begin{align*}
& n_{j}^{n+1}=n_{j}^{n}-\frac{\varepsilon}{2}\left(n_{j+1}^{n}-n_{j-1}^{n}\right)+\frac{\varepsilon^{2}}{2}\left(n_{j+1}^{n}-2 n_{j}^{n}+n_{j-1}^{n}\right)+A n_{j}^{n} \Delta_{j}^{n} \\
& \Delta_{j}^{n+1}=\Delta_{j}^{n}-2 B n_{j}^{n} \Delta_{j}^{n} \quad(A 2-6) \tag{2}
\end{align*}
$$

$=$ の式を $x_{j}^{n}, \Delta_{j}^{n}$ のまわりにテーラー展開して $\delta t, \delta x$ に関し て3次以上の項を無視し整理すると次のようになる。

$$
\begin{align*}
& \frac{\partial n}{\frac{\partial t}{}}+C(1-\delta t A \Delta) \frac{\partial n}{\partial x}=A_{n} \Delta-\frac{\delta t}{2} S_{n} A \Delta-S_{\Delta}^{\prime}+C_{2} \frac{\partial \Delta}{\partial x} \tag{A2-7}\\
& \frac{\partial \Delta}{\partial t}=-2 B_{n \Delta}-\frac{\delta t}{2} S_{\Delta} B_{n} n-S_{n}^{\prime}+C_{3} \frac{\partial n}{\partial x} \\
&=C_{2}=C \frac{\delta t}{2} A_{n} \\
& C_{3}=C \frac{\delta t}{2} B \Delta \\
& S_{n}=A_{n} \Delta \\
& S_{\Delta}=-2 B n \Delta \\
& S_{\Delta}^{\prime}=S_{\Delta} \frac{\delta t}{2} A_{n} \\
& S_{n}^{\prime}=S_{n} \frac{\delta t}{2} B \Delta
\end{align*}
$$

である。（A2－7）式，（A2－8）式中アンダーラインを引いた項以外は差分方程式で微分方程式を近似したことにより生じ た誤差項である。これから，この差分方程式の主要な誤差の原因となっているのは非線形ソ一ス項であることがわかる。 この誤差項を打ち消す項を（A2－5）式，（A2－6）式につけ加え

て計算を行った。結果をFig．2－4に示す。パルスの立ち上が リ部分でわずかに誤差が生じているが，ほぼ解析解と一致 した。
CO_{2} Lーザー光の伝播を記述するコヒーレント方程式は次 のように書ける。

$$
\begin{align*}
& \frac{1}{c} \frac{\partial \epsilon}{\partial t}+\frac{\partial t}{\partial z}=-\rho \tag{A2-9}\\
& \frac{\partial \rho}{\partial t}+\frac{1}{T_{2}} \rho=-\frac{\delta \sigma \epsilon}{2 T_{2}} \tag{A2-10}\\
& \frac{\partial \delta}{\partial t}+\frac{\delta-k \Delta}{\tau_{r}}=8 \rho \epsilon \tag{2}\\
& \frac{\partial \Delta}{\partial t}=8 \rho \epsilon \tag{A2-12}
\end{align*}
$$

（A2－7）式，（A2－8）式と同様な計算を行ってこれらの式を差分方程式に書き直すと次のようになる。

$$
\begin{aligned}
& \epsilon_{j}^{n+1}=\epsilon_{j}^{n}-\frac{a}{2}\left(\epsilon_{j+1}^{n}-\epsilon_{j-1}^{n}\right)+\frac{a^{2}}{2}\left(\epsilon_{j+1}^{n}-2 \epsilon_{j}^{n}+\epsilon_{j-1}^{n}\right)+S_{p} \\
&-\frac{\delta t}{2} c S_{n}+\frac{\delta t a c}{2}\left(\rho_{j+1}-\rho_{j}^{n}\right) \quad(A 2-13) \\
& \rho_{j}^{n+1}=\rho_{j}^{n}+S_{n}-\frac{\delta t}{2 T_{2}} S_{n}-\frac{\sigma \epsilon \delta t}{4 T_{2}} S_{N}-\frac{\delta t \sigma \delta}{4 T_{2}} S_{p} \\
&+\frac{\delta t a \sigma \delta}{4 T_{2}}\left(\epsilon_{j+1}^{n}-\epsilon_{j}^{n}\right) \\
& \delta_{j}^{n+1}=\delta_{j}^{n}+S_{N}+4 \rho \delta t S_{p}-4 a \delta t \rho\left(\epsilon_{j+1}^{n}-\epsilon_{j}^{n}\right) \\
&+4 \delta t \epsilon S_{n}-\frac{\delta t S_{N}}{2 \tau_{r}}+\frac{\delta t k S_{\rho \epsilon}}{2 \tau_{r}} \quad(A 2-15) \\
& \Delta_{j}^{n+1}=\Delta_{j}^{n}+S_{p \epsilon}+4 \delta t \rho S_{p}-4 \delta t \rho a\left(\epsilon_{j+1}^{n}-\epsilon_{j}^{n}\right)+4 \epsilon \delta t S_{n} \\
&(A 2-16)
\end{aligned}
$$

$$
\begin{aligned}
&==\tau^{\prime \prime} \\
& S_{\rho}=-c \rho \delta t \\
& S_{n}=-\left(\frac{1}{T_{2}} \rho+\frac{\delta \sigma \epsilon}{2 T_{2}}\right) \delta t \\
& S_{N}=\left(8 \rho \epsilon-\frac{\delta-k \Delta}{\tau_{r}}\right) \delta t \\
& S_{\rho \epsilon}=8 \rho \in \delta t
\end{aligned}
$$

コヒーレント方程式はLax Wendroff法を改良した，れらの差分方程式を用いてコード化されている。

Fig.A2-1 Pulse propagation property using a Lax Wendroff method. The result is compared with the analytic solution.

Fig.A2-2 Pulse propagation property using
a modified Lax Wendroff method.
The result is compared with the analytic solution.

Fig.A2-3 Pulse propagation property using a Flux Corrected Transport method. The result is compared with the analytic solution.

Fig.A2-4 Pulse propagation property using; a Non-Linear Lax Wendroff method. The result is compared with the analytic solution.

A3 1ns CO_{2} レーザーパルスの伝搬特性
パルス幅1ns以下のパルス伝播特性の計算機シミュレー ション結果について述べる。またその結果と実験結果との比較を行う。

第ち章で述べたレーザーシステム構成要素のモデル化の うち改良を行ったのは，可飽和吸収体 SF6ガス中の透過特性である。SF6がスの飽和吸収特性にパルス幅依存性があ ることが実験的に示された。結果をFigA3－1に示す。回中丸印は入射しーザ ーパルス幅が1ns程度のときの実験値である。破線は透過関数を実験値 に一致するように したときの計算結果である。実線は パルス幅3nsのと きの透過曲線であ る。これから，こ れらの結果を基礎
にしてパルス幅が
変化したときには透過率が適当に変化するように透過関数にパルス幅依存性をもたせた。 こうして第5章で示した烈光仕号シ ステムのパルス伝播特性の計算機シ

Fig．A3－1 Calculated transmission curve and measured points of SF_{6} sat－ urable absorber as a function of incident laser pulse energy． The open circles are experimen－ tal results and the broken line represents the simulation model of the pulse width of lns．The solid line represents the cal－ culated transmission curve of the pulse width of $3 n s$ ．

ミュレーションを行った。システムの構成をFig。A3－2に示 す。計算は烈光丘号システムのプリアンプ段の出口と最終増幅器出口の間で行った。結果をFig，A3－3，Fig．A3－4に示す。計算結果がばらついているのは，入射レーザーパル ス波形とレーザ一動作条件を実験結果に合わせて変化させ ているためである。Fig。A3－2に示されているように入射し一ザー光エネルギーに対する出カエネルギーの変化は，実験結果と計算結果が一致している。三皮形変形に関しては， Fig．A3－4に示されているようにパルス立ち上がり時間は計算結果と実験結果が比較的一致しているが，パルス幅は計算值の方が実験値よりかなり長くなった。この原因は，SF6 ガス中の透過特性のモデル化の精度が不十分なためと考え られる。透過特性のパルス波形依存性を含めて，モデルの精密化を行う必要がある。

次に第5章でも述べたパルスピーク値の進みと遅れにつ

Fig．A3－3 The measured output laser pulse energy and the calculated laser pulse energy as a function of incident laser pulse energy．

いての計算結果 について述べる。結果をFig．3－5 に示す。横軸は最終增幅器の放電入カエネルキ・一から求められ た小信号利得で ある。

測定は前置増幅器段出口のパ ルス波形と最終増幅器出口のパ ルス波形を，適当な光路差をつ けて同一の光検知器に導き，オ シロスコープ上画面に写し出す ことにより行っ
た。すなわち両 パルスのピーク

值の位置の差を読みとリ，相対的なパルスピーク值の遅れ と進みの効果を測定したのである。これを縦軸に示す。
四中，白丸は測定結果であり，実線は計算結果の傾きを示 す。側定結果と計算結果の䚰負きは比較的一致している。 これは，パルス立ち上がり時間に関しては，計算結果と実験結果が比較的よく一致していることから要当な結果と言える。

今後に残された課題のうち最も重要と思われるものは，

[^0]ガス可飽和吸収体の透過特性を入射パルス波形依存性まで含め て実験的に明ら かにし，計算も
デルに取り入れ ることである。

Time Shift of Pulse Peak

付録の参考文献
1）H．C．Volkin ；J．Appl．Phys．， 50,179 （1979）
2）L．M．Frantz and J．S．Nodvik ；J．Appl．Phys．， 34,2346 （1963）
3）D．Potter ；Computational Physics，P72，John Wiley \＆Sons Ltd （1973）
4）J．P．Boris and D．L．Book；J．Computational Physics，11， 38 （1973）

[^0]: Fig．A3－4 Pulse width（FWHM）and $10 \%-90 \%$ rise time of output laser pulse as a function of incident laser pulse energy．Delta represent the measured points and cross the measured points and cross

