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1. Introduction

Let X C Rn, n > 2 be an open bounded set with C1 boundary dX and let us
assume also that V C Rn is open. Denote Γ± = {(x,υ) G dX x V; ±n(x) v > 0},
where n(x) is the outer normal to dX at x G dX. Let us denote by / the solution
(if exists) to the following boundary value problem for the stationary linear transport
(Boltzmann) equation:

niΛ \-υ'Vχf{x,v)-σa(x,v)f{x,v)+ ί k(x,υf ,v)f(x,v')dv' =0 i n l x F ,
U -U \ Jv

{ /|r_=/-
Here /_ is a given function on Γ_. We assume that the pair (σα,A;) is admissible,
i.e.
(i) 0<σa G L ° ° ( I x F ) ,
(ii) 0 < k(x,υ',-) G Lι(V) for a.e. (χ,υ') G X x V and σp(x,υ') :=

/ v jfeίa:,!;',^)^ belongs to L°°(X x F).
If the direct problem (1.1) is solvable, one can define the following albedo opera-

tor

that maps the incoming flux on the boundary into the outgoing one. We are interested
in the following inverse problem:

(IP) Does the albedo operator A determine uniquely the coefficients σa{x,v),
k(x,vf,υ)Ί

There are a lot of papers devoted to (IP) both for the stationary transport equa-
tion (1.1) and for the time-dependent one (see e.g. [1], [6], [9], [10], [11], [12], [14]).
In those papers however there are some restrictive assumptions on the coefficients
k(x,v',v) and σa, for example k is assumed to be independent of some variables,
small enough etc. To our best knowledge the general case has been open until the au-
thors considered in [4] the inverse problem (IP) for the time-dependent transport equa-
tion (dt-T)u = 0, where T is the differential operator appearing in the left hand side
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of the first equation in (1.1). It is shown [4] that the (time-dependent) albedo operator

does determine uniquely σa and k provided that σa — σa{x, \v\). It is easy to see that

some restriction on σa is unavoidable, because there is a simple example showing that

in the general case the uniqueness may fail (see below). In [4] it is also studied the

inverse scattering problem for the time-dependent transport equation.

In the stationary case that we consider in this paper we have less data than in [4],

because the time variable is missing. Next, the same objection to the uniqueness as

in the time-dependent case exists. Namely, let p = p(x,v) be a continuous function

such that for (x,v) G X x V we have (x + p(x, υ)υ, υ) € X x V as well and define
σa(x,v) = σa(x + p(x,υ)v,v). Then the pairs (σα,0) and (σα,0) (i.e. k = k — 0)

produce the same albedo operator, while σa φ σa in general. In order to avoid this,

we will assume further that σa = σα(x, \v\).

Let us introduce some notations. For υ φ 0, set τ±(x,υ) = min{t > 0; x ±

tυ e dX), r = τ_ -f τ+. Consider the following two measures on Γ±: dξ = \n(x)

υ\dμ(x)dυ and dξ = mm{τ(x, v),λ}\n(x) v\dμ(x)dv, where dμ(x) is the Lebesgue

measure on dX, λ > 0 is an arbitrary constant. Using some trace theorems [2], [3]

we can show that A : ^(Γ^.dξ) -> Lx(Γ+,rfξ) is a bounded operator if (1.2) holds

and A : ^ ( Γ ^ d f ) -> L 1 (Γ + ,df) is bounded if (1.3) holds (see also [7]).

In general, the direct problem (1.1) may not be uniquely solvable, so we consider

in this work two physically important situations where (1.1) is well posed. First we

will assume that

(1.2) | |rσα | |Loc < oo, | |rσp | |Loc < o o and | |rσp | |Loc < 1.

This condition in particular guarantees that the dynamics corresponding to the time-

dependent Boltzmann equation is subcritical [13], i.e. the "energy" (the L1-norm of

the solution) is uniformly bounded for t > 0. Note that (1.2) holds if in particular

H M ^ α l U 0 0 < °°» diam(X)|||ϊ;|~1σp||L°° < 1. The second situation we will consider

is when [7]

(1.3) σa(x, v) - σp(x, v) > v > 0 for a.e. (x, v) e X x V

with some v > 0. In other words, (1.3) says that the absorption rate is greater than

the production rate. This also implies that the corresponding dynamics is subcritical.

The main result of this paper is the following.

Theorem 1.1. Let (σα,fc), (σα,fc) be two admissible pairs with σa — σa(x, \υ\),

σa = σa(x,\v\) and assume that they satisfy either (1.2) or (1.3). Assume that the

corresponding albedo operators A and A coincide. Then

(a) if n>3, then σa — σaf k = k\

(b) if n = 2, then σa = σα.

Note that our proof is constructive and we obtain explicit formulas for σa and k
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in terms of the distribution kernel a of the albedo operator (see Proposition 4.1 and

Proposition 4.2). We study the first two terms in the singular decomposition of α and

show in Theorem 3.2 that they are delta functions supported on varieties of different

dimension (if n > 3), while the remainder is a function. We show that the first singular

term depends on σa only and σa can be recovered from it. Next, knowing σα, one

can recover k from the second term. We followed similar approach in [4] in the time-

dependent case. In the two-dimensional case the second term is not a delta function,

but a locally L1-function and cannot be distinguished from the remainder. That is why

our approach does not work for recovering k in two dimensions. Notice that the idea

of using singular solutions of the transport equation has been used also in [10], [14].

The results we obtain are not restricted to the conditions (1.2) or (1.3) only. If for

example inf{|t>|; v G V} > 0 and if the direct problem Tf — g, f\γ_ — 0 has unique

solution / G L\OC(X x V) for any g e LX(X xV), then Theorem 1.1 still holds. The-

orem 1.1 holds in the presence of a (non-singular) source term as well, because the

flux generated by such a source term is not singular and cannot affect the leading sin-

gularities of the kernel of A. We would like to mention also that a similar result can

be obtained if V = S71'1, n > 3.

The structure of the paper is the following. In section 2. we prove some trace

theorems of the type obtained in [2], [3], solve the direct problem and define the

albedo operator in suitable L 1 spaces. In section 3. we construct a special solution

/ = f{x,v,x',v') to (1.1) with /_ = δ{χl}(x)δ{v - υ'), where (xι>') G Γ_ are
parameters and we study the singularities of /. With the aid of / we obtain a singular

decomposition of the distribution kernel a of A. Finally, in section 4. we show how

to recover explicitly σa, k from a.

The results of this paper have been announced in [5].

2. Preliminaries

We begin this section with a simple lemma.

Lemma 2.1. Assume that f G Lι(X x V). Then

r r rr±{χ',v)

I f(x,υ)dxdv= / / f{x' ±tv,υ)dtdξ(x\v).
JxxV JΓT Jo

Proof. The proof follows by performing a change of variables X 3 x y-+

(x',t) G Γ τx(0,τ±(x,v)) given by the formula x' — xψτT(x,v)v, t = τT(x,υ). This
change is smooth except on a closed set of measure zero and dx = \n{x')'υ\dμ(x')dt.

•
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Let us introduce some new notations. Denote

Tof=-υ-Vxf, A1f = -σaf, A2f = I k(x,v',v)f(x,v')dv',

Jv

Notice that if (σa,k) is admissible (which we will always assume), then A\ and

A2 are bounded operators in Lι(X xV). All norms throughout this paper are in

Lι{X x V) except otherwise stated.

We are going to prove next a trace theorem in the spirit of [2], [3].

Theorem 2.1. We have

for any function f(x, υ), (x, v) G X x V for which the right-hand side above is well-

defined.

Proof. Consider first a function g e L1([0,α]), such that g* G L1([0, α]), where

a > 0. Then

= - / g'(x)
Jo

)dx
Jo

therefore

W)\ < Γ \g'{χ)\ dx + \g(t)\ = y\\ + \g(t)\ \ft e [0,a].
Jo

Here || || is the norm in L1([0,α]). After integrating that inequality we get

1
(2.2) lfl()| f

a Jo

Now, let f(x,υ) be such that Tof eLλ(X x V) and τ~ιf G Lι(X x F). Set

g(t,x',υ) = f(x' + ίVjt;), ( χ » G Γ_, 0 < t < τ+{x',v).

Since Γo/ € ^ ( I x V), combining Fubini's theorem and Lemma 2.1, we get that
for a.e. (x',υ) G Γ_, the function t \-¥ dtg = -(Tof)(xr + tυ,υ) belongs to

Lι(Q,τ+(x\υ)) and so does g(t,x',υ). Next, ^(O,^,^) = f(x',υ) = /|r_ We there-

fore get from (2.2)

\f(*',v)\ < Γ
Joo
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If we now integrate over Γ_ with respect to dξ(xf,v) and apply Lemma 2.1 to the

right-hand side, we complete the proof of the theorem for / |r_ The proof for f\r+

is similar. D

Let us set

W = {/; Tof G L\X x V), r" 1 / G Lι(X x V)},

Then Theorem 2.1 says that taking the trace / •-> / | r ± is a continuous operator from

W into L1(Γ±,dξ). As w e w ^ l s e e below, the inequality (2.1) cannot be improved,

for some functions it turns into equality.

Given /_ G L 1(Γ_,d^), define J / _ as the following prolongation of /_ inside

X xV:

σa(x — sv,v)ds r / / \ \ / \

~j- — o αV yJ f-(x-τ-(x,υ)υ,υ), (x,v)
eXxV.

Note that J/_ is defined so that 7\ J/_ = 0, J/_|r_ = /-» therefore J is the solu-

tion operator of the problem 7\/ = 0, /|r_ = /-•

Proposition 2.1. Assume that ||rσα||χ,~ < oo. Then

with C — 1 + llTααllz,00- If σa = 0, ΓΛ̂ n w^ have equality above (and C = 1).

Proof. Note first that

l|J/-llvv < Ik"1 J/-|| + PxJ/.H < (1 + ||rσβ||L«) Ik"1 J/_||,

because T0Jf- = -A1Jf_. Next, by Lemma 2.1,

(2.3) / IT 1 J / - | dxdυ <
JxxV Jx

-LI
IXxV JXxV

x ,v)

which completes the proof. D
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We are going to use Theorem 2.1 and Proposition 2.1 in the case where (1.2)

holds. Then we will work with functions belonging to L1(Γ±,dξ) on the boundary

and to W inside X x V. In the case where (1.3) holds, we will work with boundary

data in L1(T±,dξ) and then we will need the following trace theorem due to Cessenat

[2], [3]. Recall that dξ — mm{λ,τ(x,v)}dξ, λ > 0 is an arbitrary fixed constant.

Theorem 2.2 ([2], [3]). For any f e LX(X xV) such that Tof e Lι{X x V)

we have

We refer to [2], [3] for a proof and for other results. The theorem follows also

from Theorem 2.1 by setting / = min{λ,τ}<7.

Denote

w = {/; / e Lι(x x V), τof e L
ι{x x V)},

ll/llvv = IIΓo/ll +

In the case where (1.3) holds, we have the following version of Proposition 2.1.

Proposition 2.2. For any /_ e L^Γ- jdf)

where C = (1 4- | |σα | |Loo)max{l, (^λ)" 1}.

Proof. We obtain as before that ||J/-||yv; < (1 + I K | | L ~ ) | | * / / - | | . Next,

/ \Jf-\dxdv< [ e-"r-(χ>v)\f-(x-τ-(x,v)υ,υ)\dxdυ
XxV JXxV

r rτ+(x',v)
= / / e-*\f-[x',v)\dtdti

Jΐ- Jo

< f min{r+(s' ,) I/,} -

D

We are going now to reduce the boundary value problem (1.1) to an integral equa-

tion using standard arguments. Equation (1.1) can be rewritten as (ϊ\ + A2)f = 0. Let

us integrate the identity exp{- f*σa(x — sv,υ)ds}[(Tι +A2)f](x-tυ,υ) = 0 with re-

spect to t from 0 to τ-(x,υ) and take into account the boundary condition / | Γ _ = /_.
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We thus get

(2.4) (/ + # ) / = J/_,

where / stands for the identity and K is the following integral operator

(2.5) Kf =-Γ"
Introduce the following unbounded operators:

= {/ G LX(X x V); Γi/ G L x ( * x V), /|Γ_ = 0},
Ύf =Tf, D(Ύ) ={feL1(XxV);TfeL1(XxV),f\Γ_=O}.

Notice that formally K = Ύ^ιA2 and for T^1 we have

T—1 P I —I σa(x—sυ,v)ds /./ ± \ j ,

i / = — / e Jo αv ' y f(x — tv,v)dt.
Jo

In the next two propositions we will show in particular that T^1 is well defined.

Proposition 2.3. Assume (1.2).
(a) r " 1 ! ^ 1 , r~ιΎ~ι and A2τ are bounded operators in Lι(X x V) and therefore

K — T ^ 1 ^ is a bounded operator in Lλ(X x V; τ~1dxdυ). Moreover, the
operator norm of K is not greater than \\TOP\\L°° < 1 and therefore (I + K)~ι

exists in this space.
(b) The integral equation (2.4) and therefore the boundary value problem (1.1) are

uniquely solvable for any /_ G L1(Γ_,dξ) and then f G W.
(c) The albedo operator A is a bounded map A : Lι{T-,dξ) -¥ Lι(Y+,dξ).

Proof. Clearly,

llr-^ΓVll < 11/11, V/GL^XxF).

Next, (1.2) implies

where r stands for the operator of multiplication by τ(x,υ). Therefore, we have K
ΎϊιA2 and

Hr-^rMa/H < ||Λ2/|| < llrσplUoollr-1/!!,
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which proves (a). Since ||rσp||L«> < 1, the operator / -f K is invertible in

Lι(X x V; τ~λdxdv) and (2.4) has unique solution

(2.6) f = {I + K)~ιJf-.

By (2.4) we have for /

(2.7) Hr-Vll < (1 - \\τσp\\L~)-1 \\r~ι J/_||

< (1 - Ik^lUoo)"1 | |/-|ki (r_,do

Further, since Tf - 0, we deduce that Tof - -{Aλ + A2)f and therefore

(2.8) ||Γo/|| < (||rσα||Loo + ||rσp||Loo) \\τ'ιf\\.

Then by (2.7) and (2.8) we deduce that / 6 W and by Theorem 2.1 we conclude that

/ | r+ = Λf- G Lι(Γ+,dξ). Moreover, the operator norm of A does not exceed (1 -f

Ik^olU00 + IIT^PIIL 0 0) (1 - HrσpIlL^)"1. We finally note that T is invertible, because

we can set T 1 = (I + K)'1^1 : Lι{X x V) -> L\X x V; T~ldxdv). D

Proposition 2.4. Assume (1.3). Then

(a) Ky Ύϊι and T " 1 are bounded operators in Lλ(X x V) and K = T ^ 1 A2. Fur-

then I + K is invertible and (I + K)~ι = I -Ύ~1A2.

(b) The integral equation (2.4) and therefore the boundary value problem (1.1) are

uniquely solvable for any /_ £ Z/1(Γ_,dξ) and then f G VV.

(c) A is a bounded map A : LX(Γ_, dξ) -> Lι{Y+, dξ).

Proof. Since exp{-/0* σ α (z - sv,v)ds} < e~v\ \\^~{λ\\c^{x^v)) < v~l-

The boundedness of T " 1 is proven in [7] under the assumption (1.3). Next, it is

easy to check directly that (7 + K)(I - T~1A2) = (I - T " 1 A 2 ) ( / + K) = I,

therefore (I + K)~ι = I - Ύ~1A2. This proves (a). Observe next that if /_ G

L^Γ-jdζ) , then by Proposition 2.4 J/_ G VV and the solution / to (2.4) is giv-

en by f = (I - T~xA2)Jf- G Lι{X x V). Moreover, since Tf = 0, we have

Tof = -(Ax + A2)f G Lι{X x F ) . Therefore Tof G >V and by Theorem 2.2,

ξ). D

3. The special solution

In this section we study the distribution kernel of A. To this end first we solve

(1.1) with

/_ =δ{χf}(x)δ(v-v'),
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where (x',υ') G Γ_ are regarded as parameters and ί{x'} is a distribution on dX de-

fined by (δ{x>y,φ) = f δ{x,}(x)φ(x)dμ(x) = φ(x'). On the other hand, we will denote

by δ the ordinary Dirac delta function in Rn. The integral above is to be considered

in distribution sense. Let us denote by f{x,v,x',v') the solution (in distribution sense)

of

( 3 JJ j - J - - in X x V,ί Tf = 0 in

l/lr_ =/_.

Since we assume that the boundary is C1-smooth and not necessarily C°°-smooth,

we have to work in fact with distributions which are linear functional on CQ. All

singular distributions appearing in the analysis of / and the kernel of Λ are in fact

delta-type distributions supported on some hypersurfaces and can be regarded also as

measures.

To solve (3.1), pick φ_ G C Q ( Γ _ ) and denote by φ the solution of

(3.2) ,

Assume that either (1.2) or (1.3) holds. Then, according to Proposition 2.3 and Propo-

sition 2.4, equation (3.2) has unique solution φ — (I -f K)~ιJφ-, which also admits

the representation

φ = Jφ- - KJφ- + (/ + K)~ιK2Jφ-.

Since (/ + K)~lT^1 = T \ if = T ϊ 1 ^ , we get (/ + K)-ιK2Jφ- = (I +

/ O ^ T ϊ ^ A Γ J V - =T-1Λ2-K\fy>_. Therefore,

(3.3) y> = J<̂ >_ - ATJ<̂ 9_ + T~1A2KJφ-.

All terms in (3.3) belong to Lι(X x V; τ~ιdxdv) or LX(X x V), respectively. We

proceed with analysis of each term in the right-hand side of (3.3).

For Jφ__ we have

Jφ— = E(x, v)ψ— (x — T- (x, v)v, v),

f rτ-(χ,v) ϊ

— / σa(x — sv,v)ds > .
Choose ψ e CQ°(X x V) and consider

(Jφ-.,ψ) = / (Jφ-)ψ dx dv
JXxV

= I E(x,υ)φ-(x — τ_(a;,υ)υ,v)'φ(x1v) dxdυ.
JXxV
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By Lemma 2.1,

{Jφ-,ψ) = / / E(x'+ tv,υ)φ-(x',v)ψ(x'+tυ,υ)dtdξ(x',v)
Jr. Jo

= I... I E(x, v)φ- (x', υ')φ(x, υ)δ(x - x' - tυ)δ(υ - v1) dt dξ(x', vf) dx dv,

where the last integral is to be considered in the sense of distributions. Therefore,

r ( rτ+(χ',v') \
Jφ- = I E(x, v)δ(x - x1 - tv)δ(υ - v') dt

Jr. \Jo J

x\v' 'n(x')\φ_-(x',υ')dμ{x')dv'.

Thus,

(3.4) Jψ-= I Mx^x'.υ^φ-ix'^dμix^dυ'
Jr-

with

pτ+(x',v') pτ_(χ,v)
/O C\ £ ί I l\ 1 / ί l\\ I — I σa\x — SV,V)aS

(3.5) fi(x,υ,x ,v') = \υ - n(x')\ / e Jo oV ' ;

xδ(x - x' - tυ)δ{v - v') dt.

In other words, f\ = J/_ is given by (3.5).

Consider further the second term —KJψ- in the right-hand side of (3.3).

(3.6) -KJφ_ = / e-Joσa(x~pv'v)dp

Jo Jv
xk(x — sv,υ'1υ)(Jφ-)(x — sv,v')dv' ds

_ I I e~ Jo σa(x-pv,v)dp

Jo Jv
xk(x — sυ,υ',υ)E(x - sv,v')

xψ-(x — sv — T-(x — sv,v')v',v') dv' ds.

Arguing as above, we get

f II II II

where

/o o\ i i / /\ /i I f — / σα(x— pv,v)dp

(3.8) / 2 = r a ( a ? ) ' t > / / e J o

pτ-{x,v) rτ+

2 = \n(x) υ\ /
Jo Jo
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J*r_(x-av,i/) , ,

0 σa(x-sv-pv ,v )dp

xk(x — sv,v',v)δ(x - xf - sv - tv')dtds.

And finally, let us consider the last term in (3.3). We first start with A2KJψ-.

- = f ί Γ~X

Jv Jv Jo
(3.9) A2KJφ = f ί Γ e-f; "*(*-*>" J')dP

xE(x - sv", v")k(x, v", υ)k{x - sv", v', v")

xφ_{x - sv" - τ-{x - sv", v')v',v')dsdv' dv".

We claim that (3.9) is absolutely convergent integral provided that (1.2) or (1.3) holds.

Indeed, assume that (1.2) holds. Then by Proposition 2.3 and (2.4),

/ \A2KJφ-\dxdυ = \\A2KJφ-\\Li{XxV)

JXxV

lJφ-\

Next, in the case where (1.3) holds, by Proposition 2.2 and Proposition 2.4,

/ \A2KJφ-\dxdv = \\A2KJφ-\\Li(χxV)

JXxV

< \\A2\\c(LHXxV))\\K\\c{LHXxV))\\J<P-\\

<

In conclusion, we showed that (A2KJφ-)(x, v) is absolutely integrable in X x V

and therefore by the Fubini theorem the integral (3.9) is absolutely convergent for a.e.

(x,v) £ X x V. This proves our claim.

Let us extend all functions depending on v, v\ v" by zero outside V. Change the

order of integration in (3.9) from ds dv' dv" to dv" dv' ds and perform first the change

of variables y — x — sv", dv" = s~ndy in (3.9) and next, using Lemma 2.1 let us

change the variables again x' = y — τ-(y,v')v', t = τ_(y,v'). Then (x',v') G Γ_ and

dydv' = dtdξ(x',v'). We thus get

A2KJφ- = e-Jo

σ«(χ-pv ' v )dpE{x' + tυ\υ")k(x,υ",υ)
Jo JΓ- JO

xk(x' + tv1\vι\v")χφ_(x'\v')s-n dtdξ(x'\v') ds,

with v" — (x - x' - tv')/s. Here \ — 1 if the line segment \x,x' + tv'] belongs to

X and x — 0 otherwise. The obtained integral is also absolutely convergent despite

the singularity s~n appearing in it. By the Fubini theorem we can change the order of
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integration dtdξ(x',v')ds -» dtdsdξ(x',v') and after the first two integrations with

respect to t and s we obtain a function of (x',v') which is integrable with values in

LX(RJ x Vυ). In other words,

(3.10) A2KJφ_= [ j3(x,υ,x',υ')φ-(x',υ')dμ(x')dυ',

where

7 i / /\ /i / I —I σa{x—pv ,v )α» 7-,/ I , , / tt\

fz = \n(x)-v\ / / e Jo αV F } yE(x +tυ ,υ )
Jo Jo

xk(x, υ", v)k(x' + it/, t/, v")χβ" n * ds,

where υ" = (x — a;7 — tυ')/s. Moreover, the arguments above imply that the func-

tion Γ_ 3 (x',υ') -> \n(x') - v'\~lh{x,v,x',υ')φ.{x',v') G LX(X x V) belongs

to L ^ Γ - , ^ ) for any φ_ e Lλ(Γ-,dξ) provided that (1.2) holds and, respectively,

( m i n j ^ λ } ) - 1 ! ^ ' ) V l " 1 ^ - belongs to L ^ Γ - , ^ ) for any φ_ G Lι(T-,dl) pro-

vided that (1.3) holds. Therefore,

π 1 Π Hx')-v'\-ι~h e L°°(Γ_; L\XX x K)), if (1.2) holds,
l ' J (min{τ,λ})-1|n(a;/) υ'\-χh e i°°(Γ_; Lx(Xχ x Vυ)), if (1.3) holds.

We are ready now to estimate the term Ύ~1A2KJψ- appearing in (3.3). By

(3.10),

(3.12) T-1A2KJφ..= [ Mx,v,x',υ')φ_(x',υ')dμ(x')dv',

where

(3.13) f3:=Ύ-λf3.

Here / 3 = fs(x,v,x\vf) and in the formula above T " 1 acts with respect to (x,υ)

and (x',v') € Γ_ are considered as parameters. Assume first that (1.2) holds. Then by

Proposition 2.3 T " 1 : Lι(X x V) -> Lι{X x V; τ~ιdxdv) is bounded and we get

immediately from (3.11) that

(3.14) \n(x') - v'\-λfz G L°°(Γ_; Lι(Xx x Vυ; r~ldxdv)) when (1.2) holds.

Moreover, since Tof3 - -{A\ + A2)f3 and Aγ -f A2 : Lλ(X x V; τ~1dxdv) ->

Lι(X x V) is bounded, we also get

(3.15) \n{x') t/I^Γo/s € ̂ °°(Γ_; L 1 ^ x K)) when (1.2) holds.
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Let us assume next that (1.3) holds. Then by Proposition 2.4, T " 1 is bounded in

LX{X x V) and hence by (3.11),

(3.16) (mm{τ,\})-ι\n(x')-v'\-ιh G £°°(Γ_; Lι{Xx x Vυ)) when (1.3) holds.

We also get as above that

(3.17) (min{τ, X})-1^') - v'l^Tofs G L°°(Γ_; Lι{Xx x Vυ)) when (1.3) holds.

Combining (3.3), (3.4), (3.7) and (3.12), we see that the solution to (3.2) is given

by

(3.18) φ(x,v)= [ f(x,υ,x',υ')φ-{x',υ')dμ(x')dυ',

where the integral is to be considered in distribution sense and / is given by

with fl9 f2 defined by (3.5), (3.8) and / 3 satisfying (3.14), (3.15) (respectively (3.16),

(3.17)). It is also clear that / solves (3.1) in distribution sense. Let us formulate this

in the following theorem.

Theorem 3.1. Assume that (σa,k) is admissible and either (1.2) or (1.3) holds.

Then for the solution f(x, υ, x1, v') of (3.1) we have f = f\ + f2 + /β, where

( ' *\
i = \n(x) 'V\ e Jo v ^ ' ^ό(x — x — tυ)ό{v - v )dt

Jo
τ+(x',v')

/

T-(x,v) rT+

/ I
/

Jo

— I σa(x—pv,v)dp

V / j Jo α\ " ' ' 1c( ΠΓ Q9) 1) ΊJiΠi ΠΓ T* Q?) /77 I fit Π Q

\n(x') • v'\-χf3 e L°°(Γ_; W), «/ (1.2) holds,

{mm{τ,\})-ι\n{x')-υ'\-ιf3 € L°°(Γ_; VV), ι/(1.3) ΛoWί.

By (3.18) the so constructed solution f(x,v,x',υ') is the distribution kernel of

the solution operator φ_ ι-> φ of (3.2). In order to find the distribution kernel

a(x,v,x',v') ((x,i>) G Γ+, (x',v') G Γ_) of the albedo operator A, it is enough to

set

a{x,v,x',v') := f(x,v,xf,υf)\{x,v)eΓ+, {xf,υ') G Γ_.
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Then Theorem 3.1 yields the following.

Theorem 3.2. Assume that (σa,k) is an admissible pair and that either (1.2) or

(1.3) holds. Then the distribution kernel a(x,v,xf,v') of Λ satisfies a — OL\ -f a2 + c*3

with

— I ~ ' σa(x— pv,v)dp c / /\ r/ /\

aλ = e Jo a^ p ] pδ{x_τ_{XiV)v}(x')δ(v-v')
f s Γτ_(x-sv,v') , ,

I — / σa(x — pv,v)dp — I σa[χ — sυ—pv .v )dp

J

pT-{x,v

=

Jo

xk(x - sv,v',υ)δ{x__sv_τ_{x_sυy)υ,}{x')ds

\n(x') -v'\-laz G L°°(Γ_; L1(Γ+,df)), if (12) holds and
1 l } , (f (1.3)

Proof. Formally α, = /J | ( X , V )GΓ + » J — 1,2,3. To show that CXJ are well de-

fined, pick φ G C Q ( Γ _ ) as before and consider ψj = JΓ fjψ^dμ(x')dv', j = .1,2,3.

By (3.4), ψι = Jφ_ — E(x,v)ψ-(x — τ-(x,v)υ,v). This proves the formula for c*i

above. Next, from (3.6) we get similarly φ2 = Jα2φ-dμ(x')dv' with α2 as stated

above. Finally, combining Theorem 3.1 with Theorem 2.1 and Theorem 2.2, we obtain

the properties stated for the trace α 3 of / 3 ( , ,a:/, v') on Γ + . •

REMARK. The first two terms αi , α2 above are written as distributions with re-

spect to the variables (xf,v') G Γ_ with (x,υ) G Γ+ considered as parameters (more

precisely as linear functionals on C 1 (Γ_; L1(Γ_f_,d^))). One can also write them

down as distributions with respect to (x,v) G Γ+ with (xf,v') G Γ_ considered as

parameters:

\n(x')'V'\ _ Γ-(X'V)

 σα(χ-pVyv)dPs: f v χ / v
α i = n(x) υ P ί ) PW+(«Ά'}W ί(«- v)>

4. The inverse problem

Theorem 3.2 suggests the following way for solving (IP). Assume that we are giv-

en the albedo operator A, corresponding to some admissible pair (σα,k), satisfying ei-

ther (1.2) or (1.3). Then we also know the distribution α(x, v,x', v1). By Theorem 3.2,

α = OL\ + α2 + α 3 . Here α\ is a delta-type distribution supported on a (2n - 1)-

dimensional variety in Γ+ x Γ_. Next, α2 is also a delta-type distribution (provided
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that n > 3) supported on a 3n-dimensional variety in Γ+ x Γ_, while #3 is a (lo-

cally L1) function on the (An — 2)-dimensional Γ+ x Γ_. Notice that if n — 2, then

α 2 is a function as well. Therefore, if n > 3, one can distinguish between a\ -f- α 2

and α 3 . Moreover, since aγ and α 2 have different degrees of singularities, one can re-

cover αi and α 2 . Now, if σa = σα(x,|ι; |), then a\ determines the X-ray transform

f σa(x + sω, \v\)ds of σa for all x, \υ\ and ω in an open subset of S 2 (for all ω G S2

if V is spherically symmetric). This determines uniquely σa (see e.g. [8]). Next, once

we know σα, from α 2 we can recover k. If n — 2, then we can recover a.γ and there-

fore σα, but we cannot (at least using those arguments) distinguish between α 2 and α 3

which are both functions and therefore our approach does not work for reconstructing

k in two dimensions. Below we make those arguments precise and moreover we find

explicit formulas (see also [4] for the time-dependent case) for σα, k in terms of a.

Assume that φ G C£°(Rn), 0 < φ < 1, φ(0) = 1, / φ(x)dx = 1. Given ε > 0, set

, , fx-x'-τ-(x,υ)\ (v-v'\
φe(x,v,x',υ') = y? I —^ L\ ψ ( — J — )

Proposition 4.1. If either (1.2) or (1.3) holds,

(4.1) lim / a(x,v,x\v')φε(x,v,xf ,υ') dμ(x') dυ' = e~ fo~(X'V) σaiχ-pv>v)dp,

where the integral is to be considered in distribution sense and the limit holds in

Proof. It should be noted first that τ-(x,v) is smooth except on a closed subset

of Γ+ of measure zero, where it may have jumps. Nevertheless, the formal integral

above is well-defined as will become clear from the proof.

It is easy to see that the limit (4.1) is trivially satisfied with a replaced by a±.

We will show below that if we replace a by α 2 and 0:3, respectively, then the limit

in (4.1) vanishes considered in L 1(Γ+ Π {\v\ < M},dξ) for any M > 0. To this end,

choose 0 < x E C§°(V). Then

(4.2) 0 < ί ί a2(x,v,x',v')φε(x,υ,x',υ')χ(v)dμ(x')dv'dξ(x,v)
Jr+ JΓ-
r r rr-(χyv) /v_vι\

< I 11 φ[ 1 k(x — sv,v',v)x(v) dsdυ1 dξ(x,υ)
Jr+ Jv Jo \ ε )
r r /v_v'\

< I I φ[ I k(x,vf,υ)χ(v)dv'dxdv
JxxvJv \ ε /

χ(v)k(x, v', υ) dx dv' dv

0, as ε -* 0,
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Here Wε = {(x,υ',v) e X xV xV; v e suppx, |v —1/ | < cε} with c > 0 depending

on ψ. Since x(v)k(x,v',v) belongs to Lι{X x V. x V) and meas(Wε) -> 0, as ε -> 0,

we get that the limit in (4.2) is zero, as stated.

Finally, assume that (1.2) holds. Then

dξ{x,v)(4.3) J \J a3(x,υ,x'\v')φε(x,v,xι\υ')χ(υ)dμ(x')dυ'

< [ inix^'υT^six^x'^lx^dζix'
JEε

-> 0, as ε -¥ 0,

where Eε = {(x,υ,x',υ') G Γ + x Γ_; υG suppχ, \υ — v'\ < cε}. Since every bound-

ed function on Γ+, vanishing for large \υ\, belongs to L 1 (Γ + ,dξ), by Theorem 3.2

we conclude that the integrand above belongs to L 1 ( Γ + x Γ-.;dξ(x,υ)dξ(x',υt)). The

limit in (4.3) is zero as stated, because meas(£e) ->- 0, as ε -»• 0. Combining (4.2)

and (4.3) we complete the proof in the case where (1.2) holds. The proof in the case

(1.3) is similar. D

Next, denote by πυy (x) the projection of x onto the plane spanned by v9 v
1 pro-

vided that v and υf are linearly independent. Pick a vector m(v,υ') φ 0 in span{ι?,i/},

such that raV = 0, for example, m(υ,υ') = (υ-υ'/\υ'\2)v'~-υ. Choose φ1 e ^

with 0 < ψ\ < 1, /ψι{s)ds = 1. Consider the function

. / ; ,λ 1 fx'.m(υ,υ')\ fx'-πυ,V'(x')\

Denote by D C V2 := V x V the variety D = {(v,^) e V2; υ and τ/ are linearly

dependent}.

Proposition 4.2. Λ̂ ^Mm^ ί/iαί n > 3 αnJ ^/ί^r (1.2) or (1.3) to/ώ. 71teπ for

x e X we have

(4.4) lim lim
εi^0ε2-+0

x φεu£2 (x* - x + r_ (a:, v'Ji;', v, v ;) dμ(x')

__ 0 aa(x-Pv,v)dpe-Jo+
 σ^x+Pv

where the limit holds in L\OC{X x (V2 \ £>)).

Proof. Denote

E(s,x,v,υ') = e~So «.l*-r»>°)*Pe-/ -* 1-'"'" ' ' σ.
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(see the formula for a2 in Theorem 3.2). Since OL\ = 0 for v φ v\ we get that (4.4)

vanishes with a replaced by a\. Next, for α 2 we get

/ a2(x + τ+(x, υ)υ, v, x', v')</>εi,ε2 (a;' - x + τ~(a:, υ ' X , v, v1) dμ(x')
JdX

r(x,v)

E(s,x + r+(x,?;)i>,i>,i/)fc(:r 4- (τ+(x,t;) — s)υ,t/,i;)

(x,t;) - s]v - [r_(x + τ+(x,v)υ - sv,v') - T-(x,v'))v',υ,υ'j ds

rτ(χ,v) 1 / τ ( x υ ) - 8 \

= / —φil )E(8,x + τ+(x,υ)v,υ,υ')
Jo εi \ ει J
xk(x + (r+(rc,i;) — s)v,υ',v)ds.

Since the function s —>• E(s,x + T+(:E,Ϊ;)I;,Ϊ;, υ')k(x + (τ+(a:,υ) — s)υ,υ',v) G

L1

1

OC(X x V x V) is continuous, we get that the limit above as εi -» 0 exists and

equals ί l ( r + ( i , ί ; ) ,x + r+(a;,ij)ij,ίi,ϊ;')φ,ί;',i;) which is exactly the right-hand side

of (4.4).

In order to complete the proof, we have to show that (4.4) vanishes for a — 0:3.

FixχeCS°(Xx(V2\D)).

(4.5)
XxvJΓ-£i \ εiυ-m J \ ε 2

az(x + τ+{x,v)v,v,x' ,v') , , ,
x 1 / Λ ,. Lχ{x,υ,υ')d£{x\v')dxdv

1 f a3(x + τ+(x,v)υ,v,x',vf) , , ,
<— — • , Λ ,, ~x(x, v, υ') dx dv dξ(xf, ι/),

£IJF£2 \n{x')'v'\

where Fε2 = {(x,v,x',v') G X x FxΓ_; (x,v,v;) G suppχ? Ix-x '-π^^ίx-x ' ) ! <

cε2}. By Theorem 3.2 and Lemma 2.1,

71—7 ^ c L (I - , Li {ΛX X K^J;

and clearly, 0 < τ(x, υ) < C < 00 for (x,υ,υ') G suppχ» Therefore, the integrand in

(4.5) is an L1-function. On the other hand, meas (Fε2) —> 0, as ε 2 -^ 0, because F ε 2 is

an ε 2 -small neighborhood of a variety of dimension 3n + 1 in the 4n — 1 dimensional

I x F x L . Consequently, (4.5) tends to zero, as ε 2 —>• 0. D
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