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Adherence of Fine Wires ---Solution by Energy Minimum Principle
and Nano Adhesional Bonding ---1

Yasuo TAKAHASHI*

Abstract
Surface activated adhesional elastic contact solution between cylindrical bodies (wires) is deduced by energy
minimum principle. The energy difference of Ay = 2y, - % makes the contact width greater than Hertz's solution,
where ¥ is the surface energy and ¥; is the interface energy at the contact area. The adhesional contact width 4; is

1
R 2 (4 .)5
I = RRE Y (k i)

given by

where k is expressed by k = (k;+k,)/2. Here, k; and k; are the elastic constants of two cylindrical bodies ( or fine
wires), R, and R, are the radii of two cylinders, R = (R;+R;)/2, and f is the applied force per unit length of
cylinders.

The adhesional elastic contact width a; without load (f= 0) is given by

aj=a-R¥3.(k-ay)"",

where @ is the constant and o = 42/3 for wire-wire contact with a same radius, @ = 4 for wire-plane contact and o
= 45/6 for wire-rigid plane contact. The contact ratio a/R increases as R decreases, because a/R < R -13. It is
suggested that heatless and pressureless nano-order interconnection is possible.

Also, the possibility of nano adhesional bonding of very fine Au wire is discussed, taking into account some

calculated results. Futher, an experimental evidence of Au wire adhesional bonding is shown.

KEY WORDS: (Adherence) (Adhesion) (Surface energy) (Fine wire) (Room temperature) (Adhesional contact)

(Nano bonding) (Elastic contact)

1. Introduction

As the two bodies to be bonded becomes smaller, the
cohesive force ( adherence ) becomes large, because the
effect of surface energy becomes strong. For example, if
the surfaces are activated by Ar ion bombardment under
ultra high vacuum conditions ( < 1.3 x 10-7 Pa), the surface
energy ¥, increases. This implies that nano adhesional
bondng without the bonding pressure is possible. It is inter-
esting to theoretically realize the size of bodies which be-
gins to produce the adhesional bonding.

The contact area (and/or radius) and the adhesive force
between a small sphere body and a flat plane were first for-
mulated by Johnson, Kendal and RobertsD), using the en-
ergy minimum principle (vertical work). Also, Takahashi
and Onzawa?2 3 took into account the effect of stiffness of
the measurement system and the surface/surface interaction
between contacted solid bodies and confirmed the neces-

sity and usefulness of the energy minimum method and the
continuum approximation for systematically understanding
the adhesional contact.

However, because of the difficulties with respect to the
plane strain dislacements, nobody has deduced the adhe-
sional contact formulation between cylindrical bodies, based
on the energy minimum principle(strain energy release). On
the other hand, Barquins 4 5) found another method to de-
duce the theoretical adhesional contact by introducing the
idea of Griffith’s criterion and the stress intensity factor and
applied it for calculating the contact between a rigid cylin-
der and a flat surface®. This method is valid for the case
when there are no effects of stiffness of the measurement
system and an attractive effect of surface. The energy mini-
mum principle is useful for the case when various effects
exist. In other words, the energy minimum vertical work
principle is a genenal solving method for any problem. Also,
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Adherence of Fine Wires

even if one is not familiar with fracture mechanics and the
idea of Griffith’s criterion and the stress intensity factor, he
can calculate the adhesional contact width, using the en-
ergy minimum principle. Barquin’s method is too simple
for one who is not familiar with the fracture mechanics to
understand the physical meaning. On the other hand, the
method based on the energy minimum principle gives the
physical meaning understandable to anybody although it is
very troublesome. The solving process based on the energy
minimum principle will be helpful to find the solution for
the adhesional contact problems together with other effects.

The formula for the adhesional elastic contact between
cylindrical bodies was necessary for the author to study the
micro or nano adhesional bonding between fine gold wire
and flat gold pad (plate or foil) because the formula gives
the theoretical pull strength and contact area (width). There-
fore, the purpose of the present paper is to fine the adhe-
sional elastic contact width for any cylindrical bodies, based
on the strain energy minimum principle. The author expects
that this solving process will be helpful for the solution of
the adhesional contact affecﬁng another external effect.
Also, the possibility of nano adhesional bonding and its prob-
lems will be discussed, taking some calculated and experi-
mental results into consideration.

2. Hertz's Solution

More than one century has passed since Hertz proposed
the contact theory between two elastic bodies & 7) but his
theory is now very helpful to deduce the solution of adhe-
sional contact of cylindrical bodies. At first, Hertz's solu-
tion is summarized here.

The situation when the two cylindrical bodies are con-
tacted parallel to each other is illustrated in Fig. 1, where R,
and R, are the radii of cylinders (wires). If the force F (=
f) is applied to a unit length of the cylinders, then half the
elastic contact width a of Hertz's solution is given

1
_ | 4RR, 2
a—{R1+R2 (k1+k2)f} , 6))

where k; and k, are elastic constants and they are expressed
by

1-v,2 1-v
L and k2 = 2

kl:E .
1 2

respectively. Also, v is a Poisson’s ratio and E is Young's
modulus of the cylinders and the subscripts 1 and 2 denote
the distinction of two cylinders.

The compressive stress distribution ¢, on the contact inter-

face in the x direction is given by

s -5)

2

X
= l-—, 2
Po 2 2
where p, is expressed by
_2f
Dy = Ta

3. Compression amount of cylinders
The compression amount ( approach distance )  of two
elastic cylinders is necessary to calculate the adhesional
contact width a; based on the energy minimum principle.
In two wires contacted as shown in Fig. 1, the stress
components, o, and o, along the z axis are, respectively,
expressed by

o » a2+222 2z

=Py s T T 3
¥ ° a2 +a® @ ®
and

a

T2 2o 4
2ra?’ (4)

O, ="Po"

where the tensile stress takes a plus sign.

¥

Fig.1  Schematic illustration of two cylindrical bodies

in contact (cross section).



Because of plane strain condition, i.e., the strain in the y
direction ( the longitudinal direction of cylinders ) can be
neglected (ey =0), oy
pal strain in the z direction is, therefore, obtained as

= v(0, + 0,) holds good. The princi-

£, = }{:—{oz —v(cx +0'y)}

=k (oz —%ox)

where k is expressed by

&)

nE

As the whole displacement w in the z direction of cyl-
inder 1 is solved from

wy =f§R‘ €, dz,
after eqs. (3) and (4) is substituted into eq. (5), w; is ob-

tained by

a

\/4R12 +£12 + 2R1

(m%f}]

wy = 2k1f In

1
+2k1f[ {4a

-2 lf[ {é (J4R12+a2 +2R1)—2+i§l—H .
a

(6)

Fig. 2 Schematic illustration of elastic contact zone of
cylindrical bodies (wires) and definition of parameters

21, %, and p.
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Because R, is usually much greater than the contact
width 2a, eg. (6) can be approximated to

R1

4

In the same manner, the displacement w, for cylinder 2 is
obtained by
4Ry

4
Wy =2k fln="2 ®

The integration of eq. (5) makes the displacements w; and
wy less than zero but the egs. (7) and (8) are made greater
than zero by taking a plus sign for the compression.,

In Fig. 2, z; and z, are given by

p

D=

7~ 2R

2R, and

respectively 7), The total approach distance & is, therefore,
obtained by

8 = (w+wy)+(z +22)

w+w+i—1—+l
17w R R ) &)

where p can be defined as

p=a/2,
because § and d8/df should be always greater than zero
as stated below (this definition of p can be understood in
Appendix). If <0, the wires are extended in the z direc-
tion by the compressive force £ Thus, the total approach
distance & is expressed by

5=2kf(ﬁmi&+k_zlni&_+1), (10)
k a a
where £ is redefined as
ky +k
k==L 2 :
> (11)
After substituting a of eq. (1) intoain eq. (10),
§=2kf(g+1) (12)
is obtained, where g is given by
=k fiad Uy Y AR Ry +ﬁ-ln AR Ry 13)
T2k kf Ry ) 2k \kf R )
where R is expressed by
R +R
R=1""2 (14)
2
The differential of eq. (10) with respect to the force f is
d5
=2k
df g, (15)
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because g' = dg/df = -1/f. Equations (10), (13) and (15) are
necessary for solving the adhesional contact width 2a; for
cylindrical bodies.

4. Energy balance in adhesional contact ( energy
minimum principle )

The difference between the surface energy and the con-
tacted interface energy Ay (=¥, + %2 - % ) has an influence
on the contact behavior of two solid bodies as the applied
compressive force f decreases V. Here, ¥, and 7, are the
surface energies of cylinders (wires) 1 and 2, respectively,
and also¥; is the interface energy of the contact zone. If Ay
= 0, the contact width a is given by eq.(1), and also the
stress distribution oy, is obtained by eq. (2).

On the other hand, when Ay > 0, the adhesional contact
width a; is greater than Hertz’s solution ;. In other words,
there is a situation where a; (f=f;) is equal to a, (f=f,),
under the condition of f; less than f;. Here, fj is the ap-
plied compressive force to obtained the elastic contact a
without Ay.

Boussinesq's stress distribution 6, needs to be intro-
duced in order to consider the force reduction | f; - f;|.
Boussinesq's stress distribution along the x axis for the ap-
plied force F is expressed by

_ F __Ji~h
n'-\/gz—-xz 7r~w/a2-x2'

Muskhelishvili's stress distribution can take the place of

Om (16)

Boussinesq's stress distribution because they are essentially
equal to each other.

Fig. 3 illustrates Boussinesq's stress distribution for F
= f; - Jn » together with the stress distributions ¢}, and oj,
where a negative value is taken for the compressive stress,

Boussinesq's (or Muskhelishvili's) stress
distribution : o}, under f = fj fp

5 lCompressive

Elastic contact for Ay=0

Hertz's stress distribution oh
under f= fh

Adhesional elastic contact
for Ay> 0, Stress
distribution gj = Op+Op
under f = fj

Fig.3 Schematic illustration of stress distribution in the
contact area.
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ie., f;<0andf, <0, and (f;-f,) > O are assumed in Fig. 3.
From Boussinesq's relation 2), the stress distribution o; for
the adhesional contact can be obtained by 0; = 0, + 0, . -

The force reduction of | f;, - f;| does not break the con-
tact area because of 47, i.e., a;=ay, is kept even under f =
£ CIff <Ifsl ) and the stress distribution o; remains as a
residual stress. Thus, there exists an energy balance between
the elastic stress field and Ay. This means that an energy
minimum situation is established.

The stored energy due to the elastic contact is equal to
the integration of f by &, taking a plus sign for the com-
pression.

Fig. 4 illustrates the relation between & and . The curve
OA is for Hertz contact, obtained by eq. (12). The contact
width a, is attained at the point A (f=f;,, § = 8, ). Because
of Boussinesq's relation 2, the force reduction occurs along
the tangential line of the curve OA at the point A, keeping a
=ay. The straight line AB is expressed by

#-5)={33] -

=2kgy (f-fn)» an
where [d0/df 1f,, is the slop of the tangential line AB at f
= fy and also &, and §; are, respectively, defined as & (f;)
and 6 (f;) from eq. (12) and g, is given by g, = g(f}) from
eq. (13).

\ OA: Hertz contact

AB: Boussinesq's relation
( reduction keeping a = ay)

- fh 3

@

<

L

g

a Hertz's relation ;

g X

3 Tangential line on A
O ;

Compression &
(approach distance of two wires)

Fig.4 Relation between force and approach distance. The
curve QA is given by Hertz’s relation and the tangential
line is Boussinesq’s relation.



The elastic energy ABCD is released due to the force re-
duction. As aresult, the elastic energy OABC (gray area)
remains. Itis geometrically understood that the stored elas-
tic energy OABC is expressed by

Eoosiic = Ey — E; — B3, (18)
where E; is the Rectangle of ODAY, , E, is the area ABCD

and Ej is the area OAf},. E,|, E,, and E; are, respectively,

given by
El =fh : 5h 5 (19)
1
Ez=‘2‘(5h—5j)(fj + 1) (20)
and
Es = [ 8(f)df - @1

The adhesional contact due to the surface energy loss Ay

is established at the point B. Thus, the total energy remain-
ing at the point B is given by
Ejotal = Eelastic — Ea» (22)

where E, is expressed by E, = 2a;,- Ay as a value per unit
length of cylinders. We can calculate a = a), under the
condition of f=f; ( at the point B of 6= §;) by the principle
of energy minimum,i.e., this means to calculate a;, (or f;, for
the solution a;, ) by making F,,,,; minimum under the con-
dition of 6 = 3j (or f=f;), that is, the solution is obtained
when

aEtatal = aEtotal’ . _fb_ = 0
a ap §=6 8 fh ah (23)

is satisfied, i.e., 0 E,,,;; /9 f =0.

5. Effective contacting force

The effective contacting force f, ( = f, ) can be calcu-
~ lated as a function of f; from
0E,,..;! of, = 0. From eq. (A-7) in Appendix,

- 1
2 RR, k> )2
(511 —51‘) =2%. g2 ‘A'}{%fh] (24)

is obtained. Because of g; > 0 (see Appendix),

1 =
> (RiRy k%, )4
5}1 _6j - 23/2 -&h .A»y2 (%fh) (25)

is established. After substituting eq. (25) into eq. (A-1) in
Appendix to eliminate g,
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RR, 1
R1+R2 k1+k2

- 1
szfh_2'{ fh}4'A72 (26)
is obtained. Eq. (26) shows that f; is expressed as a function
only of f,. In eq. (26), if f; and f}, are replaced by fand f, ,
respectively, f, is the effective force to give the adhesional
contact width a; under the applied force f.

Fig. 5§ shows the relation between f, and f, taking a
possitive sign for compression force. The material con-
stants used in the present study are shown in Table 1.

It is easy to understand that df, /df (or df /df, ) 2 O,
if taking a plus sign for the compression, i.e., f, should not

Table 1 Material constants of pure gold.

Name Symbol Value (Unit)
Surface energy Ys 1.485 (J in'z)
Interface energy Y 036 m'2)
Energy difference Ay=2y~Y; 261 @ m‘2)

Shear modulus at 300K G(300) 2.91 x 1010 (Nm'2)

Poisson's ratio v 0.42
Young's modulus E=2(14v)G 8.27 x 1010 (Nm2)
Elastic constant k 3.17x 10712 (mzN‘l)

Yield stress at 300K oy 9.93 x 107 (Nm2)

for annealed gold
2500
—_ [ Wire-rigid plane
§ R1=50pm,R2=co,k2=0
2000 F Wire-plane <
oS [ Ry =50 pm, Ry = .
i k=ky = e
@ 1500 | T
-~ s . \ i
> "".R RWH': wsl(r)e
© 1000 [
© k=ki=k
b= 1=%2
S
o
[ L
>
5 500
2 i
=
w
;""- [EPEPEEN EPE AN RN EPUTEr BT |

g L= s

-600 -400 200 0 200 400 600 800 1000
Appliedforce f;  (N/m)

Fig.5 Relation between effective force and applied force.

The effective force f, is obtained as f}, in eq. (26) for
each applied force f( = -
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decreases as fincreases as seen in Fig. 5. Therefore,

4
r2(3)
c7\2

27
has to be established, where K is expressed by
1
7 -
K= KRy 1 (4 y2 . (28)
R] + R2 kl + k2

The effective force f, (=f;) and the applied force f; show
the one-to-one correspondence under the condition of eq.
(27). Therefore, when the applied force f=f; is given, the
effective contacting force f, is obtained from eq. (26). When
£, = (K/2)43, the minimum applied force

4
Jmin = —3("1‘(‘)3

3 (29)

is obtained, which gives the minimum adhesional contact
width 2a;

‘imin
The minimum applied force for spheres is independent

as mentioned below.

of the elastic modulus[9],0n the other hand, the minimum
applied force f,,;, of cylinders depends on it.

6. Adhesional contact width
As stated above, the effective force f, is easily calcu-
lated for each applied force f=f; in eq. (26). After f, is
substituted into fin eq. (1), half the contact width a( f, ) is
obtained. This corresponds to the adhesional contact width
a; under the appllied force f=f; . The adhesion does not
occur under the condition of f < f;, , i.€., fmin is the force
for separating two cylinders.
The minimum adhesional contact width g; ry, for f=

JSomin 18 given by

2
& min =[R2 P gear)? G0

From the above, the effective force f, for g; is obtained
by

) 1

4R R 4 5
f=fe—(#-fe) 4y2 6D
and the adhesional contact width is given by
4R R
aj =2kt (32)

where R = (R|+R)/2 and k = (ky+kp)/2. After eq. (32) is
substituted into eq. (31), the relationship of a; and f'is ob-

28

tained as
1
Ay 2
-(gaf

If R, =0 and k; = 01in (33), the adhesional contact between
the rigid cylinder and the elastic plane is obtained. This so-

2
f _ Raj

= ) 33
4R Ry k (33)

lution is perfectly equal to that of Barquins 5.

Fig. 6 shows the adhesional contact width a; depending
on the compressive force f, which is calculated by eq. (33).
The radius R (or R) of Au wire is 50 pm. The applied mean

Applied mean pressure P (MPa)

- 2 6 4 -2 0 2 4 6 8 10
g [ T L T 1 1 I T T
= | Wire : Au with a radius of 50 um
& L Wire-plane
1.5}
5 L
-§ Wire-rigid plane
5 [ )
g 1t
c L
<]
o L
o L Wire-wire
5 L
% 05
@ L
L
gl
@
;U 1 1 1 1 1 L 1

1
-600 -400 200 0 200 400 600 800 1000
Compressive force f (N/m)

Fig.6  Half the adhesional contact width g; between cylindri-
cal bodies. The adhesional contact width for wire/wire
contact is different from that of wire-rigid plane contact.

1.2
R= 50 um
T+ Wire-plane
0.8}
06}

™~

Half elastic contact width a, (pm)

0.4 Wire-rigid plane
or
0.2 Wire-wire
O 1 1 L 1
0 200 400 600 800 1000
Compressive force f (N/mm)

Fig.7 Elastic contact of cylindrical bodies (Hertz's solution),
calculated by eq. (1).
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Fig. 8 Dependence of adhesional elastic contact width a; for
Jf=0N/m on wire radius R. The ratio of ayR increases
as R decreases.

pressure P shown in the upper side of the figure is given by
P = f/ 2R. The adhesional contact widths of three cases
(wire-wire; R = Ry = R, and k = k, = k,, wire-plane; R =R,
R, = o0 and k = k) = k,, and wire-rigid-plane; R, =R, Ry =
and k, = 0) are exhibited. The contact width of wire-wire is
the smallest among the three cases, while wire-plane gives
the largest contact area. The solutions for three cases are
shown in Appendix, which makes it easy to understand the
adhesional contact behavior.

The solution exists even for f < 0, which is different
from Hertz's solution of Fig. 7 calculated by eq. (1). Also,
the adhesional contact width of wire-wire is different from
that of wire-rigid plane. On the other hand, Hertz's solution
gives the same contact width for wire-wire and wire-rigid
plane.

Trans. JWRIL, Vol. 30,(2001), No. 2

8. Possibility of nano adhesional bonding

Fig. 8 shows the radius-dependence of a;/R and a; (wire-
plane contact) under the condition of f= 0 (see Appendix).
As seen in Fig. 8, as the radius R decreases, i.e., wire be-
comes fine, the adhesional contact ratio a; /R increases.
Because the assumption of a; << R at eq. (10) cannot be
established when R < 0.01, the calculated results are not
exact in the region R < 0.01, but this suggests that the wire,
the radius of which is in nano order, gives a very large ad-
hesional contact ratio even without the applied force. the
adhesional bonding of very fine bodies is easily produced if
the surfaces are activated 8. Very often the rcom tempera-
ture sintering of very fine particles occurs naturally. This is
an example of nano adhesional bonding.

Fig. 9 shows an experimntal result of adhesional con-
tact between Au fine wire and Au pad (foil with thickness
of 130 um). The contact was carried out under the vaccum
condition of 1.0x10-8 Pa after the surfaces were activated
by Ar ion bombardment (Accelerating voltage 2 k'V, Emis-
sion current 1mA, Irradiation time 2 hr) . The contact con-
dition was the apparent applied pressure P =5 MPa (f =
500 N/m ) ,the temperature T =298 K, the time for applying
the force ¢ = 60 s. The theory of adhesional contact (Fig. 6)
predicts a; = 1.42 um but the experimental contact width a
is from 1.8 pm to 2 um. Also, a = 1.0~1.4 um was
experimently obtained under P = 2 MPa and this is nearly
equal to the theoretical value. However, P =20 MPa gave a
= 3.4~5.4 um. This value is obviously different from the
theoretical value as shown in Table 2. Another mechanism

'lmml

R =50 pym, P = 5MPa (500 N/m), a ~ 1.8~2 pm, Fp =~ 28 mN

Fig.9  Photograph of Au wire contacted with Au thin plate.

Table 2 Comparison between experimental half-contact width a and theoretical value g;.
Condition P=2MPa P=5MPa f’=20 MPa
Theoretical aj = 1.24 ym a; = 142 pm 9 = 1.96 pm
Experimental a=10~1.4pm a=1.8~2um a=34~54um
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affects the adhesional contact under high pressure and this
mechanism may be plastic deformation. The analysis of
elastic-plastic contact is necessary.

The theoretical adherence force (adhesional fracture
strength) is predicted by eq. (29) and the value for Au wire
of R =50 um -Au plate is 449 N/m (see Fig. 6). However,
the experimental pull strength is F,, = 28 mN which is cor-
respondent to 28 N/m. The experimental value of pull
strength is much less than the theoretical one. This is due to
the surface roughed by Ar ion bombardment. There may
remain many problems from the view of actual bonding.

9. Conclusive remarks

The adhesional contact of fine cylindrical bodies has
been discussed. The adhesional elastic contact width for fine
cylindrical bodies has theoretically been deduced based on
the energy minimum principle. As wire radius R decreases
to nano scale, the adhesional elastic contact can become
very large. This implies that the adhesional bonding may be
very useful for the interconnection technology to construct
nano scale systems and integrations. Also, experimental
results suggests that the contact width is greater than the
theoretical value as the applied force f increases and the
pull strength is very different from the theoretical adhesional
fracture strength. More detailed investigation is necessary.

[Appendix]

From eq. (12), (d8/df)atf=f, (=8, )= 2kg,,
because of (dg/df) at f=f, (=g, )= -fi-'1. Also, because
the point B ( §, £;) in Fig. 4 is given by eq. (17),

_3;-5
Zkgh

fi +fn ‘ (A-D

is obtained. Therefore, eq. (20) is changed into

1 6;-6
E2 =—E(5h -6])( J h +2fh) A (A_2)

2kgh
AE
Ty =8y, +2kfy 8, (A-3)
and
,Q&z__&L_@ -8, ~2kenf. (a4
A akg? ) T (A

w08y, 13f, =8, =2kg,-
Also, JE; / df, = 6, is clearly established as indicated
ineq. (21). From eq. (1), E4 is rewritten by

4R Rk
E4=2a,4y =24y %- 5. (A-5)
OE,ff, is given by
JE, AR Rk 1
=4y = A-6
dfy R fi> (4-6)
R +R ki +k
where R=———2 and k = - 2 2 Therefore, a differ-

ential equation of
1
aEtotal —__8n (ah _5_)2 -—A}'( 4RIRZkJ2
Ofy  4kep ! RS,
=0 (A7)
is obtained, where g; =(dgy /9 f;)=—£,"'. Eq. (24)in

the text is obtained from Eq.(A-7).
In addition, because R, and R, is always greater than gy,

2
[ﬂ) 4RR

a, ) Rokf,

and

2
[4R2] _ARR
ay Rikfy

is established. Therefore, from eq. (13), the function, g, =
g(fy), is always greater than zero. That is, § and 96/ df;,
are both always greater than zero from egs. (12) and (15).

It is, therefore, sufficient to adopt p =g /4/2 foreq. (9) in

order to obtain eq. (A-7).

Finally, the solutions of three cases of adhesional con-
tact (wire-wire, wire-rigid plane, and wire-plane) are shown
below for easily understanding the adhesional bonding.

(i) Wire-wire (k=k; =k, R=R; =R;)

1
f=£ —{4—’%}4 Ay (A-8)

a; = JAREF, (A-9)

(ii) Wire-plane (k=k; =k;, R=R|, Ry =0)

1

7= -{2Rels Ay (A-10)



(A-11)

aj =1/8ka;3

(iii) Wire-rigid plane ( k = k;, k, =<0, R =Ry, Ry = )

1

I L (a-12)
a; = \4Rkf, (A-13)

Also, half the adhesional elastic contact width for f=0
is given by

@}, for f=0 =a-R2/3 '(k-A'}’)ll3,

(A-14)
where ais the constant. The value of « is 42/3 for the wire-

- wire contact, a= 4 for the wire-plane contact, and o = 456
for the wire-rigid plane contact.
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