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Let P*(C) denote a complex projective space of dimension 2. The product
space P"(C)x P"(C) has a natural imbedding in Pm**»*»(C), called the Segre
imbedding. Let V' be a non-singular hyperplane section of P"(C)x P"(C) in
prtmin(C), The identity connected component Auty(¥) of the group of all
holomorphic automorphisms of V' has been determined by J-I. Hano [3]. For
an irreducible Hermitian symmetric space M of compact type we have the
canonical equivariant imbedding j: M—P¥(C). Now take a non-singular
hyperplane section V' of M in P¥(C). In this note we shall determine the
structure of the Lie algebra of Aut(V) fro the cases when M is a complex Gras-
smann manifold G, ,(C) of 2-planes in C™ and when M is SO(10)/U(5), by
applying Hano’s method. In particular, using Lichnerowicz-Matsushima’s theo-
rem, we prove the following.

1) For the case M is G, (C) (m=>4), if m is odd a non-singular hyperplane
section V' does not admit any Kihler metric with constant scalar curvature, and
if m is even V is a kihlerian C-space.

2) For the case M is SO(10)/U(5), ¥V does not admit any Kihler metric
with constant scalar curvature.

The author would like to express his thanks to the referee for the valuable
advice.

1. Preliminaries

A simply connected compact homogeneous complex manifold is called a
C-space. A C-space is said to be kahlerian if it admits a Kahler metric. We
recall some known facts on kihlerian C-spaces and holomorphic line bundles on
these complex manifolds (cf. [1], [4]).

Fact 1. Every holomorphic line bundle on a kahlerian C-space M is homo-
geneous. If we denote by H'(M, 6*) the group of all isomorphism classes of ho-
lomorphic line bundles on M and by c,(F) the Chern class of a holomorphic line
bundle F, then the homomorphism F—c,(F): H'(M, 0*)—H?* M, Z) is bijective.

Fact 2. Every ample holomorphic line bundle on a kahlerian C-space M is
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very ample. Moreover for each very ample holomorphic line bundle the correspond-
ing holomorphic imbedding of M can be realized as an orbit space of the irreducible
representation of all holomorphic automorphism group Aut(M) of M.

From now on we assume that M is a kihlerian C-space with the second
Betti number b,(M)=1. In this case there is a unique very ample holomorphic
line bundle L on M which is a generator of the group H(M, 6*). The corres-
ponding holomorphic imbedding for L is called the canomical imbedding of
M and denoted by j: M—P¥(C). Let h=c,(L). Then h is a generator of
H*M, Z). For a divisor D on M let {D} be the holomorphic line bundle on
Massociated to D. Then for a positive divisor D on M there is a positive integer
a(D) such that ¢,({D})=a(D)h. The integer a(D) is called the degree of D.

Fact 3. Let j: M—P¥(C) be the canonical imbedding of a kahlerian C-space
M with by(M)=1. Then for each positive divisor D on M of degree a there exists
a homogeneous polynomial F on CN** of degree a such that D is the pull back of the
divisor on PN(C) defined by the zero points of F by the canonical imbedding j.

For a non-singular hypersurface V' of M the degree of the positive divisor
defined by V is called the degree of V. Let K(V') and K(M) denote the canonical
line bundles on V' and M respectively. It is known that the first Chern class
¢(M) of M is given by ¢,(M)=x«h for some positive integer x. Since K(V)=
KK (M)®{V}) where ¢: V—M is inclusion, the first Chern class ¢,(V) of V is
given by ¢(V)=(x—a) ¢*k if the degree of V is a. In particular, if V is a
non-singular hypersurface of degree a<<«, the first Chern class ¢,(V) of V is
positive. It is also known that irreducible Hermitian symmetric spaces of com-
pact type are kihlerian C-spaces with the second Betti number 1 and the posi-
tive number x#>2. Therefore if V' is a non-singular hyperplane section of an
irreducible Hermitian symmetric space M of compact type for the canonical
imbedding j: M—P"(C), the first Chern class ¢,(V') of V is positive.

Let T(M) and T(V') be the holomorphic tangent bundles of M and V re-
spectively. Given a holomorphic vector bundle E, we denote by Q%FE) the
sheaf of germs of local holomorphic sections of E.

Fact 4 (Kimura [5]). Let M be an irreducible Hermitian symmetric space of
compact type. Assume that M is not a complex projective space P"(C) or a com-
plex quadric Q"(C). Then for a non-singular hypersurface V of M the exact se-
quence of sheaves on M

0—-QYT(M)QA{V} 1)—QYT(M))—QXT(M)| V)0
induces the exact sequence of cohomologies

0—H (M, T(M))—HV, T(M)|V)—0
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Moreover H'(V, T(M)|V)=(0).

RemMark. If V is a non-singular hypersurface Q"(C)(n>3) of degree a=2,
the same result as in Fact 4 holds.

2. The case M is a complex Grassmann manifold G, ,(C)

Let p be the natural representation of SL(m, C) on C™ and consider the p-
th exterior representation A?p: SL(m, C)—>GL(A?C™) induced by p. Note that
A?p is an irreducible representation of SL(m, C). Fix a highest weight vector
2,E A?C™ and consider the subgroup U of SL(m, C) defined by

{heSL(m, C)|(A?p) (h) v, = cv, for some c& C—(0)} .
Then the map j: SL(m, C)|U—P(A?C™) defined by
j(8U) = [A?p(g) ()] for g SL(m, C),

where [w] (we A?C™) denotes the line determined by @, is the canonical imbedd-
ing of the Grassmann manifold M=G,, ,(C) and is called the Pliicker imbedding
of M.

From now on we assume that M is a complex Grassmann manifold of
2-planes in C™ which is not a complex projective space, so we may assume m>4.
We may also regard M as a non-singular projective subvariety of P(A’C™) by
the canonical imbedding.

Theorem 1. For an integer m>4 let V be a non-singular hyperplane section
of G, ,(C) in P(A’C™).

(1) If mis even, V is a kahlerian C-space Sp(n, C)|P with the second Betti
number 1 where n—=m|2 and P is a parabolic subgroup of Sp(n, C).

(2) If mis odd, the group Aut(V) of all holomorphic transformations of V is
not reductive and thus V does not admit any Kdhler metric with constant scalar
curvature. Moreover we have H\(V, T(V))=(0).

Proof. By the Lefschetz theorem on hyperplane sections, we have b,(V)=1
since b,(G,, ;(C))=1. From the fact 4 we see that every holomorphic vector field
on V can be extended uniquely to a holomorphic vector field on M. Let A=
{g=Aut(M)|g(V)=V}. Then the Lie algebra a of 4 can be identified with the
Lie algebra of all holomorphic vector fields on V. By means of irreducible
representation A%p: SL(m, C)—GL(A’C™) each element of SL(m,C) maps a
hyperplane of P(A’C™) to another hyperplane. Take a hyperplane H of P(A*C™)
such that V=HN M. Note that such a hyperplane H in P(A*C™)is determined
uniquely since the canonical imbedding j: M—>P(A?’C™) is full. Thus the Lie
algebra a of A4 coincides with the Lie algebra of 4'={geSL(m, C)|g-H=H}.
A hyperplane H is the zero locus of non-zero linear form B on A*C™. If we let
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b(z, w) = B(zAw) (2, weC"),
b is a skew-symmetric form on C”. Therefore
A" = {geSL(m, C)|b(g-2, g-w) = \(g) b(z, w), 2, wEC"
for some non-zero constant A(g)=C}.

Now we choose coordinates on C™ in such a way as
b(z, w) - i (.2‘, wk+,~—-zk+,- wi) Where ISkS[m/Z:l
i=1

(that is, if p,s denote Plicker coordinates, the hyperplane H is defined by py;..+

4 Pig) =0,
We claim that k=[m/2] if V is non-singular. Suppose that k<<[m/2]. Then
2k<m—2. We can take vectors 2, wE C" given by

= =2y=0,2,=124,==2,=0,
W= =Wy =0, Wy =1, Wy =+ =w, =0,

respectively. The 2 Aw determines a point of ¥V which is singular, since
db = é (Wiss d2;+2; dwy—w; A2y — 24y dw;)
j=1

vanishes at this point. Hence k=[m/2].
Now we consider the cases where m is even or odd separately.
Casel m=2n
In this case the Lie algebra a is given by the Lie algebra of

0 1, 0 1,
{geSL(Zn, C)l‘g< )g = Mg)( )}
.0 —1, 0

where 1, denotes #X# identity matrix. We may write an m X m matrix X in

the form
A B
X =
C D

where 4, B, C and D are nXn matrices. Thus we see that Xea if and only if
C='C, B='B and 'A+D=yu(X) 1, for some u(X)eC. Since tr(X)=0, we
have u(X)=0 and hence X<a if and only if

0 1, 0 1, 1
Xeép(n,C):{Xl’X( >+< )X:O .
—1, 0 —1, 0 )
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Therefore we may identify the connected component of the identity of 4’ with
Sp(n, C). Take two vectors e,=/(1, 0, --+, 0) and ¢,=*(0, 1, 0, -+, 0) of C™. The
e,/\ e, determines a point x, of V' (that is, in the Pliicker coordinates, x, is given
by P,#0 and p,s=0 otherwise). Let P be the isotropy subgroup at x,, Then
it is not difficult to see that P is a parabolic subgroup of Sp(n, C'). Since dim
Sp(n, C)[P=2(2n—2)—1, dim V=2(2n—2)—1 and V is compact, we see V=
Sp(n, C)/P.

Case 2 m=2n-+1

We may write a (2z+1) X (2z+1) matrix X in the form

(5

where A is a 2nX 2n matrix. Then X€&a if and only if =0 and

0 1, /0 1, 0o 1,
0 el
—1, 0o/ \—-1, o —1, 0

for some u(X)eC. Thus we get

A4 0
a= {( )egl (2n+1,0)

A=< ) tX2=X2
g v

X, X,

IXS = X3, Xl"l'tXA = _('Y/n)lm tBECZ”) 'YEC}

and dim a=2n*43n+1. Let
00

e {< ) I'BGCZ”}. Then n is an abelian ideal of a. On the other hand
B0

the center 3 of ais given by {a 1,,,,|a=C}. Since nN3=(0), ais not reductive.
By a theorem of Lichnerowicz-Matsushima [76], we see that V' does not admit
any Kihler metric with constant scalar curvature.

Now the exact sequence of sheaves

0 QUT(V)) > QT(M)| V') - Q({V} [V) > 0
induces the exact sequence of cohomologies

0—H(V,T(V)) > H'(V, T(M)|V) = H(V,{V}|V)
— HYV, T(V)) = H\(V, T(M)| V) — -

Since HYV, T(M)|V)=(0), HV, T(M)|V)=HM, T(M)) by the fact 4 and
VAV V)=hK(M{V})—1, we get
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KV, T(V)) = W(V, T(V))—H(M, TOD)+RV AV} V)
=zﬁ+&ﬂ4—«bﬂ4y—n+(”§4)—1=0

q.e.d.

3. The case M is SO(10)/U(5)

Let M be an irreducible Hermitian symmetric space of compact type of
type DIII. It is known that M is diffeomorphic to SO(2n)/U(n) (n=>4). Note
that M is a complex quadric Q% C) if n=4.

Consider a semi-spin representation of the complex simple Lie algebra g
of type D, and the corresponding representation p of the simply connected
complex Lie Group G with the Lie algebra g. Fix a highest weight vector o,
and let U be the subgroup of G defined by {geG|p(g) vo=cv, form some cE
C—(0)}. Then a map

j: GIU - P(C™™

defined by j(gU)=[p(g) v,] for gEG, is the canonical imbedding of M=G/U.

We recall semi-spin representations of type D, (cf. [2], chap. VIII, §13),
so that we can fix our notations. Let W be a 2n-dimensional complex vector
space and @ a non-degenerate symmetric bilinear form on W. Then W is a
direct sum of maximal totally isotropic subspaces F and F' of W; W=F@F"'.
Let {e, **+, e,, €_,, -+, e_;} be a Witt basis of W, that is, {e;, -**, e,} and {e_,, -**,
e_,} are bases of F and F’ respectively which satisfy the relation ®(e;, e_;)=39;;
for 7, j=1, -+, n. 'The corresponding matrix of ® with respect to a Witt basis is
given as

and the Lie algebra g can be given by

A B
|B= —s'Bs,C = —s'Cs, D = —s'As; .
C D

Let E, , be a matrix unit, that is, the (&, /)-component of E, , is given by 8, &;,.
Put )={Xeg|X is a diagonal matrix} and H;=E;;,—E_; _; for i=1, -, n.
Then {H,, ---, H,} is a basis of ). Let {&, -+, &,} be the dual basis of the dual
space H*.

Put
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XE,’—!] == E,"j—E

—j,_i
X-:H—z; = _Ej,i+E-i,-j
Xt.'+u = Ei,—i_E'

jo—i
X...!‘._!] == _E—j,i+E—i,j
for 1<i<j<mn.

Then § is a Cartan subalgebra of g and the root system > of g relative to
is given by 31={4-6;4-€;|1<i<j<n}. Let ;=& —&, Ay=E—&;, -+, Q1=
&po1—E&yy 0, =&,.,+E,. Then {ay, .-+, a,} is a fundamental root system IT of >3
and the fundamental weights corresponding II to are

Ay = &bt (1<i<n—2)
Aa,.. = % (oo Epg sy —E)

Aa, = % (o€t Err T-E2)

Now semi-spin representations are irreducible representations of g with the
highest weight A, _ and A, respectively.

Let O be the quadric form defined by x—®(x, x)/2 and let C(Q) denote the
Clifford alegbra of W relative to Q. Let NN be the exterior algebra of the max-
imal totally isotropic subspace F’. We shall identify F and the dual of F’ via ®.
For x&F’ and yeF let A (x) and A(y) denote the left exterior product by x and
left interior product by y in N respectively; so that for x&F’ and yeF

AMx)yay A Aay=xAay A\ Aa,
L] .
AMy) gy A Na, = Z_‘{(——l)"1 D(a;, y) N NG N Aay

where a,, -+, a,EF’.

Then we get that A(x)>=x(3)? and A(x) M) +X(y) Mx)=D(x, y) 1, and there
exist a unique homomorphism of C(Q) into End(/N), denoted also by A, which is a
prolongation of the map A: FUF'—End (V). Let C*(Q) denote the subalgebra
of C(Q) spanned by even elements and put

N,= 3 AF,N_= 3 A’F.
»:even #:odd

Now N, and N_ are stable for the restriction of A to C*(Q), and the representa-
tions A, and A_ of C*(Q) in N, and N_ respectively are called semi-spin rep-
resentations of C*(Q). These are simple C*(Q)-modules. There also exists a
canonical linear map f: g—C*(Q) which satisfies [f(X), f(Y)]=f([X, Y]) for X
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and Y in g and f(g) generates the associative algebra C*(Q). Furthermore if N
is a left C*(Q)-module and p is the corresponding homomorphism of C*(Q) into
End(N), then pof is a representation of g in N (cf. [2], p. 195, Lemma 1). Thus
p+=Nn;of and p_=_of are irreducible representations of g. In particular, the
action of g on IV is given as follows:

Kog-ejle—i, A Ney) = Me) (e-jNe_y A Ne_y,)

X_giref(e-i, Noos ANesy)) = —N(e;) (eci Neoy A+ Ney,)

X gmej(e-i, A Neoy) = e_; Ne_jNe_; N+ Ne_y,

Keirej(eci, N oos Ne_y,) = Ne) Mey) (e-, A Ae-y,)
where 1<i< j<z and

H(e_;, A+ Ne_;,)

- <% (51+"'+5n)_(5i,+"‘+5:,)) (H) (e-i, A+ Ne_y,)

for HEY. Particularly we see that the highest weights of p, and p_ are A, and
A,,_, respectively. The representation p_ is the contragradient representation

of p,.
From now on we consider the case #=5 exclusively.

Theorem 2. Let V be a non-singular hyperplane section of M"=
SO(10)/U(5) in P(C) via the canonical imbedding. Then the group Auty(V) is
not reductive and thus V does not admit any Kahler metric with constant scalar
curvature. Moreover H'(V,T(V))=(0).

In order to prove Theorem 2 we shall first classify the hyperplanes of N, by
means of the action of the Lie group G. For a linear form B: N,—C and g€G
let g*4 denote the linear form defined by (g*4) (n)=A(g+n) for neN,. Now
linear forms B and B, are called G-equivalent if there is an element g&G such
that B,=g*B.

Lemma. Let B: N,=C-1+A’F'+ A*F'—C be a linear form. Then B is
G-equivalent to either a linear form on C-1 or a linear form on A*F'.

Proof. We may assume B=+0. Take a basis {e_,, :*+, e_s} of F' and fix
it. A basis of N, is now given by {1, e_;Ae_;, e, A+ A€, A+ Nes| 1<i<j<
5, k=1, --+, 5} and the corresponding dual basis of (/V,)* will be denoted by

{1, (e-iAesy)™, (eci A v NELA - Neg)* [1<i< j<5, k=1, -+, 5}

Step 1. We claim the linear form B is G-equivalent to
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001—}—% Bij(e-i/\e-j)*_l_? 'Yk(e-l/\ i /\3—1@/\ b /\e_s)*
3

with a 0.
The linear form B can be written as

B = 34“‘% sii(e-i/\e-l)*+¥ Fi(eoi A Ne_y Ao Nes)™
We may assume that 8=0. Let X=.2 Pu X_¢,-s, be an element of g. Then
</

we have

exp X(l) = 1+2PH e..,,/\e-1+l 2 2 P“P,'j e—i/\e—j/\e—k/\e—-l .
< 2 iy

(a) The case when B;;=0 for some (i, j).

Let p,;=0 for (k, [)*(z,5) and p;;=1.

Then B(exp X(1))=p;;%0 and the linear form
(exp X)*B has the required property.

(b) The case when B,,=0 for all (%, ).

Take v,=0 and choose {3, j, s, t} such a way as i< j<s<tandi,j,s, t=k.
Let X=X_,,_,,+X_,,, Then B(exp X(1))=v,#0 and the linear form
(exp X)* B has the required property.

Step. 2. We claim the linear form B is G-equivalent to

a- 1+(e_1Ae_z)*—f—(e_sAe_‘)*%—? Yi(e_ A Ney A Aeg)®

with a0 and for some v;=C.
By Step 1 we may assume that B is given by

o 1‘*‘% Bii(e—i/\e—i)*_l"? Vet Ao AEy Ao Aes)*

with a=0. Let Y=3] gy X,,1., be an element of g. Then we have
<t

B(exp Y(e_;Ae_;))=B(e_;Ne_j+Y(e_;Ne_;))=RB;;—q:;; & and B(exp Y(1))=
B(l)=a. Hence we can choose Y in such a way as (exp Y)*B=a-1+
(e—l/\e—z)*+(e—3/\e—4)*+¥ Vi(eot A= ANE_y Ao Neg)™.

Step 3. We claim the linear form B is G-equivalent to

a.1_|_5_,; Biie-; Ne_;)* for some B};eC.
i<

We may assume B is given by

a- 1+(e_1/\e_2)*-}—(e_3/\e_¢)*+¥ (CRVARE NE_ A=+ /\e—s)* .

Let Y,=¢qiz X, ., be an element of g. Then
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(exp Y))*B = a-14+(1—ql.a) (e-; Ae_p)x+(e-sAe_y)*
—|—(')’5——qu) (e_lAe_z/\e_3/\e_4)*+.§‘ 712(3—1/\ °e /\/e\—k/\ b /\8_5)* .

Let ¢/;=7s. Then we have

(exp Y))*B=a- 1+ ppp(ey /\e—z)*+(3-3Ae—4)*
+2 oA ABa A Aeg)?

where p,=1—"7;a.
Let Y,=¢i5 Xepre;+qis X; 1o, Then we have

(exp Y,)* (exp Y))*B(e_,Ae_sAe_yNe_s) = Yi—gis

(exp Y,)* (exp Y))*B(e-1Ae_sAe_yAe_s) = ¥i—qis

(exp Y,)* (exp Y))*B(e_;Ae_,Ne_sNes) = 75

(exp Y)* (exp Y))*Ble-1AepAe_sAes) = 7i

(exp Y,)* (exp Y))*B(e_;Ae_,Ae_sAe_) =0

(exp Y,)* (exp Y,)*B(e_;Ae_;) = (exp Y,)* B(e-;Ae_j)
if (4,7)*(1,5) (2, 5)

(exp Y;)* (exp Y))*Ble-;Ae-s) = —gisa

(exp Y,)* (exp Y))*B(e_;Ae_s) = —qlisx

Thus setting ¢{s=7% and ¢45=71, we get .

(exp Yy)* (exp Yy)* B:a‘1+.U»12(e—1/\3—2)*+(e~3/\e—4)*—72,’a(e-1/\e—5)*
—Yia(e_, Aes)* +vi(e- i Ne,Ae_yNes)*+vi(e. Ae_yNe_sAe_s)™.

(a) Now we consider the case yu;,+0, 7530 or ¥{=0.

Let Y;=qis X 1e,1q35 Xegre,. Then we have
(exp Y9* (exp V5)* (exp Y)*B=a-1+33 Bij(e-iAe-)*+(Vi—gispn) (e-1/\

e_sNe_s/A\e_s)*+(Vi—qlsp) (ec1Ae_sNe_yAe_s)* for some Bi;€C. If p,=+0,
let ¢45="74/u1, and qis=Y4%/uy, then (exp Y3)* (exp Y,)* (exp Y;)* B has the
required property. Similarly if v5=0, let Y;=q%4 Xy 1o, +q%3 Xopse, Where gze=
—94/via and ghs=—i/vsa, then (exp Y3)* (exp Y,)* (exp Y,)* B has the
required property. And if ¥{=#0, let Yy3=¢{s X, ,, 13 X, +e, Where gls=75/720
and ¢{3="4/v5a, then (exp Y3)* (exp Y,)* (exp Y;)* B has the required property.
(b) Now we consider the case u;,=v5=71=0.
Let Y;=4,, Xe,+gz+qas X83+35+q45 X34+35'
Then (exp Yy)* (exp Yy)* (exp Y)*B=a-1—gpa(e_;Ne_)*+(e-sNe_)*—gxa
(e-sNe_s)*—Gsor(e_ Ne_s)* —Gule_i Nes Ae_sAe_)*+(Vi4-G1, ) (e-1 ANz Ne_y
/\e-s)*‘l‘(')'é'i‘qlz Jss) (e—l/\e—z/\e—4/\e—5)*'
Now choose §;,0, §s; and G, such that Vi+G,35=0 and 5+ §.ds=0,
so that (exp Y3)* (exp Y,)* (exp Y))*B=a-1—gpale_;Ae_p)*+(e_sNe_o)*
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—gsale-sNe_s)*—Gsa(e_y Ne_s)* —gu(e_, Ne_, Ae_s Ne_)*.

Let Y,=—@, X; +e;; Then

(exp Y)* (exp Y3)* (exp Yy)* (exp Y1)*B (e-1Ae_;Ae_gAe_)=—qp+G1p X 1=0
and hence

(exp Y)* (exp Y3)* (exp Y,)* (exp Y))* B has the required property.

Step 4. Now we may assume B is given by a1+ Bfjle_;Ae_;)*. If
B4;=0 for all (7,5), B is a linear form on C-1. We may assume there is (7, )
such that B/;# 0. Let
X, =p!j X_¢;—¢;» Then

(exp X))*B(1) = a—pi; BI;
(exp X,)*B(e_,Ae_;) = B(e_, Ae.,) for each (k, [)
(exp X))*B(e-; A+ ANe_y A+ Ae_s) = 0 for each k.

Letting p/;=a/B%;, (exp X,)*B can be regarded as a linear form on A%F",
g
q.e.d.

Proof of Theorem 2. From the fact 4 we see that every holomorphic vector
field on a non-singular hyperplane section V' can be extended uniquely to a hol-
omorphic vector field on M. Let A={gsAut(M)|g(V)=V}. Then the Lie
algebra of A can be identified with the Lie algebra of all holomorphic vector
fields on V. Take the hyperplane H of P(IN,)such that V=M N H and let A'=
{g=G|gH=H}. A hyperplane H is the zero locus of non-zero linear form B on
N, and thus the Lie algebra a of 4’ is given by a(B)={X 80(10, C)|B(X-n)
=¢(X) B(n), n€N, for some ¢(X)=C}. Note also that if linear forms B and
B’ on N, are G-equivalent the Lie algebras a(B) and a(B’) are isomorphic.
Therefore by Lemma we may assume that B is a linear form on C--1 or a linear
form on A’F’. If B=a-1(a=0) we can see the variety M N H has a singular
point (see Appendix). Thus we may assume B is a linear form on A’F’. Now
we can take a basis {e_;, e_, e_3 e_,, e_s} of F’' such that B=(e_;Ae_)*+
(e-sNe_y)*orB=(e_;Ae_p)*. Weclaimif M N H is non-snigular B=(e_; Ae_,)*+
(e—sN\e_,)*. Since a generic hyperplane section of M is non-isngular, it is suf-
ficient to see that if B=(e_,/\e_,)*, M N H has a singular point. Let X=X_, _,,
and Y=X, ,,,. Then (exp Y)* (exp X)* B=1, and thus B is G-equivalent to a
linear form on C-1. Hence, M N H hsa a singularity.

Now we shall compute the Lie algebra a(B) for B=(e_,; Ae_,)*+(e_sAe_y)*.
We may write an element X of g=3o(10, C) as

X = 2 a;; Xe:—e,‘}'Z bs‘j X-e;+e,~+2 Cij Xzi+zi+2 dij X—E,‘—!]
i<j i<j i<j i<i
+3LH;.
i

Since B(1)=0,B(X-1)=B(X d;;j e_; \e_;)=d,,+d3=0. Since
i<i
B(e_y A\ Ne_y A\ -+ Ne_s)=0, we see that
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B(X-e_;Ne_sNe_sNe_) = —Cp—C3y =0
B(X-.e_;Ne_yNe_sN\e_s) = —c5s =10
B(X-e_,Ne_;Ne_Ne_5) = —c5s=10
B(X-e_;Ne_sNe_Ne_5) = —c;5=10
B(X-e_,Ne_sNe_Ne_s) = —ci=0.

Moreover
B(X-e_1Ae_)) = (% (11+12+13+14+15)—(1,+12)) — ¢(X)

B(X-e-she-) = (5 kbl bR — (b)) = o)
B(X-.e_,Ne_3) = ay+ap=0, B(X-e.,Ae_))= —a3+by=0,

B(X'e_l/\e_5) - b25 = O y B(X‘e_z/\e_a) == a24_b13 = 0 Py
B(X‘e_z/\e_4) == ——a23—b“ == 0 ) B(X‘e_z/\e_5) = _b15 = 0 y
B(X:e_3Ne_5) =bs=10, B(X-e_,Ne_5) = —bs=0.

Thus the Lie algebra a(B) is given by

L a, a; a, ay : 0 ¢4 ¢3 ¢ O

11+lz = la+l4
¢y 0 —cp—cy3 || atbys=0

—aytby =0

—by, L ay ay ax 0 ¢ 3 0 —cpp
—bis—by L ay ay 0

—by—by—by I, “45§ 0 0 —ey—cy—cy
0O 0 0 0 I 0 0 0 0 O

.............................. E etesscesvesecsnrststsecsrreses a24—b13:0

—dy—dy—dy 0 dg 0 —I, —ay—ay—ay, @ytby =0

—dy—dy 0 dy dy 0 —by L —an—ay ||dytdy=0

—dy 0 dy dy dy 0 by by—1L —ay
0 dyp dyg dy ds i 0 by by bp—)

cotey =0

and, in particular, dim a(B)=30. Let

n=4{Xe€aB) | X=|—Br—Bi 0 i —ag-—ay |}

B
Then n is a solvable ideal of a(B) such that [n, n]==(0) and [[n, n], [n, n]]=(0).
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Therefore a(B) is not a reductive Lie algebra. By a theorem of Lichnerowicz-
Matsushima [6], we see that the hyperplane section ¥ does not admit any Kihler
metric with constant scalar curvature.

Now by the same argument as in the proof of Theorem 1, we get

dim HY(V, T(V)) = KV, T(V))
= BV, T(V))—K(M, T(M))+kV, {V}|V)
= dim a(B)—dim 80(10, C)+(16—1)
= 30—45+15=0.
q.e.d.

Appendix

Let M be an Hermitian symmetric space of compact type and L a very
ample holomorphic line bundle on M. Let j,: M—P¥(C) be the imbedding as-
sociated to L. Then it is known that the homogeneous ideal of M is generated
by quadrics [7]. We shall determine these quadrics in the case when M=
SO(10)/U(5) and the imbedding is canonical. Denote by o the point in P(N.)
corresponding to U(5) of M. Let m_=_2<j 8_¢;-¢; be an abelian subalgebra of

g=30 (10, C) and M_ the Lie subgroup corresponding to m_. Fix a basis

{e_y, e_p €_3 _,, e_s+ of F'. Then

{l,e_;Ne_j e Ne_j,Ne_ Ne_;, |1< j, 1, <5, <3<}

.—i‘
is a basis of N,. We also denote by {x,} the dual basis of N¥. Now consider
the orbit M_-0=j (exp m_-U)=[p (exp m_)v,]. We may write an element Y
of m_ as

Y= 2 E—!.‘—!j X—!,‘—'!j .
i<j
Note that the highest vector v, is given by 1N, in our case. Then

plexp Y)-1
=1+2 E—!,‘—!j X—ei—e,-'l‘l‘% PN S—e;»e; g—q—e, X—z.-—-c] X-:,,—e,'l .

For simplicity we denote the highest weight A,, by A. Now we get
%5 (p (exp ¥)ecol) = ¢
Xp-gj—ej (P (exp Y)":' 1) == c&—e;—e;
xA-e,'—e,'-z,,-eI (P (exp Y)'C' 1)
=c (E—e;-—q E—e.—e,_'g—!.'—e* E-ej—e,'i'g-e,-—e, E—e;-—ek)

where 1< j<k<I. Thus we see on M_-0
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XA XA~ (ei+ej+epte) —FXa-(ei+e) XA-(gyte)
+x1\—(e;+e,,) XA-(ej+e) —XA—(gi+e) XA-(ej+ep) = 0
for i< j<k<I
Since the Zariski closure M_-0 of M_-0in P(N.)is M, we see that these quadrics

vanish on M.

Let I(M) be the homogeneous ideal of M, S*(N*) the vector space of ho-
mogeneous polynomials of degree 2 on N, and J, the subspace of degree 2 of the
ideal I(M). Then I(M), SY(N¥)and I, are 80(10, C)-modules. Now the decom-
position of S*(N¥) as 80(10, C)-modules is given by

Sz(N 1‘) = VzAu,‘I‘ VAal

where Viy,, and V), denotes 80(10, C)-modules with the highest weights 2A,,
and A, respectively, and we see I,=V , as 80(10, C)-module. (Note that A, =
&.) In particular, we have dim I,=10. Applynig elements of Weyl group of

80(10, C), it is not difficult to see that the following 10 quadrics constitute a
basis of I,:

For 1<i<j<k<I<L5,

Xp XA—(gi+ej+epte) —FXA-(eite)) ¥a-(egte)
+xA—(z,-+e,,) Xa—(ej+e) —Xna-(gi+e) ¥a-(ej+ep) »

XA—(e,+e5) ¥A—(e,+eptegte,) —XA-(e;+eg+egtegtes) XA-(egte,)
+xA—-(el+23+e4+95) xA—(22+24)_xA-(21+s4) X A—(eg+egtegtes) o

XA~ (gq4+eg) xA—(el+22+23+e5)_xA—(el+ez+e4+35) X A (eg+e5)
+xA—(zl+23+!4+s5) XA~ (eg+e5) X A—(e;+e5) X¥A-(ep+egte +eg) o

XA —(eg+eg) xA—(e]+!2+23+e4)—xA—(21+22+23+s5) XA—(eg+e,)
+xA—(!1+23) XA (egt+eg+e t+eg) T XA—(e,+egtegtes) XA—(epteg) s

Xn-(egt+es) XA-(ey+eptegte) T~ XA—(e;+eg) ¥A-(eptegte tes)
+xA-(el+zz+e3+25) xA—(ze+z4)"xA—(el+ez+e‘+25) XA—(ep+eq) 5

Xp-(e,+e5) ¥A-(ey+eategte,) T~ F¥a-(e,+e0) ¥A-(e;+egte tes)
+xA—(el+33) XA~ (2,+egt+egtes)  XA~(e,+e,) XA—(e,+eptegte) *

Now if a hyperplane H is given by B=a-1, that is, a-x,=0, then the

variety M N H has a singular point. In fact, if we take a point p = P(IN.,) defined
by

Xn-(e,+egtegtey (P)F0 and xy(p) = 0 otherwise,

then p& M N H is a singular point of M N H, using the fact M is the zero locus
of 10 quadrics above.
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