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Introduction

Let K be a field and R = K[1, ..., t;] the polynomial ring in d variables over K.
Let A be a homogeneous affine semigroup ring generated by monomials belonging to
R. If T is a nonempty subset of [d] =({1,...,d}, then we write Ry for the polynomial
ring K[{t;; j € T}] with the restricted variables. A subring of A of the form A N Rr
with # # T C [d] is called a combinatorial pure subring of A.

The most reasonable question is which ring-theoretical properties are inherited by
combinatorial pure subrings. First of all, in Section 1, this problem will be discussed.
One of the most fundamental observation on combinatorial pure subrings is that the
elimination technique of Grobner bases can be always applied to combinatorial pure
subrings. Namely, if /4 is the defining ideal of A and if G is any reduced Grobner
basis of 7,4, then, for any combinatorial pure subring B of A, G N Ip is the reduced
Grobner basis of Ip, where I is the defining ideal of B.

Let X, denote the infinite divisor poset (partially ordered set) of A; that is to say,
34 is the infinite poset consisting of all monomials belonging to A, ordered by divis-
ibility. It then follows immediately that if B is a combinatorial pure subring of A and
if « € ¥p, then any element 8 € X4 with 8 < « belongs to Xg. Hence, the closed in-
terval [1, «] of ¥p coincides with the closed interval [1, «] of 4. This simple obser-
vation enables us to show that all combinatorial pure subrings of a Koszul semigroup
ring are again Koszul. Moreover, it will be proved that if a homogeneous semigroup
ring is (i) normal, (ii) strongly Koszul, (iii) sequentially Koszul, or (iv) extendable se-
quentially Koszul, then any of its combinatorial pure subrings inherits each of these
properties.

In Section 2, we are interested in a homogeneous semigroup ring coming from a
poset, i.e., a homogeneous semigroup ring having an initial ideal which is the Stanley-
Reisner ideal of a finite poset. By virtue of the elimination technique together with
a combinatorial criterion for a squarefree quadratic monomial ideal to be the Stanley-
Reisner ideal of a finite poset, we can prove that if A comes from a poset, then all
combinatorial pure subrings of A come from posets. We will apply this basic fact to
so-called squarefree Veronese subrings.

Let 2 < g < d. The g-th squarefree Veronese subring of order d is the affine
semigroup ring ’R,flq) which is generated by all squarefree monomials of degree g be-
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longing to the polynomial ring K[t, ..., #;]. It is known [13] that each ’Rif) has an
initial ideal generated by squarefree quadratic monomials. However, it seems to be un-
known if each Rfiq) comes from a poset. Observing that Rfiq) is a combinatorial pure
subring of ’Rfﬂ) if d < d’, we show that the g-th squarefree Veronese subring of or-
der d comes from a poset if and only if either ¢ =2 and 3 < d <4, or ¢ > 3 and
d = g + 1. See Theorem 2.3. In addition, it will be proved that the g-th squarefree
Veronese subring of order d is Golod if and only if d =g + 1. See Corollary 2.7.
The topic of Section 3 is the Lawrence lifting of homogeneous semigroup rings.

Let A = K[f},..., f.] be a homogeneous semigroup ring generated by monomi-
als fi,..., fu- Then, the Lawrence lifting of A is the homogeneous semigroup ring
K[fizis---s fnzns 21, -, 2n], Where zy, ..., z, are variables over K. A crucial obser-
vation is that if B is any subring of A generated by a subset of {f},..., f,}, then

the Lawrence lifting of B is a combinatorial pure subring of the Lawrence lifting of
A. Thus, the technique of combinatorial pure subrings will be useful for the study of
Lawrence liftings of homogeneous semigroup rings. The main result of Section 3 is
Theorem 3.4 which guarantees that the Lawrence lifting of a homogeneous semigroup
ring A is normal if and only if A is unimodular, i.e., all initial ideals of the defin-
ing ideal of A are squarefree. A quite effective criterion for a homogeneous semigroup
ring A to be unimodular is known: A homogeneous semigroup ring A is unimodular
if and only if every circuit belonging to the defining ideal of A is squarefree. (Here,
a circuit is an irreducible binomial with a minimal support and a binomial is called
squarefree if each of the monomials of the binomial is squarefree.) See Proposition
3.3. We conclude this paper with some examples of unimodular semigroup rings aris-
ing from combinatorial commutative algebra.

1. Basic results on combinatorial pure subrings

Let K be a field and K[t] = K[t;, ..., t;] the polynomial ring in d variables over
K.Let A={f1,..., fn} be a set of monomials belonging to K[t] and suppose that the
affine semigroup ring K[A] = K[fi,..., fu] is a homogeneous K-algebra, i.e., K[A]
is a graded algebra K[A] = (K[Ao@P(K[AD @ -+ with (K[A])g = K and with
each f; € (K[A]);. Such a semigroup ring K[A] is called a homogeneous semigroup
ring. Let K[x] = K[xj, ..., x,] be the polynomial ring in n variables over K with each
degx; =1 and let I4 denote the kernel of the surjective homomorphism 7 : K[x] —
K[A] defined by m(x;) = f; for all 1 <i <n. We call 14 the defining ideal of K[A].

Let [d]={l,...,d}. If T is a nonempty subset of [d], then we write A for the
subset AN K[{t;; j € T}] of A. A subring of K[A] of the from K[Ar] with @ #
T C [d] is called a combinatorial pure subring of K[A]. If Ar = {fi,, fi,---, fi.},
then we set K[xr]= KI[x;, xi,, ..., x;,]. Thus I4, = 14N K[x7].

Let < be an arbitrary term order on K[x] and g € I 4 a binomial of K[x]. If the
initial monomial in.(g) of g belongs to K[xr], then g must belong to K[xr]. In fact,
if g =u — v where u and v are monomials of K[x], then w(u) = w(v) since g € 4.
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Thus 7(u) € K[{tj; j € T}] if and only if 7(v) € K[{t;; j € T}]. Since w(x;) €
KI[{tj; j € T}]if and only if i € {iy,i,,...,i.}, it follows that w(u) € K[{t;; j € T}]
if and only if u € K[x7].

This simple observation yields the fundamental result on elimination of Grobner
bases for combinatorial pure subrings.

Proposition 1.1. If G is the reduced Grobner basis of 14 with respect to a term
order < on K|[x], then G N K[xr] is the reduced Grobner basis of 14, (with respect
to the term order on K[X7] induced by <).

Proof. Let h € 14, = I4 N K[x7]. Since h € 14, we can find g € G such
that in_(g) divides in_(h). Thus, in particular, in_(g) € K[xr]. Since g is a binomial
with g € 14, g must belong to K[xr]. Thus g € G N K[xr]. Hence, G N K[xr] is the
reduced Grobner basis of 14, as required. U

Proposition 1.2. [f K[A] is normal, then any combinatorial pure subring of
K[A] is normal.

Proof. Let K[A7] be a combinatorial pure subring of K[.A] and choose a mono-
mial u belonging to the quotient field of K[.Ar] such that u is integral over K[Ar].
Since K[Ar] is a subring of K[.A], the monomial u belongs to the quotient field of
K[A] and is integral over K[A]. Thus, u belongs to K[A] since K[A] is normal.
Since u belongs to the quotient field of K[Ar], it follows that no variable f; with
J € T appears in u. Hence, u must belongs to K[Ar] since K[Ar] is a combinatorial
pure subring of K[A]. Thus, K[ Ar] is normal as desired. O

Proposition 1.3. If K[A] is Koszul, then any combinatorial pure subrings of
K[A] is Koszul.

Proof. Let Xg(4) denote the infinite divisor poset of K[A]; that is to say, ka4
is the infinite poset consisting of all monomials belonging to K[.A], ordered by divisi-
bility. It is known, e.g., [12] that K[A] is Koszul if and only if, for all @ € Zg(4;, the
closed interval [1, o] of Xg[4; is Cohen-Macaulay. If K[Ar] is a combinatorial pure
subring of K[A] and if @ € Xgp4,), then any element 8 € g4 with B < a be-
longs to Xkp4,). Hence, the closed interval [1, o] of Tk[4,) coincides with the closed
interval [1, ] of Xgp4;. Thus, if K[A] is Koszul, then K[Ar] is Koszul, as desired.

O

Let S be a graded K-algebra and R C S a graded K-subalgebra. Then, R is
called an algebra retract of S if there exists a surjective homomorphism of graded K-
algebras ¢ : S — R such that gz = idg. Note that a combinatorial pure subring K[Ar]
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of a homogeneous semigroup ring K[A] is an algebra retract. In fact, the image of
K[A] under the natural epimorphism p : K[t] — K[{t;; j € T}] is just K[Ar], and
the restriction of p to K[Ar] is the identity. Hence, € = p k(4 is a retraction map for
K[Ar] C K[A]

Let R be a finitely generated homogeneous K-algebra and M a finitely generated
graded R-module. Set

PYl(s,t)=") _ dimg Torf(M, K);s't/.
i,j=0

This formal power series is called the graded Poincaré series of M. Since for each i
there exist only finitely many j with Tor®(M, K) ;i #0, we can write

PY(s,n=Y_ pM)s',

i=0

where each p,.M (2) is a polynomial in ¢.
Following Backelin [3] we define

deg pX(t) — 1
rate(R) = sup {% s> 2’ .
i —
It is clear that rate(R) =1 if and only if R is Koszul.
The following result generalizes Proposition 1.3.

Proposition 1.4. Let R C S be an algebra retract of graded K-algebras with
retraction map €. Then, we have
(a) rate(R) < rate(S);
(b) Consider R as an S-module via ¢. Then, the following conditions are equivalent:
(i) R is Koszul,
(i) S is Koszul and R has a linear S-resolution.

Proof. For the proof we use a graded version of the following result from [7]:
P& (s, 1) = P{(s, )P (s, ).

Write PSK(s,t) = Zizo pi(t)st, PSR(S,Z) = Zizoqi(t)si and PX(s,1) = Z,-Zo ri(t)st.
Then

pit)=Y_q;(®)pi_j(t) forall i.
j=0

Since the coefficients of the polynomials g; and r; are all non-negative integers, it fol-
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lows that
deg p;(t) = max{degq;(t) +degr,_;j(t); j =0, ...,i}.
From this equation both assertion of the proposition follow at once. O

We refer the reader to [1], [2] and [8] for the fundamental information about
strongly Koszul, sequentially Koszul and extendable sequentially Koszul algebras.

Proposition 1.5. Let R C S be an algebra retract of graded K-algebras with
retraction map €. If S is strongly Koszul, sequentially Koszul or extendable sequen-
tially Koszul with respect to the sequence X = xy, ..., X, (forming a K-basis of S)),
such that there exists a subset X' = x;,...,x; of X with ¢(x;) = x; for x; € X' and
e(x;) = 0 for x; & x'. Then, R is strongly Koszul, sequentially Koszul or extendable
sequentially Koszul with respect to the sequence X/, respectively.

Corollary 1.6. Let K[Ar] be a combinatorial pure subring of K[A]. If K[A]
is strongly Koszul, sequentially Koszul or extendable sequentially Koszul, then K[Ar]
has this property, too.

Before proving Proposition 1.5 we note the following

Lemma 1.7. Let R C S be an algebra retract of graded K-algebras with retrac-
tion map ¢, let I C S be an ideal and x € R. If (1) C I, then

el :sx)y=¢e(l):g x.

Proof. Suppose a € I :g x; then ax € I, and so e(a)e(x) € ¢(I). Since x € I,
we have x = e(x), and so &€(a) € €(I) :g x. Conversely, let a € e(I) :g x. Then
ax € (1) C I, and hence a € I :5 x, so that a = &(a) € (I :5 x). |

Proof. [Proof of Proposition 1.5] Since x is K-basis of Sj, it follows at once that
x’' is a K-basis of R, and hence a minimal set of generators of the K-algebra R.

Suppose S is strongly Koszul with respect to x, and let x;, x; € X'. Then (x;) 5 x;
is generated by a subset of x. By Lemma 1.7 we have &((x;) :5 x;) = (x;) :g x;, and it
follows that (x;) :g x; is generated by a subset of X', as desired.

Next suppose that S is sequentially Koszul with respect to x. In order to prove
that R is sequentially Koszul with respect to x’, we have to show that all derived se-
quences of x' have linear quotients. This will be a consequence of the following as-
sertion and Lemma 1.7: Let y’ be an i-th derived sequence of x’ in R. Then, there
exists an i-th derived sequence of x in S with e(y) = y’. In fact, there exists an
(i — 1)-th derived sequence z' = zj,...,z of X' (with z; € {x,...,x,}) such that
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W) = (z1, ..., Zj—1) :g z; for some j <. Inducting on i, we may assume there exists
an (i — 1)-th derived sequence z of x with £(z) = Z'. In particular, z’ is a subsequence
of z. Let Z be the largest initial sequence of z not containing z;, and let y be the se-
quence generating the colon ideal (Z) : z;. Since &(%) = zy, ..., 2, it follows from
Lemma 1.7 that e(y) =y'.

In a similar way one shows that R is extendable sequentially Koszul with respect
to x’ if S has this property with respect to x. We only note that if a sequence y is ex-
tended to a sequence y; with linear quotients, then e(y) can extended to &(y;), having
again linear quotients. O

2. Squarefree Veronese subrings

Let K[x] = K[xj,...,x,] be the polynomial ring in n variables over a field K
and suppose that / is an ideal of K[x] which is generated by squarefree quadratic
monomials. We say that / is the Stanley-Reisner ideal of the order complex of a finite
poset if there exists a partial order on [n] such that / is generated by those squarefree
quadratic monomials x;x; such that i and j are incomparable in the partial order. Let
['(I) denote the graph on the vertex set [n] = {1, ..., n} with the edge set consisting
of all {i, j} such that x;x; & I.

Let G be a finite graph and suppose that G has no loop and no multiple edge. A
quasi-cycle of G of length k is a finite sequence of vertices (aj, az, ..., ay) of G such
that (i) all of the edges {a;, a;+1} with 1 < i < k — 1 and the edge {ax, a;} belong
to G and (i) if @; = a; with i, j < k and i # j, then a;.1 # aj.1, and if a; = a
with i < k, then a;41 # a;. A quasi-cycle is called odd if its length is odd. Note that
a vertex may appear more than once in a quasi-cycle. A triangular chord of a quasi-
cycle (ay, ay, ..., ax) is an edge of G of the form either {a;, a;42} with 1 <i <k —2
or {ay_1, a1} or {ax, az}.

Now, the criterion, e.g., [5] guarantees that

Lemma 2.1. Let I be an ideal of K[X] which is generated by squarefree quad-
ratic monomials. Then, I is the Stanley-Reisner ideal of the order complex of a finite
poset if and only if the following condition (x) is satisfied: (x) Every odd quasi-cycle
of U'(I) of length > 5 has at least one triangular chord.

We say that a homogeneous semigroup ring K[.A] comes from a poset if 14 pos-
sesses an initial ideal which is the Stanley-Reisner ideal of the order complex of a
finite poset. For example, every monomial ASL (algebra with straightening laws) dis-
cussed in, e.g., [2] comes from a poset. It is shown in [12] that if K[.A] comes from
a poset, then the infinite divisor poset of K[.A] is shellable. Here, the infinite divisor
poset of K[A] is the infinite poset consisting of all monomials of K[.A4], ordered by
divisibility.
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Proposition 2.2. If a homogeneous semigroup ring K[A] comes from a poset,
then any combinatorial pure subring of K[A] comes from a poset.

Proof. Suppose that a homogeneous semigroup ring K[A] comes from a poset
and choose a term order < on K[x] such that the initial ideal in_.(14) is the Stanley-
Reisner ideal of the order complex of a finite poset. Let K[.Ar] be a combinatorial
pure subring of K[.A]. It then follows from Proposition 1.1 that in.(l4,) =in(I14)N
K[xr]. Hence, I'(1 4,) is an induced subgraph of I'(14). Since I'(/ 4) satisfies the con-
dition (x) of Lemma 2.1, its induced subgraph I'(/4,) also satisfies the condition (x)
as desired. O

Let K[z, ...,t;] be the polynomial ring in d variables over a field K with each
degt; = 1. Let 2 < q < d. The g-th squarefree Veronese subring of order d is the
affine semigroup ring Rff) which is generated by all squarefree monomials of degree
q belonging to K[t ..., t;]. It is known [13] that each RY’ has an initial ideal gen-
erated by squarefree quadratic monomials. However, it seems to be unknown if each
RY comes from a poset.

Theorem 2.3. Let 2 < q < d. The q-th squarefree Veronese subring of order d
comes from a poset if and only if either () g =2 and 3 <d < 4, or (ii) ¢ > 3 and
d=g+1.

@)

Proof.  First of all, note that the squarefree Veronese subring R,

(q)
q+1

way. Moreover, ’Rf) comes from a poset since the defining ideal of Rgz) has an initial
ideal (xl.X2, X3X4).

To show the “only if” part, we first show that R(Sz) does not come from a poset.
It is discussed in [4] and [2, Example 4.3 (b)] that there exist only two quadratic ini-
tial ideals (up to symmetry) of R(Sz); they are

is the polyno-

mial ring in g + 1 variables over K. Thus, R,”/, comes from a poset in the obvious

Iy = (x1xg, X1X9, X1X10, X3X5, X3X9, X4X5, X4X6, X4X8, X6X9, X7X8);

I, = (x1x10, X2X6, X2X7, X2X10, X3X5, X3X7, X3X9, X4X5, X5X10, X7X8)-

The graph I'(/;) has the odd cycle (3, 4,9, 5, 6) of length 5 with no chord, and I'(/,)
has the odd cycle (2, 3,10, 7,5) of length 5 with no chord. Hence, neither I'(/;) nor
I'(Il;) satisfies the condition (x) of Lemma 2.1. Hence, 'R(Sz) does not come from a
poset, as required.

Now, if d > 6, then R(sz) is a combinatorial pure subring of Rff) . Hence, if d > 6,
then ’Rff) does not come from a poset by Proposition 2.2.

Since R;’Qz = 'Rfsz, we know that R;q,f)z does not come from a poset if g > 3.
Since Rf;’fz is a combinatorial pure subring of Rf,q) if d > g +2, it follows that Rfi")
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does not come from a poset if ¢ >3 and d > g + 2. O

The initial ideal /; of ’R(Sz) in the above proof of Theorem 2.3 can be obtained by
a reverse lexicographic term order as well as by a lexicographic term order. The initial
ideal I, of R§2> can be obtained by a lexicographic term order, but cannot be obtained
by a reverse lexicographic term order since all variables x; appear in the system of
generators of /5.

In [2], it is proved that all second squarefree Veronese subrings Rfiz) are extend-
able sequentially Koszul. Hence, the infinite divisor posets of the second squarefree
Veronese subrings are shellable ([2, Theorem 4.1]). However, the shellability of the
infinite divisor posets of RE,Z) cannot follow from [12] if d > 5. It remains open if
the infinite divisor posets of all squarefree Veronese subrings Rfiq) with ¢ > 3 are
shellable.

In the rest of this section, we will discuss the problem of finding all squarefree
Veronese subrings which are Golod. If T is a homogeneous K -algebra, then we write
H(T) = H(x; T) for the Koszul homology of T with respect to a K-basis of genera-
tors x of 7;. Recall that H(T) is a skew symmetric graded K -algebra. This algebra is
unique up to isomorphisms, i.e., it does not depend on the particular chosen basis of
Ty. In the category of skew-symmetric algebras we can define an algebra retract just
as in the commutative case.

Proposition 2.4. Let R C S be an algebra retract of homogeneous K-algebras.
Then the inclusion R C S induces an algebra retract H(R) C H(S).

Proof. Let ¢ : S — R be the retraction map. We may choose a K-basis X' =
X1,...,Xx, of S such that for some m < n the sequence X = xi, ..., x,, is a K-basis
of R;, and such that e(x;) =x; fori =1,...,m, and e(x;) =0 for i =m+1, ...,n. The
natural inclusion R C S induces an algebra homomorphism ¢ : H(x; R) — H(x'; S) and
the retraction map ¢ induces an algebra homomorphism n : H(x';S) — H(e(X'); R).
By the choice of the basis X' we have &(x’) = x1,...,x,,0,...,0. From this it fol-
lows easily that H(e(x'); R) is isomorphic to the graded tensor product H(x; R)Q@ A\ V,
where V is a K-vector space of dimension n — m + 1. In particular, H(x; R) is a sub-
algebra of H(e(x'); R), and in fact is precisely the image of n o, as desired. O

Corollary 2.5. Let R C S be an algebra retract of homogeneous K -algebras.
Write R = A/I and S = B/J, where A and B are polynomial rings over K, and I
and J are graded ideals containing no forms of degree 1. Then for the graded Betti
numbers of I and J we have

B < BA(J) forall i and j.
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Proof. The assertion follows from 2.4 and the fact that ﬂ[}(l ) = dimg Hi,1(R);,
and ﬂg(]) =dimg H;.1(S); for all i and j. O

Corollary 2.6. Let R C S be an algebra retract of homogenous K -algebras. If
S is Golod, then R is Golod.

Proof. By definition, S is Golod, if all Massey operations in the Koszul com-
plex K(S) vanish. The Massey operations u(zy,...,z,) of order r (which are cycles
in K(S)) are defined on all r-tuples of cycles z; of K(S), provided all Massey op-
erations of order » — 1 are defined and are even boundaries (in which case one says
that the Massey operations of order < r vanish). Note that w(z, z2) is just z;22, so
that H(S) has trivial multiplication if S is Golod. We refer the reader to [6] for a full
definition of Massey operations.

Now we wish to show that Massey operations in K(R) of order r vanish for all
r. We prove this by induction on r. Since H(R) is a subalgebra of H(S), it has trivial
multiplication, too. Hence the Massey operations of order 2 vanish. Now suppose that
r > 2, and that the Massey operations of order » — 1 vanish. Then u(zy,...,z,) is
defined and is a cycle. Since wu(zj,...,z,) is also a Massey operation in K(S) and is
a boundary in K(S), and since the natural map H(R) — H(S) is injective, it follows
that wu(zy, ..., z,) is a boundary in K(R), too, as we wanted to show. O

Corollary 2.7. Let 2 < g < d. The q-th squarefree Veronese subring of order d
is Golod if and only if d =q + 1.

Proof. If d = g + 1, then R;q,r), is a polynomial ring and the assertion is triv-
ial. Note that Rf) is a complete intersection defined by two quadratic equations. The
Koszul homology of a complete intersection is the exterior algebra of the first Koszul
homology, and hence, unless it is a hypersurface ring, has not trivial multiplication. It
follows that Rf) is not Golod. Now using Corollary 2.6 we argue as in the proof of

Theorem 2.3 to get the desired result. O

3. Lawrence liftings of semigroup rings

Let, as before, A = {f},..., fu} be a set of monomials of K[t] = K[z, ..., t4]
and suppose that the affine semigroup ring K[A] = K[fi,..., f»] is a homogeneous
semigroup ring. Let /4 C K[x] = K[xy, ..., x,] denote the defining ideal of K[.A].

If u € K[x] is a monomial, then we write supp(u) for the support of u, i.e.,
supp(u) is the set of variables x; which divide u. If ¢ = u — v is a binomial of
K[x], where u and v are monomials of K[x], then the support of g is supp(g) =
supp(u) U supp(v).

A binomial g = u — v € I4 is called primitive if there exists no binomial g’ =
u —v € I4 with g # g such that «’ divides u and v’ divides v. The set of all
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primitive binomials of 14 is called the Graver basis of 14.
A binomial g =u —v € I 4 is called a circuit if g is irreducible and if there exists
no binomial g’ = u’ — v’ € I4 with supp(g’) C supp(g) and with supp(g’) # supp(g).
The universal Grobner basis of 14 is the union of all reduced Grobner bases of
I 4. Every circuit of 14 belongs to the universal Grobner basis of 14, and the universal
Grobner basis of 14 is a subset of the Graver basis of I4. See [13, Proposition 4.11].
Let A(A) = {fizi,---» fuZns 215 .., 20}, Where 7y, ..., 2z, are variables over K.
The homogeneous semigroup ring

K[A(.A)] = K[f]Z],...,fnZn, Zlyev ey Znl

is called the Lawrence lifting of K[A].

Let K[x,y] = K[x1,...,Xn, Y1, ..., Y] denote the polynomial ring in 2n variables
over K. If u = x;,x;,---x;, is a monomial of K[x], then we write # for the monomial
Yi,Yi, - - ¥i, of K[y]. Moreover, if g =u — v is a binomial of K[x], then we define the
binomial g of K[x,y] by g =ud — vi. It then follows that the defining ideal I54) of
the Lawrence lifting K[A(A)] of K[A] is generated by all binomials g§ with g € I 4.
Moreover, the Graver basis of I5(4) coincides with the set of those binomials g such
that g belongs to the Graver basis of [4, and the set of circuits of I5(4) coincides
with the set of those binomials g such that g is a circuit of 4.

In the present section, we are interested in the question when the Lawrence lifting
K[A(A)] of K[A] is normal.

Lemma 3.1. If g = u — v is a binomial of K[X] such that neither u nor v is
squarefree and if 14 =(g), then K[A] is not normal.

Proof. Let g = x,zu’ —x%v’. Since n(xfu’) = n(x%v/), we have ,/Jr(xlzu’)n(xgv’) =
J'r(xlzu’); thus /T@)r(v") = w(xu’)/m(x;). Hence, the monomial /7w ()7 (V') be-
longs to the quotient field of K[.A4] and is integral over K[.A]. Suppose that there ex-
ists a monomial w such that w(w) = 7w (x u’)/m(x;). It then follows that the binomial
g’ = xju’ — xw belongs to I 4. Since the degree of g’ is less than that of g, we have
g’ = 0. Hence, x, must divide u’, which is impossible since g is irreducible. Thus,
K[A] cannot be normal as required. O

Lemma 3.2. If g is a circuit of 14, then there exists a combinatorial pure sub-
ring K[B] of K[A(A)] with Iz = (g).

Proof. Let {xi, ..., x,} denote the support of g and K[A'] = K[fi1,..., fm]. The
defining ideal of K[A'] is T4 =I4NK[x1,...,xny]. First, we show that 14 = (g). Let
g = xlu — v with x; & supp(u). Let h = x]u' — v € 14 with x; ¢ supp(u’) be an
irreducible binomial. Since both binomials (x{u)? — v? and (x{u’)? — v'” belong to
Iy, the binomial (x{u)?v'” — (x]u’)Pv? belongs to 4. Hence u?v'” — u'’v? € I4.
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Since g is a circuit and since x; & supp(u?v’? — u'Pv?), it follows that u9v'” = u'"v9.
Since supp(u)Nsupp(v) = @ and supp(u’)Nsupp(v’) = @, we have u? = u'? and v7 =v'’.
Hence, if p # g, say p < g, then we can find an integer k > 1 such that 4 = xfu’ -
v o= (xlqlu’l)" - v’]k . This is impossible since both binomials g and h are irreducible.
Hence p = ¢ and we have g = h. Thus 74 = (g) as desired.

Since 14 =(g), the Graver basis of 14 is equal to {g}. Now, let K[B] denote the
subring K[fi1z1,---s fmZm, 21, ---,2m] of K[A(A)]. Then, K[B] is, in fact, a combi-
natorial pure subring of K[A(A)]. Since K[B] is the Lawrence lifting of K[.A'] and
since the Graver basis of I 4 is {g}, the Graver basis of Iz is {g}. Thus, in particular,
Is = (g) as desired. O

We say that a homogeneous semigroup ring K[A] is unimodular if all initial ide-
als of I, are squarefree. It follows from [13, Remark 8.10] that K[.A] is unimodular
if and only if all triangulations of the configuration associated with A are unimodular.
In addition, K[.A] is unimodular if and only if all lexicographic initial ideals of K[.A]
are squarefree.

Even though the following criterion for K[A] to be unimodular must be well
known, we will write its proof for the sake of completeness. A binomial g = u — v
is called squarefree if both the monomials u and v are squarefree.

Proposition 3.3. A homogeneous semigroup ring K[A] is unimodular if and
only if every circuit of 14 is squarefree.

Proof. First, suppose that every circuit of /4 is squarefree. Let a binomial g =
u — v belong to a reduced Grobner basis of I 4. Then, by virtue of [13, Lemma 4.10],
we can find a circuit g’ = u’ — v’ of I4 with supp(u’) C supp(u) and supp(v’) C
supp(v). Since g’ is squarefree, it follows that u’ divides u and v divides v. Since g is
primitive, we have g = g’. Hence, every reduced Grobner basis consists of squarefree
binomials.

Second, let g =u — v be a circuit of /4 such that the monomial u is not square-
free. Since g belongs to the universal Grobner basis of 14, it follows from [13, Corol-
lary 7.9] that there exists a term order < on K[x] with in_(g) = u such that g belongs
to the reduced Grobner basis of 14 with respect to <. Hence, the initial ideal in(14)
is not squarefree. U

We are now in the position to give a main result of this section.

Theorem 3.4. Let K[A] be a homogeneous semigroup ring and K[A(A)] its
Lawrence lifting. Then, the following conditions are equivalent:
(i) K[A] is unimodular;
(i) K[A(A)] is unimodular;
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(iii) K[A(A)] is normal.

Proof. First of all, (ii) = (iii) is well known. Since the set of circuits of /(4
coincides with the set of those binomials g such that g is a circuit of /4, we have (i)
<& (i1) by Proposition 3.3.

In order to show that (iii) = (i), suppose that K[.A] is not unimodular. Then, by
Proposition 3.3 again, we can find a circuit g = u — v of /4 such that either u is
not squarefree or v is not squarefree. Then, each of the monomials u? and vit of the
circuit g = uv — vii of Ip(4) is not squarefree. Now, Lemma 3.2 guarantees the ex-
istence of a combinatorial pure subring K[B] of K[A(A)] with Iz = (g). Then, by
Lemma 3.1, K[B] is not normal. Hence, K[A(A)] is not normal by Proposition 1.2 as
required. O

RemARk 3.5. Let (P) be a ring-theoretical property which is inherited by (i)
combinatorial pure subrings, (ii) localizations and (iii) rings R such that the Laurent
polynomial ring Rlzi, 217, ..., Zm. 2w~ '] over R has the property (P). Then, if the
Lawrence lifting K[A(A)] of K[.A] has the property (P), then, for any subset B C A,
the ring K[B] has the property (P). In fact, K[A(B)] has the property (P) since it is a
combinatorial pure subring of K[A(A)]. Inverting all z; occurring in K[A(B)] we get
K[Bllzi,z17", ...\ Zm» Zm~'] which has the property (P). Hence, K[B] has the prop-
erty (P), as desired.

We conclude this paper with some examples of homogeneous semigroup rings
which are unimodular.

ExampLE 3.6. (a) Let Rg[L] denote the monomial ASL (algebra with straight-
ening laws) associated with a finite distributive lattice L discussed in, e.g., [9]. Then,
Rk[L] is unimodular if and only if L is planar. See also [1].

(b) Let K[G] denote the homogeneous semigroup ring arising from a finite con-
nected graph G studied in, e.g., [10] and [11]. Then, K[G] is unimodular if and only
if any two cycles of odd length of G possess a common vertex. In particular, K[G] is
unimodular if G is bipartite.
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