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1. Introduction

A. Let μ be a Radon measure on an infinite dimensional smooth manifold

E. Associated to μ there are various additional structures on E. This is seen from
the example of Gaussian spaces where E is a separable Banach space inducing an

abstract Wiener space structure on E, from the example of path and loop spaces

on finite dimensional Riemannian manifolds with measures induced by Brownian

motions and Brownian bridges which are usefully analyzed using special "tangent

spaces" [18], from the notions of "differentiability" of measures leading to classes of

"admissible" vector fields describing the directions in which μ can be differentiated
[4], and from very general considerations [11]. Here we describe a class of vector

fields determined by μ and the differential structure of E which also have a claim

to be called "admissible" but are defined in terms of Dirichlet form theory rather

than differentiability of μ. Finite or suitably bounded countable families of such
vector fields are shown to give rise to quasi-regular Dirichlet forms on E with their

associated diffusion processes, Markovian semigroups, and infinitesimal generators.

The ideas are valid for general separable metrizable manifolds but an adequately

rich class of differentiable "test" functions is needed. Such would be assured if E

were modeled on a space admitting smooth partitions of unity with bounded deriva-
tives. However this is not so for spaces of continuous paths (such as classical Wiener

space) and for such mapping spaces it is often convenient to use cylindrical functions.
On the other hand we wish to include such cases as iterated path spaces (paths on

path spaces) and other examples of spaces of maps into infinite dimensional mani-

folds. To do this we introduce in Section 2 the notion of a Caratheodory-Finsler
(C-F) manifold: a class of Finsler manifolds possessing a rich enough family of

"test" functions. Closed submanifolds of separable Banach spaces, with induced
Finsler structure are C-F manifolds, as is the space of continuous maps of a com-

pact metric space into a C-F manifold. In this way we are able to give a unified

treatment which covers and extends the existing results on path and loop spaces.

Research supported in part by Chinese NNSFC, EPSRC grant GR/H67263 and EC Science
Plan ERB 4002PL910459.
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We are also able to give a more detailed analysis of the structures involved, e.g. see

the final parts of Sections 3 and 4.

We go on to summarize our results in more detail. In particular Subsection C, D

which follow are summaries of what will be proved in Sections 4 and 3 respectively.

B. Suppose μ is a finite measure and let Ί) be a dense linear subspace of

L2(E,μ) consisting of C1 maps f : M —> R. A Borel measurable vector field v on

E is V-admissίble if

(i) / G V, f = 0 μ-a.e. implies dvf — 0 μ-a.e.,

(ii) dvf G L2(E, μ) for all / G T>,

and

(iii) dv, with domain Ί), is a closable operator in L2(E,μ).

Here dvf : E —> R is the Frechet derivative of / in the direction v, i.e., dvf(σ)

= df(v(σ)), σ € E.
If v satisfies (i) and (ii) and possesses a divergence, i.e., there exists divv in

L2(E,μ) such that

/ dυf(σ)μ(dσ) = - I f(σ)άivv(σ)μ(dσ)
JE JE

for all / G P, then v will be said to be strongly Ί)-admissible. Strong admissibility

implies admissibility if Ί) is an algebra.

C. Now let E be a closed submanifold (e.g. the manifold itself) of the mani-

fold of continuous maps of a compact metric space 5 into a C-F manifold M and

let A be a countable or finite family of D-admissible vector fields on E such that

/ ]Γ|^/(σ)|2μ(dσ)<oc
JEVZA

for all / G V. Then the form (£,£>) given by

f'9} = L υ^sΛ.

for /, g G T>, is closable in L2(E,μ) with closure a Dirichlet form. If in addition

(i) T> is an algebra with pointwise multiplication

(ii) if φ G C£°(R) with φ(Q) = 0 then φ o / G T> whenever / G £>,

(iii) T> contains all functions / of the form /(σ) = φ(σ(s)) for some s G 5 and

and

(iv) there exists Φ <E Z/2^, μ) such that for all φ G C^(M; #) and 5 G S
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2(σ) μ-a.e.
veΛ

where \\dφ\\ is defined from the Finsler norm on M, then the closure (£,£)(£))

is quasi-regular (in the sense of [2], [22]) and local so that there is an associated

diffusion process (ξt)t>o °n E which is conservative, has μ as invariant measure and

has generator L where £(/,#) = JE(-Lf)gdμ for all / <Ξ D(L),g e £>(£). Note
that, intuitively, L = Z^Gv4 — #*3y. This (£,£)(£)) is in fact a special case of the

square field operator forms of Rόckner and Schmuland [26].

D. The strongly Inadmissible vector fields form a particularly nice class. For
example if υ is strongly Inadmissible and V is an algebra then fv is strongly £>-

admissible for every bounded / G D. Moreover if V is the space of all strongly

D-admissible v with

\\v\\v := ί \v(σ)\lμ(dσ) + ί \ divv(σ)\2μ(dσ) < oo
JE J E

then (V, || | |y) is a Banach space, where |v(σ)|σ is the Finsler norm on TσE. One

consequence of this result is to have a simple way to go from nonanticipative vector

fields on path and loop spaces to a wide class of anticipative ones (cf. subsection
E.(c) below). We mention also that when E is a linear space the well admissible

elements (cf. [22] II. Def. 3.2) form a special subclass of strongly admissible vector

fields, i.e. constant valued ones in the flat case.

E. We conclude this introduction by pointing out some applications of the
above results to path spaces, of which the details will be discussed elsewhere, together

with further examples.

(a) Let M be a compact Riemannian manifold, take 5 = [0,1], and for fixed
XQ E M choose μ to be the law of a diffusion {Xt : t > 0} on M starting at XQ
with generator (1/2)Δ + Z where Δ is the Laplace-Beltrami operator on M and Z

a smooth vector field. Let Ί) be the space FC00 of smooth cylindrical functions on
E. Let V' be an afrme connection on M whose adjoint V is a metric connection

for the Riemannian structure of M. There is then another vector field Z on M with

^Δ/ + Zf = \ trace V'd/ + ZJ.
Δ Δ

For μ almost all paths σ in E, we can define Wf

z(σ) : TXQM —» Tσ^M by the
covariant equation
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this is a "damped parallel translation". Let H be the Cameron-Martin space

LQ^QO, 1];TXOM) of paths with values in TXOM. For h e H define a vector field ̂

on E by

It follows from [13], (essentially from Driver's integration by parts formulae [6] in

the torsion skew-symmetric case), that vh is strongly P-admissible for each h e H.

Define X : E x H -* TE by X(σ,/ι) = vΛ(σ). Then X(σ, •) : if -> Tσ£ is

continuous linear for μ-a.e. σ and so there is a "gradient operator" on V defined

by

(V/(σ), e)H = df(X(σ, e)) all e G H μ-a.e.σ.

If A = {veί : j > 1} for {βj}j^=l an orthonormal base of H then (i) to (iv) of

Subsection C are satisfied and we obtain a diffusion on the space of paths on M,

generalizing the construction by Driver and Rόckner [7]. Indeed the form defined

by A can generally well be written

= f(Vf(σ),Vg(σ))Hμ(dσ).
JE

Similarly the construction of a diffuson in the loop space by Albeverio, Leandre,

and Rόckner [1] can be generalized this way.

REMARK. We could have used //t in place of Wt

z, i.e. parallel translation

rather than damped parallel translation, to get the corresponding results.

(b) For 5, M, μ and T> as in (a), take the Levi-Civita connection of M. Let

AV be the space of vector fields on E of the form

υt(σ) = //t(σ) \ ί Qs(σ)dBs(σ) + ί hs(σ)ds\ , 0 < t < 1
Wo i/o J

where the Brownian motion {Bt : t > 0} is the martingale part of the stochastic

anti-development of our diffusion process while {Qs : 0 < s < l } , { / ι s : 0 < s < l }

are predictable process with values in the skew symmetric n x n-matrices and in Rn

respectively, (n — dimM), such that

MAY- t i l trQ*s(σ)Qs(σ)ds+ ί \hs(σ)\2 ds\ μ(dσ)
JE wo Jo )

< 00.

These are adapted vector fields in the sense of Driver [7]. Then AV is a Hubert space

with its obvious inner product (using uniqueness of the semi-martingale decomposi-

tion of such v). According to [7], each v E AV is strongly P-admissible. Applying
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Doob's inequality and Schwartz's inequality respectively to the martingale part and

the finite variation part of such v, one can check that fE \v\^μ(dσ) < CΊ|t;||^v some

constant C and all v G AV, this together with the norm estimate of Lemma 3.7
in [7] shows that AV is a closed subspace of V of Subsection D. Now let A be a

finite or countable family of AV such that ΣveΛ IHIiv < °°> t^ιen (*) to (*v) m

Subsection C are satisfied and we get diffusion processes driven by adapted vector

fields, though there is in general no "gradient operator" to be defined in this case.

REMARK. The vector fields in (a) actually are elements of AV, see [13].

(c) Using Subsection D above if Vi G AV and fa G T> for i = 1 to n then

ΣΓ=ι fivi is strongly P-admissible. We can therefore take limits in the space
(V,| | | |y) to obtain a wide class of anticipating vector fields which have diver-

gences, including the classes described by Nualart and Pardoux, by Leandre and by
Fang [14].

2. Caratheodory-Finsler manifolds

Throughout this section let M be a separable C1 manifold modeled on a Banach

space and equipped with a given Finsler structure τ([3], [24]). (In what follows
we shall call such manifold a Finsler Manifold.) TM := (JxeMTxM denotes the

tangent bundle of M.

We write \v\x := r(v) for v G TXM. TXM equipped with the norm | \x is then a

Banach space. Let / be a C1 map from M to another Finsler manifold N. We set

(2.1) | |4f| | == sup \W(x)\\L(TlM,τfWN)
x£M

We write / G C£(M;N) if | |d/|| < oo. In particular we write / G C^M TV) if
||d/|| < 1. Recall that for a piecewise C1 map σ : [0,1] -» M, the length l ( σ ) of σ

(w.r.t. r) is defined by

(2.2) l(σ) := J \σ(s)\σ(s}ds

where σ denotes the tangent vector of σ. The corresponding metric C^M induced by
r is then defined by

(2.3) dM(x,y) '•= inf{/(σ) : σ : [0,1] —> M is piecewise C1and σ(0) = x,σ(l) = y}

(with the convention that inf 0 = oo) for x,y G M. Note that O?M is an admissible

metric on M, i.e. dM generates the original topology of M [3]. (Note also that we
allow the distance between two points to be infinite in our definition of distance.)
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For our purpose we introduce a pseudo metric PM (Caratheodory metric [5])

as follows

(2.4) pM(x,y) := sup{/(2/) - f ( x ) : f

DEFINITION 2.1. We say that M is a Caratheodory-Finsler manifold (C-F

manifold in short) (w.r.t. r) if PM is an admissible metric on M and is complete.

Proposition 2.2. Suppose that there exists a C-F manifold N and a closed
embedding map J £ C£(M; N), then M is a C-F manifold.

Proof. Let PN be the Caratheodory metric on TV. If we set dj(Aθ( x>2/) =

pN(J(x),J(y}) for x,y £ M, then dj(jv) is an admissible metric on M and is
complete. Let λ - \\dJ\\. If / £ C^AΓ; Λ), then λ'1/ o J £ Cj(M; R). Therefore
for x, y £ M,

j/) = supμ-1/ o J(y) - A'1/ o J(χ) : / £ Cί (AT; β)}

< sup{/(2/) - /(x) : / e Cί(M;

Thus the proof is completed by showing that pM < dM. D

The last assertion is proved in the next lemma.

Lemma 2.3. For any x, y 6 M we have

Proof. Without loss of generality we assume d,M(x,y) < c>c. Then for ε > 0
we can find a piecewise Cl map σ : [0, 1] — > M with σ(0) = x,σ(l) = y, such that

l(σ] < dM(x, y) H- ε. Thus for any / £ C|(M; 7?), we have

f ( y ) - f ( x ) = I ^f(σ(s»ds= I d f ( σ ( s } } d s
Jo as J0

< / \σ(s)\σ(s}ds = l(σ) < dM(x,y) + ε.
Jo

Hence pM(x,y) < dM(x,y] since ε is arbitrary. Π

EXAMPLE 2.4. (i) Let M be a separable Banach space with Finsler structure
given by the Banach norm. Then M is a C-F manifold.
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Proof. Let x, y £ M, we set σ(i) — x + t(y — x). Then one can easily check

that /(σ) = x — y\\E Hence dM(x,y] < \\x-y\\ E On the other hand by the Hahn-
Banach Theorem we can find φ G M* such that ||^||M* = 1 and φ(y—x) = \\y-x\\E.

Hence PM(X,V] > φ(y) — φ(x) = \\x — y\\ε Consequently taking Lemma 2.3 into
account we have

pM(χ,y] = \\x-y\\E = dM(χ,y} D

(ii) Let M be a finite dimensional complete Riemannian manifold and the
Finsler structure be given by the Riemannian metric. Then by Nash's embedding

Theorem M is closely and isometrically embedded into a Euclidean space RN .

Hence by (i) and Proposition 2.2 M is a C-F manifold. See also Remark 2.5 below
in this connection.

(iii) It follows directly from Proposition 2.2 that any closed submanifold of a

C-F manifold is again a C-F manifolds.

REMARK 2.5. We are grateful to C.J. Atkin who kindly communicated to us
the following result.

Suppose that the separable manifoldMis modelled on

a Banach space with a separable dual, then^M = PM

Thus according to Atkin's result, any complete separable Finsler manifold mod-
eled on a Cl smooth Banach space, in particular any finite dimensional complete

Finsler manifold, or any complete separable Finsler manifold modeled on a Hubert

space, is a C-F manifold.
Plenty of examples of infinite dimensional C-F manifolds come from mapping

spaces over a given manifold which we are going to discuss now. Let M be a C-F

manifold. Let S be a compact metric space. We set E := C(5; M), all the continuous
mappings from S to M. Note that if S = [0, 1], then E is the path space over M. If

S = S1, then E is the loop space over M. We give E the compact -open topology

[19], then E is separable because the compact-open topology on C(S; [0, 1]^) is

separable and M is homeomorphic to a F$ subset of [0, l]N . It is known that E is

a Cl manifold modeled on a Banach space. In case that M is modeled on a Hubert

space, the differential structure may be constructed by employing the exponential

maps between TM and M e.g. see [9]. In the general case the corresponding
differential structure requires a more delicate construction. For details we refer to

[25] and [20]. For σ E E, the tangent vector space TσE can be identified with the

space of all continuous maps v : S — > TM such that υ(s) 6 Tσ^M for all s E 5.
A natural Finsler structure on E is given by

(2.6) |t; σ := sup \v(s)\σ(a), Vσ £ E,v 6 TσE.
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One can easily check that TσE equipped with the norm | \σ is a Banach space.

Proposition 2.6. The mapping space E constructed above is a C-F manifold
with respect to the Finsler structure given by (2.6), as are all its closed submanifolds
with their induced Finsler structure.

Proof. Let PM be the Caratheodory metric on M. We define

(2.7) pM(σ,σ'} := suppM(σ(s), σ'(s)), Vσ, σ' G E.
ses

Clearly PM is a complete metric on E since so is PM on M. Moreover, PM generates
the topology of uniform convergence which coincides the compact-open topology
on E ([19]). Hence PM is admissible on E. For s G S and φ G C\(M\ R), if we set
/(σ) = φ(σ(s)) all σ G £?, then it follows from (2.6) that / G Cl(E',R). Therefore
for σ,σ' e E

PM(°,°'} = supse5sup{</?(σ'(s) - φ(σ(s))) : φ E Cj

< sup{/(σ') - /(σ) : / G C* (£;#)} :

which together with Lemma 2.3 and Proposition 2.2 proves the proposition. Π

REMARK 2.7. Proposition 2.6 allows us to conclude that submanifolds of
C([0, 1]; M) such as the space of based loops can be covered by our treatment as will
be spaces of paths and loops on the Hubert manifolds Vs of those diffeomorphisms
of a compact n-dimensional manifold in the Soblev class Hs, s > (2/n) + 1, e.g. see
[12], where Vs is given a right invariant Riemannian metric.

The following result will be useful in the subsequent section.

Proposition 2.8. Let M be a C-F manifold. Then there exists a countable

family {ft}j^N C C\(M\R) such that for all x,y G M

(2.9) PM (x,y) = sup [ft (y) - ft (x)} .

Proof. Let {XI}I^N be a countable dense subset of M. For each pair (x/, x
we can find a sequence {//,m,n}ne-/v C C\(M;R) such that

Rearrange {Λ,m,n} by {/JJJGΛΓ Then {fj}jeN is as desired. D
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3. Admissible vector fields

Throughout this section let E := C(S\M) be the mapping space specified in
Proposition 2.6 or a closed submanifold of it. Let σ G E and v G TσE. For
/ G Cl(E]R) we shall write d v f ( σ ) := df(υ(σ)), the Frechet derivative of / at σ
along the direction v. If v is a tangent vector field on E, i.e., v(σ) £ TσJE for all
σ G E1, then the notation d v f ( σ ) will stands for d v ( σ ) f ( σ ) . We shall say that / is a
cylindrical function, written by / G FCl(E), if

(3.1) f(σ)=φ(σ(8l),σ(82),. .,σ(sn)),VσεE,

for some subset (si, 52, , sn) C S and some bounded </? G Cl(Mn ^) satisfying

,X2Γ ^Zn)|L(TχMjjR) : fal, ^2, ' ' ' , Sn) £ M™} < OO, VI < Z < Π,

where c?V denotes the differential of φ with respect to the ith variable. Clearly
ΓCl(E) C Cl(E\R). Hence dvf is well defined for a tangent vector field v on
E and cylindrical function /. One can check that if / is given by (3.1), then

dυf = ΣΓ=ι di(P(vti\ more precisely

(3.2) a«/(σ)

for all tangent vectors i>. In particular, the evaluation of the right hand side of (3.2)
is independent of the expression (3.1) since so is the definition of dυf.

We denote by B the Borel sets on E. A vector field v is said to be B-measurable
i f d υ f is β-measurable for all / G Cl(E;R).

From now on we assume that a finite measure μ is given on (E, B). For no-
tational convenience, we shall use the same symbol / for the μ-equivalence class
determined by a function /. With this convention FC\ can be viewed as a sub-
space of L2(E, μ) in such a way that if /, g G fC^ f = g μ-a.e., then / and g are
regarded as the same element of L2(E",μ). Note that by (2.4), (2.7) and the proof
of Proposition 2.6 one can check that TC\ separates the points of E, therefore by
monotone class argument TC\ is dense in L2(E,μ).

DEFINITION 3.1. Let V be a linear subspace of C£(E;R) Π L2(E,μ) such
that Ί) is dense in L2(E,μ). We say that a ^-measurable tangent vector field v is
T> -admissible, if the following three conditions are satisfied.
(i) / G £>, / = 0 μ-a.e implies dvf = 0 μ-a.e.
(ii) d , / G L 2 ( £ , μ ) f o r a l l / G P .
(iii) dv is a closable operator in L2(E,μ).

REMARK 3.2. (i) Condition (i) and (ii) above ensure that dυ is a densely
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defined operator on L2(E,μ). Hence the statement of condition (iii) above is mean-

ingful.
(ii) Let v be a P-admissible vector field and v' = υ μ-a.e. then v' is again a

Inadmissible vector field and dv> as a linear operator on L2(E,μ) coincides with

dv. In practice we shall deal with a vector field v which is defined on E\N for some
μ-null set N. In this case v is said to be D-admissible if there exists a Inadmissible
vector field v on E such that v = v on E \ N. By the above reason dv being a linear
operator does not depend on the particular choice of v.

(iii) V may be interpreted as the space of test functions for tangent vector
fields on E. In the literature of path spaces and loop spaces over finite dimensional

Riemannian manifolds, most authors consider only the case that V = FCl(E). But
as a matter of fact one can also take V to be all the bounded functions in C£(E"; R),
or even take V to be all the ZΛintegrable functions in Cl(E\ R). On the other hand
one can also take V to be smaller than fCl(E) for different purposes. For example
in case that M itself is a mapping space, then the space of all cylindrical functions
over cylindrical mappings might be a good candidate for V.

In what follows we fix a linear subspace Ί) specified in Definition 3.1. Denote
by ( , ) the inner product of L2(E,μ). Let v be a P-admissible vector field and let
dυ with domain D(dυ) be the closure of (dv,V) in L2(E,μ). We set

ευ(f,g) = (4/Λs), V/,0 G D(dυ)
= D(3V).

Then (ε,D(εv)) is a symmetric closed form on L2(E,μ). In fact we have the fol-
lowing criterion for υ to be D-admissible.

Proposition 3.3. A B-measurable vector field v is V -admissible if and only if
there is a symmetric closed form (£, D(S)} on L2(E, μ) such that D(8) D V and for
some constant C > 0,

(3.4) c~lε(fj) < \\avf\\2

L,(Etμ) <

forαttftV.

Proof. Suppose that (3.4) holds. From the right hand side inequality of
(3.4) we see that dυf is in L2(E,μ) and the corresponding L2-norm is controlled

by Cε(fJ). in particular if / - 0 μ-a.e., then \\dvf\\2

L2 < C£(/,/) = 0, which
implies dυf = 0 μ-a.e.. Thus 3.1 (i) and (ii) are satisfied. To verify 3.1 (iii) we

define ευ(f,g) = (dvf,dvg) for /, g £ T>. Then (3.4) implies that the bilinear form
(εv,T>) is closable in L2(E,μ). Hence dυ is closable in L2(W, μ), verifying 3.1 (iii).

Conversely suppose that v is D-admissible, then the symmetric closed form defined
by (3.3) satisfies (3.4) with constant 1. D
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Proposition 3.4. Let v be a Ί)-admissible vector βeld and ξ be a real-valued

B-measurable function on E. Suppose that there exists a positive constant C such

thatC~l < |f I < C, then ξv is V-admissible.

Proof. Clearly ξv satisfies 3.1 (i) and (ii). But by the assumption ξv satisfies
also

c-lεμ(f,f) < ||%/H2

L2(£;,μ) < cευ(f,f),vf e v

with (εv,D(Sυ)) being defined by (3.3). D

Below is a sufficient condition for v to be P-admissible.

Proposition 3.5. Suppose that Ί) is an algebra with pointwise multiplication.

Let v be a B-measurable vector field such that dvf € L2(E,μ) for all f £ T> and

there exists an element divv (called the divergence ofv) in L2(E,μ) satisfying

(3.5) / dvfμ(dσ) = - ί fάivvμ(dσ), V/ G V.
J E J E

Then v is T>-admissible.

Proof. Let us define

(3.6) cT/ - -dυf - /divv, V/ € V.

One can check that (3.5) implies

(3.7) (θvf,9) = (f,d:g), V / , < / e 2 λ

Thus / = 0 μ-a.e. implies dvf = 0 μ-a.e. since V is dense in L2(E,μ). Moreover,
(3.7) shows that the adjoint operator of dv is densely defined in L2(E,μ). Hence

dv is closable.

In the remainder of this section we assume that Ί) is an algebra. We shall say

that v is strongly V-admissible if v has a divergence divτ; specified by the above
proposition, with divv in L2(E,μ) and dυf e L2(E,μ) for all / G V. D

Proposition 3.6. Let v be a strongly V-admissible vector field. Then for any

bounded element f E V, fυ is again a strongly V-admissible vector βeld.

Proof. Let fυ be as in the Proposition. We define

div (fv) = +dvf + f divv.
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Then div(fv) E L2(E,μ) and

/ dfvgμ(dσ) = - gdiv ( f υ ) μ ( d σ ) , Vg € 2λ
JE J E

Hence the assertion follows by definition.

Let us denote by V all the strongly P-admissible vector fields υ such that

< oo.(3.8) \\v\\2

v := I \v(σ)\2

σμ(dσ) + / \divv\2μ(dσ)
JE JE

We assume that V is not empty. Π

Theorem 3.7. V equipped with \ \ - \ \ v is a Banach space.

Proof. It is easy to check (V,| | | |v) is a normed linear space. We need

only to check that V is complete with respect to the norm || | |y. To this end let

vn,n > 1, be a Cauchy sequence in (V, || \\v) By taking a subsequence if necessary,

we may assume that \\vn+ι — ̂ n||v < 2~n for all n. Let C = μ(E)1/2. By Schwartz's

inequality we have fE \vn+ι — υn\σμ(dσ) < C2~n. Therefore

- oo

(3.9) / ̂  \υn+ι - vn\μ(dσ) < oo
J n=l

which implies

oo

(3.10) ^ |υn+ι(σ) - υn(σ)\σ < oo μ-a.e. σ G E.
n=l

Note that each tangent space TσE is a Banach space with respect to the norm

I |σ. Hence the following ^-measurable vector field v is well defined.

(3 11) V^ = Vl^ + Σ~=ιK+ι(σ) - ^n(σ)), if (3.10) is true,
v(σ) = 0, otherwise.

Moreover, by Fatou's lemma one can easily check that

(3.12) lim [\vn(σ)-v(σ)\2

σμ(dσ)=Q.
Π-+00 J

Similarly we can find a 5-measurable function div v such that

(3.13) lim ί \divvn(σ) - divυ(σ)\2μ(dσ) = 0.
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Now (3.12) implies that fE \υ(σ)\*μ(dσ) < oo and hence dυf G L2(E, μ) for / e £>.
Moreover, we have

I ί \dvj-dvf\μ(dσ)
JE

< \\df\\ ί K(σ) - v(σ)\σμ(dσ) - 0 (n ̂  oo)
JE

and

r
\f ά\vvn - fdivυ\μ(dσ)

< ( f f2μ(dσ)}*( ί \divvn- άiv v\2 μ(dσ))^ --> 0 (n-^ oo).

Consequently, since each divvn is the divergence of vn, we see that v and divv
satisfy (3.5), i.e., divv is the divergence of v. This fact together with (3.12), (3.13)

imply that v G V and \\υn — v\\v —> 0. D

REMARK 3.8. If we use Lp-norm instead of L2-norm in (3.9), then (V, || | |v)
is again a normed linear space. Similar to the above proof one can show that if V

is not empty, then (V, || | |v) is a Banach space whenever p>2.

We now assume that for each σ e E there is a Hubert space H(σ) continuously
embedded in TσE. For example, each TσE an abstract Wiener space, or the case
that E is modeled on a Hubert space and the Finsler structure is given by the
Hubert norm. In the latter case we have H(σ) = TσE. Assume that there exists a

β-measurable function Φ > 1 such that \v\σ < Φ(σ)\v\u(σ} for all v £ H(σ).

Theorem 3.9. Let VH be all the strongly V-admissible vector fields v with
v(σ] E H(σ] almost all σ and satisfying (3.8) and (3.14) below

(3.14) \\v\\2

VH := / v(σ)\2

H(σ)Φ
2(σ)μ(dσ) + ί \divv\2μ(dσ) < oo.

JE JE

Assume that VH is not empty and define for v\,v<2 € VH,

(3.15) (υ1,v2)vH'-= I (vι,v<2)H(σ^'2(σ)μ(dσ)+ (divυι)(divv2)μ(dσ).

Then VH equipped with ( , )VH is a Hubert space.

Proof. Clearly (VH, ( , )VH) is a pre-Hilbert space. As in Theorem 3.6 we
can show that VH is complete with the norm || \\VH- Π
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In practice some spaces of vector fields are obtained as image of a Hubert space
H under a linear map r. In this case we may induce a Hubert structure for those

vector fields which are in image of r.

Proposition 3.10. Let H be a Hubert space and r : H —» V be a linear map

such that there exists a constant C satisfying

(3.16) \\τh\\2

v<C\\h\\2

H,\/heH.

Letkerr = {h G H\τh = 0} andkerr^ be the orthogonal space ofkerr. Define

(3.17) V(rH) = {v e V\v = rh for some h G kerrx}

(3.18) (vl,v2}τH = (hι,h2)H

for vι — τhι,υ2 = τh2 with hι,h2 G kerr1-
Then V(τH) with inner product ( , )τ# & a Hubert space. In particular, if

r : H -—> V is a continuous ίnjective linear map. Then V(rH) is ίsomorphic to H.

We omit the proof because it is an easy exercise.

EXAMPLE 3.11. Let H be a Hubert space and r : H —> V be a linear map,
such that there exists a Φ G L2(E, μ) satisfying

(3.19) \τh\σ < Φ(σ)\\h\\H, μ-a.e., VΛ G H.

Then

yΊrhβμίdσJ^HΛl l l r l lΦl l i^^, VΛ G H.

If in addition

|div(τft)|2μ(dσ) < C\\h\\*H some constant C

then condition (3.16) is fulfilled and V(τH) specified by (3.17) is a Hubert space.
In this case we define τ(σ) : H ̂  TσE by τ(σ)h = τh(σ). Assume in addition that

τ(σ) is injective for μ-a.e. σ G E. Let

(3.20) H(σ) = {v(σ) G TσE \ v(σ) = τh(σ) for some ft G H}.

Then H(σ) is isomorphic to H for μ-a.e. σ G E. Hence V(τH) coincides with VH
specified in Theorem 3.9 (Note that we may always assume that Φ in (3.19) is not
less than 1).
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4. Construction of diffusion processes

All the assumptions and notations are the same as in Proposition 2.6 and

Definition 3.1.

Lemma 4.1. In the situation of Proposition 2.6 and Definition 3.1. Let A be

a countable or finite family of T> -admissible vector fields. Suppose that

(4.1) / £ \dυf\
2μ(dσ) < oo, V/ G V.

JEV^Λ

Then the symmetric form (£, V] defined by

(4.2) S ( f , g ) = ί Σ 9vf)(dvg)μ(dσ), Vf,gtV
jEveΛ

is closable in L2(E, μ) and the closure (8, D(S)) is a Diric hie t form on L2(E, μ).

Proof. For v G A we set ευ(f,g) = fE(dvf)dvg)μ(dσ}.lt follows from 3.1

(iii) that (£„,£>) is closable in L2(£,μ). Clearly 8 ( f , g ) = Συe>Λ £*(/,#), hence
condition (4.1) and the denseness of V implies that (S,V) is closable (cf. e.g. [22] I.

Prop. 3.7). The fact that the closure (£,£>(£)) of (£,£>) is a Dirichlet form follows

from the chain rule and e.g. [22] I. Prop. 4.10.
Let (£,D(S)) be the Dirichlet from constructed in the above lemma. By the

theory of Dirichlet forms there exists a unique self-adjoint operator L with domain

D(L) on L2(E,μ) satisfying

D(L) C D(S]

and

(4.3) £(/, g) = (-L/, (/), V/ G ϋ(L),p G £>(£).

(L,D(L)) is called the generator of (S,D(8)). Intuitively we may think that L =

Σvtv ~dv&v, which will rigorously hold e.g. in the case dvf G D(d*) for all v G A
and ]Γ d*dvf converges in L2(E, μ). D

Theorem 4.2. /« ί/ie situation of Lemma 4.1, suppose that in addition to (4.1)

ίAe following three conditions are also fulfilled.

(i) 7/V € C6°°(^), φ(ϋ) = 0, ίA^/i φofε'Dforallfe'D.

(ii) I f f , g are bounded functions in V, then fg G P.
(iii) T>0 CT> and there exists Φ G L2(E, μ) 5-wcA that for all φ G C^(M; Λ), s G 5,
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(4.4) Σ \ d φ ( σ ( s ) ) ( v s ( σ ) ) \ 2 < \\dφ\\2Φ2(σ), μ-Ά.e.
veΛ

where \\dψ\\ is defined by (2.1) and

(4.5) P° := {/ € fC*(E} : /(σ) = ̂ (σ(s))

for all σ £ E, for some ψ G C£ (M; #) and some 5 € 5}.

JΆe« there exists a diffusion process (ξt)t>o on E associated with (£,£)(£)). That
is, if(L,D(L)) is the generator of (ε,D(ε)}, then

(4.6) #•[/(&)] ά 0" μ-versίon ofeLtf for allf G L2(E,μ).

Moreover, (ξt)t>o & conservative and hence μ is an invariant measure for eLt.

REMARK 4.3. By IV Theorem 5.1 of [22] the existence of (ξt)t>o satisfying
(4.6) always implies that (£, £>(£)) is quasi-regular and (ξt)t>o is properly associated
with (£,£>(£)). The latter assertion, which extends Theorem 4.3.3 of [15] (see also
Theorem 4.2.3 of [16]) by relaxing the regularity of (£,£)(£)), means that (4.6) is
automatically strenthened by

E.[f(ξt)} is an ε-quasi-continuous μ-version ofeLtf

(4.6)' for all f£L2(E,μ).

The proof of the above theorem relies on the fact that £? is a C-F manifold and
is split into several steps. Our strategy is to show that (£,/}(£)) is a quasi-regular

Dirichlet form and is local, and hence the desired conclusion follows from [22] IV.
Th. 3.5 and V. Th. 1.11. We shall follow the argument of [26] §3 and [8] to check
the quasi-regularity of (£,D(£)). The experts may find that (£,£)(£)) is in fact a
special case of [26] Th. 3.4. For later use we recall that a Dirichlet form (£, D(£))
is quasi-regular if (cf. [22] IV. Def. 3.1):

(Q.I) There exists an £-nest (^)fc>jv consisting of compact sets.
(Q.2) There exists an £ι-dense subset of D(8) whose elements have ^quasi-continu-

ous μ-versions.
(Q.3) There exists un G D(E),n G N, having £-quasi-continuous μ-version un, n G

N and an £-exceptional set N c W such that {un\n G N} separates the

points ofW\N.
See also [21], [23] and [27] for the notion of quasi-regularity in more general

contexts.
Let us set by Γ(/, </) - ̂ vev(9vf)(dυg) for f,g G P. By (4.1) and the Cauchy-
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Schwartz inequality Γ(/,#) € Ll(E,nί). By (4.2) we have

(4.7) £(/,</)= f Γ(f,g)μ(dσ)
JE

which implies that Γ : T> x V —> Ll(E, μ) is a continuous bilinear map with respect

to the product topology on VxV induced by the £\-norm (£ι( , •) := £( , •) + (•> Oi/2)
on P. Therefore Γ extends to a continuous bilinear map on D(£] x £>(£) which we
shall denote again by Γ. Clearly (4.7) holds for all f , g G £>(£)•

Lemma 4.4. For f,g£ D(E), we have

Γ ( f V g , f V g ) < Γ ( f , f ) V Γ ( g , g )

Γ(/Λ 5 ,/Λ 5 )<Γ(/,/)VΓ( 5 , f f ) .

Proof. One can easily check that if φ is a smooth function on R with φ(ϋ) = 0

and \φ'(x)\ < 1, then

Hence the desired assertion follows from [26] Lemma 3.2. (See also [22] IV. Lemma
4.1) D

Let PM be the Caratheodory metric on M and pu be its lift to E defined by
(2.7). We set

(4.8) p(σ,σ') - pM(σ,σ) Λ l,Vσ,σ' e E.

The following lemma is crucial and the hypothesis that M is C-F plays an
important role in it.

Lemma 4.5. (i) p is a bounded complete metric on E and it generates the
original topology ofE.

(ii) Let σ' e E. Then p( , σ') 6 D(S) and

(4.9) Γ(p( , σ7), p( , σ7)) < Φ2( ) μ-a.e.

Φ /51 specified by (4.4)

Proof. (i) follows directly from the proof of Proposition 2.6. For proving
(ii) we take an odd and increasing function φ € C£°(R) such that \φ\ < 2,φ' <

\,φ" < 0 on [0,oo) and φ(x) — x for x G [—1,1]. Let {/JJJGΛΓ be a countable
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subset of Cj(M Λ) satisfying (2.9). Let {si}i^N be a countable dense subset of S.

We set for σ £ E.

Pi(σ) = sup φ(fjσ(si)) - f j ( σ f ( s i ) ) Λ 1.

By (2.9) we have p i ( σ ) = ρM(σ(si\ σ ' ( s i ) ) Λ 1. Therefore it follows from (2.7), (4.8)
and the denseness of {si} ί€Λ/ that supiejv Pi(σ) = p(σ, σ'). Clearly α^ £ PO C D(S)
and by (4.4) we have Γ(α^ , α^ ) < Φ2 μ-a.e.. If we define for fixed z,

6n(σ) = sup|αij(σ)| Λ l,n > 1,
j<n

then 6n £ £*(£) and Lemma 4.4 yields Γ(6n, 6n) < Φ2 μ-a.e for all n > 1. It in turn

implies that

&n,6n) < oo.

Therefore by the Banach-Saks theorem there exists a subsequence bnk whose averages

(l/OΣL=ι^n f c •'= ^/ converge strongly in the Hubert space (D(£),£ι). But 6n

converges to pi pointwise. Therefore pi £ -D(f ) and p/ converges to pi in ^i-norm.
Note that by Minkowski's inequality we have Γ (<//,(#) < Φ2 μ-a.e. for all / > 1.
Since Γ : D(S) x D(8) — > Ll(E,μ) is continuous and I/1 -convergence implies μ-a.e.

convergence for a subsequence, T(pι,pi) < Φ2 μ-a.e.. We now define

hn(σ) = sup pi (σ), Vσ £ £?.
i<n

Applying Lemma 4.4 again and repeating the above argument we see that p( , σ') —

limn-*oo hn £ D(S) and (4.9) holds. D

Lemma 4.6. (E,D(S)) is a quasi-regular Dίrίchlet form.

Proof. We need to show that (£, £>(£)) satisfies (Q.1)-(Q.3). Let {a^}jGJv be
a countable dense subset of E. Then it follows from Lemma 4.5 (i) that p( ,σi) is
continuous and {p( ,σj) : j £ AT} separates the points of E. Moreover, by Lemma

4.5 (ii) p( X) is in £>(£). Hence (Q.3) is fulfilled. Also (Q.2) is fulfilled because
T> is dense in D(E). It remains to check (Q.I). To this end we set

an:= inf p( ,σj), VneN.

It follows from Lemma 4.5(ii) and Lemma 4.4 that αn £ D(S) and Γ(αn,αn) < Φ2

μ-a.e. for all n. Therefore repeating the argument used in Lemma 4.5 (ii) we see
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that there exists a subsequence ank whose averages (1/1} Σl

k=l ank •— YI converge
to zero pointwise and each YI is continuous, hence by [MR 92, III 3.1] there exists
a subsequence YI^J £ N, converging to zero quasi-uniformly. That is, there is an
£-nest (Fk)keN such that YI. [ 0 uniformly on each Fk. We now fix k G N. Let
6 > 0 be arbitrary. We can choose N so that YιN(σ) < δ for all σ G Fk. Then

inf p(σ,σj)<δ, Vσ G Fk

or equivalently,

IN

FkC \J{σeE:p(σ,σ*)<δ}.

Thus Fk is totally bounded and consequently, since p is a complete admissible metric
on E, Fk is compact, verifying (Q.I). D

Lemma 4.7. Leί FI and F2 be two closed subsets ofE such that

(4.10) P(F17F2) := inf{p(σ,σ') : σ G F l 5σ' G F2} > 0,

where p is defined by (4.8). Then there exist continuous functions Λ,/2 G D(S)
such that supp[/ι] Π supp[/2] = 0 and /ι(σ) = 1 for σ G FI, /2(σ) = 1 for σ G F2.

Proof. Let α = p(Fι,F2). Let {σj'}jejv be a countable dense subset of E.
Set

gn = inf

Similar to the proof of the above lemma we see that g := limn_^oo^n G D(S).
Clearly g(σ) = 0 if p(σ,lFι) > a/3 and g(σ) > a/3 if σ G FI. We now define
/! = ((3/α)/) Λ 1. Define /2 similarly with F2 in place of FI. Then Λ,/ 2 are
desired. D

Lemma 4.8. (£,£>(£)) & toccZ

Proof. Let Γ be specified as in (4.7). By the chain rule it is easy to check that

for bounded #ι,<72,/ι G V,

(4.11) Γ(glfl,g2)=glΓ(fl,g2) + flΓ(gl,g2).

Since Γ is a continuous map from D(S) x D(S) to Ll(E, μ), equation (4.11) extends

to all bounded <7ι,#2>/ι G D(S). Let now ^1,^2 G D(8] such that supp[^ι] Π
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SUPP[#2] — 0 and suPPbι]5

supp[#2] compact. Without loss of generality we may
assume #ι,g2 are bounded. Let /ι,/2 be specified by the above lemma with FI =
supp[#ι],F2 = supp[#2]. Then applying (4.11) we see that

#2) = Γ(/ι0ι,/202) = 0 μ-a.e.

Hence £(0ι, 02) = 0. D

Proof of Theorem 4.2. The existence of the diffusions (ξt)t>o satisfying (4.6)
follows from Lemmas 4.6, 4.8 and [22] V.Theorem 1.11. The last assertion of the

theorem follows from the fact that 1 G D(8) and 8(1, 1) = 1. D

Corollary 4.9. Let X : E x H — > TE be measurable with, for μ-almost all σ,

X(σ,-) : H — > Tσ£? continuous linear and satisfying \X(σ,h)\σ < Φ(σ)\\h\\π where
H is a seperable Hilbert space and Φ e L2(E,μ). Suppose X( ,fί) is T> -admissible
for all heH.

For f : E -» R in C\ define, for μ-almost all σ, V/(σ) G H by (V/(σ), h)H =

d f ( X ( σ , h ) ) . Se t

,9) = ( f , 9 ) = f
j£;

Then (εx,T>) is closable in L2(E,μ) with closure (SX,D(8X)) a Dίrichlet form.
If also conditions (i), (ii) of Theorem 4.2 hold then (£χ,D(£χ)) is quasi-regular
and local, and in particular there is an associated diffusion as in the conclusion of
Theorem 4.2.

Proof. Let {e^} be an orthonormal base for H. Then

(4.12)

where vl = X( , β i ) . Now

|| = \\4fo X(σ, )\\H. < \df\σΦ(σ).

Therefore
(i) l |V/( )lk € L2(E,μ) i f / is C\ and so in particular Sx is defined on
and
(ii) EfE \dvif\*μ(dσ) = fE \\Vf(σ)\\*Hμ(dσ) < oo, V/ G P.
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Thus the first part of the theorem holds by lemma 4.1. Moreover for any φ €
C^M R) and s € 5, if ps : E -» M is pa(σ) = σ ( s ) , then

= \\V(φ°ps)(σ}fH

< \d(φvps)(σ)\\lΦ(σ)

since \\dρs\\ = 1, each s G S. Thus the conditions of Theorem 4.2 for the form

are met. But this form is just 8X by (4.12). D

REMARK 4.10. Let now r be a linear map of H into the space of Borel
measurable vector fields on M, e.g., suppose r(h)(σ) — X(σ,h) for X as in the
Corollary. Let / : M — > R be such that 'derivatives' df(r(h)) : M — > R are defined
in some way and give a linear map

dfor :ίf->L°(M,μ;R)

where L° refers to equivalence classes of measurable maps and we give it the topol-
ogy of convergence in measure. Then it is immediate from Itό's regularization
theorem [17] that there exists a 'gradient' vector field V/ G I/°(M, μ; H} satisfying

(Vf(σ),h)H = df(τ(h)(σ)) all ft G if, μ-almost all σ

if and only if df o r is continuous in the Sazonov topology of JY. In particular if
oξfo r maps into L2(M, μ, R) it has to be Hubert-Schmidt for a gradient to exist.

Using this remark we can see that there is in general no gradient operator
associated to the Hubert space AV of adapted vector fields described in §E(b) of
the introduction. Indeed take E to be classical Wiener space C([0, l];Rn) with
μ its Wiener measure. Let / : E — » R be evaluation of the first coodinate at
time 1. Consider the Hubert space G of vector fields on E of the form υ(σ)t =
/Q as(σ)dσs, 0 < t < 1, where as : E -> L(Rn; Rn) is adapted and

= = / /
JE JO

ds μ(dσ).
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Using the Hubert-Schmidt norm on L(Rn; Rn). There G is just the space of square

integral martingales and the martingale representation theorem implies that the map

v —» vι is an isometry pi of G onto L2(E,Fι,μ',Rn) for T^ the σ-algebra generated

by σ —» σ(l). If follows that pi sends the closed subspace G0 of G consisting of those

v. for which as(σ) is skew symmetric onto any infinite dimensional closed subspace

of L2(E,FΊ,μ]Rn). Composing pi with co-ordinate projections we obtain maps

Pi : GO —» L2(E,Jrι,μ]R), k = 1 to n, not all of which can be Hubert-Schmidt.

By symmetry p\ is not Hubert-Schmidt. However dvf = p\(v), and G0 is a closed

subspace of AV.

References

[1] S. Albeverio, S. Leandre and M. Rόckner: Construction of a rotational invariant diffusion
on the free loop space, C.R.A.S. 316 (1993), 287-292.

[2] S. Albeverio, Z.M. Ma and M. Rόckner: Quasi-regular Dίrίchlet forms and Markov pro-
cesses, J. Funct. Anal. Ill (1992), 118-154.

[3] C.J. Atkin: Bounded complete Finsler structures I Studia Math. LXII (1978), 219-228.
[4] V.I. Bogachev: Differential measures and Malliavin calculus, Preprints di Mathematica, 16

(1995), ScuAla Normale Superiore, Pisa.
[5] C. Caratheodory: Untersuchungen ύber die Grundlagen der Thermodynamik, Math. Ann.

67 (1909), 355-386.
[6] B. Driver: A Cameron-Martin type quasi-ίnvariance theorem for Brownian motion on a

compact Riemannian manifold, J. Funct. Anal. 100 (1992), 272-377.
[7] B. Driver: The Lie bracket of adapted vector fields on Wiener spaces, Preprint, 1995.
[8] B. Driver and M. Rόckner: Construction of diffusions on path and loop spaces of compact

Riemannian manifold, C.R.A.S. 315 (1992), 603-608.
[9] H. Eliasson: Geometry of manifolds of map, J. Diff. Geom. 1 (1966), 169-194.

[10] K.D. El worthy: Embedding, ίsotopy and stability of Banach manifolds, Compositio Math-
ematica, 24 (1972), 175-225.

[11] K.D. Elworthy: Differential invariants of measures on Banach spaces, in Vector Spaces
measures and Applications I, eds R.M. Aron & S. Dineen, Lecture Notes in Maths, 644
(1978), 159-187.

[12] K.D. Elworthy: Stochastic differential equations on manifolds, LMS Lecture Note Series
70, Combridge Uni. Press, London, 1982.

[13] K.D. Elworthy and X.M. Li: A class of integration by parts formulae in stochastic analysis,
Ito's stochastic calculus and probability theory, eds N. Ikedα et αl Springer-Verlag, 1996,
15-30.

[14] S. Fang: Stochastic anticipative integrals on a Riemannian Manifold, J. Funct. Anal. 131
(1995), 228-253.

[15] M. Fukushima: Dirίchlet forms and Markov processes, Amsterdam-Oxford-New York,
North Holland, 1980.

[16] M. Fukushima, Y. Oshima and M. Takeda: Dirichlet forms and symmetric Markov pro-
cesses, Walter de Gruyter, Berlin, 1994.

[17] K. Ito: Foundations of stochastic differential equations in infinite dimensional Hilbert spaces,
CBMS-NSF Regional Conference Series in Applied Mathematics, 47, S.I.A.M., 1984.

[18] J.D.S. Jones and R. Leandre: Lp Chen forms in Stochastic Analysis, in Proc. of Durham
Symposium 1990 M. Barlow and N. Bingham eds, LMS Lectures Note Series, 167, Cam-
bridge University Press, London, (1991), 104-162.

[19] J.L. Kelly: General Topology, Von Nostrand, 1955.



VECTOR FIELDS ON MAPPING SPACES 651

[20] N. Krikorian: Differentiable structures on function spaces, Trans Amer. Math. Soc. 17
(1972), 67-82.

[21] Z.M. Ma, L. Overbeck and M. Rόckner: Markov processes associated with semi-Dirichlet
forms, Osaka J. Math. 32 (1995), 97-119.

[22] Z.M. Ma and M. Rόckner: Introduction to the Theory of (non-symmetric) Dίrichlet Forms,
Springer, Berlin, 1992.

[23] Z.M. Ma and M. Rόckner: Markov processes associated with posίtivity preserving coercive
forms, Canadian J. Math. 47 (1995), 817-840.

[24] R.S. Palais: Lusternik-Schnίrelman theory on Banach manifolds, Topology, 5 (1966), 115-
132.

[25] J.P. Penot: Varίetes differentiates d'applications et de chemίns, C.R. Acad. Sci Paris, Ser.
A-B264 (1967), A1066-A1068.

[26] M. Rόckner and M. Schmuland: Quasi-regular Dίrichlet forms, Examples and counterex-
amples, Canadian J. Math. 47 (1995), 165-200.

[27] W. Stannat: The theory of generalized Dirichlet forms and its applications in analysis and
stochastics, Ph.D. Thesis, Bielefeld, 1996.

K.D. Elworthy
Mathematics Institute
University of Warwick
Coventry CV4 7AL, U.K.

Z.-M. Ma
Institute of Applied Mathematics
Academia Sinica
P.O. Box 2734
Beijing 100080, China






