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1. Introduction

Let be a compact Riemann surface, and

: = \ { 1 . . . } −→ R3

a conformal minimal immersion that has the ends at1 . . . ∈ . The end is
called acatenoidal endif the image of a neighborhood of by behaves asymp-
totic to some catenoid. When all the ends are catenoidal ends, we call , or its image

( ), an -end catenoid. Choose a loopγ surrounding from the left, and let~
be a conormal such that (γ ~ ) is positively oriented. Then theflux vectorat the end

is defined by the integral

ϕ :=
∫

γ

~

where is the line element of ( ). By the divergence formula, weget the flux
formula

∑

=1

ϕ = 0

When a conformal minimal immersion has finite total curvature, the Gauss map
: −→ S2 ⊂ R3 of is naturally extended to the map : −→ S2 ⊂ R3.

In particular when is an -end catenoid, ( ) is parallel toϕ , and hence there
exists a real number ( ) satisfying

ϕ = 4π ( ) ( )

We call ( ) theweight of the end . The weight ( ) is the size of the catenoidal
end relative to the standard catenoid. Note here that the weight may take a negative
value. When ( ) = 0, the end is anembedded planar end.
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Now, we can rewrite the flux formula as follows:

(1.1)
∑

=1

( ) ( ) = 0

Conversely, we can consider aninverse problem of the flux formula, or a Plateau prob-
lem at infinity, that is a problem of finding -end catenoids that realize the given data

( ) and ( ) ( = 1 . . . ) satisfying (1.1). For this problem, Umehara, Yamada
and the first author [5, Theorem 3.3], [6, Theorem 3.1] provedthat, for almost allflux
data 1 . . . ∈ S2 and 1 . . . ∈ R \ {0} satisfying

∑
=1 = 0, there exists

an -end catenoid of genus 0

: = Ĉ \ { 1 . . . } −→ R3

that satisfies

(1.2) ( ) = ( ) = ( = 1 . . . )

In connection with this result, we mention here that Rosenberg-Toubiana [9, The-
orem 2.5] proved the general existence in the case when deg = 1(and hence has
branch points), and that Cosı́n-Ros [1, Theorem 8.1] got a nessesarry and sufficient
condition in the case when dim〈 1 . . . 〉 = 2 and is Alexandrov embedded.

In our case, when = 3 and dim〈 1 2 3〉 = 2, we can replace “almost all”
by “all”. Furthermore, for any flux data, a 3-end catenoid realizing the data is unique
( [8], [4, Example 3.5] ). On the other hand, when≥ 4, such a uniquness result does
not hold, and we can construct examples of -end catenoids that have the same flux
data and are not congruent to each other ( [5, Example 3.7], [7, Examples 3.1, 3.2],
see Example 7.1 for their Weierstrass data ). In particular in the case when = 4,
we know that, for any data1 2 3 4 ∈ S2 and 1 2 3 4 ∈ R \ {0} satisfying∑4

=1 = 0 and dim〈 1 2 3 4〉 ≥ 2, the number of 4-end catenoids of genus 0
satisfying (1.2) is at most four. In particular, this estimate is sharp ( [5, Theorems 3.3,
4.2] ).

To explain our problem, let us observe an example of a family of 4-end catenoids
whose limit normals 1 2 3 4 are arranged in the positions of the vertices of a
tetrahedron

1 = (cosθ 0 sinθ) 2 = (− cosθ 0 sinθ)

3 = (0 cosθ − sinθ) 4 = (0 − cosθ − sinθ)

(
0≤ θ < π

2

)

and whose weights satisfy ( ) = = 1 ( = 1 2 3 4) ( [5, Example 3.7, Fig-
ure 3.2(a), (b)] ). Whenθ = Sin−1(1/

√
3 ), is unique and invariant under the

action of the tetrahedral group, and there are two types of deformation from θ =
Sin−1(1/

√
3 ) to 0.
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⇐= =⇒

(
the former

type

)
tetrahedrally
symmetric

(
the latter

type

)

Fig. 1.1. Two types of deformation of 4-end catenoids

In one type, the simple closed geodesic of ( ) which separatesthe ends 1,

2 and the ends 3, 4 becomes shorter and shorter, and, as the limit, we get two
catenoids tangent to each other.

In the other type, the closed geodesic of ( ) as above does not become so
short, and, as the limit, we get a Jorge-Meeks’ 4-noid ( [2, Examples in§5] ).

What is the essence of difference of these two types of deformation? In this paper,
we consider this problem.

Quite similar phenomenon as in the former type is observed also in Karcher’s
example ( [3, Example 2.3.8, Figure 2.3.8] ) whose limit normals are arranged in
the positions of the vertices of a rectangle. In this example, since each satisfies
dim〈 1 2 3 4〉 = 2 and are Alexandrov embedded, we can apply the theory in [1]
to explain this phenomenon by using flux poligons. However, similar phenomenon is
observed also in more general case when dim〈 1 . . . 〉 = 3 ( cf. [10, Theorem 1.1],
[7, Example 3.2], etc. ).

When is symmetric with respect to some plane and no ends are arranged on the
plane, we can give a simple explanation. If an -end catenoid has such symmetry
(Karcher’s example has such symmetry), then a simple closedgeodesic appears on the
plane of the symmetry, and its length is equal to the length ofthe flux vector along
to the closed geodesic. Therefore if the sum of the flux vectors in one side of the
plane tends to 0, then the length of the closed geodesic also tends to 0. This holds
also for the higher genus. However, if we do not assume such symmetry (indeed, our
first example does not have such symmetry), then this explanation is not available.

To explain the above phenomenon in more general case, we define, in §2, the rel-
ative weights of end-pairs ( ) ( = 1. . . ; 6= ), which are conformal
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invariants satisfying

∑

=1; 6=
=
∑

=1; 6=
= ( )

and, in §3–5, prove the following result:

Theorem 1.1. Let : = Ĉ \ { 1 . . . } −→ R3 be an -end catenoid of
genus0 satisfying (1.2) ( ≥ 4), and the relative weight of the end-pair( )
( = 1 . . . ; 6= ). Assume that there exist positive numbers1, 2, 3, and ǫ1,
ǫ2 small enough satisfying

(1.3)

{
1 ≤ | | ≤ 2 ( = 1 . . . or = + 1 . . . ; 6= )

ǫ1 ≤ | | ≤ ǫ2 ( = 1 . . . ; = + 1 . . . )

(2≤ ≤ − 2) and

(1.4) ∠( ) ≥ 3 ( = 1 . . . ; 6= )

Then there exists a positive number = ( 1 2 3 ǫ2/ǫ1 ) such that the length
of the minimal closed geodesic that separates the surface( ) to the side of the

ends 1 . . . and the side of the ends +1 . . . satisfies

≤ ǫ2

As for the lower estimate by flux, it is clear that the length ofany (simple)
closed geodesic satisfies

≥
∣∣∣∣
∑

=1

ϕ

∣∣∣∣
(

=

∣∣∣∣
∑

= +1

ϕ

∣∣∣∣
)

where 1 . . . are the ends in one side of the geodesic. Unfortunately, thisesti-
mate does not make sense if the right-hand side is equal to 0. But we can show that
if all the ratios / take values close to a common nonzero complex number
independent of ( = 1. . . ), then any closed geodesic is not short. In the most
typical case when the common complex numbers are equal to 1, our assertion is stated
as follows:

Theorem 1.2. Let : = Ĉ \ { 1 . . . } −→ R3 be an -end catenoid of
genus0 satisfying(1.2) ( ≥ 4), and the relative weight. Assume that there exist a
nonzero complex number, a positive numberǫ small enough, and a positive number

3 satisfying

(1.5)
∣∣∣ − 1

∣∣∣ ≤ ǫ ( = 1 . . . ; 6= )
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and (1.4). Then there exists a positive number′ = ′( 3 ) such that the length of
the minimal closed geodesic of the surface( ) satisfies

≥ min{ 2
3| |(1− ′ǫ) 4πmin | |}

In §6, we give a proof for this assertion under a more general assumption.
Theorem 1.1 (resp. 1.2) describes the phenomenon observed in the former (resp.

latter) type of deformation in our first example. We see this in §7.

2. Relative weights of end-pairs

In this paper, we use theWeierstrass representation formulaof the following type:

( ) = Re
∫

0

(
1− 2

√
−1 (1 + 2) 2

)
η

where is a meromorphic function on defined by the composition ofσ : S2 −→
Ĉ = C ∪ {∞}, the stereograhic projection from the north pole, and the Gauss map
extended to , i.e. :=σ◦ : −→ Ĉ, andη is a melomorphic 1-form on which
is holomorphic on . We call ( η) the Weierstrass dataof .

For -end catenoids of genus 0, Umehara, Yamada and the first author proved the
following result:

Theorem 2.1 ([5, Theorem 2.4]). Let : = Ĉ \ { 1 . . . } −→ R3 be an
-end catenoid of genus0 satisfying (1.2). Assume 6= (0 0 1), and set := σ( )

( = 1 . . . ). Then its Weierstrass data is given by

(2.1) ( ) =
∑

=1
−

/∑

=1
− η = −

(∑

=1
−

)2

where 1 . . . are nonzero complex numbers satisfying the following equations:

(2.2)





∑

=1; 6=

−
− =

∑

=1; 6=

+ 1

− = 0

( = 1 . . . )

Conversely, for any given data 1 . . . ∈ C, and 1 . . . ∈ R \ {0} satisfying∑
=1 σ−1( ) = 0, if there exist 1 . . . ∈ C = Ĉ \ {∞} and 1 . . . ∈ C \

{0} satisfying(2.2), and if the degree of given by(2.1) is equal to − 1, then the
conformal minimal immersion given by the Weierstrass data(2.1) is an -end catenoid
satisfying(1.2) with = σ−1( ) ( = 1 . . . ).
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Now, let us define the relative weights.

DEFINITION 2.2. Let : = Ĉ \ { 1 . . . } −→ R3 be an -end catenoid of
genus 0 given by the Weierstrass data (2.1) with (2.2). We call

:=
−
−

the relative weightof the end-pair ( ) ( = 1. . . ; 6= ).

While the weight ( ) always takes a real value, the relative weight may
take an imaginary value. The value of is independent of the parametrization of
the surface ( ) up to multiplying±1. Indeed, for , we have the following:

Proposition 2.3. is invariant under the conformal transformations ofĈ and
the orientation preserving congruent transformations ofR3.

To show this proposition, we prepare the transformation rules for the Weierstrass
data of -end catenoids.

Lemma 2.4. Let be an -end catenoid of genus0 given by (2.1) with (2.2).
For any conformal transformation

ψ( ) =
+
+

( − 6= 0)

on Ĉ, the Weierstrass data of̃ = ◦ ψ−1 is given by

˜ = ψ( ) ˜ = ±
√
ψ′( )

(
=
±
√

−
+

)
( = 1 . . . )

Proof. Since˜ = ◦ψ−1, we have ˜ =ψ( ) ( = 1 . . . ). On the other hand,

(ψ−1)∗η = −
(∑

=1
ψ−1(˜)−

)2

(ψ−1)′(˜) ˜

= −
(∑

=1
( ˜ − )/(− ˜ + )−

)2 −
(− ˜ + )2

˜

= −
(∑

=1

√
−

( + )˜ − ( + )

)2

˜

= −
(∑

=1

{
√

− /( + )}
˜ − ψ( )

)2

˜
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= −
(∑

=1

√
ψ′( )

˜ − ψ( )

)2

˜

from which it follows that ˜ = ±
√
ψ′( ) ( = 1 . . . ).

Lemma 2.5. Let be an -end catenoid of genus0 given by (2.1) with (2.2).
For any orthogonal transformation ofR3 such that

(ζ) = σ ◦ |S2 ◦ σ−1(ζ) =
αζ + β
γζ + δ

(αδ − βγ 6= 0)

the Weierstrass data of̃ = ◦ is given by

˜ = ( ) ˜ = ± 1√ ′( )

(
=

γ + δ

±√αδ − βγ

)
( = 1 . . . )

Proof. Since ˜ = ◦ , we have ˜ = ( ) ( = 1. . . ). On the other hand,
since the Hopf differentialη · is invariant under the action of (3),

η̃ =
η ·

˜
=

η ·
( ◦ )

=
η ·
′ ◦ =

1
′ ◦ η

= − (γ + δ)2

αδ − βγ

(∑

=1
−

)2

= − 1
αδ − βγ

(∑

=1

(γ + δ)
−

)2

= −
(∑

=1

(
1/
√ ′( )

)

−

)2

from which it follows that ˜ = ± /
√ ′( ) ( = 1 . . . ).

Proof of Proposition 2.3. In Lemma 2.4 (resp. 2.5), we must choose one of the
square roots of − (resp.αδ−βγ) to represent̃ ’s. But this choice has no influ-
ence on not only the Weierstrass data of˜ but also the value of each̃ ˜ . Therefore,
in the case of conformal transformations ofĈ, we have

˜ = ˜ ˜ −
˜ − ˜

=
√
ψ′( )

√
ψ′( )

−
ψ( )− ψ( )

=
√
ψ′( )ψ′( )

−
( + )/( + )− ( + )/( + )

=
−

( + )( + )
−

{( − )( − )}/{( + )( + )} =
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In the case of orthogonal transformations ofR3, we have

˜ = ˜ ˜ ˜ − ˜
− =

1√ ′( )

1√ ′( )
( )− ( )
−

=
1√ ′( ) ′( )

(α + β)/(γ + δ)− (α + β)/(γ + δ)
−

=
(γ + δ)(γ + δ)

αδ − βγ
{(αδ − βγ)( − )}/{(γ + δ)(γ + δ)}

− =

By using , we can rewrite the condition (2.2) as follows:

(2.3)





∑

=1; 6=
=

∑

=1; 6=

+ 1

− = 0

( = 1 . . . )

We note here that the absolute value of each term in the left-hand side of the second
equality of (2.3) is also invariant under the conformal transformations ofĈ and the
congruent transformations ofR3.

We also note here that the Hopf differential of is represented as follows:

η · =
∑

<

(
1
− − 1

−

)2
2

=
∑

=1

{

( − )2
+ 2

( ∑

=1; 6= −

)
1
−

}
2

Hence we can regard ’s as coefficients ofη · in a sense. But we cannot deter-
mine ’s only byη · when > 5.

3. Lengths of the images of the circles

In general, it is difficult to calculate the length of the minimal closed geodesic in
each homology class. However, if its length is short enough,then it is expected that
the minimal closed geodesic is approximated by the image of some circle in the do-
main . Therefore, we calculate the lengths of the images of such asymptotic circles,
to estimate the lengths of the minimal closed geodesics fromabove.

Lemma 3.1. Let : = Ĉ\{ 1 . . . } −→ R3 be an -end catenoid of genus
0 given by(2.1) with (2.2). Let γ be the circle = 0 +

√
−1θ (0≤ θ ≤ 2π) in Ĉ. If

1 . . . is included in the inside ofγ, and if +1 . . . is included in the outside
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of γ, then the length ′ of the image of the circleγ by is given by the following
formula:

′ = 2π

{∑

=1

∑

=1

−(1 + )
( − 0)( − 0)− 2 −

∑

= +1

∑

= +1

−(1 + )
( − 0)( − 0)− 2

}

If

Re

{
> 0 ( = 1 . . . )
< 0 ( = + 1 . . . )

then the length ′′ of the image of the imaginary axis of̂C by is given by the fol-
lowing formula:

′′ = 2π

{∑

=1

∑

=1

(1 + )
+

−
∑

= +1

∑

= +1

(1 + )
+

}

Proof. Recall here that the line element of the minimal surface ( ) is given
by

= (1 + | |2)|η|

By this and (2.2), we have

(3.1) | | =

∣∣∣∣
∑

=1
−

∣∣∣∣
2

+

∣∣∣∣
∑

=1
−

∣∣∣∣
2

for any -end catenoid of genus 0.
For any circleγ : = 0 +

√
−1θ (0≤ θ ≤ 2π), it holds that

∫

γ

∣∣∣∣
∑

=1
−

∣∣∣∣
2

| | =
∫ 2π

0

∣∣∣∣
∑

=1 0 +
√
−1θ −

∣∣∣∣
2 ∣∣∣
√
−1

√
−1θ θ

∣∣∣

=
∫ 2π

0

∑

=1 0 +
√
−1θ −

∑

=1 0 + −
√
−1θ −

θ

=
∫ 2π

0

∑

=1

∑

=1

(
1

√
−1θ − ( − 0)/

− 1
√
−1θ − /( − 0)

)

× −
( − 0)( − 0)− 2

√
−1θ θ

=
∫

|ζ|=1

∑

=1

∑

=1

(
1

ζ − ( − 0)/
− 1
ζ − /( − 0)

)
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× −
( − 0)( − 0)− 2

1√
−1

ζ

If we set ζ := ( − 0)/ , then we have

∫

γ

∣∣∣∣
∑

=1
−

∣∣∣∣
2

| | =
1√
−1

∫

|ζ|=1

∑

=1

∑

=1

(
1

ζ − ζ −
1

ζ − ζ −1

)− −1

ζ ζ − 1
ζ

=
1√
−1

∫

|ζ|=1

(∑

=1

1
ζ − ζ

∑

=1

− −1

ζ ζ − 1
−
∑

=1

1

ζ − ζ −1

∑

=1

− −1

ζ ζ − 1

)
ζ

Now, since 1 . . . is included in the inside ofγ and +1 . . . is included in
the outside ofγ, it holds that|ζ | < 1 ( = 1 . . . ) and |ζ | > 1 ( = + 1 . . . ).
Hence, by the residue theorem, we get

∫

γ

∣∣∣∣
∑

=1
−

∣∣∣∣
2

| | =
2π
√
−1√

−1

(∑

=1

∑

=1

−
ζ ζ − 1

−
∑

= +1

∑

=1

−
ζ ζ − 1

)

=
2π
(∑

=1

∑

=1

−
ζ ζ − 1

−
∑

= +1

∑

= +1

−
ζ ζ − 1

)

Note here that the imaginary axis =−
√
−1 (−∞ ≤ ≤ +∞) is the limit of

the family of circles = +
√
−1θ (0≤ θ ≤ 2π). For this family, we have

(ζ ζ − 1) =
− ( + ) → −( + ) as → +∞

Therefore, if Re > 0 ( = 1 . . . ) and if Re < 0 ( = + 1 . . . ), then we
get

∫

Re =0

∣∣∣∣
∑

=1
−

∣∣∣∣
2

| | = 2π

(∑

=1

∑

=1
+

−
∑

= +1

∑

= +1
+

)

We can show the similar equalities for the line integrals of the second term of the
right-hand side of (3.1), and we get our assertion.

When = 4, we may choose

1 = 2 = − 3 =
1

4 = −1

for some ∈ C \ {0 ±1 ±
√
−1} without loss of generality. For the length′ and ′′,

we can show the following formula by Lemma 3.1 and direct computation.
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Corollary 3.2. Under the assumption above, if | | < 1, then the length of the
image of the unit circle centered at the origin0 is given by

′ =
2π

1− | |4{| 1 + 2|2 + | 1 1 + 2 2|2 + | |2(| 1 − 2|2 + | 1 1− 2 2|2)

+ | |2(| 3 − 4|2 + | 3 3− 4 4|2) + | |4(| 3 + 4|2 + | 3 3 + 4 4|2)}

If Re > 0, then the length of the image of the imaginary axis is given by

′′ =
2π

( + )(1 + | |2)
{| 1 + 2

3|2 + | 1 1 + 2
3 3|2 + | 2 + 2

4|2 + | 2 2 + 2
4 4|2

+ | |2(| 1 + 3|2 + | 1 1 + 3 3|2 + | 2 + 4|2 + | 2 2 + 4 4|2)}

Now, if the ends 1 . . . (resp. the ends +1 . . . ) approach to a point 1
(resp.−1) in , then we can take the image of the imaginary axis as a loopthat
separates these two groups of the ends, and if the ends are concentrated to the two
points±1, then the length′′ is estimated as follows:

Lemma 3.3. Under the assumption ofLemma 3.1,assume

{
| − 1| < ǫ ( = 1 . . . )
| + 1| < ǫ ( = + 1 . . . )

for some0< ǫ < 1. Then it holds that

∣∣∣∣
′′ − π

(∣∣∣∣
∑

=1

∣∣∣∣
2

+

∣∣∣∣
∑

= +1

∣∣∣∣
2

+

∣∣∣∣
∑

=1

∣∣∣∣
2

+

∣∣∣∣
∑

= +1

∣∣∣∣
2)∣∣∣∣

≤ πǫ

1− ǫ

{(∑

=1

| |
)2

+

( ∑

= +1

| |
)2

+

(∑

=1

| |
)2

+

( ∑

= +1

| |
)2}

Proof. Under the assumption, we have

∣∣∣∣
∑

=1

∑

=1
+

− 1
2

∣∣∣∣
∑

=1

∣∣∣∣
2∣∣∣∣ =

∣∣∣∣
∑

=1

∑

=1
+

−
∑

=1

∑

=1
1 + 1

∣∣∣∣

=

∣∣∣∣
∑

=1

∑

=1

(
1
+

− 1
2

)∣∣∣∣ =

∣∣∣∣
∑

=1

∑

=1

2− −
2( + )

∣∣∣∣

≤
∑

=1

∑

=1

| | |1− | + |1− |
2(2− |1− | − |1− |)

≤
∑

=1

∑

=1

| | 2ǫ
2(2− 2ǫ)

=
ǫ

2(1− ǫ)

(∑

=1

| |
)2
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We can show the similar estimates for the other terms, and we get our assertion.

4. Other lemmas

We also use the following two lemmas:

Lemma 4.1. For any and ′ ∈ S2, if ∠( ′) ≥ 3, then |σ( )− σ( ′)| ≥ 2 4,
where 4 := tan( 3/4).

Proof. Choose an orthogonal transformation such thatσ( ( )) = −σ( ( ′))
and |σ( ( ))| = |σ( ( ′))| ≤ 1. Set ˜ :=σ( ( )). Now, it holds that

σ ◦ −1 ◦ σ−1(ζ) = β
αζ + 1
ζ − α or βζ (ζ ∈ Ĉ)

for someα ∈ C and |β| = 1. In the former case, we have

|σ( ) − σ( ′)| =

∣∣∣∣β
α ˜ + 1
˜ − α − β

α(− ˜ ) + 1
− ˜ − α

∣∣∣∣ =

∣∣∣∣
α ˜ + 1
˜ − α −

α(− ˜ ) + 1
− ˜ − α

∣∣∣∣

=

∣∣∣∣
−2(|α|2 + 1) ˜
α2− ˜ 2

∣∣∣∣ ≥
2(|α|2 + 1)| ˜ |
|α|2 + | ˜ |2 ≥ 2| ˜ |

and in the latter case, we have

|σ( )− σ( ′)| = |β ˜ − β(− ˜ )| = 2| ˜ |

Set θ := ∠( ′). Then | ˜ | = tan(θ/4) and we get our assertion.

Lemma 4.2. For any 1 . . . ∈ S2, there exists an orthogonal transformation
such that|σ( ( ))| ≤

√
− 1 ( = 1 . . . ).

Proof. For any ∈ S2 and 0≤ θ0 ≤ π, the area of the closed domain{ ∈ S2 |
∠( ) ≤ θ0} is 2π(1−cosθ0). Hence ifθ0 = Cos−1(1−2/ ), then 2π(1−cosθ0)× =
4π and

⋃

=1

{ ∈ S2 | ∠( ) < θ0} 6= S2

Therefore there exists0 such that∠( 0) ≥ θ0 for any = 1 . . . . Hence, we
have that if we choose an orthogonal transformation such that ( 0) is the north
pole, then

|σ( ( ))| ≤ tan
π − θ0

2
=

sinθ0

1− cosθ0
=

(2/ )
√
− 1

2/
=
√
− 1 ( = 1 . . . )
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5. Upper estimate

Now, let us prove our first main theorem.

Proof of Theorem 1.1. Set :=σ( ) ( = 1 . . . ). By the assumption (1.4)
and Lemma 4.1, we have| − | ≥ 2 4 ( = 1 . . . ; 6= ). Set 5 := max| |.
By Lemma 4.2, we may assume5 ≤

√
− 1 without loss of generality. Assumeǫ2 <

1 4/4
√

3 5.

Arrangement of qj ’s. Now, we may assume1 = 1 and +1 = −1. We may
also assume

(5.1)

{
∠
(
σ−1( 1) σ−1( )

)
≤ ∠

(
σ−1( 1) σ−1( 2)

)
( = 3 . . . )

∠
(
σ−1( +1) σ−1( )

)
≤ ∠

(
σ−1( +1) σ−1( +2)

)
( = + 3 . . . )

and

| 1 − 2| = | +1− +2| =:

By the assumption (1.3), we have

ǫ1
2

2
2 ≤

∣∣∣∣
1 +1 2 +2

12 +1 +2

∣∣∣∣ =
| 1− +1|| 2 − +2|| 1 − 2|| +1− +2|
| 1− 2|| +1− +2|| 1 − +1|| 2 − +2|

≤ ǫ2
2

1
2

and hence

ǫ1
2

2
2 ≤

2 5 · 2 5 · ·
2 4 · 2 4 · 2 · (2− 2 )

= 5
2

4 4
2

2

1−
and

4
2

4 5
2

2

1 +
=

2 4 · 2 4 · ·
2 5 · 2 5 · 2 · (2 + 2 )

≤ ǫ2
2

1
2

Set ǫ3 := (2 4/ 2 5)ǫ1 and ǫ4 := (2 5/ 1 4)ǫ2. Then we haveǫ3
2(1 − ) ≤ 2 ≤

ǫ4
2(1 + ), from which it follows that

ǫ3

1 + ǫ3
≤ 2

ǫ3 +
√
ǫ3

2 + 4
ǫ3 ≤ ≤ ǫ4 +

√
ǫ4

2 + 4
2

ǫ4 ≤ (1 + ǫ4)ǫ4

Since we assumeǫ2 < 1 4/4
√

3 5, we haveǫ4 < 1/2
√

3 and < (2
√

3/3)ǫ4 <

1/3. Now, by the assumption (5.1),2 . . . (resp. +2 . . . ) are included in the
closed ball centered on the real axis whose boundary circle passes 1− and 1/(1− )
(resp.−(1− ) and−1/(1− )). Hence it holds that

Re

{
> 0 ( = 1 . . . )
< 0 ( = + 1 . . . )



520 S. KATO AND K. NOMURA

and

| 1 − | | +1− | ≤
1− ( = 1 . . . ; = + 1 . . . )

Therefore we get

| − | ≤





2
1− ( = 1 . . . or = + 1 . . . )

2
1− ( = 1 . . . ; = + 1 . . . )

Estimates for bj ’s. By the estimate above, we have

| | =

∣∣∣∣
−
−

∣∣∣∣ ≤ 2
2 /(1− )

2 4

= 2

4 1− ( = 1 . . . or = + 1 . . . ; 6= )

Let 0 and 0 be indices that satisfy

| 0| = max{| | | = 1 . . . } | 0 | = max{| | | = + 1 . . . }

Then it holds that

| | | | ≤
√

2

4 1− =: 1 ( = 1 . . . ; 6= 0 ; = + 1 . . . ; 6= 0)

On the other hand, we also have

| 0 0| =
∣∣∣∣ 0 0

0 − 0

0 − 0

∣∣∣∣ ≤ ǫ2
2/(1− )

2 4
=

1

4

ǫ2

1−

In the case when| 0| ≥ | 0 |, since

1 ≤ | 0 | =
∣∣∣∣ 0

− 0

− 0

∣∣∣∣

≤ 1
| 0 |

1

4

ǫ2

1−

√
2

4 1−
2 5

| 0 − | ( = + 1 . . . ; 6= 0)

we have

= | +1− +2| ≤ | +1− 0| + | 0 − +2| ≤ 2
1
| 0|

2 5

1

√
2

4
3 (1− )3

ǫ2

Therefore we get

| 0| ≤
4 5

1

√
2

4
3

ǫ2√
(1− )3

=: 2
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Also in the case when| 0| ≤ | 0 |, we get the same estimate for| 0 |.

Estimate for the length l′′. Now, by using Lemma 3.3, we get

′′ ≤
(
π +

π{ /(1− )}
1− /(1− )

)

×
{(∑

=1

| |
)2

+

(∑

= +1

| |
)2

+

(∑

=1

| |
)2

+

(∑

= +1

| |
)2}

≤ π

(
1 +

1− 2

)[
(1 + 5

2){( − 1) 1 + 2}2 + (1 + 5
2){( − − 1) 1 + 2}2]

= π
1−
1− 2

(1 + 5
2)[{( − 1)2 + ( − − 1)2} 1

2 + 2( − 2) 1 2 + 2 2
2]

where

1
2 = 2

4 1− ≤ 2

4

(
1 +

3
2

)
≤ 2

4

{
1 +

3
2

(1 + ǫ4)ǫ4

}
(1 + ǫ4)ǫ4

1 2 =
4 2 5

1 4
2

ǫ2

(1− )2 =
2 2

4

ǫ4

(1− )2

≤ 2 2

4

(
1 +

15
4

)
ǫ4 ≤

2 2

4

{
1 +

15
4

(1 + ǫ4)ǫ4

}
ǫ4

2
2 =

16 2 5
2

1
2

4
3

ǫ2
2

(1− )3
≤ 4 2

4

ǫ4
2

(1− )3

1 + ǫ3

ǫ3

≤ 4 2

4

(
1 +

57
8

)
(1 + ǫ3)ǫ4

2

ǫ3
≤ 4 2

4

{
1 +

57
8

(1 + ǫ4)ǫ4

}
(1 + ǫ3)

ǫ4

ǫ3
ǫ4

Combining these estimates, we get

≤ ′′ ≤ ǫ2

for a positive constant = (1 2 3 ǫ2/ǫ1 ).

In the statement of Theorem 1.1, we assume (1.4) since vanishes automati-
cally when = (i.e. = ). But this assumption excludes Karcher’s example and
some others. To treat these case at the same time, we have onlyto replace| | by

:= max

{
| |

∣∣∣∣
+ 1

−

∣∣∣∣
}

Theorem 5.1. Let : = Ĉ \ { 1 . . . } −→ R3 be an -end catenoid of
genus0 satisfying (1.2) ( ≥ 4), and as above. Assume that there exist positive
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numbers 1, 2, and ǫ1, ǫ2 small enough satisfying

{
1 ≤ ≤ 2 ( = 1 . . . or = + 1 . . . ; 6= )

ǫ1 ≤ ≤ ǫ2 ( = 1 . . . ; = + 1 . . . )

(2 ≤ ≤ − 2). Then there exists a positive number= ( 1 2 ǫ2/ǫ1 ) such
that the length of the minimal closed geodesic that separates the surface ( ) to
the side of the ends1 . . . and the side of the ends +1 . . . satisfies

≤ ǫ2

Outline of proof. Set := max{| − | | + 1|}. Then

=

∣∣∣∣ −

∣∣∣∣

By the definition, we have

2(
√

2− 1) = 2 tan
π

8
≤ ≤ 5

2 + 1 (≤ )

Replacing the estimate 24 ≤ | − | ≤ 2 5 in the proof of Theorem 1.1 by the
estimate above, we can show the asseretion of Theorem 5.1.

6. Lower estimate

In this section, we give a proof for a more general version of Theorem 1.2 stated
as follows:

Theorem 6.1. Let : = Ĉ \ { 1 . . . } −→ R3 be an -end catenoid of
genus0 satisfying (1.2) ( ≥ 4), and the relative weight. Assume that there ex-
ist complex numbers ( = 1 . . . ), a positive numberǫ small enough, and a
positive number 3 satisfying

(6.1)





= ( = 1 . . . )
∣∣∣∣∣ − 1

∣∣∣∣∣ ≤ ǫ ( = 1 . . . ; 6= )

and (1.4). Moreover, assume thatβ := (1/ )
∑

=1 6= 0 and | 1| ≥ 1 ( =

1 . . . ). Set := max| | and := 12
1
2. Then there exists a positive number

′ = ′( 3 /|β1|) such that the length of the minimal closed geodesic of
the surface ( ) satisfies

≥ min{ 2
3|β1|2| |(1− ′ǫ) 4πmin | |}
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Proof. Set :=σ( ) ( = 1 . . . ). By the assumption (1.4) and Lemma 4.1,
we have| − | ≥ 2 4 ( = 1 . . . ; 6= ) as before. Set 5 := max| |, and
assume 5 ≤

√
− 1 as before. In particular in the case when dim〈 1 . . . 〉 ≤ 2,

we may assume 5 = 1. Set 6 := 2 5/ 4. Since 5 ≥ 4 holds in general, we have

6 ≥ 2. Assumeǫ < 1/(1 + 6 + 3 6
2).

Note here that = 1/ ( = 1 . . . ) and = 1 ( = 1 . . . ) hold auto-
matically by the definition.

Arrangement of qj ’s. Set

ǫ := − 1 ( 6= )

Then |ǫ | ≤ ǫ < 1. Set

ǫ := − 1 =
1 + ǫ
1 + ǫ

− 1 =
ǫ − ǫ

1 + ǫ
( 6= ; 6= )

Then it holds that

|ǫ | ≤ |ǫ | + |ǫ |
1− |ǫ | ≤

2ǫ
1− ǫ ( 6= ; 6= )

By the assumption (1.4), ’s are different from each other. Hence we may as-
sume = ( = 1 2 3). Now, for any = 4. . . ,

1 + ǫ123 = 12 3

13 2

=
( 1− 2)( 3− )( 1− 3)( 2− )
( 1− 3)( 2− )( 1− 2)( 3− )

=
( 3− )( 2− )
( 2− )( 3− )

and hence

− =
( 2− )( 3− )

( 3− 2)− ( 2− )ǫ123
ǫ123

Therefore we get

| − | ≤ (| 2| + | |)(| 3| + | |)
| 3− 2| − (| 2| + | |)|ǫ123 |

|ǫ123 |

≤ (2 5)2

2 4 − 2 5{2ǫ/(1− ǫ)}
2ǫ

1− ǫ ≤
4 6

2ǫ

1− (1 + 6)ǫ

and

| − | ≥ −| − | + | − | − | − |

≥ 2 4 −
2 4 6

2

1− (1 + 6)ǫ
ǫ ( = 1 . . . ; 6= )
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Estimates for bj ’s. Set

ξ := − 1 =
−
− − 1 =

( − )− ( − )
− ( 6= )

Then it holds that

|ξ | ≤ | − | + | − |
| − | ≤ 2

2 4

4 6
2ǫ

1− (1 + 6)ǫ
= 6

2ǫ

1− (1 + 6)ǫ
=: ξ ( 6= )

Since we assumeǫ < 1/(1 + 6 + 3 6
2), we haveξ < ǫ/3 < 1. The above estimates

for the arrangement of ’s are rewritten as follows:

| − | ≤ 4ξ ( = 1 . . . )(6.2)

| − | ≥ 2( 4 − 4ξ) ( = 1 . . . ; 6= )(6.3)

Since

= =
(1 + ξ )

(1 + ξ )
=

(1 + ξ )(1 + ǫ )
1 + ξ

( 6= ; 6= )

we have

(6.4)
(1− ξ)(1− ǫ)

1 + ξ
≤
∣∣∣∣

∣∣∣∣ ≤
(1 + ξ)(1 + ǫ)

1− ξ ( 6= )

and

(6.5)

∣∣∣∣ − 1

∣∣∣∣ ≤
2ξ + (1 +ξ)ǫ

1− ξ ( 6= )

On the other hand, since

2

= =
(1 + ξ ) (1 + ξ )

(1 + ξ )
=

(1 + ξ )(1 + ξ )
1 + ξ

=
(1 + ξ )(1 + ξ )(1 + ǫ )

1 + ξ
( 6= ; 6= )

it holds that

(1− ξ)2(1− ǫ)
1 + ξ

≤
∣∣∣∣

2 ∣∣∣∣ ≤
(1 + ξ)2(1 + ǫ)

1− ξ ( 6= )

and
∣∣∣∣

2

− 1

∣∣∣∣ ≤
(3 + ξ)ξ + (1 +ξ)2ǫ

1− ξ ( 6= )
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Moreover, since

( 1)2

=
2

1 1

1

12
1
2 1

=
2

1 1

1

21 2

=
2

1 1

(1 + ǫ 2 1) ( = 2 . . . )

we have

(6.6)
(1− ξ)2(1− ǫ)2

1 + ξ
≤
∣∣∣∣
( 1)2 ∣∣∣∣ ≤

(1 + ξ)2(1 + ǫ)2

1− ξ ( = 1 . . . )

and

(6.7)

∣∣∣∣
( 1)2

− 1

∣∣∣∣ ≤
(3 + ξ)ξ + (1 +ξ)2(2 + ǫ)ǫ

1− ξ ( = 1 . . . )

By (6.5) and (6.7), we see that1 and all the 1’s are close to a common square
root

√
of = 12

1
2 if we choose anǫ small enough. Set

δ :=
1

√ − 1 ( = 1 . . . )

Then we have

(6.8) |δ | ≤ 2ξ + (1 +ξ)ǫ
1− ξ ( = 1 . . . )

Estimate for the length l. Now, recall (3.1). Note here that

∑

=1
− =

∑

=1
− −

∑

=1

−
∑

=1

( − )
−

Since it holds that

| |2 + | − |2 ≥ | |2
| |2 + 1

( ∈ C)

we have

| | ≥
1

| |2 + 1

∣∣∣∣
∑

=1

+
∑

=1

( − )
−

∣∣∣∣
2

Denote the line element of the standard sphere byS2 . Then we get

S2
= {2/(1 + | |2)}| |
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=
1 + | |2

2 | | ≥
1
2

max

{∣∣∣∣
∑

=1
−

∣∣∣∣
2 ∣∣∣∣

∑

=1

+
∑

=1

( − )
−

∣∣∣∣
2}

Since ξ < 1/3, we have 4 − 4ξ > 2 4/3 > 0. Hence, by (6.3), the closed
domains :={ ∈ Ĉ | | − | ≤ } ( = 1 . . . ) are disjoint for any positive
number < 4 − 4ξ. Now, for any ∈ , since

| − | ≥ −| − | − | − | + | − | − | − |
≥ 2( 4 − 4ξ)− = 2 4(1− ξ)− ( 6= )

it holds that
∣∣∣∣
−
−

∣∣∣∣ ≤ 2 4(1− ξ)− =
2 4 −

1
1− {2 4/(2 4 − )}ξ ( 6= )

Hence we have, by (6.4) and (6.6),

∣∣∣∣
∑

=1
−

∣∣∣∣ ≥
| |
| − |

(
1−

∑

=1; 6=

∣∣∣∣
∣∣∣∣
∣∣∣∣
−
−

∣∣∣∣
)

≥
√
| | | 1|(1− ξ)(1− ǫ)√

1 + ξ

×
{

1−
∑

=1; 6=
| | (1 + ξ)(1 + ǫ)

1− ξ 2 4 −
1

1− {2 4/(2 4 − )}ξ

}

≥
√
| | (1− ξ)(1− ǫ)√

1 + ξ

×
{

1− ( − 1)
(1 + ξ)(1 + ǫ)

1− ξ 2 4 −
1

1− {2 4/(2 4 − )}ξ

}

Set := 4/3 . Then < 2 4/3< 4 − 4ξ,

2 4 −
=

1
6 − 1

2 4

2 4 −
=

6
6 − 1

and
∣∣∣∣
∑

=1
−

∣∣∣∣ ≥
√
| | (1− ξ)(1− ǫ)√

1 + ξ
3

4

×
{

1− (1 + ξ)(1 + ǫ)
1− ξ

( − 1)
6 − 1

1
1− {6 /(6 − 1)}ξ

}

Now, since

6 − 1
6( − 1)

=
6( − 1) + 6 − 1

6( − 1)
> 1
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6
6 − 1

=
1

1− 1/6
≤ 1

1− 1/12
=

12
11

ξ = 6
2ǫ

1− (1 + 6)ǫ
≥ 6

2ǫ ≥ 4ǫ

it holds that

4
6 − 1

6( − 1)

(
1− 6

6 − 1
ξ

)
(1− ξ)− (1 + ξ)(1 + ǫ)

≥ 4 · 1 ·
(

1− 12
11
ξ

)
(1− ξ)− (1 + ξ)

(
1 +

1
4
ξ

)

=
1
44

(181ξ2 − 423ξ + 132)> 0

(
0≤ ξ ≤ 1

3

)

which implies that

1− (1 + ξ)(1 + ǫ)
1− ξ

( − 1)
6 − 1

1
1− {6 /(6 − 1)}ξ > 1− 4

6
=

1
3

Hence we get

∣∣∣∣
∑

=1
−

∣∣∣∣
2

>
| |(1− ξ)2(1− ǫ)2

1 + ξ

(
3

4

)2 1
9

=
| |(1− ξ)2(1− ǫ)2

1 + ξ

(

4

)2

On the other hand, by (6.8), we have

∣∣∣∣
∑

=1

∣∣∣∣ =

∣∣∣∣
∑

=1

√
1(1 + δ )

∣∣∣∣ ≥ |
√
|
(∣∣∣∣
∑

=1
1

∣∣∣∣−
∣∣∣∣
∑

=1
1δ

∣∣∣∣
)

≥
√
| |
(
|β1| −

∑

=1

|δ |
)
≥
√
| | |β1|

{
1− |β1|

2ξ + (1 +ξ)ǫ
1− ξ

}

For any ∈ Ĉ \⋃ =1 , by (6.2) and (6.6), it holds that

∣∣∣∣
∑

=1

( − )
−

∣∣∣∣ ≤
∑

=4

| − || |
| − | ≤

∑

=4

4ξ|
√

1||1 + δ |

≤ ( − 3) 4

√
| | (1 + ξ)(1 + ǫ)√

1− ξ ξ

Hence we have

∣∣∣∣
∑

=1

+
∑

=1

( − )
−

∣∣∣∣ ≥
∣∣∣∣
∑

=1

∣∣∣∣−
∣∣∣∣
∑

=1

( − )
−

∣∣∣∣
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≥
√
| | |β1|

[
1− |β1|

{
2ξ + (1 +ξ)ǫ

1− ξ +
( − 3) 4(1 + ξ)(1 + ǫ)√

1− ξ ξ

}]

≥
√
| | |β1|

[
1− |β1|

{
2ξ + (1 +ξ)ǫ

1− ξ +
( − 3) · 3 (1 +ξ)(1 + ǫ)

1− ξ ξ

}]

Set 7 := (1 + 6 + 3 6
2)/3. Thenǫ ≤ 1/3 7, ξ ≤ 7ǫ ≤ 1/3, and

2ξ + (1 +ξ)ǫ
1− ξ +

( − 3) · 3 (1 +ξ)(1 + ǫ)
1− ξ ξ

=
1

1− ξ {2ξ + ǫ + ξǫ + 3( − 3) (1 +ξ)(1 + ǫ)ξ}

≤ 1
1− 1/3

{
2 7ǫ + ǫ +

1
3
ǫ + 3( − 3)

(
1 +

1
3

)(
1 +

1
3 7

)
7ǫ

}

=

{
3 7 + 2 + 6( − 3)

(
7 +

1
3

)}
ǫ

Set

8 :=
2
|β1|

{
3 7 + 2 + 6( − 3)

(
7 +

1
3

)}

=
2
|β1|

{
3 + 6 + 3 6

2 + 2( − 3) (2 + 6 + 3 6
2)
}

and assumeǫ < 1/ 8 additionally. Then we get

∣∣∣∣
∑

=1

+
∑

=1

( − )
−

∣∣∣∣
2

≥
{√
| | |β1|

(
1− 1

2 8ǫ

)}2

≥ 2|β1|2| |(1− 8ǫ)

for any ∈ Ĉ \⋃ =1 .
Now, since

(1− ξ)3(1− ǫ)2− (1− ξ2) + 2{2ξ + (1 +ξ)ǫ}(1 + ξ)

= ξ(1− ξ2) + 8ξ2 + 2ǫ{2ξ(1− ξ) + 3ξ + ξ3} + ǫ2(1− ξ)3 > 0

it holds that

(1− ξ)2(1− ǫ)2

1 + ξ
> 1− 2

2ξ + (1 +ξ)ǫ
1− ξ ≥ 1− 2

|β1|
2ξ + (1 +ξ)ǫ

1− ξ

from which it follows that

∣∣∣∣
∑

=1
−

∣∣∣∣
2

≥ 2
2

4
2 | |

(1− ξ)2(1− ǫ)2

1 + ξ
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≥ 2 2| |
[
1− 2
|β1|

{
2ξ + (1 +ξ)ǫ

1− ξ +
( − 3) · 3 (1 +ξ)(1 + ǫ)

1− ξ ξ

}]

≥ 2 2| |(1− 8ǫ)

for any ∈ , where we use the assumption4 = tan( 3/4)≤ 1.
Now, we get

S2
≥

2

2
|β1|2| |(1− 8ǫ)

in = Ĉ \ { 1 . . . }.
By (6.2) and Lemma 4.1, we have

∠(σ−1( ) σ−1( )) ≤ 4 Tan−1 4ξ

2
≤ 4 · 4ξ

2
= 2 4ξ ( = 1 . . . )

Hence

∠(σ−1( ) σ−1( )) ≥ ∠(σ−1( ) σ−1( ))− ∠(σ−1( ) σ−1( ))

−∠(σ−1( ) σ−1( ))

≥ 3− 2 4ξ − 2 4ξ = 3− 4 4ξ ≥ 3− 4 4 7ǫ ( 6= )

Therefore the length of any loop in ( ) surrounding at least two ends satisfies

≥
2

2
|β1|2| |(1− 8ǫ)× 2( 3 − 4 4 7ǫ) ≥ 2

3|β1|2| |(1− 9ǫ)

where we set 9 := 8 + 4 4 7/ 3.
On the other hand, the length of any loop in ( ) surrounding only one end sat-

isfies

≥ 4πmin | |

Combining these estimates, we get our assertion.

Proof of Theorem 1.2. Theorem 1.2 is the special case of Theorem 6.1 when
all the ’s are equal to 1. In particular, = 1 andβ1 = 1, and hence we get our
assertion.

7. Examples

As we mentioned in§1, examples of -end catenoids with short minimal closed
geodesics, which satisfy the assumption (1.3) in Theorem 1.1, are found in [3], [5],
[7], [10] etc. On the other hand, examples which satisfy the assumption (6.1) in Theo-
rem 6.1 (or (1.5) in Theorem 1.2) are found in [4], [11]. Here we present an example
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of a family of 4-end catenoids which includes [3, Example 2.3.8], [5, Example 3.7]
and more surfaces satisfying (1.3).

By Corollary 3.2 and direct computation, we get the following

EXAMPLE 7.1. For the data





1 = 2 = − 3 = −1ζ 4 = − −1ζ

1 = 2 = 3 = 4 = 1
where ∈ R 0< < +∞ |ζ| = 1

the equation (2.2) possesses a solution





1 = 2 = − 3 = −1
4 = − −1

1 = 2 = 3 = 4 = ζ−1/2

where
( 2 + ζ)

ζ1/2( 4− 1)
=

2 − 1
4

=

√
4− 1

{ ( 4 − 1) + 2ζ−1/2 ( 2 2− ζ)}

Example 2.3.8 (Figure 2.3.8) in [3] is in the case whenζ = 1, and Example 3.7 (Fig-
ure 3.2(a), (b)) in [5] is in the case whenζ =

√
−1.

In our general case, the relative weight of each end-pair is given by

12 = 34 =
( 4 − 1)

0

13 = 24 =
ζ−1/2 ( 2− ζ)( 2 + 1)

0

14 = 23 =
ζ−1/2 ( 2 + ζ)( 2− 1)

0

where 0 = ( 4 − 1) + 2ζ−1/2 ( 2 2− ζ)

When → 1 and → 0, the relative weights behave as follows:

12 = 34 → 1 6= 0

13 = 24 ∼ ζ−1/2(ζ − 1) → 0

14 = 23 ∼ ζ−1/2(ζ + 1) → 0

In this case, the length′ of the image of the unit circle centered at the origin 0,
which separates the ends1, 2 and the ends 3, 4, is given by

′ =
16π| |2(1 + 2| |2)

1− | |4 | |2 ∼ 16π| | → 0



WEIGHTS OF END-PAIRS IN -END CATENOIDS 531

When → 1 and → √−ζ , the relative weights behave as follows:

12 = 34 →
(ζ − 1)(ζ + 1)

ζ2 − 1− 4ζ
√
−1

( 6= 0 if ζ 6= ±1)

13 = 24 →
(ζ − 1)2

√
−1

ζ2 − 1− 4ζ
√
−1

( 6= 0 if ζ 6= 1)

14 = 23 → −
(ζ + 1)2

√
−1

ζ2 − 1− 4ζ
√
−1

( 6= 0 if ζ 6= −1)

When → 0 and → 1, the relative weights behave as follows:

12 = 34 ∼ −2ζ−1/2 ( − 1) → 0

13 = 24 → 1 6= 0

14 = 23 ∼ −( − 1) → 0

In this case, the length′′ of the image of the imaginary axis, which separates the ends

1, 3 and the ends 2, 4, is given by

′′ =
8π| |2(| + ζ1/2|2 + | + ζ1/2 |2)

( + )(1 + | |2)
| |2 ∼ 8π| − 1| → 0

To our regret, our estimates are not sharp in general. On the other hand, when we
observe other examples of deformations of -end catenoids, we often find that some
of the relative weights tend to 0 or∞ when a surface goes near to the boundary
of the moduli space of -end catenoids. Therefore it is expected that there are better
estimates under weaker assumptions. If we get such an estimate, then we can under-
stand the relationship between the relative weights and thecollapse of -end catenoids
more deeply.

It is also an open problem to introduce the relative weights in the case of higher
genus.
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