

Title	Yang-Mills connections and moduli space
Author(s)	Koiso, Norihito
Citation	Osaka Journal of Mathematics. 1987, 24(1), p. 147-171
Version Type	VoR
URL	https://doi.org/10.18910/3978
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

YANG-MILLS CONNECTIONS AND MODULI SPACE

Norihito KOISO

(Received September 20, 1985)

0. Introduction

There are many researches on deformations of Yang-Mills connections over 4-dimensional manifolds. In this paper, we generalize the results into higher dimensional cases. In 4-dimensional case, the Hodge *-operator acts on $\Lambda^2 M$ and the notion of (anti-)self dual connection is introduced, which brings beautiful results in Atiyah, Singer and Hitchin [1]. Therefore, in higher dimensional cases, we have to assume some properties on the base riemannian manifold. In [1], it is already pointed out that if M is a (2-dimensional) complex manifold, an anti-self dual connection defines a holomorphic structure of the bundle. Itoh [6] considers in full this situation, which we will generalize by the notion of "Einstein holomorphic connection" over a Kähler manifold. However, the moduli space of Yang-Mills connections over a higher dimensional Kähler manifold may have many singularities, and probably we can not expect that the moduli space becomes a manifold.

The fundamental notions in this paper come from [1], and fundamental idea comes from Koiso [9]. It is remarkable that the results for the moduli space of Einstein metrics and that of Yang-Mills connections are quite analogous. In fact we will get the following results.

Theorem 2.7 (c.f. [9, Theorem 3.1]). The local pre-moduli space is a finite dimensional real analytic set.

Corollary 6.5 (c.f. [9, Theorem 10.5]). If the initial structure (Einstein metric or Yang-Mills connection) is compatible with a complex structure, then also around structures are compatible with some complex structures.

Theorem 9.3 (c.f. [9, Theorem 12.3]). Under some assumption, the local pre-moduli space has a canonical Kähler structure.

However, there is an important difference. For Einstein metrics, we have no effective obstruction spaces for deformation ([9, Proposition 5.4]), but for Yang-Mills connections we have one (Theorem 6.9).

1. Yang-Mills connections

Let (M,g) be a compact riemannian manifold, G a compact Lie group, P a principal G-bundle over M. Denote by $\mathfrak g$ the Lie algebra of G and by G_P (resp. $\mathfrak g_P$) the associated fiber bundle $P\times_{\operatorname{Ad}_G}G$ (resp. $P\times_{\operatorname{Ad}_G}\mathfrak g$). The space C of all connections of P is an affine space whose standard vector space is $C^\infty(\Lambda^1\otimes \mathfrak g_P)$, where Λ^P denotes the vector bundle of P-forms on M (see [1, p430]). We fix an effective representation $G\to GL(V)$ and identify a connection of P with a covariant derivation on $P\times_G V$ or $P\times_G \operatorname{End}(V)$. In this sence, for a connection ∇ of P and an element A of $C^\infty(\Lambda^1\otimes \mathfrak g_P)$ the curvature tensor is transformed as

$$(1.0.1) R^{\nabla+A} = R^{\nabla} + d^{\nabla}A + [A \wedge A],$$

where d^{∇} and $[\cdot \wedge \cdot]$ are defined by

$$(1.0.2) (d^{\triangledown}A)(X, Y) = (\nabla_{X}A)(Y) - (\nabla_{Y}A)(X)$$

and

$$[A \wedge B](X, Y) = \frac{1}{2}([A(X), B(Y)] - [A(Y), B(X)]).$$

We fix a G-invariant inner product on \mathfrak{g} . Then the vector bundle \mathfrak{g}_P admits a canonical fiber inner product (\cdot, \cdot) and the vector space $C^{\infty}(\mathfrak{g}_P)$ admits a (global) inner product $\langle \cdot, \cdot \rangle$. We denote by $||\cdot||$ the L_2 -norm defined by $\langle \cdot, \cdot \rangle$. Define an action integral F_{YM} for connections by

(1.0.4)
$$F_{YM}(\nabla) = \frac{1}{2} ||R^{\nabla}||^2.$$

DEFINITION 1.1. The function F_{YM} on C is called the Yang-Mills functional, its Euler-Lagrange equation is called the Yang-Mills equation and its solution is called a Yang-Mills connection.

Let us represent the Yang-Mills equation by a tensor equation. Let ∇_t be a 1-parameter family of connections on P and set $\nabla = \nabla_0$ and $A = (d/dt)_0 \nabla_t$. Then

$$\begin{aligned} \frac{d}{dt} \Big|_{0} F_{YM} \left(\nabla_{t} \right) &= \left\langle \frac{d}{dt} \right|_{0} R^{\nabla_{t}}, R^{\nabla} \right\rangle \\ &= \left\langle d^{\nabla} A, R^{\nabla} \right\rangle &= \left\langle A, (d^{\nabla})^{*} R^{\nabla} \right\rangle \\ &= 2 \left\langle A, \delta^{\nabla} R^{\nabla} \right\rangle, \end{aligned}$$

where $(\cdot)^*$ denotes the formal adjoint and the operator δ^{∇} from $C^{\infty}(\Lambda^p \otimes \mathfrak{g}_p)$ to $C^{\infty}(\Lambda^{p-1} \otimes \mathfrak{g}_p)$ is defined by

$$(5^{\nabla s})_{i_1\cdots i_{p-1}} = -\nabla^l s_{li_1\cdots i_{p-1}}.$$

Thus Yang-Mills equation becomes

$$(1.1.2) E_{YM}(\nabla) \equiv \delta^{\nabla} R^{\nabla} = 0.$$

Next, we consider infinitesimal deformations of a Yang-Mills connection. From now on, we enlarge the space of C^{∞} -sections to the space of H^s -sections, and denote by $H^s(E)$ the space of all H^s -sections of a fiber bundle E over M, where s is assumed to be sufficiently large. H^s -norm will be denoted by $\|\cdot\|_s$. The completion of the space \mathcal{C} etc. with respect to H^s -topology will be denoted by \mathcal{C}^s etc.

Definition 1.2. Let ∇ be a Yang-Mills connection. A solution of the equation

$$(1.2.1) (E_{YM})'_{\nabla}(A) = 0$$

is called a Yang-Mills infinitesimal deformation, where \prime denotes the Fréchet derivative. The space of all Yang-Mills H^s -infinitesimal deformations is denoted by YMID $^s(\nabla)$.

Lemma 1.3.
$$(E_{YM})'_{\nabla}(A) = \delta^{\nabla} d^{\nabla} A + \operatorname{tr}[R^{\nabla}, A],$$

where $\operatorname{tr}[R^{\triangledown}, A]_i = g^{kl}[R_{ki}^{\triangledown}, A_l].$

Proof.
$$\frac{d}{dt}\Big|_{0} (\delta^{\nabla_{t}}R^{\nabla_{t}})_{i} = -\frac{d}{dt}\Big|_{0} \nabla_{t}^{l}R_{li}^{\nabla_{t}}$$

$$= -[A^{l}, R_{li}^{\nabla_{t}}] - \nabla^{l} \left(\frac{d}{dt}\Big|_{0} R_{li}^{\nabla_{t}}\right),$$

where
$$A = \frac{d}{dt}\Big|_{0} \nabla_{t}$$
. Q.E.D.

The automorphism group $\mathcal{Q}=C^{\infty}(G_P)$ of the bundle P is called the gauge group of P, and it acts on \mathcal{C} by pull-back as

(1.3.1)
$$\gamma^* \nabla = \nabla + \gamma^{-1} \nabla \gamma \quad (\gamma \in \mathcal{G}, \nabla \in \mathcal{C}).$$

If ∇ is a Yang-Mills connection, then $\gamma^*\nabla$ is so. In particular, if γ_t is a 1-parameter family of gauge transformations such that $\gamma_0 = \mathrm{id}_P$, then $(d/dt)_0 \gamma_t^* \nabla = \nabla((d/dt)_0 \gamma_t)$ becomes a Yang-Mills infinitesimal deformation of ∇ .

DEFINITION 1.4. Let ∇ be a Yang-Mills connection. A Yang-Mills infinitesimal deformation is said to be *trivial* if it coincides with ∇v for some $v \in H^{s+1}(\mathfrak{g}_P)$. A Yang-Mills infinitesimal deformation is said to be *essential* if it is orthogonal to all trivial Yang-Mills infinitesimal deformations. The space of all essential Yang-Mills infinitesimal deformations is *denoted by* YMEID(∇).

By definition, a Yang-Mills infinitesimal deformation $A \in H^s(\Lambda^1 \otimes \mathfrak{g}_P)$ is essential if and only if $\langle \nabla v, A \rangle = 0$ for any $v \in H^{s+1}(\mathfrak{g}_P)$, which is equivalent to that $\delta^{\nabla} A = 0$. Thus the defining equation of the space YMEID(∇) becomes

$$\delta^{\nabla} d^{\nabla} A + \operatorname{tr}[R^{\nabla}, A] = 0$$

and

$$\delta^{\triangledown} A = 0.$$

This system is elliptic, and so the space YMEID(∇) is finite dimensional and each element is C^{∞} .

The following lemma will be used later.

Lemma 1.5. For any connection ∇ , equality

$$\delta^{\nabla} E_{YM}(\nabla) = 0$$

and decomposition

$$(1.5.2) H^{s}(\Lambda^{1} \otimes \mathfrak{g}_{P}) = \operatorname{Im}(\nabla | H^{s+1}) \oplus \operatorname{Ker} \delta^{\nabla}$$

hold. If ∇ is a Yang-Mills connection, then the sequence

$$(1.5.3) C^{\infty}(\mathfrak{g}_{P}) \xrightarrow{\nabla} C^{\infty}(\Lambda^{1} \otimes \mathfrak{g}_{P}) \xrightarrow{(E_{YM})_{\nabla}^{\prime}} C^{\infty}(\Lambda^{1} \otimes \mathfrak{g}_{P}) \xrightarrow{\delta^{\nabla}} C^{\infty}(\mathfrak{g}_{P})$$

is an elliptic complex. In particular, the following decompositions as Hilbert space hold.

$$(1.5.4) Hs(\Lambda^1 \otimes \mathfrak{g}_P) = \operatorname{Im}(E_{YM}' | H^{s+2}) \oplus YMEID \oplus \operatorname{Im}(\nabla | H^{s+1}),$$

(1.5.5)
$$\operatorname{Ker}(E_{YM}'|H^{s}) = YMEID \oplus \operatorname{Im}(\nabla |H^{s+1}),$$

(1.5.6)
$$\operatorname{Ker}(\delta^{\nabla}|H^{s}) = YMEID \oplus \operatorname{Im}(E_{YM}'|H^{s+2}).$$

Proof. Equality (1.5.1) is easy to check directly, but here we show it using an idea from variation. Since the function F_{YM} on C is invariant under the action of the group \mathcal{G} , we see that

$$(F_{YM})_{\nabla}'(\nabla v) = 0 \quad \text{for any} \quad v \in C^{\infty}(\mathfrak{g}_P) ,$$
 i.e.,
$$\langle E_{YM}(\nabla), \nabla v \rangle = 0 ,$$

which implies (1.5.1). Decomposition (1.5.2) follows from Lemma 13.1. Let ∇ be a Yang-Mills connection. Then the space Im ∇ is the space of trivial infinitesimal deformations, hence $(E_{YM})'_{\nabla} \circ \nabla = 0$. From equality (1.5.1) we derive the equality

$$(\delta^{\triangledown})' \cdot E_{YM}(\nabla) + \delta^{\triangledown}(E_{YM})'_{\triangledown} = 0$$
.

Thus sequence (1.5.3) is a complex, and its ellipticity is easy to check. Therefore we have decomposition

(1.5.7)
$$H^{s}(\Lambda^{1} \otimes \mathfrak{g}_{P}) = \operatorname{Im}(\nabla | H^{s+1}) \oplus \operatorname{Im}((E_{YM})_{\nabla}^{*} | H^{s+2})$$
$$\oplus \operatorname{Ker} \nabla^{*} \cap \operatorname{Ker}(E_{YM})_{\nabla}^{*}.$$

Here we have $\nabla^* = \delta^{\nabla}$ and so we get (1.5.4) if we show that $(E_{YM})'_{\nabla}$ is self-adjoint. But we see

$$\langle (E_{YM})'_{\nabla}(A), B \rangle = (\text{Hess } F_{YM}) (A, B),$$

regarding F_{YM} as a function on C^s , hence $(E_{YM})'_{\nabla}$ is symmetric with respect to $\langle \cdot, \cdot \rangle$. Since the space $\operatorname{Im}(\nabla | H^{s+1})$ is closed in $H^s(\Lambda^1 \otimes \mathfrak{g}_P)$, decomposition (1.5.5) is reduced to the definition of the space $YMEID(\nabla)$. If we remark that the space $\operatorname{Ker}(\delta^{\nabla} | H^s)$ is the orthogonal complement of the space $\operatorname{Im}(\nabla | H^{s+1})$, then (1.5.6) follows from (1.5.4). Q.E.D.

2. Moduli space of Yang-Mills connections

To define "local pre-moduli space", we need some preparation. We use some basic facts on C^{ω} -maps in Hilbert space category. (See Lemmas 13.2, 13.3.)

Remark that the space $\mathcal{L}^s = H^s(G_P)$ is a C^{ω} -(infinite dimensional) Lie group. In fact, if we take a complexification G^c of G and set $G_F^c = P \times_{\operatorname{Ad}_G} G^c$, then to multiply and to get inverse element are extended to maps: $H^s(G_F^c) \times H^s(G_F^c) \to H^s(G_F^c) \to H^s(G_F^c) \to H^s(G_F^c)$ so that the restriction on each fiber is holomorphic. Therefore, by Lemma 13.3, they are C^{ω} .

Let ∇ be a connection and \mathcal{G}_{∇}^{s} the group of isotropy, i.e., $\mathcal{G}_{\nabla}^{s} = \{ \gamma \in \mathcal{G}^{s} ; \nabla \gamma = 0 \}$ (see (1.3.1)). Since ∇ is an elliptic operator, we see that $\mathcal{G}_{\nabla}^{s} = \mathcal{G}_{\nabla}^{\infty}$ and so we simply denote it by \mathcal{G}_{∇} . The exponential map $\exp: \mathfrak{g} \to G$ defines a C^{ω} -map $\exp^{s}: H^{s}(\mathfrak{g}_{P}) \to \mathcal{G}^{s}$ (by Lemma 13.3) and we can easily check that the quotient space $\mathcal{G}_{\nabla} \setminus \mathcal{G}^{s}$ admits a C^{ω} -structure and that there exists a local cross section $\chi^{s}: \mathcal{G}_{\nabla} \setminus \mathcal{G}^{s} \to \mathcal{G}^{s}$ so that the domain U^{s} is uniform on s, i.e., equations $U^{s+1} = (\mathcal{G}_{\nabla} \setminus \mathcal{G}^{s+1}) \cap U^{s}$ and $\chi^{s+1} = \chi^{s} \mid U^{s+1}$ hold for any s. Define a C^{ω} -map

$$\mathcal{A}^{s} \colon U^{s+1} \times (\nabla + \operatorname{Ker}(\delta^{\nabla} | H^{s})) \to \mathcal{C}^{s}$$
$$\mathcal{A}^{s}(u, \nabla_{1}) = \chi^{s+1}(u)^{*} \nabla_{1}.$$

Its derivative at ([id], ∇) is given by

by

$$(v, A) \rightarrow \nabla(\chi'_{[id]}(v)) + A$$
,

and is bijective by decomposition (1.5.2). Therefore there exists a local inverse map $(\mathcal{A}^s)^{-1} = q^s \times p^s$: $\mathcal{C}^s \to U^{s+1} \times (\nabla + \text{Ker}(\delta^{\nabla} | H^s))$. By an analogous way with Ebin's Slice theorem in [4, Theorem 7.1], we get the following

Proposition 2.1. Let $\nabla \in C^{\infty}$. There exist a neighbourhood U^{s+1} of [id] in $\mathcal{Q}_{\nabla} \setminus \mathcal{Q}^{s+1}$, a neighbourhood V^s of ∇ in $\nabla + \operatorname{Ker}(\delta^{\nabla} | H^s)$ and a neighbourhood W^s of ∇ in C^s so that

$$\mathcal{A}^s \colon U^{s+1} \times V^s \to W^s$$

is a C^{ω} -diffeomorphism. Moreover if $\gamma \in \mathcal{Q}_{\nabla}$ then $\gamma^*(V^s) = V^s$, and $\gamma^*(V^s) \cap V^s \neq \phi$ if and only if $\gamma \in \mathcal{Q}_{\nabla}$.

Proof. Only the last statement is not shown. Since \mathcal{G}_{∇} is a compact group and preserves $\operatorname{Ker} \gamma^{\nabla}$, taking $\bigcap_{\gamma \in \mathcal{G}_{\nabla}} \gamma^*(V^s)$ if necessary, we may assume that $\gamma^*(V^s) = V^s$ if $\gamma \in \mathcal{G}_{\nabla}$. We now show that if $\gamma^*(V^s) \cap V^s \neq \phi$ then $\gamma \in \mathcal{G}_{\nabla}$. If $[\gamma]$ belongs to U^{s+1} , then bijectivity of \mathcal{A}^s implies that $\gamma \in \mathcal{G}_{\nabla}$. Hence we assume that for any V^s there is $\gamma \in \mathcal{G}^{s+1}$ such that $\gamma^*(V^s) \cap V^s \neq \phi$ but $[\gamma] \notin U^{s+1}$. This means that there are a sequence $\{\gamma_i\}$ in \mathcal{G}^{s+1} and sequences $\{\nabla_{1i}\}$ and $\{\nabla_{2i}\}$ in $(\nabla + \operatorname{Ker}(\delta^{\nabla}|H^s))$ which converge to ∇ such that $\gamma^*_i \nabla_{1i} = \nabla_{2i}$ and $[\gamma_i] \notin U^{s+1}$. Then by the following lemma, a subsequence of $\{\gamma_i\}$ converges to an element γ_{∞} in \mathcal{G}^{s+1} , and so $\gamma_{\infty} \in \mathcal{G}_{\nabla}$ and $[\gamma_i] \in U^{s+1}$ for some i, which contradicts the assumption. Q.E.D.

Lemma 2.2. Let $\{\gamma_i\}$, $\{\nabla_{1i}\}$ and $\{\nabla_{2i}\}$ be as above. Then a subsequence of $\{\gamma_i\}$ converges in \mathcal{G}^{s+1} .

Proof. The equation $\gamma_i^* \nabla_{1i} = \nabla_{2i}$ is equivalent to the equation $\gamma_i^{-1} \nabla_{1i} \gamma_i = \nabla_{2i} - \nabla_{1i}$. Set $A_i = \nabla_{1i} - \nabla$ and $B_i = \nabla_{2i} - \nabla$. Then we see that $\nabla \gamma_i = \gamma_i (B_i - A_i) - A_i \gamma_i$. In general, we have

$$||\gamma_i||_t < C_1 ||\nabla \gamma_i||_{t-1} + C_2 ||\gamma_i||_0$$

for some real number C_1 and C_2 , and $||\gamma_i||_0 < C_3$ since G is compact. Therefore

$$||\gamma_i||_t < C_1 ||\gamma_i(B_i - A_i) - A_i\gamma_i||_{t-1} + C_2 \cdot C_3$$
.

Since the multiplication: $H^t \times H^t \rightarrow H^t$ for $t \le s$ is continuous (see [12, Section 9]), we see that

$$||\gamma_i||_t < C_1 ||\gamma_i||_{t-1} (||A_i||_s + ||B_i||_s) + C_2 \cdot C_3 \quad (t-1 \le s).$$

Thus we see by induction that the sequence $||\gamma_i||_{s+1}$ is bounded, and so a subsequence of $\{\gamma_i\}$ converges in H^s , which we replace by $\{\gamma_i\}$. Then we have

$$\nabla(\gamma_i - \gamma_j) = (\gamma_i(B_i - A_i) - A_i \gamma_i) - (\gamma_j(B_j - A_j) - A_j \gamma_j),$$

and so

$$||\gamma_i - \gamma_j||_{s+1} < C_4 ||\gamma_i - \gamma_j||_s + C_5 ||\gamma_i - \gamma_j||_0$$

for some C_4 and C_5 , and $\{\gamma_i\}$ is a Cauchy sequence in H^{s+1} -topology. Q.E.D.

DEFINITION 2.3. The manifold V^s in Proposition 2.1 is called the slice at ∇ and is denoted by S^s_{∇} .

A priori, the slice may degenerate for $s \rightarrow \infty$. But we have following lemmas, which say that we can take slices "uniformly" and they are "natural".

Lemma 2.4. Let $t \ge s$ and set $U^{t+1} = U^{s+1} \cap (\mathcal{Q}_{\nabla} \setminus \mathcal{Q}^{t+1})$, $V^t = V^s \cap \mathcal{C}^t$ and $W^t = W^s \cap \mathcal{C}^t$. Then Proposition 2.1 holds when s is replaced by t.

Proof. It is sufficient to prove for t=s+1. The map

$$\mathcal{A}^{s+1}$$
: $U^{s+2} \times V^{s+1} \rightarrow W^{s+1}$

is a C^{ω} -injective immersion.

(surjectivity) Let $\nabla_1 \in W^{s+1}$. Then there is $\gamma \in \pi^{-1}(U^{s+1})$ so that $\gamma^* \nabla_1 \in V^s$. Set $A_1 = \nabla_1 - \nabla$ and $A_2 = \gamma^* \nabla_1 - \nabla$. Then $A_1 \in H^{s+1}(\mathfrak{g}_P)$, $A_2 \in H^s(\mathfrak{g}_P)$, and $\nabla \gamma = \gamma A_2 - A_1 \gamma$. Since $\delta^{\nabla} A_2 = 0$, we have

$$\delta^{\nabla} \nabla \gamma = \operatorname{tr}(\nabla \gamma \otimes A_2) - \delta^{\nabla}(A_1 \gamma)$$

where $\nabla \gamma \otimes A_2 \in H^s$ and $\delta^{\nabla}(A_1 \gamma) \in H^s$. Thus $\gamma \in \mathcal{G}^{s+2}$.

(surjectivity of derivative) Let $u_0 \in U^{s+2}$ and $\nabla + A_0 \in V^{s+1}$. Then the derivative of the map \mathcal{A}^s is given by

$$(\mathcal{A}^s)'_{(u_0,\nabla+A_0)}(u',A')$$

= $\chi(u_0)^* \{ \nabla(\varphi'(u')) + [A_0,\varphi'(u')] + A' \}$

where φ is defined by $\varphi(u) = \chi(u) \cdot \chi(u_0)^{-1}$. Let B be any element of $H^{s+1}(\mathfrak{g}_P)$. Then there are $u' \in T_{u_0}U^{s+1}$ and $A' \in T_{A_0}V^s$ so that

$$\chi(u_0)^* \{ \nabla(\varphi'(u')) + [A_0, \varphi'(u'))] + A' \} = B.$$

This implies that

$$\delta^{\triangledown} \nabla(\varphi'(u')) = \delta^{\triangledown} (\chi(u_0)^{-1} *B - [A_0, \varphi'(u')])$$
 .

where the right hand side belongs to H^{s-1} . Thus $\varphi'(u') \in H^{s+1}$, and so the right hand side belongs to H^s , and $\varphi'(u') \in H^{s+2}$. Therefore $u' \in H^{s+2}$ and $A' \in H^{s+1}$. Q.E.D.

Lemma 2.5. Let $\nabla_1 \in \mathcal{S}^s_{\nabla}$. If there is $\gamma \in \mathcal{G}^{s+1}$ such that $\gamma^* \nabla_1 \in \mathcal{C}^t$, then $\nabla_1 \in \mathcal{S}^t_{\nabla}$. In particular, if $\gamma^* \nabla_1 \in \mathcal{C}^{\infty}$, then $\nabla_1 \in \mathcal{C}^{\infty}$.

Proof. Let $\{\gamma_i\}$ be a sequence in \mathcal{G}^{t+1} which converges to γ in H^{s+1} -topology. Then $\gamma_i^{-1*}\gamma^*\nabla_1 \to \nabla_1$ in \mathcal{C}^s , and so for some $i \gamma_i^{-1*}\gamma^*\nabla_1$ belongs to W^s in Proposition 2.1. But here $\gamma_i^{-1*}\gamma^*\nabla_1 \in \mathcal{C}^t$. Therefore by Lemma 2.4 $\gamma_i^{-1*}\gamma^*\nabla_1 \in W^t$, and so $\pi(\gamma\gamma_i^{-1}) \in U^{t+1}$ and $\nabla_1 \in \mathcal{S}^t$. Q.E.D.

Corollary 2.6. Let $\nabla_1 \in \mathcal{S}_{\nabla}^s$ be a Yang-Mills connection. Then $\nabla_1 \in \mathcal{S}_{\nabla}^{\infty}$.

Proof. By Theorem 12.1, ∇_1 satisfies the condition in Lemma 2.5. Q.E.D.

Theorem 2.7. Let ∇ be a Yang-Mills connection. There are a neighbourhood U^s of ∇ in \mathcal{S}^s_{∇} and a closed C^{ω} -submanifold Z of U^s whose tangent space at ∇ coincides with YMEID(∇) such that the set YMLPM(∇) of all Yang-Mills connections in U^s is a real analytic set of Z. Moreover, the spaces Z and YMLPM(∇) do not depend on s.

Proof. Set $\varphi^s = E_{YM} | \mathcal{S}_{\nabla}^s$. Then by (1.5.2) we see

$$\operatorname{Im} \varphi_{\nabla}^{s\prime} = E_{VM'\nabla}(\operatorname{Ker}(\delta^{\nabla}|H^{s})) = \operatorname{Im}(E_{VM'\nabla}|H^{s}).$$

On the other hand, from (1.5.4) and (1.5.5) we have

$$H^{s-2}(\Lambda^1 \otimes \mathfrak{g}_P) = \operatorname{Im}(E_{YM}'|H^s) \oplus \operatorname{Ker}(E_{YM}'|H^{s-2}).$$

Let p^s (resp. q^s) be the projectoin to the first (resp. second) component. Then the C^ω -map $p^s \circ \varphi^s$ has surjective derivative at ∇ and by the implicit function theorem there is a neighbourhood U^s of ∇ in S^s_∇ so that the set $Z = {\nabla_1 \in U^s | p^s \circ \varphi^s(\nabla_1) = 0}$ is a C^ω -submanifold of U^s . The tangent space $T_\nabla Z$ coincides with the space $YMEID(\nabla)$ and the set $YMLPM(\nabla)$ is the zero of the map $q^s \circ \varphi^s$ on Z.

Next we have to show that if we set $Z^t = Z \cap S^t_{\nabla}$ and $U^t = U^s \cap S^t_{\nabla}$ for $t \ge s$ then Z^t coincides with Z as manifold and $p^t \circ \varphi^t$ has surjective derivative at any point of Z^t . Let $\nabla + A \in Z$. Then by the definition of Z and Lemma 1.5 we have

$$\delta^{\nabla} A = 0$$
, $E_{YM'}(E_{YM}(\nabla + A)) = 0$.

Since this is an elliptic system, A is C^{∞} , and so $Z^t = Z$ as set. Let $\nabla_1 \in Z^t$. Since $p^s \circ \varphi^s$ has surjective derivative at ∇_1 , for any $A \in \operatorname{Im}(E_{YM}'_{\nabla_1}|H^t)$ there are $B \in \operatorname{Ker}(\delta^{\nabla}|H^s)$ and $C \in \operatorname{Ker}(E_{YM}'_{\nabla}|H^s)$ so that $(\varphi^s)'_{\nabla}(B) = A + C$. Then

$$E_{{\scriptscriptstyle YM}^{\prime}_{\scriptscriptstyle
abla}}{}^{\circ}(arphi^s)_{\scriptscriptstyle
abla_{\scriptscriptstyle
abla}}^{\prime}(B) = E_{{\scriptscriptstyle YM}^{\prime}_{\scriptscriptstyle
abla}}(A) {\in} H^{\scriptscriptstyle t-4}$$
 ,

and $\delta^{\nabla}B=0$. Therefore $B \in H^t$, which implies that $p^t \circ \varphi^t$ has surjective derivative at ∇_1 , and so Z^t is a closed C^{ω} -submanifold of U^t . Moreover, the identity: $Z^t \to Z$ is bijective and its derivative also, hence is a diffeomorphism. Q.E.D.

DEFINITION 2.8. The set $YMLPM(\nabla)$ is called the local pre-moduli space of Yang-Mills connections around ∇ and the set Z is called its support manifold.

We may summarize results as

Theorem 2.9. Let ∇ be a Yang-Mills connection. The local pre-moduli space $YMLPM(\nabla)$ of Yang-Mills connections has the following properties. a)

 $YMLPM(\nabla) \subset \mathcal{S}^{\infty}_{\nabla}$. b) If ∇_1 is a Yang-Mills connection sufficiently close to ∇ , then there is $\gamma \in \mathcal{Q}^{s+1}$ so that $\gamma^* \nabla_1 \in YMLPM(\nabla)$. c) If $\gamma^* YMLPM(\nabla) \cap YMLPM(\nabla) \neq \phi$ for $\gamma \in \mathcal{Q}^{s+1}$, then $\gamma^* \nabla = \nabla$, i.e., $\nabla \gamma = 0$.

REMARK 2.10. The global moduli space $\mathcal{G}\setminus \{\text{Yang-Mills connections}\}\$ is locally homeomorphic with the coset space $\mathcal{G}_{\nabla}\setminus YMLPM(\nabla)$. Since \mathcal{G}_{∇} is a compact Lie group, almost all local properties of the global moduli space is reduced to that of $YMLPM(\nabla)$.

Corollary 2.11. (1) Let ∇ be a Yang-Mills connection. If YMEID(∇) =0, then $[\nabla]$ is isolated in the global moduli space of Yang-Mills connections. (2) The Yang-Mills functional F_{YM} is constant on the space YMLPM, and locally constant on the global moduli space. (3) If a connection ∇ minimizes the functional F_{YM} on C, then any Yang-Mills connection sufficiently close to ∇ also minimizes F_{YM} . (4) Any Yang-Mills connection sufficiently close to a flat connection is flat. (5) Let M be 4-dimensional. Any Yang-Mills connection sufficiently close to a self-dual (resp. anti self-dual) connection is self-dual (resp. anti self-dual).

Proof. (1) The assumption implies that the support manifold Z is a point. (2), (3) The set YMLPM forms a real analytic set and its points are critical points of F_{YM} . (4) A connection ∇ is flat if and only if $F_{YM}(\nabla)=0$. (5) A connection ∇ is (anti) self-dual if and only if $F_{YM}(\nabla)$ coincides with a topological invariant of the principal bundle (see [1, p. 432]). Q.E.D.

3. The obstruction for deformations

We have shown that the local pre-moduli space $YMLPM(\nabla)$ is a real analytic set of the support manifold. Therefore we want to know when YMLPM coincides with the support manifold. In this section we introduce a notion which will be used later.

Let \mathcal{P} be an open set of a Hilbert space, Q and \mathcal{R} Hilbert spaces. Let $E: \mathcal{P} \rightarrow Q$ and $I: \mathcal{P} \times Q \rightarrow \mathcal{R}$ be C^{∞} -maps and define $I_p: Q \rightarrow \mathcal{R}$ for each fixed $p \in \mathcal{P}$.

DEFINITION 3.1. If I_p is linear for each $p \in \mathcal{P}$ and $I_p(E(p)) = 0$ for all $p \in \mathcal{P}$, then I is called an identity for E.

If I is an identity for E and E(p)=0, then we see that $I_p \circ E'_p = 0$, i.e., Im $E'_p \subset \text{Ker } I_p$.

DEFINITION 3.2. Let I be an identity for E and assume that E(p)=0. The space Ker $I_p/\text{Im } E'_p$ is called the obstruction space for E-deformations of p with respect to I.

Lemma 3.3. Let I be an identity for E and $p \in E^{-1}(0)$. If the obstruction space Ker $I_p/\text{Im } E'_p$ vanishes, then the set $E^{-1}(0)$ around p forms a manifold whose

tangent space at p coincides with Ker E'_p , provided that one of the following conditions is satisfied. (1) The map E is C^{∞} . (2) The space Im I_p is closed in \mathcal{R} .

Proof. By a similar way as in Proof of Theorem 2.7, we see that there exists the "support manifold" Z whose tangent space at p coincides with Ker E'_p such that $E^{-1}(0) = (p_c \circ E \mid Z)^{-1}(0)$ around p, where p_c is the projection to a complement C of Im E'_p in Q. Set $\hat{E} = E \mid Z : Z \to C$ and $\hat{I} = I \mid (Z \times C) : Z \times C \to \mathcal{R}$. It is enough to prove that $\hat{E} = 0$. Remark that Ker $\hat{I}_p = \text{Ker } I_p \cap C = \text{Im } E'_p \cap C = 0$ and so \hat{I}_p is injective. Assume condition (2). Then Im $\hat{I}_p = I_p(C) = I_p(\text{Im } E'_p \oplus C) = \text{Im } I_p$, and so Im \hat{I}_p is closed in \mathcal{R} , hence \hat{I}_p is an isomorphism from C into \mathcal{R} . Therefore \hat{I}_{p_1} is injective if $p_1 \in Z$ is sufficiently close to p. But here we know that $\hat{I}_{p_1}(\hat{E}(p_1)) = 0$. Thus $\hat{E}(p_1) = 0$.

Next we assume condition (1) and show the r-th derivative $\hat{E}^{(r)}$ vanishes for all $r \ge 0$ by induction. By taking r-th derivative of the identity $\hat{\mathbf{I}}_{p_i}(\hat{E}(p_i))=0$ and setting $v=\frac{d}{dt}\Big|_{\mathbf{0}}p_i$, we get

$$\hat{\mathbf{I}}_{p}(\hat{E}_{p}^{(r)}(v, \dots, v)) = -\sum_{i=1}^{r} \binom{r}{i} \left(\frac{d}{dt}\right)^{i} |_{0} \hat{\mathbf{I}}_{p_{t}} \cdot \left(\frac{d}{dt}\right)^{r-i} |_{0} \hat{E}(p_{t}).$$

By induction we may assume that the right hand side vanishes, and so the left hand side vanishes. But we know that $\hat{\mathbf{I}}_p$ is injective, hence $\hat{E}_p^{(r)} = 0$. Q.E.D.

REMARK 3.4. This Lemma essentially is "Kuranishi's method" ([8]).

4. The deformation of Yang-Mills connection caused by a deformation of base metric

We want apply Lemma 3.3 to a deformations of Yang-Mills connection. Unfortunately, it is not possible if we use Yang-Mills equation itself. In 6, we will introduce the notion of "Einstein holomorphic connection" and apply Lemma 3.3.

Now, by equation (1.5.1), δ^{∇} is an identity for E_{YM} , and the obstruction space

$$\operatorname{Ker} \, \delta^{\triangledown}/\operatorname{Im} \, E_{YM}{'}_{\triangledown} \cong YMEID(\nabla)$$

by equation (1.5.6).

Proposition 4.1. Let ∇ be a Yang-Mills connection. The obstruction space for E_{YM} -deformation of ∇ with respect to δ^{∇} is isomorphic with the space YMEID(∇) of essential infinitesimal deformations.

Hence we apply Lemma 3.3 to the situation that we deform the metric g on M and Yang-Mills connection follows it. Denote by \mathcal{M}^s the space of all H^s -riemannian metrics on M and define maps E, I by

$$\begin{split} E \colon \mathscr{M}^{s+1} \times \mathscr{C}^{s+2} &\to H^s(\Lambda^1 \otimes \mathfrak{g}_p); \quad (g, \nabla) \to \delta_g^{\nabla} \ R^{\nabla} \ , \\ I \colon \mathscr{M}^{s+1} \times \mathscr{C}^{s+2} \times H^s(\Lambda^1 \otimes \mathfrak{g}_P) &\to H^s(\mathfrak{g}_P); \quad (g, \nabla, \varphi) \to \delta^{\nabla} \varphi \ . \end{split}$$

Then I is an identity for E.

Theorem 4.2. Let ∇ be a Yang-Mills connection over (M, g), i.e., $E(g, \nabla) = 0$. If YMEID(∇)=0, then for any deformation g_t of g there exists a 1-parameter family of connections ∇_t so that each ∇_t is a Yang-Mills connection with respect to g_t , provided that |t| is small.

Proof. The obstruction space for E-deformation of (g, ∇) with respect to I coincides with the space

Ker
$$\delta_g^{\nabla}/\text{Im } E'_{(g,\nabla)}$$
,

which is a quotient space of the space $YMEID(\nabla)$ by equation (1.5.6), and vanishes by assumption. Therefore by Lemma 3.3 the set $E^{-1}(0)$ arround (g, ∇) forms a manifold whose tangent space at (g, ∇) coincides with Ker $E'_{(g,\nabla)}$. But here the projection map from Ker $E'_{(g,\nabla)}$ to $T_g \mathcal{M}^{s+1}$ is surjective, which completes the proof by the implicit function theorem. In fact, for any $h \in T_g \mathcal{M}^{s+1}$, we get $E'_{(g,\nabla)}(h,0) \in \text{Ker } \delta_g^{\nabla}$, therefore by equation (1.5.6) and assumption, there is $A \in T_{\nabla} \mathcal{C}^{s+2}$ such that Ker $E'_{(g,\nabla)}(h,0) = E_{YM'_{\nabla}}(A)$, i.e., $E'_{(g,\nabla)}(h,-A) = 0$. Q.E.D.

5. Holomorphic structures

Let M be a compact complex manifold and P^c a principal G^c -bundle, where G^c is a complexification of G. A G^c -invariant almost complex structure on P^c is called an almost holomorphic structure of P^c . If it is integrable, then it is called a holomorphic structure. An almost holomorphic structure can be regarded as a first order differential operator

$$(5.0.1) \overline{\partial} \colon C^{\infty}(\mathfrak{g}_{P}^{\mathfrak{C}}) \to C^{\infty}(\Lambda^{0,1} \otimes \mathfrak{g}_{P}^{\mathfrak{C}}),$$

and it is a holomorphic structure if and only if the torsion $T(\bar{\partial})$ of $\bar{\partial}$ vanishes, where $T(\bar{\partial}) \in C^{\infty}(\Lambda^{0,2} \otimes \mathfrak{g}_F^C)$ is defined by

$$(5.0.2) T(\overline{\partial})(X, Y)v \equiv \overline{\partial}_X \overline{\partial}_Y v - \overline{\partial}_Y \overline{\partial}_X v - \overline{\partial}_{[X,Y]} v.$$

An almost holomorphic structure $\bar{\partial}$ extends to the operators

$$(5.0.3) \overline{\partial}^{p} \colon C^{\infty}(\Lambda^{0,p} \otimes \mathfrak{g}_{P}^{C}) \to C^{\infty}(\Lambda^{0,p+1} \otimes \mathfrak{g}_{P}^{C}),$$

and if $\bar{\partial}$ is a holomorphic structure, then they defines an elliptic complex and the cohomology groups

(5.0.4)
$$H^{0,p}(\mathfrak{g}_P^{\mathfrak{C}}) \equiv \operatorname{Ker} \, \overline{\partial}^{\mathfrak{p}} / \operatorname{Im} \, \overline{\partial}^{\mathfrak{p}+1}$$

are defined.

We can study deformations of holomorphic structures by a similar way as deformations of complex structures on manifold (c.f. [13, pp 172–176]), but we use here notations similar with [6].

The space \mathcal{AH} of all almost holomorphic structures forms an affine space with standard vector space $C^{\infty}(\Lambda^{0,1}\otimes\mathfrak{g}_{F}^{C})$, and the complex gauge group $\mathcal{G}^{C}=C^{\infty}(G_{F}^{C})$ acts on it. Let $\mathcal{G}_{\overline{0}}^{C}$ be the group of isotropy, i.e., $\mathcal{G}_{\overline{0}}^{C}=\{\gamma\in\mathcal{G}^{C}\mid\gamma^{*}\overline{0}=\overline{0}\}$. Then the H^{s+1} -gauge group $\mathcal{G}^{C,s+1}$ acts on \mathcal{AH}^{s} holomorphically and the coset space $\mathcal{G}_{\overline{0}}^{C}\setminus\mathcal{G}^{C,s+1}$ forms a complex analytic manifold. The following proposition is proved by a similar manner as Proposition 2.1.

Proposition 5.1. Let $\bar{\partial} \in \mathcal{AH}$. There exist a neighbourhood $\mathcal{S}_{\delta}^{c,s}$ of $\bar{\partial}$ in $\bar{\partial}$ +Ker $(\bar{\partial}^*|H^s)$, a neighbourhood $U^{c,s+1}$ of [id] in $\mathcal{G}_{\delta}^c \setminus \mathcal{G}^{c,s+1}$ and a neighbourhood $W^{c,s}$ of $\bar{\partial}$ in \mathcal{AH}^s so that the action

$$\mathcal{A}^{C,s} \colon U^{C,s+1} \times \mathcal{S}_{\tilde{a}}^{C,s} \to W^{C,s}$$

becomes a complex analytic diffeomorphism. Here, the formal adjoint $\bar{\partial}^*$ of $\bar{\partial}$ is defined by some (and fixed) hermitian inner product of \mathfrak{g}_P^C .

Let $\overline{\partial}$ be a holomorphic structure of P^c . For $A \in C^{\infty}(\Lambda^{0,1} \otimes \mathfrak{g}_P^c)$ we see that $T(\overline{\partial} + A) = T(\overline{\partial}) + \overline{\partial}^1 A + [A \wedge A]$. Therefore the equation of infinitesimal deformation of holomorphic structure of $\overline{\partial}$ is given by

$$\overline{\partial}^{1}A = 0.$$

The space of all essential infinitesimal deformations of $\bar{\partial}$ is given by

$$(5.1.2) EHID(\overline{\partial}) = \operatorname{Ker} \overline{\partial}^{1} \cap \operatorname{Ker} \overline{\partial}^{*}.$$

By a similar way as Theorem 2.7, we have

Theorem 5.2. Let $\overline{\partial}$ be a holomorphic structure. There are a neighbourhood $U^{C,s}$ of $\overline{\partial}$ in $S_{\overline{\partial}}^{C,s}$ and a complex analytic submanifold Z^C of $U^{C,s}$ so that the set of all H^s -holomorphic structures in $U^{C,s}$ forms a complex analytic set of Z^C .

DEFINITION 5.3. The set of all H^s -holomorphic structures in $U^{c,s}$ is called the local pre-moduli space of holomorphic structures around $\bar{\partial}$ and denoted by $HLPM(\bar{\partial})$. The manifold Z^c is called its support manifold.

Equalities (5.1.2) and (5.0.4) mean that the space $HEID(\bar{\partial})$ is canonically isomorphic to $H^{0,1}(\mathfrak{g}_{P}^{C})$. Moreover, for any $\bar{\partial} \in \mathcal{AH}$ we have

$$(5.3.1) \overline{\partial}^2 T(\overline{\partial}) = 0,$$

which means that $\bar{\partial}^2$ is an identity for T. Therefore, by Lemma 3.3, we get

- **Theorem 5.4.** Let $\overline{\partial}$ be a holomorphic structure. If $H^{0,2}(\mathfrak{g}_P^{\mathfrak{g}})=0$, then the space $HLPM(\overline{\partial})$ forms a (complex) manifold whose tangent space at $\overline{\partial}$ coincides with the space $HEID(\overline{\partial})$.
- REMARK 5.5. Since the action of $\mathcal{Q}^{\boldsymbol{c},s+1}$ on \mathcal{AH}^s is complex analytic, the complex structure of the above space $HLPM(\overline{\partial})$ is canonical. I.e., if $\overline{\partial}_1 \subseteq HLPM(\overline{\partial})$, then the "projection map": $HLPM(\overline{\partial}_1) \rightarrow HLPM(\overline{\partial})$ defined by Proposition 5.1 is complex analytic.
- REMARK 5.6. The space $HLPM(\overline{\partial})$ has similar properties as $YMLPM(\nabla)$ in Theorem 2.9. But property (c) does not hold for $HLPM(\overline{\partial})$, because G^c is not compact. Therefore the quatient space $\mathcal{Q}^c_{\overline{\partial}} \backslash HLPM(\overline{\partial})$ is not necessarily identified with an open set of global moduli space of holomorphic structures.

6. Einstein holomorphic connections

Let (M, g) be a compact Kähler manifold, ω its Kähler form. Then the (0, 1) component of a connection ∇ on P is a almost holomorphic structure $\overline{\partial}$ of P^c . Since $T(\overline{\partial})$ coincides with the (0, 2) component of R^{∇} , $\overline{\partial}$ is a holomorphic structure if and only if R^{∇} is of type (1, 1).

DEFINITION 6.1. A connection ∇ of P is said to be *holomorphic* if the (0, 1) component of ∇ is a holomorphic structure, or equiavlently, if R^{∇} is of type (1, 1). (Remark that this definition is not exactly the same with [6].)

Denote by R_H^{\triangledown} (resp. R_S^{\triangledown}) the hermitian (resp. skew-hermitian) part of R^{\triangledown} . Elements of Lie algebra \mathfrak{F} of the center Z(G) of G define parallel sections of $C^{\infty}(\mathfrak{g}_P)$, and are denoted also by \mathfrak{F} .

DEFINITION 6.2. A holomorphic connection ∇ is called an Einstein holomorphic connection if $(\omega, R^{\nabla}) \in \mathfrak{F}$ as section.

For example, if G = U(r), a connection ∇ is an Einstein holomorphic connection if and only if ∇ is an Einstein hermitian connection for some holomorphic structure.

Lemma 6.3 (Itoh, Personal communication). An Einstein holomorphic connection takes the minimum value of the Yang-Mills functional F_{YM} on C. Conversely a connection which takes the value is an Einstein holomorphic connection.

Proof. Let ∇ be a connection of P and consider the characteristic classes of P. For each $c \in \mathfrak{F}$, the classes represented by (c, R^{∇}) and $\operatorname{Tr}(R^{\nabla} \wedge R^{\nabla})$ do not depend on ∇ , and so the values $\int_{M} (c, R^{\nabla}) \wedge \omega^{n-1}$ and $\int_{M} \operatorname{Tr}(R^{\nabla} \wedge R^{\nabla}) \wedge \omega^{n-2}$ are constant for ∇ . Therefore there are $c_0 \in \mathfrak{F}$ and a real number C such that equalities

$$\langle \omega \otimes c, R^{\nabla} \rangle = \langle c_0, c \rangle$$

and

$$(6.3.2) ||R_H^{\nabla}||^2 - ||R_S^{\nabla}||^2 - ||(\omega, R^{\nabla})||^2 = C$$

hold for all ∇ . Let $(\omega, R^{\nabla}) = c_1 + v$ where $c_1 \in \mathfrak{z}$ and v is orthogonal to \mathfrak{z} with respect to the global inner product. Then

$$\langle c_0, c \rangle = \langle c, (\omega, R^{\nabla}) \rangle = \langle c, c_1 \rangle$$

for any $c \in \mathfrak{z}$. Therefore $c_1 = c_0$ and

$$\begin{aligned} ||R^{\nabla}||^2 &= ||R_H^{\nabla}||^2 + ||R_S^{\nabla}||^2 \\ &= C + 2||R_S^{\nabla}||^2 + ||(\omega, R^{\nabla})||^2 \\ &\geq C + ||(\omega, R^{\nabla})||^2 \\ &= C + ||c_0||^2 + ||v||^2 \\ &\geq C + ||c_0||^2. \end{aligned}$$

The equality $||R^{\triangledown}||^2 = C + ||c_0||^2$ holds if and only if $R_s^{\triangledown} = 0$ and v = 0, i.e., $(\omega, R^{\triangledown}) \in \mathfrak{F}$.

REMARK 6.4. We saw that if ∇ is an Einstein holomorphic connection then $(\omega, R^{\nabla}) = c_0$.

Corollary 6.5. All Einstein holomorphic connections are Yang-Mills connections. Conversely all Yang-Mills connections which are sufficiently close to an Einstein holomorphic connection are Einstein holomorphic connections.

Next we consider infinitesimal deformations of Einstein holomorphic connections. Define a map E_{EH} : $C^s \to H^{s-1}(\Lambda^{0,2} \otimes \mathfrak{g}_P^C) \oplus H^{s-1}(\mathfrak{g}_P)$ by

$$(6.5.1) \qquad \nabla \rightarrow (p^{0.2}R^{\nabla}, (\omega, R^{\nabla}) - c_0),$$

where $p^{0,r}$ is the projection map from Λ^r to $\Lambda^{0,r}$ and $c_0 \in \mathfrak{F}$ is defined in Proof of Lemma 6.3. By Remark 6.4, a connection ∇ is an Einstein holomorphic connection if and only if $E_{EH}(\nabla)=0$.

DEFINITION 6.6. Let ∇ be an Einstein holomorphic connection. An element A of $H^s(\Lambda^1 \otimes \mathfrak{g}_P)$ is called an Einstein holomorphic infinitesimal deformation of ∇ if $E_{EH'}_{\nabla}(A)=0$. An Einstein holomorphic infinitesimal deformation is said to be essential if it is orthogonal to all trivial infinitesimal deformations of ∇ , and the space of all Einstein holomorphic essential infinitesimal deformations is denoted by $EHEID(\nabla)$.

By a similar way as Theorem 2.7, we get

Theorem 6.7. Let ∇ be an Einstein holomorphic connection. There are a neighbourhood U^s of ∇ in S^s_{\forall} and a closed C^{ω} -submanifold Z of U^s whose tangent space at ∇ coincides with $EHEID(\nabla)$ such that the set $EHLPM(\nabla)$ of all Einstein holomorphic connections in U^s is a real analytic set of Z.

Moreover, the combination of an obvious inclusion: $EHLPM(\nabla) \subset YMLPM(\nabla)$ and the converse inclusion $YMLPM(\nabla) \subset EHLPM(\nabla)$ by Corollary 6.5 means that $EHLPM(\nabla) = YMLPM(\nabla)$. Let ∇ be a connection. Define a map $I_{\nabla} \colon H^{s-1}(\Lambda^{0.2} \otimes \mathfrak{g}_F^G) \oplus H^{s-1}(\mathfrak{g}_P) \to H^{s-2}(\Lambda^{0.3} \otimes \mathfrak{g}_F^G) \oplus \mathfrak{F}$ by

$$I_{\nabla}(P,\eta) = (p^{0,3}(d^{\nabla}P), \text{ 3-part of } \eta)$$
.

Lemma 6.8. The map I is an identity for E_{EH} .

Proof. For any ∇ , we see

$$p^{0,3}(d^{\triangledown}(p^{0,2}R^{\triangledown})) = p^{0,3}(d^{\triangledown}R^{\triangledown}) = 0$$
 ,

and (6.3.1) means that 3-part of $(\omega, R^{\nabla})-c_0$ vanishes.

Q.E.D.

Therefore if ∇ is an Einstein holomorphic connection and Ker $I_{\nabla}/\text{Im }E_{EH}'_{\nabla}$ vanishes, then the local pre-moduli space $EHLPM(\nabla)$ of Einstein holomorphic connections forms a manifold with tangent space $EHEID(\nabla)$ at ∇ .

Theorem 6.9. Let ∇ be an Einstein holomorphic connection. In general, the space $EHLPM(\nabla)$ forms a real analytic set of the support manifold Z whose tangent space at ∇ is isomorphic with the cohomology group $H^{0,1}(M, \mathfrak{g}_F^c)$. If $H^{0,2}(M, \mathfrak{g}_F^c) = 0$ and $H^0(M, \mathfrak{g}_F^c) \cong \mathfrak{z}^c$, then the psace $EHLPM(\nabla)$ coincides with the support manifold.

Proof. We must show that $EHEID(\nabla) \cong H^{0,1}(M, \mathfrak{g}_P^C)$ and $\operatorname{Ker} I_{\nabla}/\operatorname{Im} E_{EH}'_{\nabla} \cong H^{0,2}(M, \mathfrak{g}_P^C) \oplus H^0(M, \mathfrak{g}_P)/\mathfrak{z}$, where $H^0(M, \mathfrak{g}_P)$ denotes the vector space of all parallel sections of \mathfrak{g}_P . First we see that the sequence

$$(6.9.1) C^{\infty}(\mathfrak{g}_{P}) \xrightarrow{\nabla} C^{\infty}(\Lambda^{1} \otimes \mathfrak{g}_{P}) \xrightarrow{E_{EH}'_{\nabla}} C^{\infty}(\Lambda^{0,2} \otimes \mathfrak{g}_{P}^{C}) \oplus C^{\infty}(\mathfrak{g}_{P}) \xrightarrow{\operatorname{pr} \circ I_{\nabla}} C^{\infty}(\Lambda^{0,3} \otimes \mathfrak{g}_{P}^{C})$$

is an elliptic complex. Therefore

(6.9.2)
$$(\operatorname{Ker} I_{\nabla}/\operatorname{Im} E_{EH'_{\nabla}}) \oplus_{\delta} \cong \operatorname{Ker} (\operatorname{pr} \circ I_{\nabla})/\operatorname{Im} E_{EH'_{\nabla}}$$

$$\cong \operatorname{Ker} (\operatorname{pr} \circ I_{\nabla}) \cap \operatorname{Ker} (E_{EH'_{\nabla}})^*.$$

Let $(P, \eta) \in \text{Ker} (\text{pr} \circ I_{\nabla}) \cap \text{Ker} (E_{EH'_{\nabla}})^*$. We easily see that

(6.9.3)
$$(\omega, d^{\triangledown}A) = 4 \operatorname{Re}(\sqrt{-1} \nabla^{\overline{a}} A_{\overline{a}}).$$

Thus $(P, \eta) \in \text{Ker } (E_{EH}'_{\nabla})^*$ means that

$$\langle (P, \eta), (p^{0,2}(d^{\nabla}A), 4\operatorname{Re}(\sqrt{-1}\nabla^{\overline{a}}A_{\overline{a}})) \rangle = 0$$

for all $A \in C^{\infty}(\Lambda^1 \otimes \mathfrak{g}_P)$, from which we have

$$(6.9.5) -\nabla^{\bar{p}} P_{\bar{p}\bar{a}} + 2\sqrt{-1} \nabla_{\bar{a}} \eta = 0.$$

Here we know that $\nabla^{\bar{a}}\nabla^{\bar{\beta}}P_{\bar{a}\bar{a}}=0$ since ∇ is Einstein. Therefore we see that

$$(6.9.6) -\nabla^{\bar{p}} P_{\bar{p}\bar{a}} = 0 \text{ and } \nabla_{\eta} = 0.$$

Combining with the assumption that $(P, \eta) \in \text{Ker}(\text{pr} \circ I_{\nabla})$, we see that P is harmonic and η is parallel. The converse is obvious, and we get

(6.9.7)
$$\operatorname{Ker}(\operatorname{pr} \circ I_{\nabla}) \cap \operatorname{Ker}(E_{EH'_{\nabla}})^* \cong H^{0,2}(M, \mathfrak{g}_P^C) \oplus H^0(M, \mathfrak{g}_P).$$

Let $A \in EHEID(\nabla)$. Then by definition and equality (6.9.3) we get

$$\nabla_{\bar{a}}A_{\bar{\beta}}-\nabla_{\bar{\beta}}A_{\bar{a}}=0\,,$$

$$(6.9.9) \nabla^{\bar{a}} A_{\bar{a}} \in C^{\infty}(\mathfrak{g}_P)$$

and

$$\nabla^{\bar{a}}A_{\bar{a}} + \nabla^{a}A_{a} = 0.$$

Thus we see that $p^{0,1}A$ is harmonic and so the first isomorphism holds. Q.E.D.

The above results are resumed as follows.

Theorem 6.10. Let ∇ be an Einstein holomorphic connection. The space $EHLPM(\nabla)$ coincides with the space $YMLPM(\nabla)$ around ∇ , which is a real analytic set of the support manifold Z whose tangent space at ∇ coincides with the space $EHEID(\nabla)$. If $H^{0,2}(M,\mathfrak{g}_F^c)=0$ and $H^0(M,\mathfrak{g}_F^c)=\mathfrak{z}^c$, then the space $EHLPM(\nabla)$ coincides with the support manifold Z.

REMARK 6.11. The above statement suggests the equality $YMEID(\nabla) = EHEID(\nabla)$, which in fact holds.

7. The deformation of Einstein holomorphic connections caused by a deformation of complex structure of the base manifold

In this section we discuss on deformations of Einstein holomorphic connections in a similar situation as in section 4. Let (M, J, g) be the base Kähler manifold and (J_t, g_t) be a one-parameter family of Kähler structure such that $(J_0, g_0) = (J, g)$. Define maps E, I

$$E \colon (-\varepsilon, \varepsilon) \times \mathcal{C}^s \to H^{s-1}(\Lambda^{0,2} \otimes \mathfrak{g}_P^C) \oplus H^{s-1}(\mathfrak{g}_P) ,$$

$$I_{(t,\nabla)} \colon H^{s-1}(\Lambda^{0,2} \otimes \mathfrak{g}_P^C) \oplus H^{s-1}(\mathfrak{g}_P) \to H^{s-2}(\Lambda^{0,3} \otimes \mathfrak{g}_P^C) \oplus \mathfrak{F}$$

by

$$E(t, \nabla) = (p^{0.2}R^{\nabla_t}, (\omega_t, R^{\nabla_t})_t - c_t)$$

and

$$I_{(t,\nabla)}(P,\eta)=(p^{0,3}(d^{\nabla_t}P),$$
 3-part of $\eta)$,

where all operators and $c_t \in \mathfrak{z}$ depending on base Kähler structure are defined by (J_t, g_t) . Then we know that I is an identity for E.

Theorem 7.1. Let ∇ be an Einstein holomorphic connection on (M, J, g). If $H^{0,2}(M, \mathfrak{g}_P^c) = 0$ and $H^0(M, \mathfrak{g}_P) = \mathfrak{z}$, then for any deformation (J_t, g_t) of Kähler structures of (J, g) there exists a one-parameter family of connections ∇_t of P so that each ∇_t is an Einstein holomorphic connection over (M, J_t, g_t) , provided that |t| is sufficiently small. Moreover, each local pre-moduli space $EHLPM(\nabla_t)$ over (M, J_t, g_t) forms a manifold of the same dimension.

Proof. The obstruction space for E-deformation of $(0, \nabla)$ with respect to I coincides with the space

$$\operatorname{Ker}\,I_{\triangledown}/\operatorname{Im}\,E'_{(0,\triangledown)}$$
 ,

where I_{∇} is introduced before Lemma 6.8. It is a quotient space of the space $\text{Ker }I_{\nabla}/\text{Im }E_{EH'_{\nabla}}$ and vanishes by assumption. Therefore by Lemma 3.3 the set $E^{-1}(0)$ around $(0, \nabla)$ forms a manifold whose tangent space at $(0, \nabla)$ is given by $\text{Ker }E'_{(0,\nabla)}$. But here the projection map from $\text{Ker }E'_{(0,\nabla)}$ to $T_0(-\mathcal{E},\mathcal{E})$ is surjective, which completes the proof by the implicit function theorem. In fact, for $u \in T_0(-\mathcal{E},\mathcal{E})$, we get $E'_{(0,\nabla)}(u,0) \in \text{Ker }I_{\nabla}$, therefore by assumption there is $A \in T_{\nabla}C^s$ such that $E'_{(0,\nabla)}(u,0) = E_{EH'_{\nabla}}(A)$, i.e., $E'_{(0,\nabla)}(u,-A) = 0$. Q.E.D.

8. Einstein holomorphic connections and holomorphic structures

For a connection ∇ of P we denote by $\Psi(\nabla)$ the (0, 1)-part of ∇ , which is an almost holomorphic structure of P^{σ} . Remark that the map Ψ commutes with the action of the gauge group \mathcal{G} . Therefore Ψ induces a map from the moduli space of Einstein holomorphic connections to the moduli space of holomorphic structures. This map locally corresponds to a map $\varphi \colon EHLPM(\nabla) \to HLPM(\bar{\partial})$, where ∇ is an Einstein holomorphic connection and $\bar{\partial} = \Psi(\nabla)$.

Theorem 8.1. Let ∇ be an Einstein holomorphic connection. If $H^0(M, \mathfrak{g}_P)$ $\cong \mathfrak{z}$, then the map $p \circ \Psi$ gives a bijection between $EHLPM(\nabla)$ and $HLPM(\Psi(\overline{\partial}))$ around ∇ , where the map $p \colon W^{C,s} \to \mathcal{S}^{C,s}_{\Psi(\nabla)}$ is defined by Propotition 5.1.

Proof. Set $\mathcal{E} = \{ \nabla_1 \in \mathcal{S}_{\nabla}^s; (\omega, R^{\nabla_1}) - c_0 = 0 \}$. The derivative of the map $f: \nabla_1 \rightarrow (\omega, R^{\nabla_1}) - c_0$ at ∇ is given by

$$A \rightarrow 2\sqrt{-1} \left(\nabla^{\bar{a}} A_{\bar{a}} - \nabla^{a} A_{a} \right)$$
.

Set $A_{\bar{a}} = \sqrt{-1} \nabla_{\bar{a}} \psi$ for $\psi \in H^{s+1}(\mathfrak{g}_P)$. Then

$$A \in T_{\nabla} \mathcal{S}_{\nabla}^{s}$$

and

$$2\sqrt{-1}\left(\nabla^{\bar{a}}A_{\bar{a}}-\nabla^{a}A_{a}\right)=2\nabla^{*}\nabla\psi.$$

Therefore the image of the derivative of the map f from S^s_{∇} is closed in $H^{s-1}(\mathfrak{g}_P)$, and coincides with the orthogonal complement of $H^0(M, \mathfrak{g}_P)$. Therefore by assumption and Lemma 6.8, the map f from S^s_{∇} to the orthogonal complement of \mathfrak{F} has surjective derivative, from which we see that \mathcal{E} is a manifold whoes tangent space at ∇ coincides with the space

$$\{A \in H^s(\Lambda^1 \otimes \mathfrak{g}_P); -\nabla^{\bar{a}}A_{\bar{a}} = 0\}$$
.

Since the derivative of the map $p \circ \Psi$ from \mathcal{E} is nothing but the correspondence: $A \rightarrow (0, 1)$ -part of A, $p \circ \psi$ gives a local diffeomorphism from \mathcal{E} to $\mathcal{S}_{\overline{\delta}}^s$. If $\nabla_1 \in EHLPM(\nabla)$ then $p \circ \Psi(\nabla_1) \in HLPM(\Psi(\nabla))$, conversely, if $\overline{\partial}_1 \in HLPM(\Psi(\nabla))$ then $(p \circ \Psi \mid \mathcal{E})^{-1}(\overline{\partial}_1)$ is Einstein holomorphic by definition of \mathcal{E} . Q.E.D.

REMARK 8.2. Theorem 8.1 and Theorem 5.4 give another proof of Theorem 6.10.

Combining with Theorem 6.10, we get the following

Theorem 8.3. Let ∇ be an Einstein holomorphic connection and set $\bar{\partial} = \Psi(\nabla)$. Then there exists a natural correspondence

$$YMLPM(\nabla) = EHLPM(\nabla) \rightarrow HLPM(\overline{\partial})$$
,

where \rightarrow is an injection, and becomes a bijection if Ker $\nabla = 3$.

9. A structure on the moduli space

Let ∇ be an Einstein holomorphic connection and set $\overline{\partial} = \Psi(\nabla)$. Assume that $H^0_{\overline{\partial}}(\mathfrak{g}_F^c) = \mathfrak{z}^c$ and $H^2_{\overline{\partial}}(\mathfrak{g}_F^c) = 0$. Then the manifolds $EHLPM(\nabla)$ and $HLPM(\overline{\partial})$ are isomorphic by Theorem 8.1, and become complex manifolds by Theorem 5.4. The complex structures are realized by the almost complex structures given by multiplying $\sqrt{-1}$ on $T_{\overline{\partial}}HLPM(\overline{\partial})$ and \widetilde{f} on $T_{\nabla}EHLPM(\nabla)$, where \widetilde{f} is defined by $(\widetilde{f}A)_i = -A_i \int_i^j I_i$. In fact, we see that

$$\Psi(\tilde{J}A) = (\tilde{J}A)^{\scriptscriptstyle{(0,1)}} = -A_{\tilde{\mathbf{p}}}\,J^{\tilde{\mathbf{p}}}_{\;\tilde{\mathbf{z}}} = \sqrt{-1}\,A_{\tilde{\mathbf{z}}} = \sqrt{-1}\,\Psi(A)\,.$$

On the other hand, the space C^s has the riemannian metric $\langle \cdot, \cdot \rangle$, which is

invariant under the action of \mathcal{Q}^{s+1} . Therefore the manifold $EHLPM(\nabla)$ has a canonical riemannian metric, which is given as follows. Let $\nabla_1 \in EHLPM(\nabla)$ and $A, B \in T_{\nabla_1} EHLPM(\nabla)$. The elements A and B are Einstein holomorphic infinitesimal deformations of ∇_1 , and are decomposed into the essential parts A_E , B_E and trivial parts A_T , B_T (see (1.5.2)). We define the inner product of A and B by $\langle A_E, B_E \rangle$. From Lemma 13.1, we see that this inner product becomes a C^{ω} -riemannian metric.

DEFINITION 9.1. The above riemannian metric on $EHLPM(\nabla)$ is called the natural riemannian metric.

REMARK 9.2. Let ∇_1 and ∇_2 be Einstein holomorphic connections and assume that there are $\nabla_0 \in EHLPM(\nabla_1)$ and $\gamma \in \mathcal{G}^{s+1}$ such that $\gamma^* \nabla_0 \in EHLPM(\nabla_2)$. Then for each $\nabla \in EHLPM(\nabla_1)$ sufficiently close to ∇_0 there is $\gamma \in \mathcal{G}^{s+1}$ so that $\gamma^* \nabla \in EHLPM(\nabla_2)$, and this correspondence: $\nabla \rightarrow \gamma^* \nabla$ becomes an isometry. Therefore we may say that the canonical riemannian metric is independent of ∇ .

Theorem 9.3. Let ∇ be an Einstein holomorphic connection and set $\overline{\partial} = \Psi(\nabla)$. If $H_{\overline{\partial}}^0(\mathfrak{g}_P^C) = \mathfrak{z}^C$ and $H_{\overline{\partial}}^2(\mathfrak{g}_P^C) = 0$, then the canonical riemannian metric on $EHLPM(\nabla)$ is a Kähler metric with respect to the complex structure on $HLPM(\overline{\partial})$.

Proof. We easily see that the canonical riemannian metric is a hermitian metric. We have to show that the Kähler form is closed. We replace ∇ by ∇_0 and denote by ∇ elements of $HLPM(\nabla_0)$ regarded as variable. Consider the fiber bundle $p\colon P\times EHLPM\to EHLPM$. In general, a diffeomorphism from a fiber to another fiber which commutes with the action of G and fixes M pull backs a G-invariant structure, and so if a vector field v on $P\times EHLPM$ is p-projectable, G-invariant and $\pi^*v=0$, where π is the projection to M, then the Lie derivation \mathcal{L}_v on a family of G-invariant structures is defined. For example,

$$\mathcal{L}_{v}\nabla \equiv \frac{d}{ds}\Big|_{0} (\exp sv)^{*}\nabla.$$

If we decompose v into the P-part v_P and the EHLPM-part v_M , we see that

$$\mathcal{L}_{\mathbf{v}} \nabla = v_{\mathbf{M}}[\nabla] + L_{\mathbf{v}_{\mathbf{P}}} \nabla$$
.

Now, we denote the almost complex structure on EHLPM by J^E , the canonical riemannian metric by g^E and the Kähler form by ω^E . Decompose $v \in T(EHLPM)$ into v_E and v_T so that $\mathcal{L}_{v_B}\nabla$ is essential and $\mathcal{L}_{v_T}\nabla$ is trivial. This decomposition is not unique, but we may assume that it depends C^{∞} -ly on v by Lemma 13.1. Then we see that

$$egin{align} \mathcal{L}_{(J^B_{m{v})_B}}
abla &= ilde{J}\,\mathcal{L}_{m{v}_B}
abla \,, \ g^E(v,w) &= \langle \mathcal{L}_{m{v}_B}
abla, \, \mathcal{L}_{m{w}_B}
abla
angle \,, \ \omega^E(v,w) &= g^E(J^Ev,w) &= \langle ilde{J}\,\mathcal{L}_{m{v}_B}
abla, \, \mathcal{L}_{m{w}_B}
abla
angle \,, \ \mathcal{L}_{m{w}_B}
abla
angle \,, \end{align}$$

where \tilde{J} is defined in the first paragraph of this section. We may assume that [v, w] = [w, z] = [z, v] = 0 without loss of generality, and see that

$$(d\omega^{E})(v, w, z) = v \cdot \omega^{E}(w, z) + ext{alternating terms}$$

$$= v \cdot \langle \tilde{J} \mathcal{L}_{w_{B}} \nabla, \mathcal{L}_{z_{B}} \nabla \rangle + ext{alt }.$$

$$= \langle \tilde{J} \mathcal{L}_{v_{B}} \mathcal{L}_{w_{B}} \nabla, \mathcal{L}_{z_{B}} \nabla \rangle + \langle \tilde{J} \mathcal{L}_{w_{B}} \nabla, \mathcal{L}_{v_{B}} \mathcal{L}_{z_{B}} \nabla \rangle + ext{alt }.$$

$$= -\langle \tilde{J} \mathcal{L}_{v_{B}} \mathcal{L}_{w_{B}} \nabla, \tilde{J} \mathcal{L}_{z_{B}} \nabla \rangle + \langle \mathcal{L}_{v_{B}} \mathcal{L}_{z_{B}}, \tilde{J} \mathcal{L}_{w_{B}} \nabla \rangle + ext{alt }.$$

$$= -\langle [\mathcal{L}_{v_{B}}, \mathcal{L}_{w_{B}}] \nabla, \tilde{J} \mathcal{L}_{z_{B}} \nabla \rangle + ext{alt }.$$

$$= -\langle \mathcal{L}_{[v_{B}, w_{B}]} \nabla, \tilde{J} \mathcal{L}_{z_{B}} \nabla \rangle + ext{alt }.$$

But here $p_*[v_E, w_E] = [v, w] = 0$ and so $[v_E, w_E]$ is vertical, which implies that $\mathcal{L}_{[v_B, w_B]} \nabla$ is trivial. Q.E.D.

10. Example I

Let M be a flat torus T^2 , P the trivial principal U(2)-bundle and ∇_0 the canonical connection of P. ∇_0 is a flat connection, and so an Einstein holomorphic connections of P are flat. Fix a point x in M and an element p in P_x . Any closed curve c(c(0)=c(1)=x) in M is horizontally lifted to a curve \tilde{c} in P so that $\tilde{c}(0)=p$, and we get an element $\tilde{c}(1)$ in P_x . Let a be an element of U(2) such that $\tilde{c}(1)=p\cdot a$. Since ∇ is flat, this mapping: $c\rightarrow a$ induces a homomorphism: $\pi_1(M)\rightarrow U(2)$, defined by $[c]\rightarrow a$. Taking generators $\{[c_1], [c_2]\}$ of $\pi_1(M)$, we get corresponding elements $\{a_1, a_2\}$ in U(2) such that $a_1^{-1}\cdot a_2^{-1}\cdot a_1\cdot a_2=\mathrm{id}$. Denote by $f(\nabla)$ this pair (a_1, a_2) . We see that by a gauge transformation η of P, $f(\nabla)=(a_1, a_2)$ is transformed as

$$(10.1) f(\eta^*\nabla) = (b^{-1} \cdot a_1 \cdot b, b^{-1} \cdot a_2 \cdot b),$$

where $b \in U(2)$ is defined by $\eta(x) \cdot p = p \cdot b$.

Thus the global moduli space of Einstein holomorphic connections is identified with the quotient space {commuting pair in $U(2) \times U(2)$ }/ \sim , where \sim is defined by $(b^{-1} \cdot a_1 \cdot b, b^{-1} \cdot a_2 \cdot b) \sim (a_1, a_2)$ for $b \in U(2)$. By diagonalization, this space becomes the space $T^2 \times T^2/\sim$, where

$$\left(\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}, \begin{pmatrix} \gamma & 0 \\ 0 & \delta \end{pmatrix} \right) \sim \left(\begin{pmatrix} \alpha' & 0 \\ 0 & \beta' \end{pmatrix}, \begin{pmatrix} \gamma' & 0 \\ 0 & \delta' \end{pmatrix} \right)$$

if and only if they coinside or $\beta' = \alpha$, $\alpha' = \beta$, $\delta' = \gamma$ and $\gamma' = \delta$.

On the other hand, the space $EHEID(\nabla_0)$ is the space of harmonic sections of $\Lambda^1 \otimes \mathfrak{u}(2)$, and is isomorphic with $\mathbb{R}^2 \otimes \mathfrak{u}(2)$. Let $A \in EHEID(\nabla_0)$ and consider the connection $\nabla_0 + A$. Since $\nabla_0 A = 0$, we see that

$$E_{\it EH}(
abla_{
m o} + A) = (0, 2 \, [\overline{A^{
m (0,1)}}, A^{
m (0,1)}])$$
 ,

and

$$(\omega, d^{\nabla_0}B) = 2\sqrt{-1} \left(\nabla_0^{\overline{a}}B_{\overline{a}} - \nabla_0^{a}B_{a}\right),$$

which implies that $\nabla_0 + A$ is an element of the support manifold of $EHLPM(\nabla_0)$. Thus we see that the support manifold is locally isomorphic with $\mathbb{R}^2 \otimes \mathfrak{u}(2)$. Moreover $\nabla_0 + A$ belongs to $EHLPM(\nabla_0)$ if and only if

$$[\overline{A^{(0,1)}}, A^{(0,1)}] = 0$$
.

Therefore the space $EHLPM(\nabla_0)$ is a proper subset of the support manifold. Moreover, the group $\mathcal{G}_{\nabla_0} \cong U(2)$ acts on the space $EHLPM(\nabla_0)$ analogously as (10.1), and we see that

$$\mathcal{G}_{\nabla_0} \backslash EHLPM(\nabla_0) \cong \mathbb{R}^2 \times \mathbb{R}^2 / \sim$$
.

By a similar way we see that the space $HEID(\overline{\partial}_0)$ is canonically isomorphic with the space $C \otimes \mathfrak{gl}(2, C)$, and $\overline{\partial}_0 + HEID(\overline{\partial}_0)$ is the support manifold of $HLPM(\overline{\partial}_0)$. In this case, the space $HLPM(\overline{\partial}_0)$ is an open set of the support manifold. We can see more details as follows. The group $\mathcal{G}_{\overline{\partial}_0}^C$ acts on the space $HLPM(\overline{\partial}_0)$, and

$$\mathcal{G}_{\bar{\mathfrak{d}}_0}^{\mathcal{C}}\backslash HLPM(\bar{\mathfrak{d}}_0) \cong GL(2, \mathbf{C})\backslash \mathfrak{gl}(2, \mathbf{C})$$
,

whose elements are classified using Jordan's normal form. An element of $\mathfrak{gl}(2, \mathbf{C})$ corresponds to an Einstein holomorphic connection if and only if it is diagonalizable. Thus

$$\mathcal{G}_{\nabla_0} \backslash EHLPM(\nabla_0) \subseteq \mathcal{G}_{\overline{\partial}_0}^{\mathbf{C}} \backslash HLPM(\overline{\partial}_0)$$
.

Remark that the space $\mathcal{Q}_{\overline{0}0}^{c}\backslash HLPM(\overline{0}_{0})$ is not a Hausdorff space. In fact, any neighbourhood of the element $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ in U(2) implies some $\begin{pmatrix} \lambda & t \\ 0 & \lambda \end{pmatrix}$ ($t \neq 0$), which is conjugate with $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$.

11. Example II

Let (M, g) be an Einstein-Kähler manifold with Ricci tensor= $e \cdot g$, ∇ an Einstein holomorphic connection and $\bar{\partial} = \Psi(\nabla)$. Then we can see that

(11.0.1)
$$\{(\bar{\partial}^*\bar{\partial} + 2\bar{\partial}\bar{\partial}^*)A\}_{\bar{a}} = (\nabla^*\nabla A)_{\bar{a}} + eA_{\bar{a}} + 2[R^{\nabla\bar{\beta}}_{\bar{a}}, A_{\bar{\beta}}]$$

$$= 2\{-\nabla^{\bar{\beta}}\nabla_{\bar{a}}A_{\bar{a}} + eA_{\bar{a}} + [R^{\nabla\bar{\beta}}_{\bar{a}}, A_{\bar{\beta}}]\}$$

for \mathfrak{g}_P^C -valued (0,1)-form A,

(11.0.2)
$$\{ (\frac{2}{3} \,\overline{\partial}^*\overline{\partial} + 2\overline{\partial}\overline{\partial}^*)A \}_{\overline{\alpha}\overline{\beta}}$$

$$= (\nabla^*\nabla A)_{\overline{\alpha}\overline{\beta}} + 2eA_{\overline{\alpha}\overline{\beta}} + 2[R^{\nabla^{\overline{\gamma}}}_{\overline{\alpha}}, A_{\overline{\gamma}\overline{\beta}}] + 2[R^{\nabla^{\overline{\gamma}}}_{\overline{\beta}}, A_{\overline{\alpha}\overline{\gamma}}]$$

for \mathfrak{g}_P^C -valued (0,2)-form A. Therefore, to see whether $H_{\bar{\mathfrak{g}}}^1$ and $H_{\bar{\mathfrak{g}}}^2$ vanish, we have to get eigenvalues of these operators.

Let M be a homogeneous space K/H and P the principal G-bundle $K \times_{\rho} G$, where ρ is a homomorphism: $H \rightarrow G$. Then we have

$$G_P = K imes_{\mathrm{Ad}_0} G$$
, $\mathfrak{g}_P = K imes_{\mathrm{Ad}_0} \mathfrak{g}$.

As usual, we identify $C^{\infty}(\mathfrak{g}_P)$ with $C^{\infty}(K,\mathfrak{g})_H$. Let $\mathfrak{k}=\mathfrak{h}+\mathfrak{m}$ be an H-invariant decomposition and define a differential operator $D\colon C^{\infty}(K,\mathfrak{g})_H\to C^{\infty}(K,\mathfrak{m}^*\otimes\mathfrak{g})_H$ by

$$(D\hat{s})(X) = (X\hat{s})$$
.

Then this operator D gives a covariant derivative of \mathfrak{g}_P , which is identified with the standard connection ∇ of P. Let C_K (resp. C_H) be the Cassimir operator of the K-module (resp. H-module) $C^{\infty}(K,\mathfrak{g})_H$. We can check that

$$\nabla^*\nabla = C_K - C_H$$

and

$$R^{\nabla}(X, Y) = -\rho[X, Y]$$
 for $X, Y \in \mathfrak{m}$.

(See e.g., [10, Proposition 5.3].)

Therefore the eigenvalues of operators (11.0.1) and (11.0.2) are calculated explicitly by the representation theory. The calculation is easy but complicated, and we omit the detail. See e.g. [10, §7].

Let $M=P^n(C)=SU(n+1)/S(U(n)\times U(1))$ and P the unitary frame bundle of T^+M . Then $\mathfrak{g}=\mathfrak{m}^-\otimes\mathfrak{m}^+$, and the operator (11.0.1) has only positive eigenvalues. Thus $H_{\frac{1}{0}}(M,\mathfrak{g}_F^c)=0$.

Proposition 11.1. The standard connection of the unitary frame bundle of $T^+P^n(C)$ is isolated in the moduli space.

Next, let P be the unitary frame bundle of the symmetric tensor product S^2T^+M of T^+M . Then $\mathfrak{g}=(S^2\mathfrak{m}^-)\otimes(S^2\mathfrak{m}^+)$. In this case the operator (11.0.1) has 0 as an eigenvalue, and all eigenvalues of the operator (11.0.2) are pointive. Moreover, we can easily check that $H^0_{\bar{\mathfrak{d}}}(M,\mathfrak{g}_P^C)=\mathfrak{z}^C$. Thus by Theorem 6.10, we get the following

Proposition 11.2. The local pre-moduli space around the standard connection of the unitary frame bundle of $S^2T^+P^n(C)$ $(n \ge 2)$ forms a non-trivial manifold.

12. Regularity of Yang-Mills connections

In this section we consider not a family of connections but one connection. Let ∇ be a Yang-Mills $C^{2+\alpha}$ -connection of P (0< α <1). I.e., if we represent ∇ by a local frame $\{\xi_p\}$ of \mathfrak{g}_P as

$$abla_{f 0_i}\, m{\xi}_{m{p}} = \Gamma^q_{i\,p}\, m{\xi}_{m{q}}$$

then Γ_{ip}^q are $C^{2+\alpha}$. A local section ξ of \mathfrak{g}_p is said to be harmonic if $\nabla^*\nabla\xi=0$. The defining equation of harmonic section is a linear elliptic differential equation with $C^{1+\alpha}$ -coefficients. Therefore we can take a local frame by harmonic sections, which are $C^{3+\alpha}$ ([2, p. 228 Theorem 1]). The coefficients Γ_{ip}^q with respect to the frame are $C^{2+\alpha}$. But we know that $\{\Gamma_{ip}^q\}$ satisfies Yang-Mills equation:

$$g^{kl}\partial_k(\partial_e\Gamma^q_{ip}-\partial_i\Gamma^q_{lp})+\text{lower terms}=0$$
,

and harmonic equation

$$g^{kl}\partial_k\Gamma^q_{lp}+ ext{lower terms}=0$$
 ,

which is quasi-linear elliptic system with C^{∞} -coefficients. Thus Γ^{q}_{ip} are $C^{\infty}([11, \text{Theorem 6.8.1}])$. If (M, g) is a C^{∞} -riemannian manifold, then Γ^{q}_{ip} are C^{∞} ([11, Theorem 6.7.6]).

Theorem 12.1. Let (M, g) be a C^{∞} (resp. C^{ω}) riemannian manifold and ∇ a Yang-Mills C^3 -connection. Then there exists a C^3 -gauge transformation γ so that $\gamma^*\nabla$ is C^{∞} (resp. C^{ω}).

Corollary 12.2. Let (M,g) be a simply connected C^{ω} -riemannian manifold. Let ∇_1 and ∇_2 be Yang-Mills connections on M. Assume that there is an open set U of M and a gauge transformation γ on U such that $\gamma^*\nabla_1 = \nabla_2$. Then γ extends to a global gauge transformation $\tilde{\gamma}$ so that $\tilde{\gamma}^*\nabla_1 = \nabla_2$ on M.

Proof. We may assume that $\gamma = id$ on U and ∇_1 is C^{ω} . For $x \in U$ and $y \in M$, take a joining geodesic $c : [0, 1] \rightarrow M$ and a C^{ω} -tubular neighbourhood $V \cong (-\varepsilon, 1+\varepsilon) \times D^{n-1}$ of c[0, 1]. Take a C^{ω} -frame of \mathfrak{g}_p on $\{0\} \times D^{n-1}$ and take the parallel extension $\{\xi_p\}$ (resp. $\{\tilde{\xi}_p\}$) for the direction $(-\varepsilon, 1+\varepsilon)$ with respect to ∇_1 (resp. ∇_2). Let $\tilde{\gamma}$ be the gauge transformation on V which transforms $\{\xi_p\}$ to $\{\tilde{\xi}_p\}$. Since ∇_2 is C^{ω} with respect to $\{\xi_p\}$. But here $\tilde{\gamma}=id$ on U, which implies that $\tilde{\gamma}^{-1*}\nabla_2=\nabla_1$ on V by analyticity. Moreover the extension of γ to $\tilde{\gamma}$ is unique and well-defined since M is simply connected. Q.E.D.

REMARK 12.3. This is an analogy of the unique extension theorem of Einstein metrics in [3, Section 5].

13. Some basic lemmas

Lemma 13.1 ([8, Lemma 4.3]). Let v_t be a family of volume elements on M, E_t , F_t families of vector bundles over M with fiber metrics g_t^E , g_t^F and Q_t : $C^{\infty}(E_t) \rightarrow C^{\infty}(F_t)$ a family of differential operators of order k with injective symbol. Assume that v_t , E_t , F_t , g_t^E , g_t^F and Q_t depend C^{∞} -ly (resp. real analytically) on t. That is, there are bundle isomorphism e_t : $E_0 \rightarrow E_t$ and f_t : $F_0 \rightarrow F_t$ such that the coefficients of e_t^* g_t^F , f_t^* g_t^F and $(f_t^{-1})_* \circ Q_t \circ (e_t)_*$ depend C^{∞} -ly (resp. real analytically) on t. Then the dimension of the space Ker Q_t is upper semicontinuous. If the dimension of the space Ker Q_t is constant, then the decompositions

$$(13.1.1) Hs(Et) = Q*t(Hs+k(Ft)) \oplus \operatorname{Ker} Q_{t},$$

$$(13.1.2) Hs(Ft) = Qt(Hs+k(Et)) \oplus \text{Ker } Q_t^*$$

depend C^{∞} -ly (resp. real analytically) on t, where Q_i^* is the formal adjoint operator of Q_t with respect to g_t^E , g_t^F and v_t . Moreover the isomorphisms

$$(13.1.3) Q_t^* + 1: Q_t(H^{s+2k}(E_t)) \oplus \operatorname{Ker} Q_t \to H^s(E_t),$$

$$(13.1.4) Q_t + 1: Q_t^*(H^{s+2k}(F_t)) \oplus \operatorname{Ker} Q_t^* \to H^s(F_t)$$

also depend C^{∞} -ly (resp. real analytically) on t.

Lemma 13.2 ([4, Theorem 3.12]). In the real analytic category in Banach spaces, the implicit function theorem holds.

Lemma 13.3 ([8, Lemma 13.7]). Let E and F be vector bundles over M and E^{C} , F^{C} their complexifications. Let f be a C^{∞} -cross section of E and $\psi \colon E \to F$ a fiber preserving C^{∞} -map defined on an open set of E which contains the image of f. Assume that ψ has an extension to a fiber preserving map $\psi^{C} \colon E^{C} \to F^{C}$ defined on an open set of E^{C} such that the restriction ψ^{C}_{x} to each fiber E^{C}_{x} is holomorphic. Then the map $\Psi \colon H^{s}(E) \to H^{s}(F)$ defined by

$$\Psi(u) = \Psi \circ u \,,$$

defined on an open neighbourhood of f, is real analytic provided that s>[n/2]+1.

References

- [1] M.F. Atiyah, N.J. Hitchin and I.M. Singer: Self-duality in four-dimensional riemannian geometry, Proc. Roy. Soc. London A. 362 (1978), 425-461.
- [2] L. Bers, F. John and M. Schechter: Partial differential equations, Interscience Publishers, New York, 1964.
- [3] D.M. DeTurck and J.L. Kazdan: Some regularity theorems in riemannian geo-

- metry, Ann. Sci. École Norm. Sup. 14 (1981), 249-260.
- [4] D.G. Ebin: The manifold of riemannian metrics, Global Analysis, Proc. Sympos. Pure Math. 15 (1968), 11-40.
- [5] S. Fučík, J. Nečas, J. Souček and V. Souček: Spectral analysis of nonlinear operators, Lecture Notes in Math., vol. 346, Springer, Berlin-Heidelberg-New York, 1973.
- [6] M. Itoh: The moduli space of Yang-Mills connections over a Kähler surface is a complex manifold, Osaka J. Math. 22 (1985), 845-862.
- [7] S. Kobayashi: Curvature and stability of vector bundles, Proc. Japan Acad. A. 58 (1982), 158-162.
- [8] M. Kuranishi: New proof for the existence of locally complete families of complex structures, Proc. of the conference on complex analysis, Minneapolis, 1964, 142–154, Springer-Verlag, New York.
- [9] N. Koiso: Einstein metrics and complex structures, Invent. Math. 73 (1983), 71-106.
- [10] N. Koiso: Rigidity and stability of Einstein metrics the case of compact symmetric spaces, Osaka J. Math. 17 (1980), 51-73.
- [11] C.B. Morrey, Jr.: Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966.
- [12] R.S. Palais: Foundation of global non-linear analysis, Benjamin, New York, 1968.
- [13] D. Sundararaman: Moduli, deformations and classifications of compact complex manifolds, Research Notes in Math., Pitman Advanced Publishing Program, Boston-London-Melbourne, 1980.

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560 Japan