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Preface

This dissertation presents the author’s research work on multimedia signal processing

for copyright and privacy protection, which was achieved during a Ph.D. course at the

Division of Electrical, Electronic, and Information Engineering, Graduate School of

Engineering, Osaka University. It is organized as follows:

Chapter 1 describes the problem of copyright and privacy infringement that has

arisen with the recent popularization of mobile video cameras to clarify the purpose of

this research work.

Chapter 2 introduces an overview of existing technologies for copyright and pri-

vacy protection, which is the focus of this research work. The characteristics of the

approaches presented in this dissertation are clarified by comparing them with existing

technologies.

Chapter 3 describes a digital audio watermarking-based approach for copyright

protection against in-theater movie piracy, which is an illegal copy of a movie made in

a theater using a mobile video camera. As a clue for identifying pirates, this approach

estimates the pinpoint position in a theater where the movie was recorded based on

the watermarks embedded in the movie soundtrack. To demonstrate the practical

applicability of our approach, the accuracy of the positions estimated in an actual

hall is experimentally evaluated, and the acoustic quality of the watermarked movie

soundtracks is subjectively assessed by MUSHRA listing tests.

Chapters 4 and 5 deal with the problem of privacy infringement due to the dis-

closure of persons’ appearance in videos. Generally, a video contains human objects

in the video frames that correspond to persons. Some human objects are intention-

ally captured by camera persons while others are accidentally included in the frames.

Since intentionally-captured human objects (ICHOs) are essential for the video and

permission for capturing can be easily obtained from the persons corresponding to the

ICHOs, privacy-protected videos are automatically generated where human objects

except ICHOs (non-ICHOs) are obscured.

Chapter 4 presents a method for detecting ICHOs in videos that serves as a basis

for automatically generating privacy-protected videos. Based on the observation that

the camera persons’ behavior in capturing ICHOs is reflected in the camera motion

associated with the motion of each human object, all human objects are detected and



classified into ICHOs/non-ICHOs using features related to camera and human object

motions. The method’s performance is evaluated using various videos.

Chapter 5 describes an ICHO detection-based approach for automatically gener-

ating privacy-protected videos. Such videos can be generated by first detecting non-

ICHOs and obscuring them. However, since non-ICHOs are often only partially cap-

tured, which prevents their accurate detection, ICHOs are first detected and other re-

gions are replaced with the estimated background. The validity of the ICHO-based ap-

proach is evaluated by a user study, and the quality of the generated privacy-protected

videos is also evaluated using several videos.

Chapter 6 concludes this dissertation.
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Chapter 1

Introduction

Recently, we have witnessed the rapid popularization of mobile video cameras includ-

ing not only camcorders but also digital cameras and mobile phones with built-in

cameras. According to the Cabinet Office of Japan [1], the household penetration rate

of camcorders in Japan reached 40.0% in 2010. The penetration rate of mobile phones

worldwide was 41.8% in 2006 and 78.0% in 2010 [2]. Gartner, an information technol-

ogy research and advisory firm, claimed that nearly 50% of these mobile phones would

have built-in cameras in 2006 and 81% in 2010 [3].

In addition, the recent popularization of such video sharing services as YouTube1

and Dailymotion2 enables camera persons to publish their own videos and distribute

them worldwide. Current mobile phones with built-in cameras are especially capable

of accessing the Internet. Using such mobile phones, camera persons can take a video

and can immediately make it available on the Internet. Mobile video cameras have

greatly simplified taking videos and sharing them through the Internet.

However, taking and publishing videos often involve the problems of copyright and

privacy. Copyright is a set of rights that protects the authors of artistic works [4], which

are defined in the copyright laws of most nations. Examples of the rights included in

the copyright are the rights to permit or prevent the reproduction of artistic works and

the distribution of the copies of artistic works. These rights are automatically granted

to the authors of artistic works. Any type of artistic work is protected by copyright

law, including books, musical compositions, movies, photos, and so forth. Therefore,

1http://www.youtube.com/
2http://www.dailymotion.com/

1



2 CHAPTER 1. INTRODUCTION

copying artistic works without permission infringes on the copyright, possibly resulting

in financial losses for the authors.

Privacy involves hiding a person’s identity or information about that person. In

[5], privacy is divided into three groups: spatial, decisional, and informational. Spa-

tial privacy means that a person’s territory should not be invaded by others without

permission. Decisional privacy means that a person has the right to make decisions

without interference. Informational privacy means that a person has control over the

acquisition, the disclosure, and the use of his/her personal information that can iden-

tify him/her. In the sense of informational privacy, such information of a person as

height, weight, and blood type cannot be acquired, disclosed, or used without per-

mission. Otherwise, a person’s privacy is infringed on and he/she may suffer financial

losses or mental distress.

Videos taken with mobile video cameras might capture artistic works and persons.

For example, if a camera person uses his/her mobile video camera in a theater where a

movie, a live musical performance, or a play is being performed, the video is considered

a reproduction or a copy of the artistic work. Videos taken without the permission of

the authors thus infringe on copyright. Even a video taken in a park or on a street can

contain the appearance of persons and can be directly linked to their identities. The

video can infringe on the persons’ privacy if permission was not obtained.

Laws have been enacted in several nations to protect copyright and privacy. For

example, in the United States in 2005, the Family Entertainment and Copyright Act

banned the use of mobile video cameras in theaters. In Japan, a similar law has

been enforced since 2007. To partly protect privacy, the United States enacted the

Video Voyeurism Prevention Act of 2004. However, these laws do not always pre-

vent copyright and privacy infringement because their actual enforcement is imperfect.

Technologies are strongly required to protect copyright and privacy.

In this dissertation, we present systems to protect copyright and privacy. These

systems must be designed to be easy to use without high initial costs. We aim to

develop systems that can be used without modifying mobile video cameras and existing

environments such as theaters. By focusing on video that consists of multimedia signals,

i.e., audio signals and sequences of images or video frames, we adopt multimedia signal

processing techniques that include digital watermarking, object detection, and object

segmentation. Our systems act on captured videos so that the systems can be used
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without modifying mobile video cameras and existing environments, which lead to and

increase their actual deployment without high initial costs.

For copyright protection, although several types of artistic works can be infringed

on by capturing them with mobile video cameras, we focus on the problem of in-theater

movie piracy where movies shown in theaters are captured by mobile video cameras.

This is because the movies shown in the theaters themselves are multimedia signals,

and thus we can also process them using multimedia signal processing techniques.

To protect copyright against in-theater movie piracy, several countermeasures have

been proposed based on digital watermarking techniques, which embed a secret message

into multimedia signals as a watermark. Usually a pirated movie, which is an illegally

recorded movie, is broadcast through the Internet or other media. By embedding into

the movie as a watermark an ID associated with the theater and the date the movie

was shown, these systems can automatically find copies of pirated movies and identify

the theater and date [6, 7]. However, since the most effective countermeasure against

in-theater movie piracy is to identify pirates, our system precisely estimates the pirate

position by specifying the pirate’s seat. If used with a system that associates seats

with the identities of those in them such as a ticketing system, our system can identify

pirates.

Considering that a theater usually has at least three loudspeakers, we estimate the

pirate position using the delays of a multiple-channel movie soundtrack. Our system

embeds a different watermark into each channel of the movie soundtrack using a digital

audio watermarking technique. If the movie soundtrack with watermarks is captured

by a mobile video camera, the captured video’s audio signal contains the watermarks.

Using these watermarks, we can calculate the watermark delays, which are proportional

to the distances from the loudspeakers in the theater to the microphone attached to

the mobile video camera. From these delays, our system estimates the microphone

position as the pirate position. In addition, we develop a position estimator based on

the maximum likelihood method that statistically improves estimation accuracy.

For privacy protection, we present a system that automatically obscures persons in

video frames. When camera persons take videos, they usually have capture intentions

that categorize the persons in the videos into intentionally-captured and accidentally-

framed-in persons. In Fig. 1.1, the camera person intentionally captures the person

shown in blue, moving the mobile video camera to follow him as indicated by the black
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Figure 1.1: Example of accidental privacy infringement. Intentionally-captured and
accidentally-framed-in persons are shown in blue and in red, respectively. Their motion
is indicated by blue and red arrows. Camera person moves his/her camera dependent
on motion of intentionally-captured person as indicated by black arrow. In this case,
privacy of accidentally-framed-in person is infringed.

arrow. While capturing, the person in red is accidentally framed in. In most cases,

the intentionally-captured person is the camera person’s friend or family member, and

thus, he/she can easily obtain permission to capture and publish from the intentionally-

captured person. However, since the video contains the appearance of the accidentally-

framed-in person, as indicated by the red rectangle, it infringes on his privacy, which

is referred to as accidental privacy infringement. This is the most common type of

privacy infringement. To protect the privacy of accidentally-framed-in persons, we

need to obscure their appearance.

In conventional technologies for protecting the privacy of persons captured in videos

[8, 9], the appearance of all persons in the video frames are obscured or persons whose

appearance is obscured are determined based on their identities. However, these tech-

nologies are inappropriate for accidental privacy infringement because they do not

consider the camera person’s capture intention. In addition, technologies based on

person identities cannot be used because obtaining them is extremely difficult under

realistic environments.

Therefore, assuming that the camera persons can obtain permission for capturing

and publishing from intentionally-captured persons, we realize a system that automat-

ically generates privacy-protected videos. Hereinafter, the regions in the video frames

corresponding to persons are called human objects. We refer to human objects who

correspond to intentionally-captured persons as intentionally-captured human objects

(ICHOs) and to human objects except ICHOs as non-ICHOs. In Fig. 1.1, the human

objects surrounded by the blue and red rectangles are an ICHO and a non-ICHO.
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Our system only obscures non-ICHOs and presents ICHOs to preserve camera persons’

capture intentions.

More specifically, we develop a method for detecting ICHOs to obscure only non-

ICHOs. Whether a human object is an ICHO is reflected in how camera persons move

their mobile video cameras, i.e., camera motion. We first detect all human objects

in the video frames and classify them into ICHOs/non-ICHOs using features related

to camera motion. To obscure non-ICHOs, our system estimates the background of

the video frames and substitutes it with ICHOs so that non-ICHOs can be obscured

without explicitly detecting them, which is usually more difficult than detecting ICHOs.

The outline of this dissertation is as follows: In Chapter 2, we introduce existing

technologies to protect copyright and privacy and clarify the characteristics of our

approaches by comparing them with these existing technologies. Chapter 3 describes

a digital watermarking-based system for copyright protection against in-theater movie

piracy by estimating the pirate position. In Chapters 4 and 5, we address the problem of

accidental privacy infringement and in Chapter 4 present a method for detecting ICHOs

that serves as the basis of our system. In Chapter 5, we describe an ICHO detection-

based system for automatically generating privacy-protected videos by only obscuring

non-ICHOs. Chapter 6 concludes this dissertation and presents future directions.





Chapter 2

Technologies

to Protect Copyright and Privacy

2.1 Introduction

In this chapter, we introduce the existing technologies for copyright and privacy protec-

tion. To demonstrate the uniqueness of copyright and privacy infringement caused by

mobile video cameras, we present a wider range of technologies not only for in-theater

movie piracy and accidental privacy infringement but also for other types of copyright

and privacy infringement. For copyright infringement, we present the flow of movie

piracy and introduce the existing technologies for protecting copyright against it. For

privacy infringement, we first identify the factors that characterize the approaches for

privacy protection and introduce the existing systems. We then describe the motiva-

tions and characteristics of our approaches for in-theater movie piracy and accidental

privacy infringement.

2.2 Copyright protection against movie piracy

Movie piracy is a general term that represents various types of illegal copies of movies

including in-theater movie piracy. In this section, we introduce the existing technologies

for protecting copyright against movie piracy.

Figure 2.1 shows the flow of movie piracy, which consists of reproduction and dis-

7
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Figure 2.1: Flow of movie piracy.

tribution stages. First, at the reproduction stage, a movie is illegally copied to make a

pirated version by capturing it with a mobile video camera (in-theater movie piracy),

by copying an optical disc containing a movie such as a DVD or a blu-ray disc (optical

disc movie piracy), or by copying a broadcast (broadcasting movie piracy). The pirated

movie is distributed through the Internet or as package media at the distribution stage.

The existing systems for protecting copyright against movie piracy are categorized

into four groups: (i) capture prevention, (ii) copy prevention, (iii) copy detection, and

(iv) content tracing. Capture and copy prevention work at the reproduction stage, and

the other two work at the distribution stage.

(i) Capture prevention: Capture prevention, which is a countermeasure against

in-theater movie piracy, prevents pirates from capturing movies in theaters. Yamada

et al. [10] focused on the difference of the sensitivities of the human visual system and

mobile video cameras to infrared light and proposed emitting infrared light from behind

a theater’s screen. Infrared light is invisible to humans because our visual system is

insensitive to it, but it is captured by mobile video cameras. This countermeasure
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significantly degrades the visual quality of pirated movies so that they cannot be used

as a source of further copies. Capture prevention thwarts the act of capture itself,

which Yamada et al.’s system fails to do. However, we view this system as capture

prevention because it practically inhibits the reproduction of movies. Its limitations

are that it can be overcome by infrared filters and devices to emit infrared light need

to be installed in theaters.

(ii) Copy prevention: Copy prevention, which inhibits a pirate from copying movies

from optical discs and broadcasts, addresses optical discs and broadcasting movie

piracy. Most commercially-adopted systems fall into this group. For example, the

content scrambling system (CSS) [11] and content protection for recordable media

(CPPM) [12] are used for DVDs. For broadcasting, conditional access systems (CASs)

have been adopted [13]. These systems are based on such encryption techniques as the

advanced encryption standard (AES) [14]. An encryption technique scrambles a movie

until it is decrypted with a valid decryption key, and thus, only authorized persons

with the key can copy the movie. However, such copy prevention cannot be used for

in-theater movie piracy because the movie is decrypted when shown in the theaters.

(iii) Copy detection: Copy detection finds pirated movies distributed through the

Internet or other media. Using copy detection, the movie’s authors can ask the owner

of the pirated movie to remove it. Copy detection can be used for in-theater movie

piracy, optical disc movie piracy, and broadcasting movie piracy since it works at the

distribution stage (Fig. 2.1).

A digital watermarking technique, which embeds a secret message into a multimedia

signal as a watermark, can be used for this purpose. A watermark is embedded into

the audio signals or the video frames of a movie, and a video is judged as a pirated

version if the watermark is detected in it. In optical discs and broadcasting, the

movie is compressed or subjected to digital to analog (DA) and analog to digital (AD)

conversion, which results in distortion. In addition, if the movie was captured with

a mobile video camera, its audio signals and video frames are subjected to excessive

distortion. Therefore, watermarks should be robust against such distortion. Cox et

al. [15] proposed one of the most well-known watermarking algorithms based on the

spread spectrum (SS) technique. Since this algorithm can be used when a movie is
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compressed or subjected to DA and AD conversion, it is applicable to copy detection

for optical disc and broadcasting movie piracy. To realize copy detection for in-theater

movie piracy where video frames projected on theater screens are subjected to excessive

geometrical distortion caused by being captured with mobile video cameras, Haitsma

et al. [6] proposed an algorithm that uses only the time axis of a movie’s video frames.

A method to compensate the geometrical distortion was proposed by Nguyen et al. [7]

so that the watermark can be detected in the captured movie.

A fingerprinting technique is also applicable to copy detection for in-theater movie

piracy, optical disc movie piracy, and broadcasting movie piracy. In contrast to the

digital watermarking technique, this technique does not embed any message in a mul-

timedia signal but extracts a unique fingerprint of the multimedia signal content from

the multimedia signal itself. For copy detection, the fingerprinting technique first ex-

tracts the fingerprint from the original movie for which copy detection is required. The

fingerprint is then extracted, e.g., from videos on the Internet. Since the fingerprinting

technique can extract the same fingerprint as the original movie even from a distorted

movie, a video is judged as a pirated version if the extracted fingerprint is identical to

the original movie. Compared with the digital watermarking technique, one advantage

of the fingerprinting technique is that modification of original multimedia signals is

unnecessary, and thus they can be used without any preparation before the movie is

shown in theaters or is sold in optical discs. A number of fingerprinting algorithms

have been proposed. For example, algorithms for audio signals and video frames have

been proposed by Ramalingam et al. [16] and Joly et al. [17]. These algorithms are

applicable to copy detection for optical disc and broadcasting movie piracy. Wei et

al. proposed an algorithm for video frames [18] and experimentally verified that it is

applicable to video captured with a mobile video camera. Therefore, this algorithm is

another countermeasure against in-theater movie piracy.

(iv) Content tracing: Content tracing, which identifies the origin of a pirated

movie, can be categorized into two groups based on the following information ob-

tained from it: (A) where and when the movie was copied or captured, including the

source of the reproduction, i.e., in-theater movie piracy, the optical disc movie piracy,

or the broadcasting movie piracy, and (B) the pirate who copied or captured it. The

digital watermarking technique [6, 7, 15] can identify (A) by embedding an ID associ-
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ated with (A) as a watermark. In addition, Hartung et al. [19] argued that the digital

watermarking technique can be used to identify (B) for optical disc and broadcasting

movie piracy if a different ID is embedded into each copy of the optical disc or into

a movie delivered to a specific person through broadcasting, which can be achieved

by embedding watermarks in, for example, set-top boxes. However, the conventional

digital watermarking technique is incapable of identifying pirates for in-theater movie

piracy because we cannot embed a different watermark for each person in the same

theater.

To help identify pirates for the content tracing for in-theater movie piracy, several

techniques for pirate position estimation have been proposed. Chupeau et al. [20] ex-

ploited the geometrical distortion of a movie in captured videos. The video frames

projected on the screen are captured in the video with geometrical distortion; i.e., the

screen, which is actually a rectangle, is deformed in the captured video. Since the

geometrical distortion differs depending on the pirate position, it can provide a clue to

the pirate’s position. The geometrical distortion is estimated based on correspondences

between the feature points in the pirated movie and the original. Muneishi and Iwakiri

[21] take a similar approach. However, they need another technique to detect pirated

movies and to identify the theater and date on which the movie was shown. Lee et al.

[22] estimated the pirate’s position using a watermark embedded into the video frames.

One of the main characteristics of this technique is that it can find feature points used

for estimating the geometrical distortion based on the watermark embedded into the

video frames of the movie without accessing the original movie. Since these techniques

only estimate the direction from the center of the screen toward the pirate, they need

the theater’s seating arrangement to specify the seat. We can identify pirates using pi-

rate position estimation with a system that associates the seat with the person who was

in the seat. A ticketing system might make such associations. Otherwise, at a movie

premiere, most seats are reserved for specific persons, and the associations between

the seats and the persons can be leveraged to identify the pirate. Another potential

approach is to use surveillance cameras that capture persons in the theater. The prob-

lem of privacy infringement can be alleviated by combining pirate position estimation

because only the region corresponding to the pirate can be selectively presented.

Figure 2.2 summarizes the existing technologies. For optical disc and broadcasting

movie piracy, the same technologies can be used for copy detection and content tracing.
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Figure 2.2: Technologies for copyright protection against movie piracy.

In contrast, for in-theater movie piracy, which excessively distorts a movie, we need

technologies that are robust against such excessive distortion. For copy detection, the

fingerprinting algorithms [16, 17] are applicable to optical disc and broadcasting movie

piracy, and Wei et al.’s algorithm [18] can be used for in-theater movie piracy. The

digital watermarking-based technologies [6, 7, 15] are also applicable to copy detection.

Similarly, the technologies [19, 22] for identifying pirates or for estimating their posi-

tions can be used for copy detection and for identifying where and when the movie was

pirated.

As seen in Fig. 2.2, many technologies have been proposed for copyright protection

against movie piracy. Capture and copy prevention are fundamental approaches be-

cause they inhibit the reproduction of movies. However, capture prevention [10] can

be avoided, as mentioned above, and the systems for copy prevention [11, 12, 13] are

also avoidable once the decryption keys are disclosed. Thus countermeasures in the

distribution stage are important. Among them, we consider content tracing, which

identifies pirates or estimates their positions, the most effective countermeasure. For

in-theater movie piracy, techniques have been proposed for pirate position estimation
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Figure 2.3: Types of video cameras.

that utilize geometrical distortion [20, 21, 22]. However, the main problem of these

technologies is that the geometrical distortion is likely to be compensated for the visi-

bility after the movie is captured, which fundamentally results in failure of the pirate

position estimation.

2.3 Privacy protection against disclosure of appear-

ance

To protect privacy in videos, many systems have been proposed. In this section, we

introduce the two main factors that characterize them and present existing systems

with respect to these factors.

Generally, a system for privacy protection for videos first finds regions in the video

frames, which correspond to persons, referred to as human objects. Then, some hu-

man objects are selected to be obscured. One crucial factor to characterize a privacy

protection system is the type of video cameras. Usually, finding human objects in

video frames greatly depends on the type of video cameras. For privacy protection, we

categorize the systems to protect privacy for videos into two groups with respect to

the type of the video cameras: (A) fixed or (B) mobile. They are shown in Figs. 2.3

(a) and (b).

Another important factor of a privacy protection system is the selection of hu-

man objects to be obscured because it determines the persons whose privacy will be

protected in the videos. From the viewpoint of the selection of human objects to be

obscured, the existing privacy protection systems for videos can be categorized into

three groups as shown in Figs. 2.4 (a)–(c): (i) privacy enabling device (PED)-based,

(ii) conservative, and (iii) identity-based systems.
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Figure 2.4: Selection of human objects to be obscured.

We describe the existing systems for privacy protection based on the selection of

human objects to be obscured. The differences caused by the type of video cameras is

described within each group of the selection of human objects.

(i) Privacy enabling device-based system: A PED-based system determines the

human objects to be obscured based on PEDs, which inform the video cameras of the

presence of the persons through wireless communications, assuming that the persons

have PEDs with them, as shown in Fig. 2.4 (a). Halderman et al. [23] proposed a

system that scrambled an entire video frame using an encryption technique until all

persons captured in the video agree to be disclosed. Brassil’s system [24] obscures

only human objects based on PEDs. In Fig. 2.4 (a), the person who sets his PED to

prevent capturing, indicated by red, is obscured, and the other person who permit to

be captured, indicated by blue, is presented. One of the main advantages of PED-

based systems is that the persons can control whether their appearance is disclosed

using PEDs even while they are being captured. In addition, the system is potentially

applicable to any type of video camera. However, the assumption that the persons

are carrying the PEDs is impractical and the video cameras must be modified to be

compliant with the system.

(ii) Conservative system: Assuming that no person grants permission for captur-

ing and publishing, a conservative system obscures all human objects (Fig. 2.4 (b)).
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A system in this group usually involves such surveillance tasks as security in public

spaces. For example, Park et al. [25], Chattopadhyay et al. [26], and Li et al. [27]

obscured all human objects for such surveillance tasks with fixed video cameras.

A conservative system can also be applied to mobile video cameras. Google Street

View images are captured with mobile video cameras. For these images, Frome et al.

[28] and Flores et al. [29] proposed systems to obscure all human objects. For life-log

video cameras, with which people record their personal experiences, Chaudhari et al.

[9] proposed a system in this group.

To obscure all human objects, we need techniques to find them. Usually different

approaches are taken for fixed and mobile video cameras. For systems using fixed

video cameras [25, 26, 27], a background subtraction technique, which identifies moving

objects as human objects, is adopted. This technique first constructs a background

model, in which the color of each pixel in the video frames without moving objects is

represented by a probability distribution. Since the camera is fixed, the background

model can be easily constructed. When a moving object appears in a video frame,

background subtraction finds the objects by comparing each pixel with the background

model and finding pixels that are different from the model. A number of background

models have been proposed. For example, Wren et al. [30] modeled pixel color with

Gaussian distribution. For further flexibility in the fluctuation of the pixel colors caused

by waving trees, e.g., background models have been proposed that represent a pixel by

the Gaussian mixture model (GMM) [31, 32] or by a non-parametric model [33].

For systems using mobile video cameras [28, 29], we need alternative techniques to

find human objects since adoption of the background subtraction technique is difficult

because of the camera motion. In this case, a human object detection technique, which

finds human objects based on their appearance, is used instead. Many algorithms

have been proposed for human object detection. Extensive surveys can be found in

[34, 35]. Here, we introduce the most well-known and widely adopted algorithms

[36, 37]. Generally, many algorithms for human object detection first extract features

that represent well human objects from a region of a video frame and determine whether

the region corresponds to a human object using a classifier trained with training data.

Since this process is repeated for various window sizes and positions, object detection

is usually computationally expensive. Viola and Jones [37] used simple features that

represent well each part of a face, such as eyes, noses, or mouth. They also developed
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a fast algorithm to calculate the features from regions of various sizes as well as a

computationally-efficient classifier to realize fast detection of faces. Dalal and Triggs

[36] proposed features that are suitable to represent pedestrians in a video frame. Since

Viola and Jones [37] use features representing each part on a face, their algorithm is

sensitive to face orientations; i.e., a classifier, which is trained to find frontal faces,

does not find profile faces. In contrast, the features in [36] represent the rough shape

of pedestrians and thus are insensitive to their orientations.

(iii) Identity-based system: In this group, human objects are detected using back-

ground subtraction or human object detection techniques and are selectively obscured

based on the identities of the persons that correspond to the human objects and pre-

determined rules (Fig. 2.4 (c)). The identities of the persons can be obtained using

radio frequency identification (RFID) tags and readers or face recognition techniques

that identify people from corresponding human objects. The rules are preliminarily

determined before using the system based on, for example, whether a person is au-

thorized to enter a restricted area in a building [38]. If the person is authorized, the

corresponding human object is obscured. Identity-based systems resemble PEDs-based

systems in the sense that the appearance of a person is obscured while the appearance

of others is presented; however, in identity-based systems, people cannot control the

disclosure of their appearance while they are being captured.

This group is mainly used for surveillance tasks in such specific environments as

offices and hospitals to which only limited persons have access. Several systems for

fixed video cameras are included in this group [38, 39, 40, 41]. These systems adopt

background subtraction techniques to find all human objects. The systems proposed

by Wickramasuriya et al. [38], Zhang et al. [39], and Yu et al. [40] use RFID tags

and readers while Tansuriyavong and Hanaki’s system [41] adopts a face recognition

technique [42].

A system for mobile video cameras was proposed by Kitahara et al. [8]. This system

supposes a specific environment in which fixed video cameras and RFID readers are

installed and people have RFID tags. Using the videos from fixed video cameras,

it finds human objects with a background subtraction technique and projects their

positions into the view of the mobile video camera to locate human objects. The

identities of the persons corresponding to human objects are obtained using RFID
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Figure 2.5: Systems for privacy protection against disclosure of persons’ appearance.
Halderman et al.’s and Brassil’s systems are applicable to both fixed and mobile video
cameras.

tags, and the human objects to be obscured are determined based on their identities

and predetermined rules.

The main problem of the systems in this group is that they require a technique to

identify the persons such as RFID readers and tags or face recognition techniques, all

of which impose a strict limitation on the availability of the systems; face recognition

techniques also remain error-prone.

The above discussion is summarized in Fig. 2.5. A relatively large number of systems

have been proposed for fixed video cameras. In contrast, the number of systems that

address privacy protection for mobile video cameras is small. One reason for this

difference is the difficulty in selecting human objects to be obscured. Most systems for

mobile video cameras are designed for such special applications as Google Street View

[28, 29] and life-log video cameras [9]. In them, the assumption that all human objects

should be obscured is reasonable.

However, when a camera person takes a video, he/she usually has a capture in-

tention, i.e., what he/she wants to present in the video. In this case, the video be-

comes meaningless if all human objects are obscured because the capture intention
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is spoiled. Generally, in such a video, the persons captured in the video are divided

into intentionally-captured and accidentally-framed-in persons. In many cases, the

intentionally-captured persons are friends and family members, and thus, permission

for capturing and publishing can be obtained. However, accidentally-framed-in persons

are usually passers-by from whom obtaining permission is difficult; therefore, the video

might infringe on their privacy, which is referred to as accidental privacy infringement.

For accidental privacy infringement, the assumption in [9, 28, 29] is not reasonable

because intentionally-captured persons can be presented.

2.4 Motivations and characteristics of our approaches

In this section, we describe the motivations and characteristics of our approaches for

in-theater movie piracy and accidental privacy infringement.

2.4.1 System for in-theater movie piracy

To protect copyright against in-theater movie piracy, the most effective countermeasure

is pirate position estimation [20, 21, 22]. In this dissertation, we present a digital

audio watermarking-based system to help identify pirates. Our system estimates their

positions in theaters by precisely specifying their seats using watermarks embedded

into movie soundtracks. As mentioned in Section 2.2, pirate position estimation, which

utilizes the geometrical distortion of pirated movies [20, 21, 22], fails when geometrical

distortion is compensated for visibility. In contrast, our system embeds watermarks

into multiple-channel movie soundtracks to calculate the delay of the audio signal of

each channel emitted from a separate loudspeaker. Therefore, we can estimate the

pirate position as long as the mobile video camera receives audio signals from at least

three loudspeakers.

In addition to [20, 21, 22], systems for estimating indoor positions using various

technologies have been proposed. We investigated the applicability of these systems

to pirate position estimation. Table 2.1 summarizes the systems for indoor and pirate

position estimation with respect to estimation accuracy (Accuracy), the technology

used to estimate the positions (Technology), and the applicability to in-theater movie

piracy (Applicability). Yim et al. [43] used the received signal strengths of WLAN.
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Table 2.1: Comparison of position estimation systems.

System Accuracy Technology Applicability

Yim et al. [43] 3 m WLAN Inapplicable
LANDMARK [44] 1 m RFID Inapplicable
Cricket [45] 0.02 m Ultrasonic Inapplicable
Chupeau et al. [20] Approx. 1 m Feature point of images Applicable
Muneishi et al. [21] Approx. 1 m Feature point of images Applicable
Lee et al. [22] Approx. 1 m Digital image watermarking Applicable
Our system 0.44 m Digital audio watermarking Applicable

Ni et al.’s system called LANDMARK [44] uses RFID tags deployed in the target

environment. However, these systems require the mobile video cameras to be modified

so that they can receive WLAN or RFID signals and can record them for position

estimation. Therefore, these systems are practically inapplicable to in-theater movie

piracy. Priyantha et al. [45] proposed an ultrasonic-based system called Cricket that

has outstanding accuracy. Although low-frequency ultrasonic that is inaudible to the

human auditory system can be captured by microphones attached to mobile video

cameras, it can be easily filtered out from recorded audio signals without significantly

degrading their audible part. To the best of our knowledge, no system estimates

microphone position using audible audio signals except ours. Note that the accuracy

of these systems cannot be directly compared with each other. Some [43, 44, 45]

estimate three-dimensional positions, but ours estimates two-dimensional positions.

Other systems [20, 21, 22] estimate the direction of the pirate and calculate three-

dimensional positions based on a theater’s seating arrangement as mentioned in Section

2.2. Our system can be easily modified to estimate three-dimensional positions based

on seating arrangements. In this case, accuracy does not change significantly because

the vertical position can be uniquely determined given the two-dimensional horizontal

position in the theater, and thus the estimation of three-dimensional positions can be

reduced to the estimation of two-dimensional positions.

2.4.2 System for accidental privacy infringement

Generally, when a camera person takes a video with a mobile video camera, the camera

person has a capture intention, which divides the persons captured in the video into
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Figure 2.6: Intentionally-captured person (blue), accidentally-framed-in person (red),
and camera person (gray). Corresponding intentionally-captured human object
(ICHO) and human object except ICHO (non-ICHO), as well as example of video
frame in privacy-protected video are also shown.

two types: intentionally-captured and accidentally-framed-in persons (Fig. 2.6). The

regions in the video frames that correspond to the intentionally-captured persons are

called intentionally-captured human objects (ICHOs), and those that correspond to

the accidentally-framed-in persons are called non-ICHOs.

In accidental privacy infringement, which is a problem peculiar to videos taken

with mobile video cameras, the disclosure of non-ICHOs infringes on the privacy of

accidentally-framed-in persons. In many cases, the intentionally-captured persons are

friends or family members. Therefore, permission for capturing them or publishing

the video can be easily obtained, or at least, the camera person can negotiate for such

permission. In contrast, accidentally-framed-in persons might simply be passers-by

from whom obtaining permission is difficult. Hence, non-ICHOs should be obscured

(Fig. 2.6). However, as summarized in Fig. 2.5, no existing system considers this point.

In this dissertation, assuming that permission for capturing and publishing is ob-

tained from intentionally-captured persons, we present a system that automatically

generates privacy-protected videos where only non-ICHOs are obscured. By consider-

ing whether human objects are ICHO/non-ICHO is reflected in the camera motion, our

system classifies human objects into ICHOs/non-ICHOs based on camera motion and

obscures the non-ICHOs. The following are the advantages of our system: (i) In con-

trast to identity-based systems, the human objects to be obscured can be determined
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without RFID readers and tags or face recognition techniques. (ii) Since the ICHOs are

presented in the privacy-protected videos, the camera person’s capture intention can

be maintained. (iii) Even though PED-based systems [23, 24] can potentially achieve

more flexible privacy protection than our system, they require modification of mobile

video cameras and assume the penetration of PEDs. Our system does not require such

modification or assumption.

2.5 Concluding remarks

In this section, we introduced the existing technologies for copyright and privacy pro-

tection. By comparison with these existing technologies, we investigated the uniqueness

of our approaches. For in-theater movie piracy, we adopt a digital audio watermarking

technique that precisely estimates pirate positions as long as theaters have at least

three loudspeakers. For accidental privacy infringement, camera persons’ capture in-

tentions are considered to determine the human objects to be obscured to protect the

privacy of accidentally-framed-in persons.





Chapter 3

Copyright Protection

Using Digital Audio Watermarking

3.1 Introduction

With the technical advances in mobile video cameras, in-theater movie piracy, where

movies are captured from theaters to make pirated movies, has become a serious prob-

lem. The Motion Picture Association claims that the annual loss from pirated movies

exceeds six billion dollars and that over 90% of the pirated movies can be traced to

in-theater movie piracy [46, 47]. In-theater movie piracy is explicitly banned in many

nations. For instance, in the United States, the Family Entertainment and Copyright

Act, which became a law in 2005, bans mobile video cameras in theaters. In Japan, in

response to the significant losses of box-office revenues, a similar law has been enforced

since 2007 that prohibits capturing movies even for private use, which was permitted

by previous copyright law.

Several technologies against in-theater movie piracy have been proposed for copy

detection and content tracing [6, 7]. However, the most efficient countermeasure is to

identify the pirates. To this end, we consider the following scenario (Fig. 3.1): (i) A

pirate illegally captures a watermarked movie and uploads it to the Internet. (ii) A

conventional digital watermarking-based system such as [6] finds the pirated movie and

analyzes the embedded message to determine the theater and date it was recorded. (iii)

A position estimation system estimates the pirate’s position in the theater precisely

23
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Figure 3.1: Scenario for identifying pirates.

enough to specify the seat. (iv) A person identification system identifies the pirate by

associating the seat with the person in it. A ticketing system or a video surveillance

system may be used as the person identification system. In this chapter, we focus on

the position estimation system surrounded with thick, black lines in Fig. 3.1, which is

a key component of this scenario.

Our system embeds watermarks into movie soundtracks for estimating pirate posi-

tions, even though this is difficult. In fact, most digital watermarking-based systems

designed as countermeasures against in-theater movie piracy embed watermarks into

the video frames of movies. The difficulty comes from the nature of movie soundtracks,

which are composed of several types of audio, such as music, sound effects, voices, and

silent parts. The voices and silent parts dominate movie soundtracks. In these parts,

the watermarks cannot be embedded sufficiently to accurately estimate the pirate posi-

tion because they are embedded by modifying the movie soundtracks and the amount

of modification is limited in the voices and silent parts to maintain acoustic qual-

ity. Therefore, our system statistically improves estimation accuracy by exploiting the

long duration of movie soundtracks instead of embedding the watermarks sufficiently

for accurate position estimation with spoiling the acoustic quality.

An overview of our system is shown in Fig. 3.2 that explains how our system

works. Since a movie soundtrack consists of multiple channels, a theater has multiple

loudspeakers. We refer to each channel of the movie soundtrack as a host signal (HS).
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Figure 3.2: Overview of our position estimation system.

Our watermarking algorithm is based on the spread spectrum technique, which uses

pseudo-random numbers to embed a watermark. We use different pseudo-random

numbers for each HS. The watermark embedder generates a watermark for each HS

and embeds it into the HS. The HS with the watermark is referred to as a watermarked

signal (WS). Each WS is emitted into the air from a separate loudspeaker. If the movie

is captured with a mobile video camera to make a pirated movie, the audio signal of the

pirated movie, which we call a recorded signal (RS), is a monaural signal consisting of a

mixture of all WSs. In the RS, the WS from each loudspeaker is delayed in proportion

to the distance from the loudspeaker to the mobile video camera’s microphone. For

each watermark, the watermark detector calculates the detection strengths, which are

defined as the correlations between the pseudo-random numbers of the watermark and

the RS. Thus, the detection strengths form a peak at a particular time dependent on

the delay. We construct a probabilistic model of the detection strengths with respect

to the microphone position and estimate it as the pirate position using a position

estimator based on the maximum-likelihood method.

In the following sections, we describe the watermarking algorithm, i.e., the wa-

termark embedder and the watermark detector in Section 3.2. Section 3.3 presents

the position estimator. We experimentally evaluate the accuracy of the estimated
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positions as well as the acoustic quality of the WSs in Section 3.4. Concluding re-

marks are given in Section 3.5. This chapter is related to the work published in

[48, 49, 50, 51, 52, 53, 54, 55, 56, 57].

3.2 Watermarking algorithm

In this section, we first describe digital audio watermarking techniques and introduce

the basic ideas of our watermarking algorithm, which is based on [58]. We then present

our watermarking algorithm for pirate position estimation.

3.2.1 Preliminary

A movie consists of a sequence of video frames and a multiple-channel movie sound-

track. Each channel of the movie soundtrack is an audio signal. Many digital wa-

termarking techniques have been proposed as countermeasures against movie piracy,

as introduced in Section 2.2. In this section, we describe the digital watermarking

techniques for audio signals, which are called digital audio watermarking, because we

adopt them to estimate a pirate’s position.

A watermarking algorithm consists of a watermark embedder and a watermarking

detector. An audio signal into which a watermark is embedded is called a HS. The

watermark embedder embeds a secret message into the HS as a watermark, generating

a WS. The WS may be subjected to such distortion as cropping, pitch shifting, noises,

and compression. Some types of distortion are caused by malicious attack to destroy

the watermark. The distortion can also be caused by capturing the movie with a mobile

video camera. Digital to analog (DA) and analog to digital (AD) conversion as well

as propagation of the WS in air significantly distorts the WS. The watermark is then

detected by the watermark detector.

The following are the requirements for a watermarking algorithm as a countermea-

sure against movie piracy:

Robustness: The WS can be subjected to various types of distortion. The watermark

in the WS should be robust against such distortion so that it can be detected

even after the WS is distorted.
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Inaudibility: The watermark is embedded into the movie soundtrack by modifying

it. Therefore, to maintain the movie’s quality, modification to embed it should

not degrade the HS’s acoustic quality. In other words, the watermark should be

inaudible.

Generally, the HS is represented using pulse-code modulation (PCM) where the

analog audio signal is sampled and quantized. Each sample is stored as a binary

number. The simplest algorithm to embed a watermark modifies the least significant

bits of each sample. That is, a secret message embedded into the HS is encoded in

binary numbers, and each bit of the message replaces one of the least significant bits

of the samples. A watermark by this algorithm is inaudible if the least significant bits

to be modified are appropriately chosen. However, this algorithm’s watermark is not

robust because it can be easily destroyed by changing the least significant bits. For

example, the watermark does not survive DA and AD conversion, which significantly

changes the least significant bits.

Considering these disadvantages of the algorithm based on the modification of the

least significant bits, spread spectrum (SS)-based algorithms have been proposed [15],

which use pseudo-random numbers to embed a watermark. Let aHS(i) and ω(i) ∈
{+1,−1} denote the i-th sample of the HS and the i-th pseudo-random number. One

of the most basic algorithms can be represented by

aWS(i) = aHS(i) + αω(i), (3.1)

where aWS(i) is the i-th sample of the WS. Parameter α is a watermarking rate that

controls the watermark’s robustness and inaudibility. The watermark embedded using

(3.1) cannot contain a secret message. However, it can be adopted to content tracing

to identify where and when the movie was shown because we can use arbitrary pseudo-

random numbers to embed the watermark and the pseudo-random numbers themselves

can be the ID associated with the theater and date. In addition, this algorithm can be

easily extended to contain a secret message.

A watermark by this basic algorithm is detected by

∑

i

aWS(i)ω(i) =
∑

i

aHS(i)ω(i) +
∑

i

αω(i)2. (3.2)
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The second term becomes large compared with the first term when the summation is

calculated for a sufficient number of samples or α is sufficiently large. If the watermark

detector is applied to an audio signal without the watermark, the second term vanishes.

Therefore, an audio signal can be judged to be watermarked if the value given by (3.2)

exceeds a certain threshold. This algorithm can be used in such transformed domains

as the frequency domain.

A watermark by this algorithm is robust against such distortion as noises and com-

pression. However, this algorithm has the following drawbacks: (i) The watermark’s

inaudibility can be spoiled if a large α is used. (ii) To correctly detect the watermark by

(3.2), we need strict synchronization between the WS and the pseudo-random numbers;

i.e., the watermark cannot be detected if aWS(i) is delayed even by one sample.

For drawback (i), a SS-based algorithm that exploits the properties of the human

auditory system (HAS) has been proposed [59]. HAS is insensitive to acoustic stimuli

immediately before and after loud acoustic stimuli, which are called temporal masking

effects. In addition, when HAS receives acoustic stimuli with a certain frequency, it

is insensitive to acoustic stimuli with similar frequencies, which are called frequency

masking effects. This algorithm modifies αω(i) based on a model of such effects, which

is called a psychoacoustic model, to make the watermark inaudible.

Drawback (ii) is especially serious for SS-based algorithms in the time domain be-

cause a delay of a WS by only one sample makes the watermark undetectable, as

mentioned above. To overcome this drawback, we need to repeatedly apply (3.2) by

shifting the pseudo-random numbers to synchronize them with the WS, which is com-

putationally expensive. The synchronization drawback is not serious for algorithms in

the frequency domain because a delay by several samples hardly changes the frequency

components of the WS.

Another serious problem related to synchronization can be caused by pitch shifting,

which can be applied to a WS as a malicious attack. Pitch shifting, which resamples

the WS in a different sampling frequency and stores the resampled WS in the original

sampling frequency, changes its duration and pitch. For a watermark in the time

domain, this results in continuous change of the synchronization position along the

time. Even in the frequency domain, pitch shifting makes the watermark undetectable

because the WS’s frequency components are altered.

Pitch shifting is not likely to be applied to movie soundtracks because the change in



3.2. WATERMARKING ALGORITHM 29

Figure 3.3: Pattern block consists of WB ×HB tiles (upper left). Tile is comprised of
HT amplitudes of four consecutive frame (upper right). Pattern blocks are arranged
on time-frequency plane of host signal (HS) repeatedly (bottom).

the duration of the WS spoils its synchronization with the video frames. However, for

example, randomly cropping and inserting samples can yield a similar effect to pitch

shifting without changing the WS’s duration. It causes the fluctuation of the WS. In

some parts of the audio signal, the duration becomes longer and the pitch becomes

lower, and in other parts, the duration becomes shorter and the pitch becomes higher.

Some algorithms [60, 58] address the problem related to synchronization includ-

ing pitch shifting as well as random cropping and insertion of samples. To solve the

problem, the algorithms use pseudo-random numbers and introduce redundant rep-

resentation of them in the time-frequency plane of the HS. They also maintain the

inaudibility of the watermark by adopting psychoacoustic models.

Tachibana et al.’s algorithm [58], which is a basis of our watermarking algorithm, is

an example of such algorithms. Their watermark embedder divides the HS into audio

frames, each of which consists of NF samples. The audio frames overlap each other

by NF/2 to alleviate the discontinuity of the resulting WS. Discrete Fourier transform
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Figure 3.4: Pseudo-random numbers assigned to tiles in pattern block (left). They
form pseudo-random number array (PNA). Tile assigned with “+1” (right). In this
case, among four consecutive frames of the tile, amplitudes in the first and second
frames are increased (represented by “+”) and those in the third and fourth frames
are decreased (represented by “−”).

(DFT) is applied to them to construct the time-frequency plane of the HS. To embed a

watermark, the amplitudes of each segmented region in the plane called a pattern block,

which is shown in Fig. 3.3, are modified. A pattern block has WB ×HB tiles, each of

which consists of the HT amplitudes of four consecutive audio frames. The tile in the

w-th column and in the h-th row are denoted by the tile at (w, h). The pattern blocks

are arranged repeatedly along the time axis of the HS as in Fig. 3.3. The amplitudes in

each tile are modified based on the pseudo-random number in {+1,−1} assigned to the

tile. The pseudo-random numbers of the tiles in a pattern block form a two-dimensional

pseudo-random number array (PNA) as shown in Fig. 3.4. The pseudo-random number

for the tile at (w, h) is denoted by ω(w, h).

In this algorithm, each pseudo-random number is redundantly represented by a tile

consisting of 4 × HT amplitudes. This redundancy reduces the fluctuation influence

of the WS caused by random cropping and insertion of samples if the fluctuation in

time and the frequency axes is small so that most parts of the tiles in the WS can

overlap the original tiles. In addition, since the PNA consists of a small number of

pseudo-random numbers, the computational costs to synchronize the PNA with the

WS can be reduced.

However, the small number of the pseudo-random numbers in a PNA complicates

detection. The watermark detector in this algorithm can be modeled by (3.2) where the

summation is calculated over the PNA. In this case, the value given by the second term

of the right hand side of (3.2) is small, and the watermark cannot be detected because
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the value given by the second term is buried in the noise due to the first term. Since

α cannot be too large for the inaudibility of the watermark, an alternative approach

to alleviate this problem is to reduce the value given by the first term.

For this purpose, Tachibana et al. [58] introduced a modulus operator. The modulus

operator and the pseudo-random number assigned to a tile determine how the ampli-

tudes in the tile are modified. Modulus operator mop(t) for the t-th frame is defined

by

mop(t) =

{

+1 if t mod 4 = 0 or 1

−1 otherwise
. (3.3)

The signs of the amplitude modifications for the first, second, third, and fourth frames

in the tile at (w, h) are determined by ωc(w, h)mop(0), ωc(w, h)mop(1), ωc(w, h)mop(2),

and ωc(w, h)mop(3), respectively. This means that ωc(w, h) = +1 increases the am-

plitudes in the first and second frames of the tile and decreases those in the third and

fourth frames. In the opposite case, ωc(w, h) = −1 decreases the amplitudes in the first

and second frames and decreases those in the third and fourth frames. The modulus

operator in [58] modifies two consecutive frames with the same direction to make the

watermark more insensitive to the synchronization. Actually, in [58], the watermark is

detected by repeatedly calculating (3.2) by shifting the PNA by NF/2 samples.

The modulus operator reduces the influence of the first term of the right hand side

of (3.2). Figures 3.5 (a)–(d) describe how the modulus operator alleviates the influence

of the first term of the right hand side of (3.2). Figure 3.5 (a) shows the tiles along the

frequency axis, which consist of the t-th (t + 1)-th, (t + 2)-th, and (t + 3)-th frames,

as well as the pseudo-random numbers assigned to them. The amplitudes of these

consecutive four frames are similar (Fig. 3.5 (b)). The watermark is embedded by

modifying the amplitudes as mentioned above, which is shown in Fig. 3.5 (c). When

detecting the watermark, the difference between the frames, e.g., between the t-th and

the (t+ 2)-th frames, is calculated as in Fig. 3.5 (d). The original amplitudes in these

frames are canceled and the pseudo-random numbers for the tiles become significant.

The watermark detector calculates (3.2) from the signal derived from the difference.

Therefore, the value of the first term on the right-hand side of (3.2) becomes small.

To make the watermarks inaudible, Tachibana et al.’s algorithm [58] uses a psy-

choacoustic model based on ISO-MPEG1 audio psychoacoustic model 2 for layer 3 [61]

to determine the amount of amplitude modifications.



32 CHAPTER 3. COPYRIGHT PROTECTION USING DIGITAL AUDIO WATERMARKING

Figure 3.5: (a) Frames t, t + 1, t + 2, and t + 3 form tiles along frequency axis. (b)
Amplitudes of frames. (c) Original amplitudes of frames and amplitudes modified to
embed watermark. (d) Difference between frames t and t+ 2.

Our watermarking algorithm is based on Tachibana et al.’s algorithm, which we

modify to realize the pirate position estimation. For position estimation, we need mul-

tiple watermarks in a RS to calculate the delay of each channel of the movie soundtrack.

Therefore, we use a different PNA to embed the watermark into each HS, which cor-
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responds to a channel of the movie soundtrack. The pseudo-random number assigned

to the tile at (w, h) for the c-th HS (c = 1, 2, · · · , NCH) is represented as ωc(w, h).

In Tachibana et al.’s algorithm, precise synchronization is unnecessary between

the RS and the PNA. However, since position estimation requires accurate delays,

which can be obtained from the synchronization position of the PNAs, we calculate the

detection strengths at a fine resolution, called fine detection. To achieve fine detection,

(3.2) is calculated by shifting the PNA by ∆ samples. Detection shift ∆ determines the

resolution of the detection strengths. We use sufficiently small ∆ for accurate position

estimation.

Since we adopt fine detection, excessive redundancy along the time axis is un-

necessary. Therefore, although Tachibana et al. [58] uses four consecutive frames to

represent a tile, we only use two. Accordingly, the definition of modulus operator

mop(t) is modified to

mop(t) =

{

+1 if t mod 2 = 0

−1 otherwise
. (3.4)

3.2.2 Watermark embedder

The watermark embedder generates a WS. The watermark’s energy is spread over

a pattern block using a PNA. The WS for the c-th HS, acWS(i), is generated in the

following steps.

1. The HS in the time domain acHS(i) is divided into audio frames, each of which

consists of NF samples, using the sine window. Adjacent frames are overlapped

with each other by NF/2 samples to avoid the discontinuities in the WS. The i-th

sample of the t-th frame is represented as

ãcHS(t, i) = acHS(i+ tNF/2)win(i), (3.5)

where win(i) is the sine window defined as

win(i) =







sin

(

πi

NF

)

for 0 ≤ i ≤ NF − 1

0 otherwise

. (3.6)

2. The frames are transformed into the frequency domain using the NF-point DFT.
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The f -th Fourier coefficient in the t-th frame Ac
HS(t, f) is obtained as

Ac
HS(t, f) = DFT[ãcHS(t, i)](f). (3.7)

The amplitude and phase of the Fourier coefficient are denoted by |Ac
HS(t, f)| and

argAc
HS(t, f).

3. The psychoacoustic model determines the inaudible amount of amplitude modi-

fication M c(t, f).

4. Amplitude modification sign Signc(t, f) for the amplitude in the tile at (w, h) is

calculated as

Signc(t, f) = ωc(w, h)mop(t), (3.8)

where (w, h) is transformed to the corresponding (t, f).

5. The amplitude of the WS, Ac
WS(t, f), is obtained as

Ac
WS(t, f) = |Ac

HS(t, f)|+ αM c(t, f)Signc(t, f), (3.9)

where α is the watermarking rate to control the tradeoff between the acoustic

quality of the WS and the position estimation accuracy.

6. The time-domain representation of the WS in each frame is constructed with the

inverse DFT (IDFT) with the original phases of the HS:

ãcWS(t, i) = IDFT[Ac
WS(t, f) exp{

√
−1 argAc

HS(t, f)}](i). (3.10)

7. The final WS in the time domain, acWS(i), is generated by the overlap-and-add

technique using the sine window as follows.

acWS(i) =
T−1
∑

t=0

ãcWS(t, i− tNF/2)win(i− tNF/2), (3.11)

where T is the number of frames in the HS.
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Figure 3.6: Example of recorded signal (RS) and frames in watermark detector.

3.2.3 Watermark detector

The watermark detector detects multiple watermarks with different PNAs in the RS

by calculating detection strengths, which can be modeled by (3.2), in a fine resolution.

The detection strength of the c-th WS with k∆-sample delay sc(k) is calculated from

the RS by placing a pattern block starting at the k∆-th sample as follows:

1. The RS aRS(i) is divided into audio frames by the sine window. Each frame is

comprised of NF samples and overlaps with each other by NF/2 samples. The

first frame of the pattern block starts at the k∆-th sample of the RS (Fig. 3.6):

ãRS,k(t, i) = aRS(i+ tNF/2 + k∆)win(i). (3.12)

2. The frames for k are transformed into the frequency domain by the DFT.

ARS,k(t, f) = DFT[ãRS,k(t, i)](f). (3.13)
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3. The amplitudes are normalized as

ARS,k(t, f) =
|ARS,k(t, f)|

1
NF/2

∑NF/2−1
f=0 |ARS,k(t, f)|

. (3.14)

4. The difference between the log amplitudes of the two frames in a tile at (w, h),

Dk(w, f), is calculated as

Dk(w, f) = logARS,k(2w, f)− logARS,k(2w + 1, f). (3.15)

This alleviates the influence of the HS because its amplitudes in consecutive

frames have almost the same values, while the watermark is enhanced by the

modulus operator.

5. The amplitude of the tile at (w, h), ρk(w, h), is given by

ρk(w, h) =
∑

f

Dk(w, f). (3.16)

The summation is computed for f , which is included in the tile at (w, h).

6. The k-th detection strength of the c-th channel sc(k) is calculated as

sc(k) =

∑

(w,h) ω
c(w, h) [ρk(w, h)− ρk]

√

∑

(w,h) {ωc(w, h) [ρk(w, h)− ρk]}2
, (3.17)

where

ρk =
1

WBHB

∑

(w,h)

ρk(w, h). (3.18)

The summations in the above equations are calculated for (w, h) in a pattern

block.

From the central limit theorem, sc(k) follows the Gaussian distribution. If a pattern

block of the watermark does not start around the k∆-th sample of the RS, since

the standard deviation of the numerator of (3.17) is given by the denominator, sc(k)

asymptotically follows the standard Gaussian distribution N (0, 1). In contrast, if it
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Figure 3.7: (a) Recorded signal (RS) containing multiple watermarks. Pseudo-random
numbers assigned to tiles are also shown. (b) Detection strengths calculated from RS.
(c) Detection strength blocks.

starts around the k∆-th sample of the RS, the numerator does not approach zero.

Therefore, sc(k) does not follow the standard Gaussian distribution.

3.3 Position estimator

In this section, we describe the maximum likelihood method-based position estimator,

which is based on a detection strength model. We also present an algorithm that reduces

the computational cost to maximize the likelihood function using a pruning technique

based on an upper bound of the likelihood function.
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3.3.1 Derivation of detection strength model

As described above, the detection strengths asymptotically follow the Gaussian distri-

bution. Hence, we model them as random values that follow the Gaussian distribution.

In this section, we describe how the mean and the variance of the distribution are

determined.

Since pattern blocks appear repeatedly on the time-frequency, as shown in Fig. 3.7

(a), the detection strengths form a peak at the beginning of each pattern block (Fig.

3.7 (b)). We divide them into detection strength blocks (Fig. 3.7 (c)), each of which

consists of NDS detection strengths such that each detection strength block has a single

peak. Let scn denote the n-th detection strength block:

scn = (sc(nNDS + 0), sc(nNDS + 1), · · · , sc(nNDS +NDS − 1))⊤, (3.19)

where ⊤ represents the transpose. NDS is the number of the detection strengths in a

detection strength block, which is given by

NDS = WBNF/∆, (3.20)

where WBNF is the number of samples within a pattern block. We also define

Sc = {sc1, sc2, · · · } (3.21)

and

S = {S1, S2, · · · , SNCH}. (3.22)

We model scn by the multivariate Gaussian distribution N (µDS,ΣDS).

Mean µDS of the distribution depends on the microphone position and the recording

conditions. Since we adopt fine detection, detection strength sc(k) is calculated for

every ∆ samples, which is smaller than NF. Therefore, not only at the exact time

position at which the pattern block starts but also around that time position, strong

correlation values appear as shown in Fig. 3.7 (b). We refer to the time position at

which the pattern block starts as the peak position. The shape of the peak depends

on the watermarking algorithm and the PNA used for embedding. The peak position

is determined by the microphone position. Furthermore, the recording conditions (i.e.,
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Figure 3.8: Examples of (a) sc(k) and (b) mk′ .

volume, background noises, etc.) and the HS affect the peak height. Considering these

factors, we compute the averaged shape of the detection strength peak over various

PNAs, and mean µDS given the microphone position and peak height is determined

using the averaged shape.

The averaged shape can be obtained as follows. First, we generate a WS for a HS

whose samples are zero. The psychoacoustic model is not applied to the HS, and the

amount of amplitude modificationM c(t, f) is set to 1. Then the watermark detector is

applied to the WS. In the calculation of (3.17), since the watermark embedder arranges

pattern blocks repeatedly and thus the detection strengths are periodic, we calculate

the detection strengths in the duration of a single pattern block, i.e., k = 0 to NDS−1.

Since the first pattern block in the WS starts at the beginning of the WS, the peak is

at k = 0. We repeat this process using various PNAs and calculate the average of the

k-th detection strength over the PNAs. The averaged shape is denoted by

m = (m0,m1, · · · ,mNDS−1)
⊤. (3.23)

The circular shift of m by k′ is given by

mk′ = (mNDS−k′ , · · · ,mNDS−1,m0, · · · ,mNDS−k′−1)
⊤, (3.24)

where a non-integer value of k′ is rounded to the nearest integer. Figures 3.8 (a) and

(b) show an example of actual sc(k) and mk′ . The shape of mk′ resembles the shapes

of the peaks in sc(k).

When the peak position of the n-th detection strength block in the c-th WS is at



40 CHAPTER 3. COPYRIGHT PROTECTION USING DIGITAL AUDIO WATERMARKING

k′, which means that the pattern block starts at k = k′, we obtain the mean of the

Gaussian distribution for the detection strength block as

µDS = βc
nmk′ , (3.25)

where βc
n is a parameter that determines the height of the peak dependent on the

recording condition and the HS.

The value of k′ is determined by the microphone and loudspeaker positions. Since

we have no information on when the recording was started, we calculate the relative

delay of the c-th WS with respect to the WS of the reference channel cref in the RS.

Let xmic and xc
sp denote the microphone position and the loudspeaker position for the

c-th WS. The relative delay of the c-th WS is given by a function of xmic as

κ̄c(xmic) =
SF (‖xc

sp − xmic‖2 − ‖xcref
sp − xmic‖2)

SV∆
, (3.26)

where SV is the sound velocity and SF is the sampling frequency. From this equation,

the time position of the peak of the c-th WS is given as

κc(xmic, κ
cref ) = κcref + κ̄c(xmic), (3.27)

where κcref is the time position of the peak of the reference channel. Therefore, for

given xmic and κcref , the peak position of the c-th channel is k′ = κc(xmic, κ
cref ), and

thus, the mean of the detection strength model for the n-th detection strength block

in the c-th channel is given by

µDS = βc
nmκc(xmic,κ

cref ). (3.28)

To simplify the notation, we omit (xmic, κ
cref ), which is common to any c.

As mentioned in Section 3.2.3, the variance of a detection strength is asymptotically

1 for k not around the peak because the mean of the numerator of (3.17) is 0, and

thus the denominator is a sample standard deviation of the numerator. This is not

true for k around the peak. However, for simplicity, we assume that the variance of

the detection strengths is 1 for all k. We also assume that the detection strengths are

independent given xmic and κ
cref . Hence variance ΣDS is the NDS×NDS identity matrix.
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3.3.2 Derivation of position estimator

In this section, we derive the maximum-likelihood estimator of the microphone position.

First, we calculate the probability density of scn. As mentioned in Section 3.3.1, scn is

modeled by the multivariate Gaussian distribution. Given microphone position xmic

and time position of reference channel κcref , the mean of the distribution is βc
nmκc and

the variance is the identity matrix. Therefore, the conditional probability density of

scn is given by

p(scn|xmic, κ
cref , βc

n) =
1

(2π)NDS/2
exp

[

−(scn − βc
nmκc)⊤(scn − βc

nmκc)

2

]

. (3.29)

The conditional probability density of S is given by

p(S|Θ) =
∏

c

p(Sc|Θ) (3.30)

=
∏

c

∏

n

p(scn|Θ), (3.31)

where Θ = {xmic, κ
cref , B} and B = {βc

n|c = 1, 2, · · · , NCH;n = 0, 1, · · · }. Thus, we

define log-likelihood function L(Θ) as

L(Θ) = −
∑

c

∑

n

(scn − βc
nmκc)⊤(scn − βc

nmκc)

2
. (3.32)

This log-likelihood function consists of the squared Euclidean distance between scn and

βc
nmκc . Since the distance is accumulated over all n and thus the effect of noises in

scn is alleviated, the estimation accuracy can be improved. Eliminating βc
n by setting

∂L(Θ)/∂βc
n = 0 and ignoring the irrelevant terms, we obtain the following maximiza-

tion criterion equivalent to (3.32):

L′(Θ′) =
∑

c

∑

n

(m⊤
κcscn)

2, (3.33)

where Θ′ = {xmic, κ
cref}.

The microphone position is estimated by finding the parameters that maximize this
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criterion. The maximum-likelihood estimator of Θ′ is

Θ̂′ = argmax
Θ

′

L′(Θ′), (3.34)

and its element, x̂mic, is the maximum-likelihood estimator of xmic. The simplest

solution for this maximization problem is an exhaustive search in the set of possible

values of Θ′.

3.3.3 Maximization algorithm to reduce computational cost

Finding the maximum of L′(Θ′) by an exhaustive search is computationally too expen-

sive because the parameter space is three-dimensional when xmic is two-dimensional,

and each possible Θ′ requires evaluation of (3.33). In this section, we present an al-

gorithm that can drastically reduce the computational cost using an upper bound of

L′(Θ′). We calculate the upper bound for each value of κcref . If the upper bound is

lower than the maximum that was obtained by that time in the search, the algorithm

omits further search with the value of xmic.

Let lc(κc) denote the inner summation of the right-hand side of (3.33):

lc(κc) =
∑

n

(m⊤
κcscn)

2. (3.35)

By separating lcref (κcref ), which is irrelevant to xmic, the maximization criterion (3.33)

can be rewritten as

L′(Θ′) =
∑

c

lc(κc) = lcref (κcref ) +
∑

c 6=cref

lc(κc). (3.36)

In the exhaustive search, we choose a value of κcref , and then find the value of xmic

that maximizes L′(Θ′) given the value of κcref . Since the first term of the rightmost

side of (3.36) is irrelevant to xmic, we can write this maximization as

max
xmic

[

lcref (κcref ) +
∑

c 6=cref

lc(κc)

]

= lcref (κcref ) + max
xmic

∑

c 6=cref

lc(κc). (3.37)

Since the maximum of the last term is less than or equal to the sum of the maxima of
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Maximization algorithm

κ̂c ← argmaxκc lc(κc)
cref ← argmaxc l

c(κ̂c)
current maximum← 0
for all κcref starting from κ̂cref do
if current maximum < lcref (κcref )+U then

ˇxmic ← search possible xmic exhaustively
Θ̌′ ← {κcref , ˇxmic}
if L′(Θ̌′) > current maximum then

current maximum← L′(Θ̌′)

Θ′
cand ← Θ̌′

end if
end if

end for
return Θ′

cand

Figure 3.9: Maximization algorithm.

lc(κc)’s, we obtain the following inequality:

max
xmic

∑

c 6=cref

lc(κc) ≤
∑

c 6=cref

max
κc

lc(κc) = U. (3.38)

The maximization of lc(κc) is inexpensive because it involves only one parameter: κc.

In other words, although κc is determined by xmic and κ
cref , the maximization of lc(κc)

simply finds the value of κc, regardless of xmic and κcref . This maximization is done

only once because it is irrelevant to the value of κcref . Thus, we obtain an upper bound

of L′(Θ′) given κcref as

L′(Θ′) ≤ lcref (κcref ) + U. (3.39)

Now we can prune the search of xmic for κcref if lcref (κcref ) + U is less than the

maximum value that we computed for a different value of κcref . Figure 3.9 shows the

maximization algorithm using the upper bound. This algorithm drastically reduces the

number of possible κcref ’s while the exhaustive search must find xmic that maximizes

L′(Θ′) for all κcref ’s. Furthermore, the earlier we obtain large values, the more effective
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Figure 3.10: Experimental environment for estimation accuracy evaluation.

the pruning of the algorithm becomes. Therefore, we choose the reference channel as

cref = argmax
c
lc(κ̂c), (3.40)

where

κ̂c = argmax
κc

lc(κc), (3.41)

and the search is begun from κ̂cref , where L′(Θ′) is expected to be large.

3.4 Experimental results

In this section, we evaluate the estimation accuracy of our system in a circular audito-

rium with 250 seats. The effect of watermarking rate α, which controls the audibility

of the watermarks, on estimation accuracy is investigated by simulation experiments.



3.4. EXPERIMENTAL RESULTS 45

RSs 

Loudspeakers YAMAHA HS-50M 

Audio interface 

EDIROL UA-101

PC

WSs 

Microphone amp.

audio-technica AT-MA2

Microphone amp.

audio-technica AT-MA2

Microphone amp.

audio-technica AT-MA2

Audio interface 

EDIROL UA-101

Audio interface 

EDIROL UA-101

PC

PC

RSs 

Microphones SHURE SM63L 

Powered mixer

YAMAHA EMX66M

Powered mixer

YAMAHA EMX312SC

Figure 3.11: Experimental setup.

We also subjectively assess the acoustic quality of WSs by MUSHRA listening tests

[62].

3.4.1 Estimation accuracy evaluation

To evaluate the estimation accuracy of our system in a semi-realistic environment,

we conducted experiments at the Hankyu Sanwa Conference Hall in the Alumnus

Union Building of the Osaka University Medical School1. This 8.8-m radius, circular

auditorium has 250 seats. Three loudspeakers and 16 microphones (represented by

dots) were arranged in the same plane (Fig. 3.10). The experimental setup is shown

in Fig. 3.11. We simultaneously recorded audio signals with all 16 microphones. The

volume of the two powered mixers was manually adjusted to be the same.

In an actual theater, the audience may affect accuracy for the following possible

reasons: (a) It can block the direct paths from the loudspeakers to the microphone,

resulting in false peaks. (b) It can make noise, resulting in decreased peak heights.

Since the loudspeakers in theaters are usually attached to the upper side of walls,

the influence of (a) is considered insignificant. For (b), we conducted an experiment

with a modified version of the position estimation system in [48] and experimentally

demonstrated that noise hardly affected accuracy. Hence, in the following experiments,

we ignored audience influence.

The test samples used in these experiments are listed in Table 3.1. They are excerpts

1http://www.med.osaka-u.ac.jp/pub/general/alumni/intro.html
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Table 3.1: Test samples used in experiments.

Start at RMS [dB] for channel
Label Title

[sec] c = 1 c = 2 c = 3
DS1 Saw 1,034 -31.1 -29.9 -31.0
DS2 Pretty Woman 3,998 -42.8 -29.6 -42.5
DS3 The Bourne Identity 3,050 -28.7 -25.6 -28.8

DS4
Harry Potter
and the Goblet of Fire

2,246 -29.3 -25.5 -24.8

DS5 RENT 2,290 -26.5 -21.0 -27.1

Table 3.2: Experimental parameters.

Number of tiles in a column of a pattern block WB 20
Number of tiles in a row of a pattern block HB 24
Number of amplitudes in a tile along the frequency axis HT 6
Number of channels NCH 3
Frame length [samples] NF 512
Detection shift [samples] ∆ 16
Sampling frequecny [Hz] SF 44100
Sound velocity [m/s] SV 340

from the right (c = 1), the center (c = 2), and the left (c = 3) channels of the original

movie soundtracks. The starting positions were randomly chosen. The duration of each

test sample was 1,800 seconds (30 minutes). The root mean square (RMS) values of

each test sample are also listed in Table 3.1. The parameters used in the experiments

are listed in Table 3.2. Watermarking rate α was set to 1.0.

Figure 3.12 shows the estimation error for each microphone position xmic, which is

given as the Euclidean distance between the microphone and estimated positions, i.e.,

‖xmic − x̂mic‖2, where x̂mic is the estimated position. Almost all microphone positions

are accurately estimated except for positions (3, 4), (1, 4), and (−1, 4) for DS2. The

estimation errors for these microphone positions are large. One reason is that there

are not enough watermarks of the first and third WSs in the RS to form peaks in

the detection strengths since the energies of the first and third HSs of the DS2 are

low (Table 3.1). The directional characteristics of the loudspeakers and the distances

from them to these positions enhance this energy imbalance. Furthermore, the effect
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Figure 3.12: Estimation errors in auditorium.

of cross-correlation among the three PNAs may enlarge the error. For example, if

the PNAs for the first and second WSs have correlation, the strong watermark in the

second WS forms a false peak in the detection strengths for the first WS even when

the correlation among the PNAs is weak. If the false peak is larger than the actual

peak, the estimation fails. Therefore, in practical use, we need to adaptively control

watermarking rate α. The mean and standard deviation of the estimation errors for

all microphone positions are 0.40 m and 1.33 m, respectively. Although the standard

deviation is large due to the large errors of DS2, it almost identifies a seat.

3.4.2 Watermarking rate versus estimation accuracy

In the previous section, we showed that our system accurately estimated the micro-

phone positions for α = 1.0. However, the acoustic quality is degraded as α becomes

large. To maintain acoustic quality, the watermarking rate should be small. However,

this may cause larger estimation errors. We investigated the relationship between α

and the estimation errors by simulation experiments.
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Figure 3.13: Relationship between watermarking rate and estimation error. Means and
standard deviations of estimation errors are calculated for various α.

First, we model a RS, which is received by the microphone at xmic, as

ãRS(i) =
∑

c

acWS(i) ∗ hcxmic
(i) + η(i), (3.42)

where hc
xmic

(i) is the impulse response of the path from the loudspeaker for the c-th

WS to the microphone at xmic, η(i) represents the background and thermal noises,

and “∗” is the convolution operator. We measured impulse response hc
xmic

(i) by the

time stretched pulse method [63] under the same experimental setup discussed in Sec-

tion 3.4.1. Noise η(i) is assumed to follow the Gaussian distribution N (0, σ2) and its

variance σ2 is determined from the RS without any audio signals from the loudspeakers.

Applying (3.42) to the WSs with various α, we generated simulated versions of the

RSs. The other parameter values were the same as in Section 3.4.1. The mean and

standard deviation of the estimation errors were calculated for each α.

The result is shown in Fig. 3.13. The mean and standard deviation of the estimation

error for α = 1.0 are 0.41 m and 1.26 m. These values are close to the result in Section

3.4.1; the mean and standard deviation are 0.40 m and 1.33 m, and thus, the result

of this simulation experiment is reliable. The mean of the estimation errors is large

for α < 0.1. Meanwhile, the microphone positions are estimated with small errors
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Table 3.3: Samples used in subjective assessment of acoustic quality.

Label Excerpt from Starts at Ends at
SUB1 DS2 454 [s] 473 [s]
SUB2 DS3 111 [s] 129 [s]
SUB3 DS4 1,229 [s] 1,248 [s]
SUB4 DS5 326 [s] 349 [s]
SUB5 DS2 1,229 [s] 1,046 [s]

for α ≥ 0.1, although the standard deviations are relatively large due to the large

estimation errors of DS2, as mentioned in Section 3.4.1. The mean of the estimation

error for α = 0.1 was 0.44 m, indicating that, in this experimental environment, the

peak of the detection strengths is buried in noise for α < 0.1. In other words, we can

reduce the value of α as small as 0.1 without significant estimation errors. Note that an

appropriate value of α may depend on the frequency response of the acoustical system

of the auditorium including background noises.

To show the effectiveness of the algorithm for reducing the computational cost, in

this experiment, we measured the time to estimate the positions using a PC with an

Intel Core 2 Duo processor running at 1.6 GHz with 1 Gbyte of memory. The average

time over all trials of the position estimation is 596 seconds. For comparison, we also

measured the time to estimate the positions with an exhaustive search. However, since

this was time consuming, the estimation was executed only twice. The average time

over these two estimations is 179,573 seconds. Hence, the proposed algorithm achieves

the 99.7% execution time reduction compared to the exhaustive search.

3.4.3 Subjective evaluation of acoustic quality

We subjectively assessed the acoustic quality of the WSs by MUSHRA listening tests

[62]. This method assesses the acoustic quality of audio signals that undergo audio

signal processing techniques. In this assessment, subjects listened to multiple audio

signals, including not only the WSs but also the original audio signal called hidden

references and others for comparison. We used the samples listed in Table 3.3, which

are excerpts from the test samples used in Section 3.4.1. These samples were processed

as in Table 3.4. For each test sample, 17 inexperienced subjects graded all test signals
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Table 3.4: Description of test signals used in subjective assessment of acoustic quality.

Label Description
REF Reference signal
HREF Hidden reference
ALPF Low pass filtered signal as an anchor
AM48 Compressed signal using MP3 48 kbps as an anchor
AM32 Compressed signal using MP3 32 kbps as an anchor
WR01 Watermarked signal with α = 0.1
WR03 Watermarked signal with α = 0.3
WR05 Watermarked signal with α = 0.5

Table 3.5: Summary of conditions under which acoustic quality was assessed.

Listening method
Loudspeaker Headphones

Office (a) (b)
Auditorium — (c)

after training sessions where they were exposed to all of the audio signals used in this

assessment.

Since MUSHRA listening tests take a long time, we could not conduct the assess-

ment in the auditorium with loudspeakers. Instead, the subjects assessed the test

signals under the following conditions.

(a) Assessment in a small office with three loudspeakers. The subjects sat at the

listening position corresponding to (3, 3) in a 6 × 6 m2 office (Fig. 3.14), and

assessed the test signals from three loudspeakers.

(b) Assessment of simulated listening in the office using headphones. The test signals

were convolved by the impulse responses measured by a dummy head at the

listening position in the same office as used for (a), and the subjects listened to

the simulated signals with headphones.

(c) Assessment of simulated listening in the auditorium using headphones. This

condition is almost the same as (b), but the impulse responses were measured at

(0, 6) in the auditorium in Fig. 3.10.
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Figure 3.14: Listening position in room for (a).

These conditions are summarized in Table 3.5. Since the test signals for (b) were

generated using the impulse responses measured in the same office as used for (a),

the results of (a) and (b) should be similar. If this is satisfied, the results of (c)

are considered to be similar to those of the subjective assessment when the subjects

actually listened to the test signals from the loudspeakers in the auditorium.

The means and 95% confidence intervals for the acoustic quality of the test signals

under (a) and (b) are shown in Figs. 3.15 and 3.16. The degradation of the acoustic

quality for WR01 and WR03 is almost imperceptible, and it is perceptible for WR05,

although it remains acceptably small. The subjective acoustic quality under (a) and

(b) is almost the same. Therefore, the results under (c) should be similar to the results

when the subjects actually assessed the acoustic quality in the auditorium.

Figure 3.17 shows the means and 95% confidence intervals for the acoustic quality of

the test signals under (c). Although the watermarks are relatively audible compared to

(a) or (b), the subjective acoustic quality of WR01 remains good enough for practical

use.
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Figure 3.15: Means and 95% confidence intervals for acoustic quality of test signals
under (a).

Figure 3.16: Means and 95% confidence intervals for acoustic quality of test signals
under (b).

3.4.4 Discussion

From the results of Sections 3.4.2 and 3.4.3 with α = 0.1, our system can estimate

microphone positions with mean estimation error of 0.44 m, and the subjective acoustic
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Figure 3.17: Means and 95% confidence intervals for acoustic quality of test signals
under (c).

quality is in the excellent range. By increasing α to 0.3, the mean estimation error can

be reduced to 0.34 m at the expense of degrading the acoustic quality to the good range.

Therefore, we successfully showed that our system is able to estimate microphone

positions without significantly spoiling the acoustic quality of movie soundtracks.

However, the difference between the results of (b) and (c) indicates that acoustic

quality largely depends on the environments in which the system is used. Estimation

accuracy probably depends on the frequency response of the auditorium, the back-

ground noise, and so forth. Hence, we need a preliminary experiment in the actual

environment before practical use to determine the appropriate α.

3.5 Concluding remarks

In this chapter, we presented a position estimation system to prevent in-theater movie

piracy by a new application of the digital audio watermarking technique. The core

idea of our system utilizes delays of the watermarks embedded into multiple channel

movie soundtracks. The presented watermarking algorithm is designed to accurately

obtain the delays. We also described a maximum likelihood-based position estimator
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using a probabilistic model of the detection strengths that exploits the long duration

of movie soundtracks to improve estimation accuracy.

Our experimental results show that our system can estimate the microphone posi-

tion with mean estimation errors of 0.44 m without significantly spoiling the acoustic

quality assessed by MUSHRA listening tests. However, the acoustic quality depends on

the environment in which the system is used. To clarify the effect of such environmen-

tal factors as the frequency responses of auditoriums and background noise on acoustic

quality and estimation accuracy, we need more experiments in various environments.

Furthermore, we must investigate the robustness of our system against such attacks as

lossy compression.



Chapter 4

Intentionally-Captured

Human Object Detection

4.1 Introduction

In this and the next chapters, we present a system that automatically generates privacy-

protected videos. We focus on accidental privacy infringement where the privacy of

persons who are accidentally framed in is infringed on by capturing them in a video.

In this dissertation, we refer to the regions in video frames corresponding to persons

as human objects.

Generally, when camera persons take videos, they have capture intentions [64],

which divide the human objects into two groups: intentionally-captured human objects

(ICHOs), which correspond to those who are intentionally captured by the camera per-

sons, and human objects except the ICHOs (non-ICHOs). The non-ICHOs correspond

to those who are accidentally framed in. ICHOs are essential for the camera persons’

capture intentions, and thus videos may become meaningless without them.

The problem of accidental privacy infringement is the disclosure of non-ICHOs.

Therefore, for accidental privacy infringement, we assume that a camera person can

obtain permission to capture the intentionally-captured persons and to publish the

video. This assumption is reasonable because, in most cases, there are only a few

intentionally-captured persons and the camera person can at least negotiate with them

for permission. Furthermore, the intentionally-captured persons are often friends or

55



56 CHAPTER 4. INTENTIONALLY-CAPTURED HUMAN OBJECT DETECTION

family members. In contrast, it is usually infeasible to get permission from accidentally

framed-in persons because they are often merely passing by while the camera person

captures the video. Therefore, considering that non-ICHOs are inessential for the

camera person’s capture intention, non-ICHOs should always be obscured. The goal of

privacy protection against accidental privacy infringement is to realize a system that

obscures only non-ICHOs.

Some privacy protection systems for videos obscure all human objects [9, 25, 26, 27].

Other systems selectively determine the human objects to be obscured based on pre-

determined rules and the identities of the persons corresponding to the human objects

[8, 38, 39, 41, 65]. However, for accidental privacy infringement, such approaches are

inappropriate because ICHOs are essential for videos taken by a camera person who

can obtain permission for capturing and publishing from intentionally-captured per-

sons. In addition, a human object in a video can be both an ICHO and a non-ICHO

dependent on the transition of the camera person’s capture intention. Therefore, we

need a technique to find ICHOs in videos.

In this chapter, we present a method for ICHO detection that automatically detects

the ICHOs in videos. ICHO detection is one technique for important region determi-

nation, and visual attention models have been extensively studied for this purpose.

One of the most well-known visual attention models for still images was proposed by

Itti et al. [66]. For an image, it generates a saliency map that represents the extent

to which each pixel in the image attracts viewer attention. Itti et al.’s model, inspired

by the behavior and the neuronal architecture of the visual system of primates, gen-

erates saliency maps by integrating multiple feature maps, each of which represents

the image’s saliency based on intensity, color, or orientation features. Ma and Zhang’s

model for images is based on the observation that regions with large changes in color

or luminance are most likely to attract viewer attention [67]. Itti and Baldi proposed a

bottom-up visual attention model for videos [68, 69] based on the definition of surprise

using the Bayesian theorem. Hu et al. proposed another visual attention model based

on the idea that moving objects may attract viewer attention [70].

Compared with these techniques, the following is the novelty of ICHO detection.

Since the visual attention models simulate the responses of animals’ visual systems

against visual stimuli, they are considered important regions for the viewers of im-

ages/videos. Conversely, ICHO detection can be regarded as important regions for
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Figure 4.1: Example of intentionally-captured human object (ICHO) surrounded by red
rectangles and human object except ICHO (non-ICHO) surrounded by blue rectangles.

camera persons.

In the following sections, we describe ICHO detection. To detect ICHOs, we first

detect all human objects in a video frame and classify them into ICHOs/non-ICHOs

using features related to the camera person’s capture intention. In the next section,

we describe human object detection as well as features and an algorithm for ICHO

classification. Section 4.3 presents the experimental results including the evaluation

of the contributions of the features used for ICHO classification. We give concluding

remarks in Section 4.4. This chapter is related to the work published in [71, 72, 73, 74,

75, 76, 77].

4.2 Method for intentionally-captured human ob-

ject detection

In Fig. 4.1, the camera person intentionally captures the person near the camera (first

frame). As his/her capture intention changes, he/she gradually moves the camera to

capture the other person so that the ICHO corresponding to the person is arranged

around the center of the video frames (second to fourth frames). Finally, he/she inten-

tionally captures both persons (last two frames). From this example, a camera person’s

capture intention may provoke specific behaviors of the camera person, e.g., following

an intentionally-captured person or arranging the ICHO corresponding to the person
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Figure 4.2: (a) Upper body region model and (b) examples of upper body regions.
Upper body region is defined as region surrounded by rectangle of upper body region
model when it is placed such that circle of the upper body region model surrounds the
head of human object.

Figure 4.3: (a) Positive and (b) negative samples used to train support vector machine
(SVM) for human object detection.

around the center of the frame. Such behaviors are reflected in the camera motion

against the motion of each human object. In addition, the camera person captures

persons intentionally for a while so that the viewers can comprehend what they are

seeing. Therefore, the ICHOs are temporally consistent; i.e., they do not change very

frequently.

Based on these observations, ICHOs are detected as follows. We first detect hu-
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man objects assuming that ICHOs are captured from their upper bodies. For each

detected human object, the features related to the camera person’s capture intention

are extracted. The ICHOs are statistically modeled using these features. Finally, each

human object is classified into ICHO/non-ICHO.

4.2.1 Human object detection

The method for ICHO detection assumes that, when a camera person intentionally

captures persons, the videos include the upper bodies, defined in Fig. 4.2. Thus,

we detect the upper body regions of the human objects using histograms of oriented

gradients descriptors (HOG) and a support vector machine (SVM) with a linear kernel

[36]. The positive samples used to train the SVM are manually specified and extracted

from a video dataset. The negative samples are randomly extracted from the regions

in the videos that do not largely overlap with the positive samples. The examples of

the positive and negative samples used to train the SVM are shown in Figs. 4.3 (a) and

(b). The size of the detection window is 60 × 60 pixels. To detect the upper bodies

of the human objects in various sizes, the original frames are scaled for 2−γ/4, where

γ = 3, 4, · · · , 20.

4.2.2 Feature extraction

As mentioned above, a camera person moves the camera in accordance with the mo-

tion of intentionally-captured persons. In addition, he may change the intentionally-

captured persons if he finds a more interesting object. According to Elazary et al. and

their definition of interesting objects, visual attention can predict such objects [78].

Thus, visual attention affects the process to determine intentionally-captured persons.

Based on this observation, two types of features, i.e., capture intention-related (CI)

and visual attention-related (VA), are extracted from each detected human object.

These features are used for classifying the human objects into ICHOs or non-ICHOs.

Capture intention-related features

• Position of human object (POSX and POSY) is the horizontal and vertical co-

ordinates of the center position of the upper body region, denoted by vPOSX and
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vPOSY.

• Area of human object (AREA) is the area of the upper body region denoted by

vAREA, which corresponds to the area in the red rectangle in Fig. 4.4 (b).

• Distance between centers of upper body region and frame (DDF) is denoted by

vDDF and calculated as:

vDDF =

√

(vPOSX − xF)2 + (vPOSY − yF)2, (4.1)

where (xF, yF) is the center of the frame. DDF is expected to be a useful feature

for ICHO classification because camera persons tend to center ICHOs in the

frames.

• Amplitude of camera motion (ACM) represents how much the camera person

moves the camera. To extract this feature, we model camera motion by trans-

lation and scaling between two successive video frames. Let pt and pt+1 denote

two-dimensional column vectors representing an arbitrary point in the t-th frame

and its corresponding point in the (t+1)-th frame. The camera motion between

these frames is modeled as

pt+1 = ζtpt + ct, (4.2)

where ct and ζt are the translation and the scaling factor. These parameters are

obtained by [79]. For the t-th frame, ACM, vACM, is defined as the amplitude of

the weighted average of the translations over 2NCI successive frames centered at

the t-th frame indicated by the solid blue arrow in Fig. 4.4 (b). ACM is given by

vACM = ‖c̄‖2, where c̄ is the average translation obtained by

c̄ =
∑

τ

̟τct+τ (4.3)

and ̟τ is the weight given by

̟τ =
NCI − |τ |

∑

τ ′(NCI − |τ ′|)
. (4.4)

In the above two equations, the summations are calculated for −NCI,−NCI +



4.2. METHOD FOR INTENTIONALLY-CAPTURED HUMAN OBJECT DETECTION 61

Figure 4.4: (a) Example of frame and (b) capture intention-related (CI) features ex-
tracted from human object.

1, · · · , NCI − 1.

• Amplitude of compensated human object motion (AHM) represents how much the

human object moves indicated by the orange arrow in Fig. 4.4 (b). Using active

search [80], the motion of the human object in the t-th frame is obtained by

tracking the upper body region in the frame for 2NCI successive frames centered

at the t-th frame. Since such human object motion consists of actual human

object motion caused by the movement of the corresponding person and the

camera motion, we compensate the camera motion. Let dτ denote the human

object motion from the (t+ τ)-th frame to the (t+ τ +1)-th frame. The value of

dτ can be erroneous due to tracking errors. Therefore, we introduce weight ̟′
τ

based on similarity λτ between the upper body region in the t-th frame and that

in the (t + τ)-th frame, defined as the histogram intersection calculated while

tracking the upper body region as in [80]:

̟′
τ =

̟τ ς(λτ )
∑

τ ′ ̟τ ′ς(λτ ′)
, (4.5)

where ς(λτ ′) = 1/[1+e−φ1(λτ ′−φ2)]. φ1 and φ2 are the scaling and the bias, respec-

tively. Using ̟′
τ , the weighted average of compensated human object motion d̄′
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is computed as

d̄′ =
∑

τ

(dτ + ct+τ )̟
′
τ . (4.6)

This weighted average can alleviate the effect of tracking errors by decreasing the

weight when similarity λτ is small. AHM, vAHM, is obtained as vAHM = ‖d̄′‖2.

• Distance between camera motion and compensated human object motion (DCH)

is the distance between d̄′ and c̄ given by

vDCH = ‖d̄′ − c̄‖2. (4.7)

This is the Euclidean distance between the vectors indicated by the orange and

dashed blue arrows, which is a translation of the solid blue arrow in Fig. 4.4 (b).

A small DCH value implies that the person corresponding to the human object

is likely to be followed by the camera person.

• Similarity between human object motion and vector from center of upper body

region to center of frame (SHC) represents how likely the camera person is to

center the human object in the frame. SHC, vSHC, is defined as

vSHC =
u⊤d̄

‖u‖2 ‖d̄‖2
, (4.8)

where u is the vector from the center of the upper body region to the center of

the frame, and d̄ is the human object motion without compensation given as

d̄ =
∑

τ

̟′
τdτ . (4.9)

Vectors u and d̄ are indicated by the green and red arrows in Fig. 4.4 (b).

We define an eight-dimensional CI feature vector as

vCI = (vPOSX, vPOSY, vAREA, vDDF, vACM, vAHM, vDCH, vSHC). (4.10)
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Visual attention-related features

We employ the bottom-up visual attention model proposed by Itti et al. [66] to extract

the VA features from each human object. To construct the saliency map, their model

generates seven feature maps: intensity, red-green and blue-yellow opponent colors, and

orientations for 0◦, 45◦, 90◦, and 135◦. We calculate the average values in the upper

body region for the feature maps as well as the resulting saliency map. The average

value is denoted by vχ, where χ ∈ {INT, RG, BY, O0, O45, O90, O135, SAL}, and an

eight-dimensional VA feature vector is defined as

vVA = (vINT, vRG, vBY, vO0, vO45, vO90, vO135, vSAL). (4.11)

4.2.3 Intentionally-captured human object model

For classifying each human object into ICHO (y = +1) or non-ICHO (y = −1) where y
is a class label, we statistically model the ICHOs based on two SVMs with a radial basis

function (RBF): one for the CI feature vectors and the other for the VA feature vectors.

Assuming that the CI and VA feature vectors are independent under the condition of

given y, these separated feature vectors reduce the dimensionality of the features for

each SVM and improve the generalization performance of ICHO classification. We

believe that the assumption of conditional independence is reasonable because the CI

feature vectors mainly come from the composition of video frames, while the VA feature

vectors are mainly derived from intensity, color, and texture. Therefore, the correlation

between the CI and VA feature vectors is expected to be small under the condition of

given y. The SVMs are trained separately using training data with class labels. The

outputs of the trained SVMs for the CI and VA feature vectors are denoted by gCI(·)
and gVA(·).

The SVM outputs are calibrated to the posterior probabilities by [81] as

p(y = +1|vυ) =
1

1 + exp[ϑυ
1g

υ(vυ) + ϑυ
2 ]
, (4.12)

where υ ∈ {CI,VA}. Parameters ϑυ
1 and ϑυ

2 are determined by minimizing the cross-
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entropy error function given by

−
∑

i

{ψi log p(yi = +1|vυ
i ) + (1− ψi) log[1− p(yi = +1|vυ

i )]} , (4.13)

where

ψi =











N+ + 1

N+ + 2
if yi = +1

1

N− + 2
otherwise

. (4.14)

N+ and N− are the numbers of ICHOs and non-ICHOs in the training data.

Assuming the conditional independence of feature vectors given y, we can write the

probability of v given y as

p(v|y) = p(vCI|y) p(vVA|y), (4.15)

where v = (vCI,vVA). Using (4.15) and the Bayesian theorem, the posterior probabil-

ities based on the SVM outputs are combined into the posterior probability of y given

v as

p(y|v) ∝ p(vCI|y) p(vVA|y) p(y) (4.16)

∝ p(y|vCI) p(y|vVA)

p(y)
. (4.17)

Introducing normalizing constant Γ given as

Γ =
p(y = +1|vCI) p(y = +1|vVA)

p(y = +1)
+
p(y = −1|vCI) p(y = −1|vVA)

p(y = −1) , (4.18)

we obtain

p(y|v) = p(y|vCI) p(y|vVA)

Γp(y)
. (4.19)

Using this posterior probability, the human object can be classified as ICHO if

p(y = +1|v) > THPR (4.20)

is satisfied where THPR is a threshold.
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4.2.4 Intentionally-captured human object classification in-

corporating temporal consistency

Since the classification by (4.20) does not consider the temporal consistency of the

ICHOs, a human object or even a false positive of the upper body detector that acci-

dentally satisfies (4.20) can be classified into an ICHO. Therefore, we track each human

object and classify it into ICHO/non-ICHO based on the tracking results.

Let Ht,n and v′
t,n = (vPOSX

t,n , vPOSY
t,n , vAREA

t,n ) denote the n-th human object in the t-th

frame and the reduced feature vector with its position and area. Assuming that the

frame rate of the video is sufficiently high so that the difference of position and area of

a human object in successive frames is small, we model the transition from Ht−1,k to

Ht,n by the multivariate Gaussian distribution as

p(Ht,n|Ht−1,k) = N (v′
t,n|µTR,ΣTR), (4.21)

where µTR = v′
t−1,k is the mean and ΣTR = diag(σ2

x, σ
2
y , σ

2
a) is the diagonal covariance

matrix whose elements are empirically determined as σ2
x = σ2

y = 40 and σ2
a = 0.5 ×

vAREA
t−1,k .

Human object Ht,n is tracked by finding a human object sequence Ht,n = {Hτ
t,n|τ =

1, · · · , NTR} that maximizes joint probability p(Ht,n), where NTR is the number of

frames to be tracked, Hτ
t,n is a human object in Ht,n, which is one of the human objects

in the (t + τ − 1)-th frame, and H1
t,n = Ht,n. We assume that the joint probability of

Ht,n can be factorized as

p(Ht,n) = p(H1
t,n)

NTR
∏

τ=2

p(Hτ
t,n|Hτ−1

t,n ), (4.22)

where p(H1
t,n) = 1. The sequence that maximizes the joint probability is given by

H∗
t,n = argmax

Ht,n

p(Ht,n). (4.23)
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Classification algorithm

Initialize Ct,n (t = 1, 2, · · · , T , n = 1, 2, · · · ) to zero
for t = 1 to T do
for all n do
Find H∗

t,n and Vt,n by tracking Ht,n using (4.24)
if p(H∗

t,n) > THTR and p(yt,n = 1|Vt,n) > THALG then
Increment all Ct,n associated with the human objects in H∗

t,n

end if
end for

end for
for t = 1 to T do
for all n do
if Ct,n > THC then
ŷt,n ← +1

else
ŷt,n ← −1

end if
end for

end for

Figure 4.5: Classification algorithm.

This is equivalent to

H∗
t,n = argmax

Ht,n

NTR
∑

τ=2

log p(Hτ
t,n|Hτ−1

t,n ), (4.24)

which can be maximized by dynamic programming. The tracking of Ht,n is judged

successful if

p(H∗
t,n) > THTR (4.25)

is satisfied, where THTR is an empirically determined threshold. This tracking can

filter out the false positives of the upper body detector because those that appear in a

frame often disappear in the next frame and significantly decrease p(H∗
t,n).

Let yt,n = {yτt,n|τ = 1, · · · , NTR} and Vt,n = {vτ
t,n|τ = 1, · · · , NTR} denote the

sequences of the labels and the feature vectors for H∗
t,n. Each human object may be



4.3. EXPERIMENTAL RESULTS 67

Table 4.1: Values of parameters used in experiments.

NCI φ1 φ2 THTR

5 40 0.85 4.25× 10−18

classified as ICHO if

p(yt,n = 1|Vt,n) =
NTR
∏

τ=1

p(yτt,n = +1|vτ
t,n) > THALG (4.26)

is satisfied, where 1 represents a NTR-dimensional vector whose elements are +1 and

THALG is a threshold. Otherwise, an optimal sequence for yt,n can be obtained, for

example, by adopting the hidden Markov model. However, classification based on

a single tracking result can be erroneous because our tracking method might fail to

give the correct sequences. Therefore, we apply the classification algorithm in Fig. 4.5

where T denotes the number of frames in the video. In this algorithm, we count how

many times the human object sequences that include Ht,n satisfy (4.25) and (4.26) by

Ct,n. We introduce a condition (4.25) because a human object sequence can contain

human objects that correspond to multiple persons or false positives of the upper body

detector if the tracking of the human object sequence fails. The algorithm classifies

Ht,n as ICHO if Ct,n exceeds the threshold THC. In this case, classification result ŷt,n is

set to +1, which means that Ht,n is an ICHO, and otherwise, ŷt,n is set to −1. Hence,
in this algorithm, the classification result of a human object is determined based on

the results of NTR times tracking, which can differ depending on the starting frame.

Therefore, this algorithm can provide the correct classification result even when some

tracking results are erroneous.

4.3 Experimental results

Our method for ICHO detection consists of human object detection, feature extrac-

tion, and ICHO classification. In our experiments, we evaluate the contributions of

the features used for ICHO classification and then compare the ICHO classification

performance with several baselines using a video dataset containing 20 videos (VD1).

To show the performance of ICHO detection in practical uses, we evaluate the overall
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performance including human object detection and ICHO classification. We also eval-

uate the ICHO classification performance and the overall performance using a larger

video dataset containing 99 videos (VD2).

The parameter values used throughout our experiments are summarized in Table

4.1. Parameter NCI controls the smoothness of the camera and human object motion,

which is usually shaky because of camera shakes. In [82], Matsushita et al. smoothed

shaky motion using neighboring 13 frames for video stabilization. According to this

work and our observation that ICHO classification does not require extensive smooth-

ing, we set NCI to 5 and consequently used the neighboring 10 frames for smoothing

the camera and human object motion. The values of φ1 and φ2 are determined based

on our preliminary study that indicated that the active search [80], which is used in the

feature extraction, usually succeeds when similarity λτ is larger than 0.95, and that it

usually fails when λτ is smaller than 0.75. The value of THTR was set empirically.

4.3.1 Contributions of features

We evaluated the contributions of the CI and VA features using VD1, which contains

20 videos consisting of 32,725 frames taken by three camera persons.

These videos have 854×480 pixels with 29.97 frames per second. The human objects

were manually specified, and we did not use the upper body detector in Section 4.2.1

to show how efficiently combinations of features discriminate ICHOs from non-ICHOs.

The labels representing ICHOs/non-ICHOs were assigned by the camera persons as the

ground truth. The number of human objects was 56,067; ICHOs and non-ICHOs were

38,122 and 17,945, respectively. We trained the SVMs for all combinations of features

using five-fold cross-validation and calculated the area under the ROC curve (AUC) by

applying thresholding to the SVM outputs. Since the SVM training is computationally

too expensive if we use all training data, we randomly chose 10,000 samples from the

training data for each cross-validation trial and trained the SVMs with them.

Figures 4.6 (a)–(d) show the example results for the CI features when the number

of the used features NCI
F is 1, 2, 6, and 7, respectively. As expected, Fig. 4.6 (a) shows

that DDF is the most useful for ICHO classification when only one feature is used.

POSX and POSY also give high AUC values, but ACM, AHM, DCH, and SHC give

significantly lower values than the others. Figure 4.6 (b) indicates that combinations
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Figure 4.6: Area under ROC curve (AUC) values for combinations of features from
capture intention-related (CI) features: number of used features NCI

F for (a), (b), (c)
or (d) is 1, 2, 6, or 7, respectively. � and � represent corresponding features are used
and are not used, respectively.

that include POSX, POSY, or DDF give the superior performance. From Fig. 4.6 (d),

POSY is more useful than POSX when combined with other features. This is because

POSX’s distribution for ICHOs is broad since camera persons often arrange human

objects near the edges of video frames to capture more than one ICHO. In addition,

interestingly, the AUC values of the combinations without AREA are significantly
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Figure 4.7: Area under ROC curve (AUC) values for combinations of features from
visual attention-related (VA) features: number of used features NVA

F for (a), (b), (c),
or (d) is 1, 2, 6, or 7, respectively. � and � represent corresponding features are used
and are not used, respectively.

lower (Figs. 4.6 (c) and (d)). Other combinations for NCI
F = 3, 4, or 5 give similar

results. The AUC value for NCI
F = 8 (all CI features are used) is 0.86. From these

results, the features related to the spatial positions of human objects are beneficial for

ICHO classification. AREA is an essential feature when combined with spatial position-

related features, although AREA itself is less useful. Furthermore, the contributions
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Figure 4.8: Area under ROC curve (AUC) values of intentionally-captured human ob-
ject (ICHO) classification with ALG for various values of NTR and THALG. Horizontal
axis is ξ such that THALG = (2−NTR)ξ (see text for details).

of the camera motion related features, i.e., ACM, AHM, DCH, and SHC, are low.

Therefore, we conclude that camera persons pay much attention to the positions and

sizes of ICHOs, and the CI features related to camera motion cannot well describe the

behavior of camera persons very well.

The example results for the VA features are shown in Figs. 4.7 (a)–(d). The number

of used features NVA
F is 1, 2, 6, or 7, respectively. When all VA features are used, the

AUC value is 0.73. These results indicate that combinations including RG give good

performances. This is the same for all the values of NVA
F . One reason is that ICHOs

tend to be captured with their frontal or profile faces, and RG yields larger values when

the faces of human objects are visible. These results demonstrate that camera persons

are not very affected by visual attention.

4.3.2 Classification performance evaluation

We evaluated the performance of the ICHO classification with the classification algo-

rithm shown in Fig. 4.5 (ALG) using VD1 for various values of parameters NTR and

THALG in terms of the AUC values obtained by changing THC. The SVMs for the CI
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Figure 4.9: ROC curves of SVM-CI, SVM-VA, POST, ALG, and HUMAN over VD1.

and VA features were those trained with NCI
F = 8 and NVA

F = 8 in the previous section.

We also compared the ALG performance with several baselines.

The results are shown in Fig. 4.8. We use ξ such that THALG = (2−NTR)ξ for the

horizontal axis of Fig. 4.8 instead of actual threshold THALG because the probability

given by (4.26) largely varies depending on NTR. The maximum value of AUC is

0.879 when NTR = 80 and ξ = 1.8. The AUC value increases as NTR increases to 80,

but it decreases as NTR increases from 80. A possible reason is that camera persons

intentionally capture a person for about 80 frames in most cases.

The ROC curve of ALG is shown in Fig. 4.9. We also show the ROC curves of

SVM with all CI features (SVM-CI), the SVM with all VA features (SVM-VA), and

the posterior probability given by (4.20) (POST) as baselines. The performance of the

human annotators (HUMAN) was also evaluated as a baseline. To this end, we asked

six human annotators to separately assign a label that represents ICHO/non-ICHO

to each human object. The ROC curve was generated by thresholding the number of

human annotators who agreed. The SVM-VA performance is significantly low, and

POST fails to improve the performance compared to SVM-CI; ALG actually gives a

superior performance. The HUMAN performance is prominently high.
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Figure 4.10: Area under ROC curve (AUC) values of intentionally-captured human
object (ICHO) detection with ALG for various parameter values using upper body
detector.

4.3.3 Overall performance evaluation

To evaluate the overall performance, we applied the upper body detector to the video

in video dataset VD1. If a detected human object was close to the position and area of

one of the manually specified human objects, the detected human object was judged to

have been correctly detected and associated with the manually specified human object.

Otherwise, it was judged to be a false positive. The upper body detector correctly

detects 56% of the human objects and gives 1.14 false positives per video frame. The

correctly detected human objects consist of 68% of ICHOs and 31% of non-ICHOs

labeled by the camera persons. This result demonstrates that the upper body detector

fails to work well for non-ICHOs because they are too small to be detected or only part

of them are captured.

Figure 4.10 shows the AUC values of ICHO detection with ALG for various param-

eter values. To calculate the AUC values, the ICHO/non-ICHO labels of the manually

specified human objects were assigned to the detected human objects associated with

them. We only used the detected human objects to which the labels were assigned,

and thus the AUC values cannot be compared with those in the previous section. The
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Figure 4.11: False positives per frame versus true positive rate curves of SVM-CI,
SVM-VA, POST, and ALG.

maximum value of AUC is 0.88 when NTR = 40 and ξ = 2.2. This value of NTR is

smaller than that in the previous section. One reason is that the ICHOs, which are

not detected by the upper body detector, prevent successful tracking in the classifica-

tion algorithm when NTR is large. Therefore, NTR should be adjusted based on the

performance of the human object detection that is used.

To show the overall performance of ICHO detection, the false positives per frame

versus true positive rate curve was generated for ALG (Fig. 4.11), where the false

positives per frame and the true positive rate are defined as

False positives per frame =
N ′

FP

T

True positive rate =
N ′

TP

N ′
TP +N ′

FN

.

(4.27)

N ′
TP, N

′
FP, and N

′
FN are the numbers of the detected human objects that are correctly

classified as ICHOs, those incorrectly classified as ICHOs, and ICHOs incorrectly clas-

sified as non-ICHOs or undetected by the upper body detector, respectively. T is the
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Figure 4.12: ROC curves of SVM-CI, SVM-VA, POST, and ALG over VD2.

number of video frames. Therefore, this curve includes the performance of the upper

body detector. We also show the false positives per frame versus true positive rate

curves of SVM-CI, SVM-VA, and POST in Fig. 4.11 as baselines. From these curves,

the true positive rate for ALG increases much faster than the baselines as the false

positives per frame increase, and thus, ALG outperforms the baselines when used with

the upper body detector. One of the reasons is as follows. Many false positives of

the upper body detector that appear in a frame disappear in the next frame. In this

case, the tracking of the false positives in ALG fails and thus such false positives are

correctly classified as non-ICHOs. Therefore, the number of false positives of ICHO

classification increases slower than the baselines, resulting in the fast increment of the

true positive rate.

4.3.4 Classification performance evaluation using larger dataset

We evaluated the ICHO classification performance of ALG as well as baselines using a

larger dataset (VD2) that contains 99 YouTube videos. They were selected or excerpted

from the original videos based on the following criteria: (a) The video was taken by



76 CHAPTER 4. INTENTIONALLY-CAPTURED HUMAN OBJECT DETECTION

a camera person with a mobile video camera. (b) It contains human objects. (c) It

was not edited; i.e., shot boundaries are not contained in the video. These videos were

resized to 854×480. Their frame rate was 29.97 frames per second, and their average

length was 40.9 seconds (121,313 frames in total). The 207,539 human objects were

manually specified. We again used manually specified human objects instead of the

outputs of the upper body detector to demonstrate the classification performance.

Since we did not know which human objects were ICHOs, we asked six human

annotators to independently assign ICHO/non-ICHO labels to the human objects as

in Section 4.3.2. A human object was judged as ICHO when more than three human

annotators agreed. We believe that this procedure is adequate because the accuracy of

the human annotators is satisfactory, based on Fig. 4.9. The numbers of ICHOs and

non-ICHOs are 123,040 and 84,499. We trained SVMs for the CI and VA features by

33-fold cross-validation. Again, we randomly chose 20,000 samples from the training

data for each cross-validation trial and used them for the SVM training to reduce the

computational cost.

Figure 4.12 shows the ROC curves of ALG and the baselines, i.e., SVM-CI, SVM-

VA, and POST. The parameters for ALG, NTR = 50 and ξ = 1, were determined

based on the AUC values, as in the previous sections. The AUC values for SVM-CI,

SVM-VA, POST, and ALG are 0.842, 0.686, 0.841, and 0.840, respectively. Therefore,

the AUC value of ALG does not give the highest value. However, in the sense of the

intersection of the ROC curve and the line connecting points (1, 0) and (0, 1) on the

ROC space, ALG is the best as indicated in Fig. 4.12. In other words, ALG yields the

highest true positive rate while giving the lowest false positive rate among all methods.

These curves indicate that the classification performances of ALG and the baselines

are almost the same for VD1 and VD2.

4.3.5 Overall performance evaluation using larger dataset

The overall performance of ALG including the upper body detector was also evaluated

by 33-fold cross-validation using VD2. We used the trained SVMs and labels that were

assigned by the six human annotators in the previous section as the ground truth. The

other evaluation settings were the same as in Section 4.3.3.

The upper body detector correctly detected 47% of the 207,539 human objects in
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Figure 4.13: False positives per frame versus true positive rate curves of SVM-CI,
SVM-VA, POST, and ALG over VD2.

VD2 and gave 1.43 false positives per video frame. The correctly detected human

objects consist of 56% of the ICHOs and 25% of the non-ICHOs. The performance of

the upper body detector is degraded compared with that in Section 4.3.3 because VD2

contains human objects, e.g., which are only captured with their faces or upside down.

ALG gives the highest AUC value when NTR = 10 and ξ = 1.4. This value of NTR is

much smaller than that in the previous sections because of the low performance of the

upper body detector, which makes long-term tracking difficult.

Figure 4.13 shows the false positives per frame versus true positive rate curves of

ALG as well as baselines SVM-CI, SVM-VA, and POST. For smaller values of the false

positives per frame, ALG gives the best true positive rate. However, the performance

improvement by ALG is limited compared with that in Section 4.3.3. This is caused

by the small value of NTR due to the low performance of the upper body detector;

the small value of NTR is insufficient to model the temporal consistency of ICHOs.

Therefore, we must adopt a superior human object detection technique to improve the

overall performance of ICHO detection.
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4.4 Concluding remarks

In this chapter, we presented a method for ICHO detection that serves as a basis of

privacy protection against accidental privacy infringement. This method is potentially

applicable to a wide range of applications, such as video summarization [83, 84] and

video adaptation [85, 86] as well as privacy protection. To detect ICHOs, we first detect

all human objects in a video frame using an upper body detector and classify them

into ICHOs/non-ICHOs using capture-intention-and visual-attention-related features.

Our experimental results indicate that the features involving the position of a hu-

man object with its area are beneficial cues for ICHO detection. However, visual-

attention-related features are not useful. We also experimentally demonstrated that

our tracking-based algorithm successfully improved the performance of ICHO classifi-

cation by exploiting the temporal consistency of ICHOs. Another important result in

this chapter is the difficulty of detecting human objects, especially of non-ICHOs. We

need to consider this difficulty when designing a system for automatically generating

privacy-protected videos.



Chapter 5

Automatic Generation

of Privacy-Protected Videos

5.1 Introduction

Mobile video cameras enable us to take videos anywhere including parks and streets.

However, such videos may contain persons who are accidentally framed in, which in-

fringes on their privacy. We refer to this privacy infringement as accidental privacy

infringement. As mentioned in Section 4.1, regarding accidental privacy infringement,

we can reasonably assume that a camera person can obtain permission to capture

intentionally-captured persons and to publish the video from them, but not from

accidentally-framed-in persons. Our consideration can be summarized as follows:

• The camera person can obtain permission for capturing intentionally-captured

persons and publishing the video, or at least can negotiate with them. This is

because the number of such persons is usually very small and they are often

friends and family members. In this case, the disclosure of the appearance of

intentionally-captured persons does not infringe on their privacy.

• It is difficult to obtain permission for capturing and publishing from accidentally-

framed-in persons because they are usually passers-by and thus the camera person

cannot even negotiate with them. Therefore, the disclosure of the appearance of

accidentally-framed-in persons infringes on their privacy.

79
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In this chapter, we present a system that automatically generates privacy-protected

videos against accidental privacy infringement. We refer to regions in video frames that

correspond to persons as human objects. Based on the above consideration, the human

objects corresponding to intentionally-captured persons (ICHOs) can be presented in

privacy-protected video. In contrast, the human object except ICHOs (non-ICHOs)

should be obscured. We adopt the ICHO detection presented in the previous chapter

so that we can selectively obscure only the non-ICHOs. In addition, since ICHOs are

essential for the camera person’s capture intention, presenting them can maintain the

camera person’s capture intention.

In the following sections, we describe the results of our preliminary user study

for validating the use of ICHO detection with respect to the acceptability of privacy

disclosure involving ICHO detection and its ability to preserve capture intentions. We

present our system for automatically generating privacy-protected videos in Section

5.3. Section 5.4 presents the experimental results. We finally give concluding remarks

in Section 5.5. This chapter is related to the work published in [71, 87, 88, 89, 90].

5.2 Preliminary user study

In this section, we present the results of our preliminary study to validate the appropri-

ateness of using ICHO detection for automatically generating privacy-protected videos.

Appropriateness was evaluated for the following two aspects:

Acceptability of privacy disclosure: The acceptability of privacy disclosure means

whether the privacy disclosure due to the failure of ICHO detection is acceptable.

To evaluate this, subjects imagined that they were one of the non-ICHOs in the

videos and evaluated whether the privacy disclosure was acceptable.

Adequacy to maintain capture intentions: This means whether visual content

essential for the camera persons’ capture intentions was sufficiently maintained

in the privacy-protected videos. The subjects evaluated whether they felt the

video was adequate.

We generated two privacy-protected videos (US1 and US2) from video dataset VD1

that was used in Chapter 4. US1 contains scenery and persons (Fig. 5.1 (a)), and US2
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Figure 5.1: Examples of original frames from US1 (a) and US2 (b).

contains persons playing with balls (Fig. 5.1 (b)). Considering the influence of how

human objects are obscured, we generated privacy-protected videos by the following

obscuring methods:

Blocking out: Blocking out is one of the simplest methods to obscure human objects.

The upper body regions of the human objects are blocked out (NBO) (Fig. 5.2

(a)). To obscure a larger part of the human objects, we also blocked out the

expanded regions (EBO) (Fig. 5.2 (b)).

Blurring: Blurring obscures the human objects by applying a KB × KB smoothing

filter whose elements are 1/KB
2. In this preliminary user study, we set KB to 10.

We adopted blurring on both the upper body regions (NBL) and the expanded

regions (EBL) (Figs. 5.2 (c) and (d)). We also adopted a method that blurs

regions other than the human objects (OBL) (Fig. 5.2 (e)).

In this preliminary user study, to demonstrate the potential performance of ICHO

detection when the detection of human objects is perfect, ICHO classification with

ALG (NTR = 80, ξ = 1.8, and THC = 80) was applied to the human objects manually

specified by human annotators and the upper body detector was not applied to the

videos. The other parameter values were identical to those in Section 4.3.2. With

this parameter setting, the true positive rates of ICHO classification for US1 and US2

were 0.73 and 0.85. The false positive rates for US1 and US2 were 0.15 and 0.27. For

comparison, we also evaluated the cases where the ground truth of non-ICHOs was

used (GT), and where the same number of human objects as the actual non-ICHOs

were randomly chosen as non-ICHOs (RND). We asked 11 subjects to assign scores
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Figure 5.2: Methods for obscuring human objects except intentionally-captured human
objects (non-ICHOs).

from 1 (bad) to 5 (excellent). For adequacy, the original videos were presented as a

reference for a score of 5. For acceptability, they were presented as a reference for a

score of 1.

The means and standard deviations of the acceptability scores for US1 and US2

are shown in Figs. 5.3 (a) and (b). For both US1 and US2, the ALG scores are

lower than those of GT. The NBO and EBO scores are higher than those of NBL and

EBL. Furthermore, EBO and EBL scores are higher than those of NBO and NBL.

These results suggest that the main factors that degrade acceptability are the false

positives of ICHO detection and the disclosure of appearance, which is not obscured

by the adopted method, such as clothes for NBO and hair color for NBL. For both

US1 and US2, the standard deviations for ALG are larger than those for GT because

some subjects assigned very low scores and others assigned relatively high scores to the

videos generated by ALG when the non-ICHOs were not obscured in some frames due

to classification errors. Therefore, THC should be selected to reduce the false positive

rate.

Figures 5.4 (a) and (b) show the means and standard deviations of the adequacy

scores for US1 and US2. Significantly large NBO, EBO, NBL, and EBL scores for GT

justify using ICHO detection with respect to adequacy. However, although most sub-
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(a) US1

(b) US2

Figure 5.3: Means and standard deviations of acceptability of privacy disclosure for
US1 (a) and US2 (b).

jects gave positive responses, the ALG scores are degraded compared to GT, especially

for NBO and EBO. This can be caused by the false negatives of ICHO classification,

which obscure the ICHOs. Even for GT, OBL gives low scores especially for US1

because US1 contains scenery, which is obscured by OBL.

In summary, ALG is not as good as GT, although it is vastly superior to RND in all

cases. Such degradation of ALG can be enhanced if we use the upper body detector to

find human objects. Therefore, we need to improve the overall performance of ICHO

detection. From the GT results, most subjects are satisfied with the privacy protection
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(a) US1

(b) US2

Figure 5.4: Means and standard deviations of adequacy for US1 (a) and US2 (b).

with respect to adequacy. These results also indicate that the subjects prefer EBO to

obscure appearance, which means that most pixels in non-ICHOs should be removed.

5.3 System for automatically generating privacy-

protected videos

Figure 5.5 shows an overview of our system for automatically generating privacy-

protected videos. It consists of background estimation and ICHO detection, extrac-
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Figure 5.5: Overview of our system using intentionally-captured human object (ICHO)
detection and background estimation.

tion, and substitution. First, we estimate the background pixels of a frame using other

frames in the video. ICHOs are then detected and extracted. Finally, the background

pixels are substituted with ICHOs. This is a novel paradigm for privacy protection.

Most existing systems for privacy protection introduced in Chapter 2 first detect hu-

man objects to be obscured and then obscure them. On the other hand, in our system,

the problem of detecting human objects to be obscured is converted into the problem

of detecting human objects to be presented. That is, our system detects the ICHOs

that are presented in privacy-protected videos.

This paradigm potentially overcomes the problems of the automatic generation of

privacy-protected videos that are revealed in the experimental results in Section 4.3.3

and our preliminary user study in Section 5.2. The problems can be summarized as

follows:

(a) The disclosure of the appearance, even a part of the non-ICHOs, degrades the
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acceptability of privacy disclosure.

(b) The detection of human objects, especially of non-ICHOs, is difficult because

they can be too small or only their parts are captured. This difficulty results in

the disclosure of non-ICHOs.

In our system, it is not necessary to detect non-ICHOs because the regions other

than ICHOs are replaced with estimated background pixels. Since our method for

background estimation can estimate the background as long as the non-ICHOs are

moving regardless of the difficulty in detecting non-ICHOs, problems (a) and (b) can

be partly overcome.

Since we use the ICHO detection presented in the previous chapter, in the following

sections, we describe background estimation and ICHO extraction and substitution.

5.3.1 Background estimation

Assuming that non-ICHOs are moving objects, we adopt background estimation to

obscure them. Although some background estimation methods for a small number of

images have been realized [91, 92] using the graph cuts algorithm [93, 94, 95] and they

have been experimentally proven to be practical, it is computationally infeasible to ap-

ply them to videos because videos contain too many frames. However, in videos, many

frames resemble each other, and such frames only slightly contribute to the background

estimation because the background pixels that are occluded by moving objects in these

frames are almost the same. Therefore, to make the background estimation computa-

tionally feasible, we cluster the frames using a similarity measure based on numbers

of correspondent points in pairs of images and extract the most representative frame

from each cluster. For background estimation, we only use representative frames and

the target frame for which the background is estimated.

First, we extract the SURF features [96] from each frame to find the correspondent

points. A SURF feature consists of salient point p in a frame and its feature. We can

find correspondent points by choosing a pair of points on two different frames such that

the distance between their features is small. Since exactly finding all correspondent

points for all pairs of images is computationally expensive, we use approximate nearest

neighbors [97] instead. Let Qt and Qt′ denote the sets of all SURF features for the
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t-and t′-th frames, and ANNt,t′ be the set of SURF features in the t-th frame for which

approximate nearest neighbors are found in the t′-th frame.

Since ANNt,t′ contains outliers that are not actual nearest neighbors, we refine

ANNt,t′ using RANSAC [98]. Assuming the planarity of the scene, RANSAC calculates

homography matrix Ht′,t from the t′-th to the t-th frames using ANNt,t′ . More specifi-

cally, Ht′,t is a 3×3 matrix that projects point pt′ in the t′-th frame to its correspondent

point pt in the t-th frame such that the projection error pt − Ht′,tpt′ is small for all

correspondent points in ANNt,t′ , where pt and pt′ are represented in the homogeneous

coordinates. RANSAC iteratively estimates Ht′,t to improve the estimation accuracy

while excluding outliers that give large projection error. The set of SURF features

excluding the outliers is denoted by ˜ANN t,t′ .

To cluster the frames based on ˜ANN t,t′ , we adopt affinity propagation [99] because

it finds the most representative frame for each cluster during clustering. Similarity

measure simt,t′ between the t-and t′-th frames, which is used in affinity propagation,

is given by

simt,t′ =
| ˜ANN t,t′ |

max(|Qt|, |Qt′ |)
, (5.1)

where |X| represents the number of points in set X. This similarity measure describes

well how similar the frames are under the assumption of scene planarity. To determine

how likely the t-th frame is to be a representative frame, affinity propagation requires

a preference value, denoted by preft, for each value of t. We use the median of the

similarity measure based on [99] for all t. The set of the representative frames obtained

as the result of affinity propagation is denoted by R.

Next, we estimate the background pixels of a target frame from R using a method

proposed by Kim et al. [92], based on the graph cuts algorithm [95, 94, 93]. For target

frame It, we transform It′ ∈ R by Ht′,t. The transformed frame is denoted by Ht′,t(It′).

The set consisting of target frame It and the transformed frames is denoted by

Rt = {It} ∪ {Ht′,t(It′) | It′ ∈ R}. (5.2)

Each frame in Rt is divided into square grids consisting of 5× 5 pixels.

Let L be the set of indices of target frame It and the frames in R, i.e., L =

{t} ∪ {t′|It′ ∈ R}. The most likely frame to be the background for the n-th grid of
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Figure 5.6: Example outputs of each component of our system.

the target frame is denoted by zn, which takes an index in L. That is, zn = t′ means

that It′ is most likely to be the background for the n-th grid of the target frame. The

background is estimated by finding zn that minimizes the energy given by

EBE =
∑

n

FBE
n (zn) +

∑

(n,k)∈AG

GBE
n,k(zn, zk). (5.3)

In this equation, FBE
n (zn) is the data term that represents how likely the n-th grid of

the frame associated with zn is to be the background, and GBE
n,k(zn, zk) is the smooth

term to confirm the continuity among adjacent grids where AG is the set of all the

adjacent grids.

Data term FBE
n (zn) is defined as follows:

FBE
n (zn) = ǫ1

∑

z′∈L

max[dΩn
(zn, z

′), ǫ3] + ǫ2δ(t, zn), (5.4)
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where ǫ1 and ǫ2 are constants to determine the contribution of each term. Function

dΩn
(zn, z

′) is defined as the distance between frames J and J ′ in Rt that correspond to

indices zn and z′ in the n-th grid given by

dΩn
(zn, z

′) =
1

|Ωn|
∑

i∈Ωn

(

J(i)

J̄Ωn

− J ′(i)

J̄ ′
Ωn

)

, (5.5)

where Ωn is the set of pixels in the n-th grid, J̄Ωn
and J̄ ′

Ωn
are the averages of the

pixel values in Ωn of J and J ′, respectively. J(i) and J ′(i) are the pixel values of the

i-th pixel in J and J ′. Value ǫ3 is a lower bound of the distance and is determined

based on [92]. The first term of (5.4) becomes small when the n-th grid in the frame

associated with zn resembles those in other frames in Rt. Therefore, minimizing this

term is analogous to choosing the mode of the n-th grid over the frames in Rt. Function

δ is defined as follows:

δ(t, zn) =

{

1 if t = zn

0 otherwise
. (5.6)

This term represents a preference for It. If the target frame is as likely to be the

background as some other frames, this term with large ǫ2 encourages us to use the target

frame as the background for reducing the temporal discontinuity between successive

frames.

Smooth term GBE
n,k(zn, zk) is given by

GBE
n,k(zn, zk) = θ1dΩn∪Ωk

(zn, zk) + θ2δ(zn, zk), (5.7)

where θ1 and θ2 are constants to determine the contribution of each term. The first

term penalizes the discontinuity when the pixel values in the frames selected for the

adjacent grids largely differ, and the second term penalizes the assignment of different

frames to adjacent grids.

Figure 5.6 (c) shows an example of background estimation applied to the target

frames in Fig. 5.6 (a). Black represents the regions where zn = t, i.e., the pixels from

the target frame are copied to these regions, and the other colors represent zn 6= t, i.e.,

the pixels of the frame corresponding to zn are copied.
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5.3.2 Intentionally-captured human object extraction

To extract ICHOs, we again use the graph cuts algorithm. Although in background

estimation, it is applied to grids consisting of 5× 5 pixels, we apply it to the pixels in

ICHO extraction to maintain the detailed shapes of ICHOs. Label z̄i = 0 represents

that the i-th pixel belongs to an ICHO and z̄i = 1 otherwise.

Using the output of ICHO detection and a shape prior (Figs. 5.6 (b) and (i)),

intention map IMi ∈ [0, 1] (Fig. 5.6 (d)) is generated with which we extract the ICHOs.

Energy function EIE to be minimized is defined as

EIE =
∑

i

F IE
i (z̄i) +

∑

(i,j)∈AP

GIE
i,j(z̄i, z̄j), (5.8)

where AP is the set of all adjacent pixels.

To define the data and the smooth terms, we make the following four assumptions:

(i) An ICHO is around a region with larger values of IMi. (ii) An ICHO is in the region

with zn 6= t because it is a moving object, and thus the background is selected from the

representative frames but not from the target frame. (iii) The boundary of an ICHO

gives significant discontinuities in pixel values. (iv) The pixel values are continuous for

the regions except the boundary of an ICHO. Based on these assumptions, we define

data term F IE
i (z̄i) as

F IE
i (z̄i) =

{

ν1δ(zn, t) + ν2(1− IMi) for z̄i = 0

ν1[1− δ(zn, t)] + ν2IMi otherwise
, (5.9)

where ν1 and ν2 determine the contributions of each term; and zn is the frame index

for Ωn in which the i-th pixel is included. In this equation, the terms involving ν1 and

ν2 are based on assumptions (i) and (ii).

Based on assumptions (iii) and (iv), smooth term GIE
i,j(z̄i, z̄j) penalizes similar pixel

values for adjacent pixels when the labels are different as

GIE
i,j(z̄i, z̄j) =

{

0 for z̄i = z̄j

exp(−Υ2

̺1
) + ̺2 otherwise

, (5.10)

where Υ = It(i) − It(j) and It(i) is the pixel value of the i-th pixel in the target
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frame It; ̺1 and ̺2 are constants to determine the contribution of each term. The

term involving ̺1 penalizes the similar pixel values for different labels, while the term

involving ̺2 penalizes different labels assigned to adjacent pixels.

Figure 5.6 (e) shows an example output of ICHO extraction. The white region

represents z̄i = 0, and the black region represents z̄i = 1. In this example, the ICHO

is accurately extracted.

5.3.3 Intentionally-captured human object substitution

The background pixels determined by zn are substituted with ICHOs based on z̄i.

When z̄i = 0, which means that the i-th pixel is in an ICHO, the pixel of the target

frame should be used so that the ICHO is presented in the privacy-protected video.

Therefore, label z̃i, which determines the frame whose pixel is used for the output

frame, is obtained by

z̃i =

{

t if z̄i = 1

zn otherwise
, (5.11)

where zn is the frame index for Ωn in which the i-th pixel is included. An example of

z̃i is shown in Fig. 5.6 (f).

The output frame can be obtained by replacing the pixels of It with the corre-

sponding pixel of the frame in Rt according to z̃i. However, this naive replacement

introduces discontinuity to the boundaries of different labels caused by, e.g., an illu-

mination change (Fig. 5.6 (g)). Therefore, we adopt Poisson blending [100], which

replaces (A) a region in an image with (B) a region in another image without introduc-

ing discontinuity on the boundary between the images. In Poisson blending, the pixel

values in the replaced region are determined such that the gradients on the boundary

of (A) and those in (B) are preserved. Due to Poisson blending, the pixel values on

the boundary of (A) propagate in the replaced region, and thus the discontinuity can

be alleviated (Fig. 5.6 (h)).

5.4 Experimental results

To quantitatively evaluate our system, we adopted the following two measures:

Removal rate (RR): Our system removes non-ICHOs. RR measures how many pixels



92 CHAPTER 5. AUTOMATIC GENERATION OF PRIVACY-PROTECTED VIDEOS

are removed that belong to non-ICHOs. We deem a pixel is removed if the pixel

in the output frame comes from one of the representative frames but not from

the target frame. In other words, the i-th pixel is judged to have been removed

if z̃i 6= t.

Preservation rate (PR): PR measures how many pixels are preserved that belong

to ICHOs. The i-th pixel is judged to have been preserved when the pixel in the

output frame comes from the target frame, i.e., z̃i = t.

Let ΩNH and ΩIH denote the sets of pixels belonging to ICHOs and non-ICHOs (Fig.

5.7 (a)) and ΩO be the set of pixels that satisfy z̃i = t (black region in Fig. 5.7 (b)).

RR and PR are given by

RR =
|ΩNH ∩ Ω̄O|
|ΩNH |

(5.12)

PR =
|ΩIH ∩ ΩO|
|ΩIH |

, (5.13)

where Ω̄O is the complementary set of ΩO.

We applied our system to three videos (EV1, EV2, and EV3) excerpted from the

videos in VD1. The size of the frames is 854 × 480 pixels and the frame rate is 29.97

frames per second: EV1 captures a scene with an almost stationary ICHO and a

moving non-ICHO. EV2 is a scene with moving ICHOs and stationary non-ICHOs.

EV3 captures a moving ICHO and moving non-ICHOs. The average duration of the

videos are 12 seconds. To demonstrate the potential applicability of our system, we

used ICHOs that were manually specified by the camera persons who captured the

videos instead of the outputs of ICHO detection.

Although our system has many parameters for background estimation and ICHO

extraction, our experimental results indicated that their influence was small except

ν2 and ̺2. Therefore, we show the results when the values of the parameters for

background estimation were ǫ1 = 1, ǫ2 = 0.15, θ1 = 1, and θ2 = 0.025; those for ICHO

extraction were ν1 = 5 and ̺1 = 100. For various parameter values of ν2 and ̺2, the

average values of RR and PR were calculated for each video.

The results are shown in Figs. 5.8 (a) and (b). The horizontal axes are ν2. From Fig.

5.8 (a), our system successfully removes non-ICHOs for EV1 when ν2 is large, but it
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Figure 5.7: Definitions of (a) ΩIH , ΩNH , and (b) ΩO.

Figure 5.8: Averaged removal rate and (b) averaged preservation rate.

fails for small values of ν2. The value of RR remains unchanged for EV2, but improves

as ν2 increases until 0.9 for EV3. This result indicates that two factors determine RR.

The first is ν2, which controls the contribution of intention map IMi. For a small value

of ν2, the intention map is mostly discarded and the graph cuts algorithm judges that

target frame It is most likely to be the background for most pixels as EV1 and EV3.

This inclination is enhanced by small ̺2 because it relatively increases the effect of

ν2. The second factor is the failure of the background estimation caused by stationary

non-ICHOs, which results in a low RR for EV2. This is irrelevant to ν2 and ̺2. The

second factor is critical, and we need to leverage other techniques for background

estimation. For example, Chen et al. [91] adopted an image inpainting technique for

background estimation. The image inpainting originally recovers corrupted regions in

images specified by users. Chen et al. proposed to automatically find regions where

the background estimation failed, and recover the regions as corrupted regions using
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Figure 5.9: Example of output frames. For each video, whether intentionally-captured
human objects (ICHOs) and human objects except ICHOs (non-ICHOs) are moving
or stationary is indicated.
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the image inpainting technique.

From Fig. 5.8 (b), most of the ICHOs in EV1 are successfully preserved regardless

of ν2 and ̺2. For EV2 and EV3, PR slightly decreases due to the increment of the

parameter value, because larger ν2 tightly constrains the shapes of the extracted regions

based on the intention map and leads to failure to extract the complete shapes of the

ICHOs. Larger ̺2 prefers smoother boundaries between ICHOs and other regions,

which results in failure to extract the protruded parts of ICHOs, e.g., legs. Adopting a

more appropriate shape prior of the human objects can partly overcome these problems.

Figure 5.9 shows example frames of (a) EV1, (b) EV2, and (c) EV3 when ν2 = 1

and ̺2 = 5. In the original frames, the ICHOs are surrounded by blue squares. In EV1,

the pixels of the non-ICHO are disclosed for naive replacement as indicated by the red

circle. This disclosure is alleviated by Poisson blending because it changes the pixel

values in the non-ICHO so that they can resemble to the surrounding region. In EV2,

the non-ICHOs are disclosed for naive replacement and Poisson blending, as indicated

by red circles. In addition, significant visual artifact is introduced, as indicated in the

green circles. In EV3, our system fails to extract the complete shape of the ICHO, as

indicated by red circles.

The disclosure of the non-ICHO in EV1 and the failure of ICHO extraction in EV3

are caused by the shape prior that does not model a human object’s individual shape

very well. The problem in EV2 stems from the failure of background estimation. Our

method for background estimation fails to estimate the background pixels around the

non-ICHOs because they are stationary and the background pixels do not appear in the

representative frames. Visual artifact is also caused by background estimation, which

incorrectly estimates the background pixels as indicated by green circles in Fig. 5.9.

Incorrect estimation of the background pixels is caused by the failure to estimate the

homography matrices. Adopting an image inpainting technique can solve this problem

as mentioned above.

5.5 Concluding remarks

In this chapter, for privacy protection against accidental privacy infringement, we pre-

sented a system that automatically generates privacy-protected videos. Our system su-

perbly estimates background pixels and substitutes them with intentionally-captured
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human objects (ICHOs). Therefore, detecting human objects except ICHOs (non-

ICHOs), whose detection is usually harder than ICHOs, is not necessary for our system.

In addition, our system protects the privacy of persons corresponding to non-ICHOs

while preserving the camera person’s capture intention by presenting ICHOs.

Although our experimental results are encouraging because the ICHOs are correctly

preserved in most cases, there are limitations regarding background estimation and the

shape prior of the human objects used for ICHO extraction. Background estimation

fails to estimate the background pixels if the non-ICHOs are stationary. In this case,

we need to leverage another technique such as image inpainting [91]. We also need

to improve the shape prior so that it can more appropriately represent the shapes of

human objects.



Chapter 6

Conclusion

In this dissertation, we discussed the problem of copyright and privacy infringement,

which reflects the deep penetration of mobile video cameras and video sharing services.

Among various types of copyright and privacy infringement, we focused on in-theater

movie piracy and accidental privacy infringement, and described multimedia signal

processing-based approaches as countermeasures.

For in-theater movie piracy where a pirate captures a movie shown in a theater

with a mobile video camera, we presented pirate position estimation to help identify

pirates. We embed watermarks into movie soundtracks, and a maximum likelihood-

based position estimator finds the pirate position based on them. For accidental privacy

infringement where a video taken with a mobile video camera by a camera person in-

fringes on the privacy of accidentally-framed-in persons, we described the generation

of privacy-protected videos in which only the accidentally-framed-in persons are ob-

scured using intentionally-captured human object (ICHO) detection and background

estimation. The contributions of this dissertation are summarized as follows:

• Pirate position estimation for in-theater movie piracy can estimate the pirate

position in environments that have at least three loudspeakers. The average

estimation error is 0.44 m, which almost corresponds to the seat intervals in a

theater. In addition, our subjective evaluation indicates that the watermarks

hardly degrade the acoustic quality of movie soundtracks. Note that this is the

world-first application of a digital audio watermarking technique for position

estimation in large spaces, indicating that digital watermarking techniques can

97
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cover a wide range of applications.

• For accidental privacy infringement, we take a unique approach where the hu-

man objects to be obscured are adaptively determined by ICHO detection based

on camera motion caused by the camera person and the human object motion.

Compared with a conventional approach where human objects are detected and

all are obscured, our approach maintains a camera person’s capture intention,

which is essential for video taken with a mobile video camera. ICHO detection

can find 57% of ICHOs in videos when the false positives per frame is 0.5, and

background estimation successfully obscured human objects except the ICHOs

(non-ICHOs) when they are moving. This work might be a milestone toward

privacy protection against accidental privacy infringement.

For the problems of in-theater movie piracy and accidental privacy infringement,

established countermeasures have not been realized so far. Against these problems, we

introduced novel approaches to protect copyright and privacy, as mentioned above. In

addition, we achieve these results without modifying existing mobile video cameras or

such environments as theaters due to multimedia signal processing techniques. There-

fore, the copyright and privacy protection presented in this dissertation can be easily

deployed without enormous initial costs.

Concerning the future directions of copyright and privacy protection, in this disser-

tation, we handled two specific problems included in copyright and privacy infringe-

ment. However, addressing other types is also important. For copyright protection,

although we only focused on in-theater movie piracy, capturing live performances, for

example, also infringes on copyright. The difficulty of protecting live performances is

that such techniques as encryption, digital watermarking, and fingerprinting cannot be

used. For this problem, sonic watermarking [101] is useful since it can embed a wa-

termark into sonic waves. Another interesting approach is to establish a fingerprinting

technique that is even applicable to captured live performances. For privacy protection,

the problem where the camera person intentionally captures persons without permis-

sion should be addressed. This problem is challenging because we cannot make any

assumption as we did in Chapters 4 and 5. Therefore, we may need a technique that

uses special devices to notify the presence of persons, as in [23].

Finally, the core ideas in this dissertation, the position estimator based on digital
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audio watermarking and ICHO detection, are potentially applicable to other applica-

tions. For example, the position estimator can be used for such location-based services

as location-based advertising (e.g. [102]) and indoor navigation (e.g. [103]). Also, ICHO

detection is applicable to video summarization (e.g. [84]), video adaptation (e.g. [86]),

and so forth. We believe that this research work will contribute to the development of

novel technologies for these applications as well as copyright and privacy protection.
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[103] A. Butz, J. Baus, A. Krüger, and M. Lohse, “A hybrid indoor navigation system,”

in Proc. 2006 International Conference on Intelligent User Interfaces, pp. 25–32,

January 2006.





Publications

A. Journal Papers

1. Y. Nakashima, N. Babaguchi, and J. Fan, “Intended human object detec-

tion for automatically protecting privacy in mobile video surveillance,” Mul-

timedia Systems, 17 pages, DOI: 10.1007/s00530-011-0244-y, 2011 (Online

published, printed version in press).

2. Y. Nakashima, R. Kaneto, and N. Babaguchi, “Indoor positioning system

using digital audio watermarking,” IEICE Trans. on Information and Sys-

tems, Vol. E94-D, No. 11, pp. 2201–2211, November 2011.

3. Y. Nakashima, R. Tachibana, and N. Babaguchi, “Watermarked movie sound-

track finds the position of the camcorder in a theater,” IEEE Trans. on

Multimedia, Vol. 11, No. 3, pp. 443–454, April 2009.

B. International Conference Papers (refereed)

1. Y. Nakashima and N. Babaguchi, “Extracting intentionally captured regions

using point trajectories,” Proc. ACM International Conference on Multime-

dia 2011, pp. 1417–1420, November 2011.

2. Y. Nakashima, N. Babaguchi, and J. Fan, “Automatic generation of privacy-

protected videos using background estimation,” Proc. 2011 IEEE Interna-

tional Conference on Multimedia and Expo, 6 pages, July 2011.

3. Y. Nakashima, N. Babaguchi, and J. Fan, “Automatically protecting privacy

in consumer generated videos using intended human object detector,” Proc.

113



114 PUBLICATIONS

ACM International Conference on Multimedia 2010, pp. 1135–1138, October

2010.

4. R. Kaneto, Y. Nakashima, and N. Babaguchi, “Real-time user position esti-

mation in indoor environments using digital watermarking for audio signals,”

Proc. 2010 International Conference on Pattern Recognition, pp. 97–100,

August 2010.

5. H. Uegaki, Y. Nakashima, and N. Babaguchi, “Discriminating intended hu-

man objects in consumer videos,” Proc. 2010 International Conference on

Pattern Recognition, pp. 4380–4383, August 2010.

6. Y. Nakashima, N. Babaguchi, and J. Fan, “Detecting intended human ob-

jects in human-captured videos,” Proc. 2010 Conference on Computer Vi-

sion and Pattern Recognition Workshop, 8 pages, June 2010.

7. T. Takehara, Y. Nakashima, N. Nitta, and N. Babaguchi, “Digital diorama:

sensing-based real-world visualization,” Proc. 13th International Conference

on Information Processing and Management of Uncertainty in Knowledge-

Based Systems, pp. 663–672, June 2010.

8. T. Takehara, Y. Nakashima, N. Nitta, and N. Babaguchi, “Digital diorama:

real-time adaptive visualization of public spaces,” Proc. First International

Conference on Security Camera Network, Privacy Protection and Commu-

nity Safety, 2 pages, October 2009.

9. Y. Nakashima, R. Tachibana, and N. Babaguchi, “Maximum-likelihood es-

timation of recording position based on audio watermarking,” Proc. Third

International Conference on Intelligent Information Hiding and Multimedia

Signal Processing, pp. 255–258, November 2007.

10. Y. Nakashima, R. Tachibana, M. Nishimura, and N. Babaguchi, “Determin-

ing recording location based on synchronization positions of audio water-

marking,” Proc. 2007 International Conference on Acoustics, Speech, and

Signal Processing, pp. II-253–II-256, April 2007.

11. Y. Nakashima, R. Tachibana, M. Nishimura, and N. Babaguchi, “Estimation

of recording location using audio watermarking,” Proc. ACM Multimedia



PUBLICATIONS 115

and Security Workshop 2006, pp. 108–113, September 2006.

C. Domestic Conferences

1. H. Uegaki, Y. Nakashima, and N. Babaguchi, “Inference of intentionally

captured regions based on camera motion and visual features,” Proc. Meet-

ing on Image Recognition and Understanding 2011, IS4-54, pp. 1645–1652,

July 2011 (in Japanese).

2. Y. Nakashima, H. Uegaki, and N. Babaguchi, “Detecting human subjects

the cameraman intended to capture in video,” Proc. 2010 IEICE General

Conference, D-12-41, p. 152, March 2010 (in Japanese).

3. R. Kaneto, Y. Nakashima, and N. Babaguchi, “Recording position estima-

tion in indoor environment using digital watermarking for audio signal,”

Proc. 9th Multimedia Information Hiding, DS-3-1, pp. S-15–S-16, March

2010 (in Japanese).

4. H. Uegaki, Y. Nakashima, and N. Babaguchi, “Inferring camcorder user’s

intended subject of persons based on visual feature,” Proc. Forum on Infor-

mation Technology 2009, K-046, pp. 639–642, September 2009 (in Japanese).

5. R. Kaneto, Y. Nakashima, and N. Babaguchi, “Position estimation using

detect strength of digital watermarking for audio signal,” Proc. 6th Multi-

media Information Hiding, DS-3-10, pp. S-37–S-38, March 2009.

6. Y. Nakashima, R. Kaneto, R. Tachibana, and N. Babaguchi, “Maximum-

likelihood estimation of recording position based on synchronization posi-

tion of audio watermarking,” Proc. Second Multimedia Information Hiding,

MIH02-09, pp. 45–50, November 2007 (in Japanese).

7. Y. Nakashima, R. Tachibana, M. Nishimura, and N. Babaguchi, “Recording

device localization using multiple audio watermark,” Proc. ASJ Autumn

Meeting 2006, 2-1-9, pp. 458–459, September 2006 (in Japanese).






