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1. Introduction

Let X C R®, n > 2 be an open bounded set with C! boundary 8X and let us
assume also that V' C R”™ is open. Denote 'y = {(z,v) € 0X x V; xn(z) v > 0},
where n(z) is the outer normal to JX at z € 3X. Let us denote by f the solution
(if exists) to the following boundary value problem for the stationary linear transport
(Boltzmann) equation:

w1 {—U-me(z,v) —aa(z,u)f(:l:,v)+/‘./k(z,v',v)f(x,v')dv' =0 in XxV,
fle_=f-.

Here f_ is a given function on I'_. We assume that the pair (o,,k) is admissible,
ie.
i) 0<og,€L>®(XxV),
(i) 0 < k(z,0,) € LYV) for ae. (z,v") € X xV and o,(z,v'") :=
[y, k(z,v',v) dv belongs to L=(X x V).
If the direct problem (1.1) is solvable, one can define the following albedo opera-
tor

A:f- v flr,,

that maps the incoming flux on the boundary into the outgoing one. We are interested
in the following inverse problem:

(IP) Does the albedo operator .4 determine uniquely the coefficients o, (z,v),
k(z,v',v)?

" There are a lot of papers devoted to (IP) both for the stationary transport equa-
tion (1.1) and for the time-dependent one (see e.g. [1], [6], [9], [10], [11], [12], [14]).
In those papers however there are some restrictive assumptions on the coefficients
k(z,v',v) and o,, for example k is assumed to be independent of some variables,
small enough etc. To our best knowledge the general case has been open until the au-
thors considered in [4] the inverse problem (IP) for the time-dependent transport equa-
tion (8; —T)u = 0, where T is the differential operator appearing in the left hand side
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of the first equation in (1.1). It is shown [4] that the (time-dependent) albedo operator
does determine uniquely o, and k provided that o, = 04(z, |v|). It is easy to see that
some restriction on o, is unavoidable, because there is a simple example showing that
in the general case the uniqueness may fail (see below). In [4] it is also studied the
inverse scattering problem for the time-dependent transport equation.

In the stationary case that we consider in this paper we have less data than in [4],
because the time variable is missing. Next, the same objection to the uniqueness as
in the time-dependent case exists. Namely, let p = p(z,v) be a continuous function
such that for (z,v) € X x V we have (z + p(z,v)v,v) € X X V as well and define
64(z,v) = 0a4(z + p(z,v)v,v). Then the pairs (0,,0) and (6,,0) (ie. k = k = 0)
produce the same albedo operator, while o, # &, in general. In order to avoid this,
we will assume further that o, = o, (z, |v|).

Let us introduce some notations. For v # 0, set 74 (z,v) = min{t > 0; z £
tv € 8X}, 7 = 7— + 74. Consider the following two measures on I'y: df = |n(z) -
v|du(z)dv and dé = min{r(z,v), A\}|n(z) - v|du(z)dv, where du(z) is the Lebesgue
measure on X, A > 0 is an arbitrary constant. Using some trace theorems [2], [3]
we can show that A : L} (I'_,d¢) — L*(T'y,d¢) is a bounded operator if (1.2) holds
and A : LI(F_,dE) - I! (l"+,d£) is bounded if (1.3) holds (see also [7]).

In general, the direct problem (1.1) may not be uniquely solvable, so we consider
in this work two physically important situations where (1.1) is well posed. First we
will assume that

(1.2) IT0allLe < 00, ||Topllpe <00 and ||Top||L- < 1.

This condition in particular guarantees that the dynamics corresponding to the time-
dependent Boltzmann equation is subcritical [13], i.e. the “energy” (the L'-norm of
the solution) is uniformly bounded for ¢ > 0. Note that (1.2) holds if in particular
llv|~Yoa]|Le < 0o, diam(X)|||v|~1op||L~ < 1. The second situation we will consider
is when [7]

(1.3) 0a(z,v) — op(z,v) 2 v >0 forae. (z,v) e X XV

with some v > 0. In other words, (1.3) says that the absorption rate is greater than
the production rate. This also implies that the corresponding dynamics is subcritical.
The main result of this paper is the following.
Theorem 1.1. Let (04,k), (64,k) be two admissible pairs with o, = a4(z, |v]),
Ga = 0Go(z,|v]) and assume that they satisfy either (1.2) or (1.3). Assume that the
corresponding albedo operators A and A coincide. Then
(@) ifn >3, then g, = d,, k=k;
(b) ifn=2, then 0, = G,.

Note that our proof is constructive and we obtain explicit formulas for o, and k
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in terms of the distribution kernel a of the albedo operator (see Proposition 4.1 and
Proposition 4.2). We study the first two terms in the singular decomposition of o and
show in Theorem 3.2 that they are delta functions supported on varieties of different
dimension (if n > 3), while the remainder is a function. We show that the first singular
term depends on o, only and o, can be recovered from it. Next, knowing o,, one
can recover k from the second term. We followed similar approach in [4] in the time-
dependent case. In the two-dimensional case the second term is not a delta function,
but a locally L!-function and cannot be distinguished from the remainder. That is why
our approach does not work for recovering k in two dimensions. Notice that the idea
of using singular solutions of the transport equation has been used also in [10], [14].

The results we obtain are not restricted to the conditions (1.2) or (1.3) only. If for
example inf{|v|; v € V'} > 0 and if the direct problem T'f = g, f|r_ = 0 has unique
solution f € LL (X x V) for any g € L(X x V), then Theorem 1.1 still holds. The-
orem 1.1 holds in the presence of a (non-singular) source term as well, because the
flux generated by such a source term is not singular and cannot affect the leading sin-
gularities of the kernel of 4. We would like to mention also that a similar result can
be obtained if V = S"1, n > 3.

The structure of the paper is the following. In section 2. we prove some trace
theorems of the type obtained in [2], [3], solve the direct problem and define the
albedo operator in suitable L! spaces. In section 3. we construct a special solution
f = f(z,v,2',v') to (1.1) with f_ = &.3(2)d(v — v'), where (z',v') € T are
parameters and we study the singularities of f. With the aid of f we obtain a singular
decomposition of the distribution kernel a of A. Finally, in section 4. we show how
to recover explicitly o,, k from a.

The results of this paper have been announced in [5].

2. Preliminaries

We begin this section with a simple lemma.

Lemma 2.1. Assume that f € L*(X x V). Then

T4 (z',v)
/Xfo(x,v)dxdv:/]‘:F/o f(@' £ tv,v) dtdé(z’,v).

Proof.  The proof follows by performing a change of variables X > z +—
(z',t) € £ % (0, 74+ (z,v)) given by the formula 2’ = cF7(z,v)v, t = 7(z,v). This
change is smooth except on a closed set of measure zero and dz = |n(z')-v|dp(z') dt.

O
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Let us introduce some new notations. Denote
TOf =-v- V:tfa Alf = "Uafa A2f = / k(:E,UI’U)f(:E’U,) dvl?
v
T, =Ty + Ay, T=To+ A1+ A, =T + As.

Notice that if (0,,k) is admissible (which we will always assume), then A; and
A, are bounded operators in L'(X x V). All norms throughout this paper are in
LY(X x V) except otherwise stated.

We are going to prove next a trace theorem in the spirit of [2], [3].

Theorem 2.1. We have
@1 1F10s s ey gy < ITOSI+ N7 £

for any function f(z,v), (z,v) € X x V for which the right-hand side above is well-
defined.

Proof.  Consider first a function g € L([0,a]), such that g’ € L!([0,a]), where
a > 0. Then

mm=—Ag%wM+gm,

therefore
l9(0)| S/O lg' (@)l dz + |g(t)| = llg'l| + 1g(t)] V¢t €[0,a].
Here || - || is the norm in L'([0,a]). After integrating that inequality we get
1 [ o1
22 lg(0) == [ 19(0)ldt < llg"ll + =llgll-
a Jo a

Now, let f(z,v) be such that Tof € L}(X x V) and 771 f € L}(X x V). Set
g(t,z',v) = f(z' +tv,v), (z',v)el_, 0<t<7y(z',v).

Since Tof € L'(X x V), combining Fubini’s theorem and Lemma 2.1, we get that
for ae. (z',v) € TI'_, the function t —» 0,9 = —(Tof)(z' + tv,v) belongs to
L'(0,74(z',v)) and so does g(t,z',v). Next, g(0,z',v) = f(z',v) = f|r_. We there-
fore get from (2.2)

T4(2',v)
mﬂMSA (To f)(@' + tv, v)|dt
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1 T4 (2 v)
)/ |f(z' + tv,v)| dt.

T+(IL",’U 0

If we now integrate over I'_ with respect to d{(z',v) and apply Lemma 2.1 to the
right-hand side, we complete the proof of the theorem for f|r_. The proof for f|r,
is similar. O

Let us set

W={f; Tof e L"(X xV), 77 f e LY(X xV)},
Iflw = ITofll + I7* £1I-

Then Theorem 2.1 says that taking the trace f — f|r, is a continuous operator from
W into L!(T'y,d€). As we will see below, the inequality (2.1) cannot be improved,
for some functions it turns into equality.

Given f_ € L'(I'_,d¢), define Jf_ as the following prolongation of f_ inside
X xV:

- fT_ (=) oq(z—sv,v)ds
Jf_=e Jo ° HEf (- 1 (z,v)V,0), (x,v) e X xV.

Note that Jf_ is defined so that Ty Jf_ =0, Jf_|r_ = f_, therefore J is the solu-
tion operator of the problem T f =0, flr_ = f-.

Proposition 2.1. Assume that ||T0,||L~ < cc. Then
N Tf-lw < Cllf=llLr (- ag)s
with C =1+ ||tog||Le. If 04 =0, then we have equality above (and C = 1).
Proof. Note first that
N F-lw < Net Tl + AT -]l < (1 + llTaallpe) 7~ T £,
because ToJf_ = —A;Jf_. Next, by Lemma 2.1,

23) / |[r=1Jf-| dzdv < / 77z, v)|f-(z — 7_(z,v)v,v)|dz dv
XxV

XxV
‘r+(.1:',v) i ,
- /0 77 @ )| f- (2!, v)] de de
= ol ey,

which completes the proof. ]
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We are going to use Theorem 2.1 and Proposition 2.1 in the case where (1.2)
holds. Then we will work with functions belonging to L'(['y,df) on the boundary
and to W inside X x V. In the case where (1.3) holds, we will work with boundary
data in L!(I'y, d€) and then we will need the following trace theorem due to Cessenat
[2], [3]. Recall that df = min{\, 7(z,v)}d¢, A > 0 is an arbitrary fixed constant.

Theorem 2.2 ([2], [3]). For any f € L*(X x V) such that Tof € L*(X xV)
we have

“fll‘i “Ll(Fi,df) < )‘”Tof“ + ||f”

We refer to [2], [3] for a proof and for other results. The theorem follows also
from Theorem 2.1 by setting f = min{\, 7}g.
Denote

W={f; feLM(X xV),Tof € L'(X x V)},
Ifllo = ITo 1l + II£1I-

In the case where (1.3) holds, we have the following version of Proposition 2.1.
Proposition 2.2. For any f_ € LY(T'_, df)
NIf-1hs < C”f—“Ll(F_,dé),

where C = (1 + ||04||L~) max{1, (vX)~1}.

Proof. ~ We obtain as before that ||Jf_]||,;, < (1 + |loallz)||Jf-]||. Next,
/ |Jf-| dzdv < / e ™=@ f_(z — 7_(z,v)v,v)| dzdv
XxV

XxV
T4+ (' v)
= [ [T e olade
- JO

min{7 (z',v),1/v} . _
r- min{:+(g;l,v),/\} |[f-(z',v)| d¢

1
ma,x{l, J} “f—”Ll(I‘_,df)' -

IA

We are going now to reduce the boundary value problem (1.1) to an integral equa-
tion using standard arguments. Equation (1.1) can be rewritten as (T; + A;)f = 0. Let
us integrate the identity exp{— fot 0q(z —sv,v)ds}[(T1 + A2) f](z — tv,v) = 0 with re-
spect to ¢ from 0 to 7_(z, v) and take into account the boundary condition f|r_ = f_.
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We thus get
@4) (I+EK)f=Jf,

where I stands for the identity and K is the following integral operator

7—(z,v) t
2.5) Kf=-— / e~ Jo ceEm s oy g vt
0

Introduce the following unbounded operators:

Tif = Tif, D(T1) = {f e LN(X x V); Tvf € LN(X x V), flr_ =0},
Tf =Tf, D(T) ={fe L' (X xV); TfeL'(X xV), flr_ =0}.

Notice that formally K = T;' A, and for Ty we have
1 7-(=v) —ft oq(z—sv,v)ds
Ty f:—/ e Jo'c Ef(r - to,v) dt.
0

In the next two propositions we will show in particular that T;l is well defined.

Proposition 2.3. Assume (1.2). Then

(@ 717'T;Y 77T~ and Aar are bounded operators in L'(X x V) and therefore
K = T;'A; is a bounded operator in L'(X x V; 7~ ldzdv). Moreover, the
operator norm of K is not greater than ||Top||L~ < 1 and therefore (I + K)™!
exists in this space.

(b) The integral equation (2.4) and therefore the boundary value problem (1.1) are
uniquely solvable for any f_ € L*(I'_,df) and then f € W.

()  The albedo operator A is a bounded map A : L'(T_,d¢) — L} (T, d§).

Proof. Clearly,
= T A< AL, VP e LH(X x V).
Next, (1.2) implies
lA27llcr (xxvy) < lITopllLe <1,

where 7 stands for the operator of multiplication by 7(z,v). Therefore, we have K =
T;' A, and

lr K £l = l77 Ty Ao fl] < A2 £l < llropllzellr™ £,
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which proves (a). Since |[Top|lr~» < 1, the operator I + K is invertible in
LY(X x V; 171dzdv) and (2.4) has unique solution

(2.6) f=U+K)"'Jf_.
By (2.4) we have for f

2.7) T Il < (1= llropllze=) " Ir =T £-|
< (1= llropllz=) " If-llzrcr- ae)-

Further, since T'f = 0, we deduce that Tof = —(A; + A3)f and therefore

(2.8) ITofIl < (I70allL= + ITopllz=) I7~ £II.

Then by (2.7) and (2.8) we deduce that f € W and by Theorem 2.1 we conclude that
flr, = Af- € LY(T'y, d€). Moreover, the operator norm of A does not exceed (1 +
lIToallpe + IToplle) (1 = |ITopllL=)"". We finally note that T is invertible, because
we can set T~! = (I + K)~'Ty! : LY(X x V) = LY(X x V; 77 dzdv). O

Proposition 2.4. Assume (1.3). Then
(@) K, Ty' and T~! are bounded operators in L'(X x V) and K = Ty' As. Fur-
ther, I + K is invertible and (I + K)™' =1 — T 1A,.
(b) The integral equation (2.4) and therefore the boundary value problem (1.1) are
uniquely solvable for any f_ € L*(T'_,d€) and then f € W.
(c) A is a bounded map A: L' (T_,d€) — L'(Ty,df).

Proof.  Since exp{—fot oq(z — sv,v)ds} < e, ||T1_1“£(L1(X><V)) < vl
The boundedness of T~! is proven in [7] under the assumption (1.3). Next, it is
easy to check directly that (I + K)(I — T714;) = (I — T 'A)(I + K) = I,
therefore (I + K)™! = I — T~!A,. This proves (a). Observe next that if f_ €
LY(I'_, d€), then by Proposition 2.4 Jf_ € W and the solution f to (2.4) is giv-
en by f = (I — T 'A45)Jf- € L'(X x V). Moreover, since Tf = 0, we have
Tof = —(A; + A3)f € LY(X x V). Therefore Tof € W and by Theorem 2.2,

Af- = fIr, € L'y, df). O

3. The special solution

In this section we study the distribution kernel of 4. To this end first we solve
(1.1) with

f- = b (@80 = v'),
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where (z',v') € T'_ are regarded as parameters and &y, is a distribution on 9.X de-
fined by (6(a'3,9) = [ 623 ( z)du(z) = p(z'). On the other hand, we will denote
by & the ordinary Dirac delta functlon in R™. The integral above is to be considered
in distribution sense. Let us denote by f(z,v,z’,v') the solution (in distribution sense)
of

{ Tf=0 inXxV,

D fleo = 1-.

Since we assume that the boundary is C''-smooth and not necessarily C°-smooth,
we have to work in fact with distributions which are linear functionals on C}. All
singular distributions appearing in the analysis of f and the kernel of .4 are in fact
delta-type distributions supported on some hypersurfaces and can be regarded also as
measures.

To solve (3.1), pick ¢_ € CA(T'_) and denote by ¢ the solution of

32) { Te=0 inXxV,

elr_ = p-.

Assume that either (1.2) or (1.3) holds. Then, according to Proposition 2.3 and Propo-
sition 2.4, equation (3.2) has unique solution ¢ = (I + K)~1Jy_, which also admits
the representation

o=Jo_-~KJpo_+(I+K)'K*Jp_.

Since (I + K)™'T;' = T™!, K = T;'4,, we get (I + K)"'K2Jp_ = (I +
K) Ty 'A;KJp_ = T 1A K Jp_. Therefore,

3.3) o=Jp_ —KJp_+T 1A, KJp_.

All terms in (3.3) belong to L*(X x V; 77ldzdv) or L'(X x V), respectively. We
proceed with analysis of each term in the right-hand side of (3.3).
For Jy_ we have

Jo_ = E(z,v)p_(z — 7_(z,v)v,v),

T_(z,v)
E(z,v) := exp {—/ ooz — sv,v)ds} .
0

Choose ¢ € C§°(X x V) and consider

(Jo,9) = /X (T dady

= E(z,v)p_(z — 7—(z,v)v,v)¢(z,v) dz dv.
XxV
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By Lemma 2.1,

T+(z' v
Upmw) = [ [ B + o) @ 00l + to,0) dede(e',0)
= / . / E(z,v)p_(z',v" ) (z,v)d(z — z' — tv)d(v — v') dt d&(z',v") dz dv,

where the last integral is to be considered in the sense of distributions. Therefore,

T4 (2’ ,0")
Jo_ = / (/0 E(z,v)é(x — ' — tv)d(v —v') dt)

x[v' - n(z")|p_(z',v") du(z') dv'.

Thus,
(3.4) Too= [ fi@v,o)p- (&',of) dua') v
-
with
T+ (@) —fr_(z'v) oa(z—sv,v)ds
3.5) fi(m,v,2',0') = o' - n(a")] / e o
0

x6(x — ' — tv)d(v —v') dt.

In other words, f; = Jf_ is given by (3.5).
Consider further the second term —K Jp_ in the right-hand side of (3.3).

T—(z,v)
(3.6) —KJp_ / / = J§ ale=pvaya

z — sv,v",v)(Jo_)(z — sv,v') dv' ds

/T (=, v)/ f oq(z—pv,v)dp

xk(z — sv,v',v)E(z — sv,v")

Xp_(x —sv—7_(x — sv,v")v',v') dv' ds.

Arguing as above, we get

3.7 —KJp_= | fa(z,v,2',0")o_(z',v) dp(z') dv'
r_

where

T_(zv) pre(z’ 0
(3.8) f2 = |n(z") - V'] / / - [} oala—pv,v)dp
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- _ '
Xe_‘fo_(z sy )aa(z—sv—pu',v')dp

xk(z — sv,v',v)é(z — z' — sv — tv') dtds.

And finally, let us consider the last term in (3.3). We first start with Ay K Jp_.

T—(IU " "
(3.9 A KJp_ = /// - o'a(z—pv w'')dp

xE(z — sv",v")k(z,v",v)k(z — sv",v,0v")

Xp_(x —sv" —1_(x — sv" "), v ) dsdv' dv".

We claim that (3.9) is absolutely convergent integral provided that (1.2) or (1.3) holds.
Indeed, assume that (1.2) holds. Then by Proposition 2.3 and (2.4),

/ 'AzKJ(p_|d£L'dU = “AQKJ(‘O_”Ll(Xxv)
XxV

< a7l xxvpllr T KTl e x vy it~ ol
< le-llrr_,ae)-

Next, in the case where (1.3) holds, by Proposition 2.2 and Proposition 2.4,

[ 14K Ip-|dedv = (42K To-llpscr)
XxV

< Azllzwr (x xvpIK e (x xvyllde-ll
< Clle-llpir_ a6

In conclusion, we showed that (A3KJp_)(z,v) is absolutely integrable in X x V
and therefore by the Fubini theorem the integral (3.9) is absolutely convergent for a.e.
(z,v) € X x V. This proves our claim.

Let us extend all functions depending on v, v’, v" by zero outside V. Change the
order of integration in (3.9) from dsdv' dv" to dv" dv' ds and perform first the change
of variables y = z — sv”, dv" = s "dy in (3.9) and next, using Lemma 2.1 let us
change the variables again z' =y — 7_(y,v')v’, t = 7_(y,v'). Then (z',v') € T'_ and
dy dv' = dtdf(z',v'"). We thus get '

(! - [’ (z—pv'" "")d,
AsKJp_ = / / / eltTp PE(x' + tv',v")k(z,v",v)
xk(z' + tv', v, v")xp_(z',v")sT" dt dE(z',v") ds,

with v" = (z — ' — tv')/s. Here x = 1 if the line segment [z, z’ + tv'] belongs to
X and x = 0 otherwise. The obtained integral is also absolutely convergent despite
the singularity s~™ appearing in it. By the Fubini theorem we can change the order of
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integration dt d¢(z',v')ds — dtdsd€(z',v') and after the first two integrations with
respect to ¢t and s we obtain a function of (z',v’) which is integrable with values in
L'(R? x V,). In other words,

(3.10) Ay KJp_ = fa(z,v,2' v )p_(z',v") du(z') dv',
r_

where

~ e T+(x(’vl) s " a"d
fz = In(a’) "Ull/ / e G ) PE(z' + tv',v")
o Jo
xk(z,v",v)k(z' + tv',v',v")xs " dt ds,

where v = (z — ' — tv')/s. Moreover, the arguments above imply that the func-
tion T_ 3 (2/,v') = |n(a') - /|7 fa(z,v,2',v")p_(2',v') € L'(X x V) belongs
to L}(I'_,d¢) for any ¢_ € L'(T'_,d¢) provided that (1.2) holds and, respectively,
(min{r, A\})~|n(z')-v'|"! fsp_ belongs to L} (T'_,d€) for any p_ € L}(T'_,dé€) pro-
vided that (1.3) holds. Therefore,

3.11) In(z') - v'| 7' f5 € L=(T; L}(X, x V,)), if (1.2) holds,
| (min{r,A\})7Y|n(z’) - v'| 71 f3 € L°(T—; LY(X, x V,)), if (1.3) holds.

We are ready now to estimate the term T~!A,KJyp_ appearing in (3.3). By
(3.10),

(3.12) T ' A KJp_ =/ fa(@,v,2",0")p_(z',0") du(z’) dv',
r_

where

(3.13) fa:=T ' f;.

Here f; = f3(z,v,2',v') and in the formula above T~! acts with respect to (z,v)
and (z',v") € I'_ are considered as parameters. Assume first that (1.2) holds. Then by
Proposition 2.3 T~ : L1(X x V) — LY(X x V; 77 ldzdv) is bounded and we get
immediately from (3.11) that

(3.14) |n(z') -v'|7' f3 € L°(T—; L*(X, x V,; 7~ dzdv)) when (1.2) holds.

Moreover, since Tofs = —(A; + A2)f3 and A; + Ay : LY(X x V; 77 ldzdv) —
L'(X x V) is bounded, we also get

(3.15)  |n(a’) - v'|" Mo fs € L=®(T—; L' (X, x V,)) when (1.2) holds.
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Let us assume next that (1.3) holds. Then by Proposition 2.4, T~! is bounded in
LY(X x V) and hence by (3.11),

(3.16) (min{7,A}) " }n(z’) -v'|7  f3 € L=(T_; L*(X, x V,)) when (1.3) holds.
We also get as above that
(3.17) (min{7,A\}) 7 |n(z’) -v'| ' Tofs € L=(T_; L}(X, x V,)) when (1.3) holds.

Combining (3.3), (3.4), (3.7) and (3.12), we see that the solution to (3.2) is given
by

(3.18) cp(z,v):/ flz,v,2',v")p_(z',v") du(z") dv’,
r_

where the integral is to be considered in distribution sense and f is given by

f=hH+f+fs

with f, fo defined by (3.5), (3.8) and f3 satisfying (3.14), (3.15) (respectively (3.16),
(3.17)). It is also clear that f solves (3.1) in distribution sense. Let us formulate this
in the following theorem.

Theorem 3.1. Assume that (0,,k) is admissible and either (1.2) or (1.3) holds.
Then for the solution f(z,v,z',v") of (3.1) we have f = fi1 + fa + f3, where

T+(:c yv) r_(z,v)
fi = In(a) - v'| / e Jo T ealampeddng ot )60 — o) dt

,|/ ”)/ +(=) o= Ji oala—pv.v)dp

_ff (z_wv)o' (z—sv—pv',v')d,

xe” Jo o PP (3 — s, v, 0)6(z — o' — sv — tv') dt ds
In(z') -v'|"  fs € L®°(T—; W), if (1.2) holds,

(min{7,A}) " n(z’) - v'| "' fs € L®(T_; W), if (1.3) holds.

By (3.18) the so constructed solution f(z,v,z',v') is the distribution kernel of
the solution operator ¢ + ¢ of (3.2). In order to find the distribution kernel
a(z,v,z',v") ((z,v) € T4, (z',v") € T'_) of the albedo operator A4, it is enough to
set

a(z,v,z',v") := f(z,v,2',0")|(z,0)er,, (2',v")€Tl_.
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Then Theorem 3.1 yields the following.

Theorem 3.2. Assume that (0,,k) is an admissible pair and that either (1.2) or
(1.3) holds. Then the distribution kernel a(z,v,z',v") of A satisfies o = a; + as + a3
with

T_(z,v)
a = e fo oa(z Pv,v)dp&{m_f_(z,v)v}(xl)é(v —'UI)

T—(z,v) s r_(z—sv,v')
/ e fo aa(z—pv,v)dpe—f gq(z—sv—pv',v')dp
0

Qg = 0

Xk(l‘ - SU’U,7U)6{:B-—5U-—T_ (z—sv,u’)v'}(xl) ds
In(z') - v'|"taz € L®(T—; L*(T4,d€)), if (1.2) holds and
min{7(z',v"), A} "Hn(z') - v'| tag € L®°(T_; L} (T4, d€)), if (1.3) holds.

Proof. ~Formally a; = fjl(zv)er,> § = 1,2,3. To show that a; are well de-
fined, pick ¢ € C(I'-) as before and consider p; = [ fio_du(z')dv', j =1,2,3.
By 3.4), ¢1 = Jo_ = E(z,v)p_(x — 7—(x,v)v,v). This proves the formula for o,
above. Next, from (3.6) we get similarly o = [asp_du(z')dv’ with a, as stated
above. Finally, combining Theorem 3.1 with Theorem 2.1 and Theorem 2.2, we obtain
the properties stated for the trace a3 of f3(-,-,z',v') on I';. O

ReMARK.  The first two terms oy, as above are written as distributions with re-
spect to the variables (z',v') € I'_ with (z,v) € 'y considered as parameters (more
precisely as linear functionals on C*(I'_; L'(T;,d¢))). One can also write them
down as distributions with respect to (z,v) € I'y with (z/,v') € I'_ considered as
parameters:

[n(z') - V| — [=C 5, (a—pv,v)d
o = n(w) -V € j;) ’ (z i v) p6{31+7‘+(1’»’0')v’}(x)6(v - UI)’
ap = In(z') - v'| /‘r+(:c v - foq(z’“"l'")aa(w—pv,v)dpe— fO' oa(z+pv' v')dp
n(z)-v Jo
Xk(x + t'U’, ’U’, U)6{1/+tvl+.’.+(zl+tv17v)}(x) dt.

4. The inverse problem

Theorem 3.2 suggests the following way for solving (IP). Assume that we are giv-
en the albedo operator 4, corresponding to some admissible pair (o,, k), satisfying ei-
ther (1.2) or (1.3). Then we also know the distribution a(z,v,z’,v"). By Theorem 3.2,
a = aj + as + az. Here a; is a delta-type distribution supported on a (2n — 1)-
dimensional variety in I'y x I'_. Next, a, is also a delta-type distribution (provided
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that n > 3) supported on a 3n-dimensional variety in I'y x I'_, while a3 is a (lo-
cally L') function on the (4n — 2)-dimensional I'; x I'_. Notice that if n = 2, then
as is a function as well. Therefore, if n > 3, one can distinguish between a; + as
and agz. Moreover, since a; and a, have different degrees of singularities, one can re-
cover a; and as. Now, if o0, = 04(z,|v|), then a; determines the X-ray transform
J oa(z+ sw,|v])ds of o, for all z, [v| and w in an open subset of S? (for all w € S?
if V is spherically symmetric). This determines uniquely o, (see e.g. [8]). Next, once
we know o,, from as we can recover k. If n = 2, then we can recover a; and there-
fore o,, but we cannot (at least using those arguments) distinguish between ay and a3
which are both functions and therefore our approach does not work for reconstructing
k in two dimensions. Below we make those arguments precise and moreover we find
explicit formulas (see also [4] for the time-dependent case) for o,, k in terms of a.
Assume that ¢ € C°(R™), 0 < p <1, p(0) =1, [p(z)dz = 1. Given € > 0, set

be(z,0,2'0") = @ (:I:—x’ —T_(z,v)> o (v—v’) .

3 3

Proposition 4.1. If either (1.2) or (1.3) holds, then

@.1) lim [ a(z,v,7',0")d(z,v,2',v")du(z’) dv’' = e~ fof_(m) oa(e—pvv)dp

e=0 Jp_
where the integral is to be considered in distribution sense and the limit holds in
Llloc(F+a dé‘)

Proof. It should be noted first that 7_(z,v) is smooth except on a closed subset
of Iy of measure zero, where it may have jumps. Nevertheless, the formal integral
above is well-defined as will become clear from the proof.

It is easy to see that the limit (4.1) is trivially satisfied with a replaced by «;.
We will show below that if we replace a by as and ag, respectively, then the limit
in (4.1) vanishes considered in L' (T'y N {|v] < M},d¢) for any M > 0. To this end,
choose 0 < x € C§°(V). Then

42 0< /F / as(z, 0,7, 0')ée (2,0, 7', ' )x(v) dp(a')dv' € (z,v)
e

7—(z,v) !
/r /V/o w(v Ev > k(z — sv,v',v)x(v) ds dv' d¢(z,v)

)
/ / go(v v ) k(z,v',v)x(v) dv' dz dv
xxvJv €

/ k(.o v) dz dv’ dv

€

-0, ase—0,

IN

IA

IN
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Here W, = {(z,v',v) € X x V. xV; v € suppx, |v—v'| < ce} with ¢ > 0 depending
on ¢. Since x(v)k(z,v',v) belongs to L}(X x V xV) and meas(W,) — 0, as € — 0,
we get that the limit in (4.2) is zero, as stated.

Finally, assume that (1.2) holds. Then

(4.3) /
Ty

< / In(@') - o' as (@, v, ', o) x(v) dE (&', v') dé (2, v)

€

— 0, ase—0,

/ a3(z,v, 7', 0") e (2, v, 7', o' x (v) dp(’)dv' | de (, v)

where E, = {(z,v,z',v") € T xT'_; v € suppx, |v —v'| < ce}. Since every bound-
ed function on I'y, vanishing for large |v|, belongs to L!(T';,d¢), by Theorem 3.2
we conclude that the integrand above belongs to L'(I'y x I'_;dé(x,v)dé(z’,v')). The
limit in (4.3) is zero as stated, because meas(E;) — 0, as ¢ — 0. Combining (4.2)
and (4.3) we complete the proof in the case where (1.2) holds. The proof in the case
(1.3) is similar. O

Next, denote by m, . (z) the projection of z onto the plane spanned by v, v’ pro-
vided that v and v’ are linearly independent. Pick a vector m(v,v’) # 0 in span{v,v'},
such that m-v' = 0, for example, m(v,v') = (v-v'/|v'|?)v' —v. Choose ¢; € C§°(R?!)
with 0 < ¢ < 1, [ 1(s)ds = 1. Consider the function

1 z’ - m(v, v’ T — Ty (2
ey ,ex (2,0, 0') = a‘pl( yox )<p( - )>

e1v - m(v,v’) €9

Denote by D C V2 := V x V the variety D = {(v,v') € V?; v and v’ are linearly
dependent}.

Proposition 4.2. Assume that n > 3 and either (1.2) or (1.3) holds. Then for
r € X we have

. . ! !
4.9 Elln_n}0 612190 ox a(z + 74 (z,v)v,v,2',v")

X Gerer (2" =z + 7 (z,0')0',v,0') du(a’)

e j:;-_(z,v') %(z_pv’v,)dpe_ for+(=,u) a"(zﬂw’”)d”k(x,v’,v),
where the limit holds in L _(X x (V2 \ D)).
Proof.  Denote
E(s,z,0,0') = & J, oalz=pv,0)dp — fo"("”'”')aa(z—sv-pu',v')dp
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(see the formula for ay in Theorem 3.2). Since a; = 0 for v # v/, we get that (4.4)
vanishes with o replaced by ;. Next, for a; we get

/ az(z + 74 (z,0)0,0,2",0") e, o, (2" — T + 7 (z,0" )0, v,0") du(z")
8x

(z,v)
= / E(s,z + 14 (z,v)v,v,v")k(z + (74 (z,v) — s)v,v",v)
0

x¢€1»€2 ([T+(‘T7U) - S]’U - [T— (117 + T+(IL‘,’U)’U - S’U,‘Ul) —T- (.'L‘, U')]’UI,’U, ’U') ds

(@) _
= / —¥1 <-Ti(£’—v)-—-—-—s) E(s,z + 74 (z,v)v,v,v')
0

€1 &
xk(z + (14 (z,v) — s)v,v',v) ds.

Since the function s — E(s,z + 74(z,v)v,v,0")k(z + (74(z,v) — s)v,v',v) €
L}, .(X x V x V) is continuous, we get that the limit above as e — 0 exists and
equals E(7y(z,v),z + 74 (z,v)v,v,v")k(z,v’',v) which is exactly the right-hand side
of (4.4).

In order to complete the proof, we have to show that (4.4) vanishes for a = as.

Fix x € C§°(X x (VZ\ D)).

4.5) / / l%"l((x —x)~m)‘p<w — T — Ty (T —z))
XxvJr_ €1 g1v-m P

03(1' + 7'+($, ’U)’U, v, .'Z?’, vl)

x(z,v,v") dé(z’,v") dx dv

In(z") - v'|
1 az(z + 74 (z,v)v,v,2',0") ,
< = ACat g halb] z,v,v") dz dvdé(z’,v'),
=g Fiy In(:z:’) ] x( ) £( )

where F,, = {(z,v,z',v") € X x VxI'_; (z,v,v') € suppx, |z—z'—7y v (z—2')| <
ce2}. By Theorem 3.2 and Lemma 2.1,

as(z + 74 (z,v)v,v,2',0")

@) o) L e x )

and clearly, 0 < 7(z,v) < C < oo for (z,v,v') € supp x. Therefore, the integrand in
(4.5) is an L'-function. On the other hand, meas (F;,) — 0, as €, — 0, because F,, is
an eo-small neighborhood of a variety of dimension 3n + 1 in the 4n — 1 dimensional
X x V x I'_. Consequently, (4.5) tends to zero, as €5 — 0. O
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