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0. Introduction

There are many researches on deformations of Yang-Mills connections
over 4-dimensional manifolds. In this paper, we generalize the results into
higher dimensional cases. In 4-dimensional case, the Hodge *-operator acts
on A*M and the notion of (anti-)self dual connection is introduced, which
brings beautiful results in Atiyah, Singer and Hitchin [1]. Therefore, in higher
dimensional cases, we have to assume some properties on the base riemannian
manifold. In [1], it is already pointed out that if M is a (2-dimensional) com-
plex manifold, an anti-self dual connection defines a holomorphic structure of
the bundle. Itoh [6] considers in full this situation, which we will generalize
by the notion of “Einstein holomorphic connection” over a Kahler manifold.
However, the moduli space of Yang-Mills connections over a higher dimensional
Kahler manifold may have many singularities, and probably we can not expect
that the moduli space becomes a manifold.

The fundamental notions in this paper come from [1], and fundamental
idea comes from Koiso [9]. It is remarkable that the results for the moduli
space of Einstein metrics and that of Yang-Mills connections are quite analog-
ous. In fact we will get the following results.

Theorem 2.7 (c.f. [9, Theorem 3.1]). The local pre-moduli space is a
finite dimensional real analytic set.

Corollary 6.5 (cf. [9, Theorem 10.5]). If the initial structure (Einstein
metric or Yang-Mills connection) is compatible with a complex structure, then also
around structures are compatible with some complex structures.

Theorem 9.3 (c.f. [9, Theorem 12.3]). Under some assumption, the local
pre-moduli space has a canonical Kahler structure.

However, there is an important difference. For Einstein metrics, we have
no effective obstruction spaces for deformation ([9, Proposition 5.4]), but for
Yang-Mills connections we have one (Theorem 6.9).



148 N. Koiso

1. Yang-Mills connections

Let (M, g) be a compact riemannian manifold, G a compact Lie group, P a
principal G-bundle over M. Denote by g the Lie algebra of G and by G (resp.
gr) the associated fiber bundle PX q,G (resp. PX 5q,8). The space C of all con-
nections of P is an affine space whose standard vector space is C*(A'®g;), where
A? denotes the vector bundle of p-forms on M (see [1, p430]). We fix an
effective representation G—GL(V) and identify a connection of P with a covariant
derivation on PX ¢V or PX cEnd(V). In this sence, for a connection V of P and
an element 4 of C=(A'®g;) the curvature tensor is transformed as

(1.0.1) R4 = R'+d"A+[ANA],
where d¥ and [+ A -] are defined by

(1.0.2) (@A) (X, Y) = (Vx4) (Y)—(Vr4) (X)
and

(1.0.3) [AAB](X, Y) = % ([4(X), B(Y)]—[A(Y), BX)]) -

We fix a G-invariant inner product on g. Then the vector bundle g, admits a
canonical fiber inner product (-, +) and the vector space C*~(g,) admits a (global)
inner product <+, «>. We denote by || +|| the L,-norm defined by -, +>. Define
an action integral Fy,, for connections by

(104) Fru(¥) = IRIP.

DeriniTION 1.1, The function Fy,, on C is called the Yang-Mills functional,
its Euler-Lagrange equation is called the Yang-Mills equation and its solution is
called a Yang-Mills connection.

Let us represent the Yang-Mills equation by a tensor equation. Let V,
be a 1-parameter family of connections on P and set V=V, and A=(d/dt),V,.
Then

d
—| F, =<{——| R, R"
G| P (V) =< 5| B R
=<d"4, R"> = <4, (d")*R">
= 2{4,8°R"),
where (+)* denotes the formal adjoint and the operator 8¥ from C*(A?Q®g;) to
C=(A?"'Q®gp) is defined by

(1.1.1) (8" tyy = —V'Stipt, ., -
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Thus Yang-Mills equation becomes
(1.1.2) Eyu(V)=8"R"=0.

Next, we consider infinitesimal deformations of a Yang-Mills connection.
From now on, we enlarge the space of C~-sections to the space of H*-sections,
and denote by H*(E) the space of all H*-sections of a fiber bundle E over M,
where s is assumed to be sufficiently large. H*-norm will be denoted by |[|-[l,.
The completion of the space C etc. with respect to H*-topology will be denoted

by C’ etc.

DeFINITION 1.2. Let V be a Yang-Mills connection. A solution of the
equation

(1.2.1) (Era)s(A) = 0

is called a Yang-Mills infinitesimal deformation, where / denotes the Fréchet
derivative. The space of all Yang-Mills H’-infinitesimal deformations is de-
noted by YMID'(V).

Lemma 1.3. (Ey,)y(A)=8d"A+tr[R", 4],
where t[RY, Al;=g"[R¥:, 4j].
d

d v,
Proof. ——| (8VtR"),=——— IR t
OO0 7 o( ) > OV' ;
d v

— 14, RE-v/(-2| RY),

[ 1 ] V (dt . 1 )

where 4=_2 v, QED.
dt |,

The automorphism group G=C=(G}) of the bundle P is called the gauge
group of P, and it acts on C by pull-back as

(1.3.1) YV =V+y'Vy (v€E4 VED).

If v is a Yang-Mills connection, then ¢*V is so. In particular, if ¢, is a 1-
parameter family of gauge transformations such that y,=id,, then (d/dt),y¥v=
V((d/dt)yy;) becomes a Yang-Mills infinitesimal deformation of V.

DerFINITION 1.4. Let V be a Yang-Mills connection. A Yang-Mills in-
finitesimal deformation is said to be trivial if it coincides with Vv for some veE
H**Y(gp). A Yang-Mills infinitesimal deformation is said to be essential if it is
orthogonal to all trivial Yang-Mills infinitesimal deformations. The space of
all essential Yang-Mills infinitesimal deformations is denoted by YMEID(V).
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By definition, a Yang-Mills infinitesimal deformation 4€ H*(A'®g;) is es-
sential if and only if <Vov, 4>=0 for any ve H**!(g;), which is equivalent to
that 8¥4=0. Thus the defining equation of the space YMEID(V) becomes

(14.1) 8Vd A+tr[RY, A] =0
and
(14.2) VA =0.

This system is elliptic, and so the space YMEID(V) is finite dimensional and
each element is C*.
The following lemma will be used later.

Lemma 1.5. For any connection V, equality
(1.5.1) S"Eyy(V)=0
and decomposition
(1.5.2) H(A'®gp) = Im(V | H**')PKer &7
hold. If V is a Yang-Mills connection, then the sequence

(1.5.3) C=(8r) g C(A'®8)) G C=(A'®8r) 3, C(8r)

is an elliptic complex. In particular, the following decompositions as Hilbert space
hold.

(1.54)  H(A'Qg,) = Im(Eyy’| H*?)® YMEID®Im(V | H*+)
(1.5.5) Ker(Ey,/ | H*) = YMEID®Im(V | H**),
(1.5.6) Ker(8¥ | H*) = YMEID®Im(Ey,’ | H*?) .

Proof. Equality (1.5.1) is easy to check directly, but here we show it using
an idea from variation. Since the function Fy, on C is invariant under the
action of the group &, we see that

(Fya)o(Vo) =0 for any veC=(g;),
ie., CEyu(V), Vo> =0,

which implies (1.5.1). Decomposition (1.5.2) follows from Lemma 13.1. Let
V be a Yang-Mills connection. Then the space ImV is the space of trivial
infinitesimal deformations, hence (Ey,)5°V=0. From equality (1.5.1) we derive
the equality

(%)« Eyp(V)+087(Eya)v = 0.
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Thus sequence (1.5.3) is a complex, and its ellipticity is easy to check. There-
fore we have decomposition

(1.5.7) H(A'Qgp) = Im(V | H*)D Im((Ey, )¢ | HY?)
@ Ker V¥NKer(Eyy)s -

Here we have V*=§" and so we get (1.5.4) if we show that (Ey,)¢ is self-
adjoint. But we see

{(Eyu)+(4), B> = (Hess Fyy) (4, B),

regarding Fy,, as a function on C’, hence (Ey,)s is symmetric with respect to
{+, +>. Since the space Im(V|H**') is closed in H*(A'®g,), decomposition
(1.5.5) is reduced to the definition of the space YMEID(V). If we remark that
the space Ker(8Y|H’) is the orthogonal complement of the space Im(V|H**),
then (1.5.6) follows from (1.5.4). Q.E.D.

2. Moduli space of Yang-Mills connections

To define “local pre-moduli space”, we need some preparation. We use
some basic facts on C”-maps in Hilbert space category. (See Lemmas 13.2,13.3.)

Remark that the space G&°’=H*(Gp) is a C“-(infinite dimensional) Lie group.
In fact, if we take a complexification G of G and set GE=PX 4,G°, then to
multiply and to get inverse element are extended to maps: H(G§) X H'(G§)—
H'(GS), H(GE)—H’(G¥) so that the restriction on each fiber is holomorphic.
Therefore, by Lemma 13.3, they are C*.

Let V be a connection and Gy the group of isotropy, i.e., Gy={yE G’; Vy=
0} (see (1.3.1)). Since V is an elliptic operator, we see that G3=G5 and so we
simply denote it by Gy. 'The exponential map exp: g—G defines a C*-map exp*:
H¥(gp)—>G° (by Lemma 13.3) and we can easily check that the quotient space
G\ G° admits a C”-structure and that there exists a local cross section X*': G,\G*
—G° so that the domain U’ is uniform on s, i.e., equations UH'=(G,\g**")N U*
and X**'=X’| Us** hold for any s. Define a C“-map

A2 U x (V+Ker (87| HY)) — C*
by A'(u, V,) = X (uw)*V, .
Its derivative at ([id], V) is given by
(v, 4) = V(Xfiai(v))+4,

and is bijective by decomposition (1.5.2). Therefore there exists a local inverse
map (A°)'=¢'xp*: C*-U*'x(V+Ker(8"|H’)). By an analogous way with
Ebin’s Slice theorem in [4, Theorem 7.1], we get the following
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Proposition 2.1. Let VEC=. There exist a neighbourhood U*** of [id] in
G\G**, a neighbourhood V* of V in V+Ker (8 |H’) and a neighbourhood W* of
V in C’ so that

T UV = W

is a C*-diffeomorphism. Moreover if yE G then v*(V°)=V", and ¥y*(V*)N V' =+
¢ if and only if yE G,

Proof. Only the last statement is not shown. Since Gy is a compact group
and preserves Ker 77, taking N,c ¢ ¥*(V°) if necessary, we may assume that
y*¥(V)=V"if yeG,. We now show that if y*(V*)NV*+¢ then yE4,. If
[v] belongs to U**, then bijectivity of A4’ implies that y&&G;. Hence we as-
sume that for any V* there is Y& G**! such that y*(V*) N V' ¢ but [y]e Us+.
This means that there are a sequence {y;} in G**! and sequences {V,;} and {V,}
in (V+Ker (87| H*)) which converge to V such that ¥¥V;=V, and [y,]& Us*.
Then by the following lemma, a subsequence of {y;} converges to an element

Y in G, and so y.€4Gy and [y,]€ U** for some i, which contradicts the
assumption. Q.E.D.

Lemma 2.2. Let {y;}, {Vy} and {V,} be as above. Then a subsequence of
{v;} converges in G**'.

Proof. The equation ¥¥V;=V, is equivalent to the equation y7'Vy;=
Vu—Vyi. Set 4;=V,;;—V and B;=V,—V. Then we see that Vy,=v;(B;—4,)
—A;7v;. In general, we have

7l <CillVYill =1+ Collvllo

for some real number C; and C,, and ||v;|l,<Cj; since G is compact. Therefore

Nyl <Cillvi(Bi—A;)— Aivills-14-Co+ Cs .

Since the multiplication: H*X H*—H' for ¢t<s is continuous (see [12, Section
9]), we see that

Hyalle<Cillvall -1 (1Al A-UBil)+-Co0 Cs - (2—1<5) .

Thus we see by induction that the sequence ||v;|l,+; is bounded, and so a
subsequence of {y;} converges in H*, which we replace by {y;}. Then we have

V(ri—v) = (:i(Bi—A)—A; i) —(v;(Bj—4,;)—4; 7)) ,
and so
yi = illesa <Cillvi—ll+Collyi—5llo
for some C, and Cs, and {y;} is a Cauchy sequence in H**'-topology. = Q.E.D.
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DeFiniTION 2.3.  The manifold V* in Proposition 2.1 is called the slice at
V and is denoted by Ss,.

A priori, the slice may degenerate for s—>oco. But we have following lem-
mas, which say that we can take slices ‘“‘uniformly” and they are “natural”.

Lemma 2.4. Let t>s and set UM=U"N(G\G™"), V'=V*'NC" and
W!=W*'NC*. Then Proposition 2.1 holds when s is replaced by t.

Proof. It is sufficient to prove for #=s+1. The map
Js+l: Us+2>< V:+1 —_ Ws+l

is a C®-injective immersion.

(surjectivity) Let V,€W**'. Then there is yEz"(U**) so that y*V,&
V:. Set 4,=V,—V and 4,=9*V,—V. Then 4,€H**(g;), A,H'(g;), and
Vy=vA,—Ayy. Since 8"4,=0, we have

3Vy = tr(VY®4,)—8%(4y7),

where VyQ A, H* and 8%(4,y)eH*. Thus ye g,
(surjectivity of derivative) Let #,€U**? and V+A4,EV**. Then the
derivative of the map A’ is given by

(Js)l(uo,V'ﬁ'AQ) (u,7 A,)
= X()*{V(' () +[4o 9’ ()] + A}
where @ is defined by @(#)=X(u)-X(4)™'. Let B be any element of H**!(g,).
Then there are '€ T, U**' and A'€ T, V" so that
X(uo)* V(' () +[4o, @' ()] +A'} =B
This implies that
3"V (@' (1)) = 87(X (o) *B—[A, ' (u)]) -

where the right hand side belongs to H*™!. Thus @'(#’)€ H**!, and so the right
hand side belongs to H®, and @'(#’)€H**%. 'Therefore '€ H**? and 4’ €H**.
Q.E.D.

Lemma 2.5. Let V,=85. If there is yEG* such that y*V,€C", then
V€S8, In particualr, if v*V,EC™, then V,EC".

Proof. Let {7} be a sequence in &*' which converges to ¥ in H**-
topology. Then v7™*y*V,—V, in C°, and so for some ¢ ¥;'*y*V, belongs to W*
in Proposition 2.1.  But here y;*y*V,&(C*. Therefore by Lemma 2.4 7;*y*y,
e W’ and so z(vy;')€ U ard V,€S5. Q.E.D.
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Corollary 2.6. Let V,ES; be a Yang-Mills connection. Then V,ES85.
Proof. By Theorem 12.1, V, satisfies the condition in Lemma 2.5. Q.E.D.

Theorem 2.7. Let V be a Yang-Mills connection. There are a neigh-
bourhood U’ of V in S and a closed C°-submanifold Z of U* whose tangent spac:
at V coincides with YMEID(V) such that the set YMLPM(V) of all Yang-
Mills connections in U® is a real analytic set of Z. Moreover, the spaces Z and
YMLPM(V) do not depend on s.

Proof. Set @°=Ey,|Sy. Then by (1.5.2) we see
Im @/ = Eyy/'o(Ker (8% | H')) = Im(Eyal’s | H') .
On the other hand, from (1.5.4) and (1.5.5) we have
HY(A'Q@p) = Im(Ey,/ | H)®Ker(Ey,/ | H?).

Let p° (resp. ¢°) be the projectoin to the first (resp. second) component. Then
the C“-map p’op’ has surjective derivative at V and by the implicit function
theorem there is a neighbourhood U* of V in &; so that the set Z= {V,€ U*| p’
o@’(V,)=0} is a C“-submanifold of U’. The tangent space TyZ coincides with
the space YMEID(V) and the set YMLPM(V) is the zero of the map ¢'og° on Z.

Next we have to show that if we set Z'*=Z NS¢ and U'=U'N S for t>5
then Z' coincides with Z as manifold and p’oe* has surjective derivative at any
point of Z'. Let V+AE€Z. Then by the definition of Z and Lemma 1.5 we
have

894 =0, Eypy'(Ep(V+A)=0.

Since this is an elliptic system, 4 is C*, and so Z=Z asset. Let V,EZ*. Since
p’o@’ has surjective derivative at V,, for any A€Im(Ey,/ s, | H') there are BE
Ker (87| H*) and CEKer(Ey,'v| H’) so that (¢°)g,(B)=A+C. Then

Eyy'vo(9°)3,(B) = Eyy'o(A)EH™,

and 8"B=0. Therefore B€ H', which implies that p’og* has surjective deriva-
tive at V,, and so Z’ is a closed C“-submanifold of U’. Moreover, the identity:
Z'—Z is bijective and its derivative also, hence is a diffeomorphism. Q.E.D.

DeFINITION 2.8. The set YMLPM(V) is called the local pre-moduli space
of Yang-Mills connections around V and the set Z is called its support manifold.

‘We may summarize results as

Theorem 2.9. Let V be a Yang-Mills connection. The local pre-moduli
space YMLPM(V) of Yang-Mills connections has the following properties. a)
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YMLPM(V)CS;. b) If V,is a Yang-Mills connection sufficiently close to V, then
there is y € G°** so that v*V,€ YMLPM(V). ¢)If v*YMLPM(V)N YMLPM(V)
F ¢ for yE G, then v*V=V, i.e., Vy=0.

RemaArk 2.10. The global moduli space &\{Yang-Mills connections} is
locally homeomorphic with the coset space G,\YMLPM(V). Since &G, is a
compact Lie group, almost all local properties of the global moduli space is
reduced to that of YMLPM(V).

Corollary 2.11. (1) Let V be a Yang-Mills connection. If YMEID(V)
=0, then [V] is isolated in the global moduli space of Yang-Mills connections.
(2) The Yang-Mills functional Fy,, is constant on the space YMLPM, and locally
constant on the global moduli space. (3) If a connection V minimizes the func-
tional Fy, on C, then any Yang-Mills connection sufficiently close to V also min-
imizes Fyy. (4) Any Yang-Mills connection sufficiently close to a flat connection
s flat. (5) Let M be 4-dimensional. Any Yang-Mills connection sufficiently
close to a self-dual (resp. anti self-dual) connection 1s self-dual (resp. anti self-dual).

Proof. (1) The assumption implies that the support manifold Z is a point.
(2), (3) The set YMLPM forms a real analytic set and its points are critical
points of Fy,. (4) A connection V is flat if and only if Fy,(V)=0. (5) A
connection V is (anti) self-dual if and only if Fy (V) coincides with a topological
invariant of the principal bundle (see [1, p. 432]). Q.E.D.

3. The obstruction for deformations

We have shown that the local pre-moduli space YMLPM(V) is a real
analytic set of the support manifold. Therefore we want to know when YMLPM
coincides with the support manifold. In this section we introduce a notion
which will be used later.

Let P be an open set of a Hilbert space, Q and R Hilbert spaces. Let E:
P—->Q and I: PxO—R be C~-maps and define I,: O— R for each fixed pe P.

DeriniTiON 3.1, If I, is linear for each p&P and I(E(p))=0 for all
pEP, then [ is called an identity for E.

If I is an identity for E and E(p)=0, then we see that [,0E}=0, i.e.,
Im E;CKer I,.

DerFINITION 3.2. Let I be an identity for E and assume that E(p)=0.
The space Ker I,/Im Ej is called the obstruction space for E-deformations of p
with respect to 1.

Lemma 3.3. Let I be an identity for E and pcE~*(0). If the obstruction
space Ker I,/Im E} vanishes, then the set E~(0) around p forms a manifold whose
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tangent space at p coincides with Ker E}, provided that one of the following condi-
tions is satisfied. (1) The map E is C*°. (2) The space Im I, is closed in R.

Proof. By a similar way as in Proof of Theorem 2.7, we see that there
exists the “‘support manifold” Z whose tangent space at p coincides with Ker E}
such that E7Y(0)=(pcoE|Z)™(0) around p, where p. is the projection to a
complement C of Im Ej in Q. Set E=E|Z: Z—C and I=I|(Zx C): Zx C—~
R. Itis enough to prove that E=0. Remark that Ker T,=Ker I,NnC=Im Ej}
NC=0 and so I, is injective. Assume condition (2). Then Im I,=I,(C)=

I(Im E}®C)=Im I,, and so Im I, is closed in R, hence I, is an isomorphism
from C into R. Therefore I, is injective if p,EZ is sufﬁ01ently closeto p. But
here we know that I, (£(p,))=0. Thus £(p,)=0.

Next we assume condition (1) and show the 7-th derivative E® vanishes
for all 7>0 by induction. By taking 7-th derivative of the identity I, (£(p,))=0

and setting v=—i P We get
dt |,

LEPE = 0) = =) () Iooe (L) 1o 0

By induction we may assume that the right hand side vanishes, and so the left
hand side vanishes. But we know that I is injective, hence E"’ 0. Q.E.D.

ReMARK 3.4. This Lemma essentially is ‘“Kuranishi’s method” ([8]).

4. The deformation of Yang-Mills connection caused by a defor-
mation of base metric

We want apply Lemma 3.3 to a deformations of Yang-Mills connection.
Unfortunately, it is not possible if we use Yang-Mills equation itself. In 6,
we will introduce the notion of “Einstein holomorphic connection” and apply
Lemma 3.3.

Now, by equation (1.5.1), &Y is an identity for Ey,, and the obstruction
space

Ker 8¥/Im Ey, v YMEID(V)
by equation (1.5.6).
Proposition 4.1. Let V be a Yang-Mills connection. The obstruction space

for Eyy-deformation of V with respect to 8¥ is isomorphic with the space YMEID(V)
of essential infinitesimal deformations.

Hence we apply Lemma 3.3 to the situation that we deform the metric g
on M and Yang-Mills connection follows it. Denote by #° the space of all
H’-riemannian metrics on M and define maps E, I by
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E: HHXCH —> H(A'®G,); (g V)~ RY,
It M+ X O H (N'Rgp) = H'(8r); (8 V, ) —> 8.
Then I is an identity for E.

Theorem 4.2. Let V be a Yang-Mills connection over (M, g), i.e., E(g, V)
=0. If YMEID(V)=0, then for any deformation g, of g there exists a 1-para-
meter family of conmections V, so that each V, is a Yang-Mills connection with
respect to g,, provided that |t| is small.

Proof. 'The obstruction space for E-deformation of (g, V) with respect to
I coincides with the space

Ker 63/Im Ef, ) ,

which is a quotient space of the space YMEID(V) by equation (1.5.6), and
vanishes by assumption. Therefore by Lemma 3.3 the set £%(0) arround (g, V)
forms a manifold whose tangent space at (g, V) coincides with Ker Ef, ;). But
here the projection map from Ker E{; ¢, to T, JH**! is surjective, which completes
the proof by the implicit function theorem. In fact, for any ke T, H", we get
Ely v (h, 0)eKer 8, therefore by equation (1.5.6) and assumption, there is A€
T C**? such that Ker Ef o)(h, 0)=Ey, ¢(4), i.e., Ef; o (h, —A)=0. Q.E.D.

5. Holomorphic structures

Let M be a compact complex manifold and P€ a principal G¢-bundle, where
G€ is a complexification of G. A GC-invariant almost complex structure on P¢
is called an almost holomorphic structure of PC. If it is integrable, then it is
called a holomorphic structure. An almost holomorphic structure can be re-
garded as a first order differential operator

(5.0.1) 3: C=(g%) - C(A"'®q$),

and it is a holomorphic structure if and only if the torsion 7T'(3) of @ vanishes,
where T'(8) € C~(A**®g¢%) is defined by

(5.0.2) T(é) (X, Y)'U = 5)[5,,‘1)—51;6,(‘11—5[&”‘0 .
An almost holomorphic structure 3 extends to the operators
(5.0.3) ?: C=(A"Rg%) = C(A**'®qF),

and if 9 is a holomorphic structure, then they defines an elliptic complex and
the cohomology groups

(5.0.4) H"(gG)=Ker 5/Im 5°*
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are defined.

We can study deformations of holomorphic structures by a similar way as
deformations of complex structures on manifold (c.f. [13, pp 172-176]), but we
use here notations similar with [6].

The space A of all almost holomorphic structures forms an affine space
with standard vector space C*(A"'®ga$), and the complex gauge group G¢=
C=(G%)acts on it. Let G¢ be the group of isotropy, i.e., GS={y€g°| y*9=0}.
Then the H**'-gauge group G°**' acts on AL holomorphically and the coset
space GE\G%**! forms a complex analytic manifold. The following proposition
is proved by a similar manner as Proposition 2.1.

Proposition 5.1. Let 3& AYH. There exist a neighbourhood S&* of 3 in D
+Ker (0% | H*), a neighbourhood U°+** of [id] in GS\GC**' and a neighbourhood
W of 8 in AIL* so that the action

JC.S: UC.s+1XS%J,s_) WC,s

becomes a complex analytic diffeomorphism. Here, the formal adjoint 3% of 9 is
defined by some (and fixed) hermitian inner product of §%.

Let 3 be a holomorphic structure of P¢. For A€ C~(A"'Q¢$) we see that
T@+A)=T([O)+3'A+[AANA]. Therefore the equation of infinitesimal defor-
mation of holomorphic structure of 3 is given by

(5.1.1) 94=0.

The space of all essential infinitesimal deformations of 9 is given by
(5.1.2) EHID(3) = Ker 3' N Ker 9*.

By a similar way as Theorem 2.7, we have

Theorem 5.2. Let 9 be a holomorphic structure. There are a neighbour-
hood U®* of 3 in S&* and a complex analytic submanifold Z€ of U®** so that the
set of all H*-holomorphic structures in U forms a complex analytic set of Z°.

DEerFINITION 5.3. 'The set of all H*-holomorphic structures in U®* is called
the local pre-moduli space of holomorphic structures around 3 and denoted by
HLPM(3). The manifold Z€ is called its support manifold.

Equalities (5.1.2) and (5.0.4) mean that the space HEID(9) is canonically
isomorphic to H*(g§). Moreover, for any d& A4 we have

(5.3.1) PT(3) =0,

which means that 3 is an identity for 7. Therefore, by Lemma 3.3, we get
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Theorem 5.4. Let 3 be a holomorphic structure. If H**(g$)=0, then the
space HLPM(9) forms a (complex) manifold whose tangent space at 9 coincides
with the space HEID(9).

REMARK 5.5. Since the action of G¢**! on A4* is complex analytic, the
complex structure of the above space HLPM(3) is canonical. le., if 0,
HLPM(9), then the ‘“projection map”: HLPM(3,)—~HLPM(5) defined by
Proposition 5.1 is complex analytic.

REMARK 5.6. The space HLPM(0) has similar properties as YMLPM(V)
in Theorem 2.9. But property (c) does not hold for HLPM(3), because G€ is
not compact. Therefore the quatient space GS\HLPM(J) is not necessarily
identified with an open set of global moduli space of holomorphic structures.

6. Einstein holomorphic connections

Let (M, g) be a compact Kihler manifold,  its Kdhler form. Then the
(0, 1) component of a connection V on P is a almost holomorphic structure 9
of P¢. Since T(9) coincides with the (0, 2) component of RY, 3 is a holomorphic
structure if and only if RY is of type (1, 1).

DEerINITION 6.1. A connection V of P is said to be holomorphic if the
(0,1) component of V is a holomorphic structure, or equiavlently, if RY is of
type (1, 1). (Remark that this definition is not exactly the same with [6].)

Denote by Ry (resp. R%) the hermitian (resp. skew-hermitian) part of RY.
Elements of Lie algebra 3 of the center Z(G) of G define parallel sections of
C=(g»), and are denoted also by 3.

DEFINITION 6.2. A holomorphic connection V is called an Einstein holo-
morphic connection if (w, R¥)E3% as section.

For example, if G="U(r), a connection V is an Einstein holomorphic con-
nection if and only if V is an Einstein hermitian connection for some holo-
morphic structure.

Lemma 6.3 (Itoh, Personal communication). An Einstein holomorphic con-
nection takes the minimum value of the Yang-Mills functional Fyy on C. Con-
versely a connection which takes the value is an Einstein holomorphic connection.

Proof. Let V be a connection of P and consider the characteristic classes
of P. For each c€3, the classes represented by (¢, R¥) and Tr(R"ARY) do not
depend on V, and so the values S (¢, R) Ao** and S Tr(RVARY)Aw"? are

M M

constant for V. Therefore there are c,&3 and a real number C such that
equalities
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(6.3.1) <o®c, R™> = e,
and
(6.3.2) IREIP—IRZIP—|l(w, RV)I* = C

hold for all V. Let (o, R")=c¢,+v where ¢,E3 and o is orthogonal to 3 with
respect to the global inner product. Then

<c(h C> = <C) ((D, RV)> = <C) Cl>

for any ce3. Therefore ¢,=c¢, and

[IR¥|[> = ||RE|*+-IR3|*
= C+2||R¥|P+l(w, RY)II?
2= C+l(w, RO
= C+|leo|*+1lo]?
> C+lel?.

The equality ||R”|[*=C-||c,||? holds if and only if R{=0 and v=0, i.e., (o, R")
€3. Q.E.D.

RemMARK 6.4. We saw that if V is an Einstein holomorphic connection
then (w, R)=c,.

Corollary 6.5. All Einstein holomorphic connections are Yang-Mills con-
nections. Conversely all Yang-Mills connections which are sufficiently close to an
Einstein holomorphic connection are Einstein holomorphic connections.

Proof. Easy to see by Corollary 2.11 (3). Q.E.D.

Next we consider infinitesimal deformations of Einstein holomorphic con-
nections. Define a map Egy: C°*—H*"Y(A*?Qe¢)DH " (g;) by

(6.5.1) V = (p™’R%, (o, R")—c)),

where p*" is the projection map from A’ to A" and ¢,&3 is defined in Proof of
Lemma 6.3. By Remark 6.4, a connection V is an Einstein holomorphic connec-
tion if and only if Ez5z(V)=0.

DEFINITION 6.6. Let V be an Einstein holomorphic connection. An
element 4 of H'(A'®g;) is called an Einstein holomorphic infinitesimal deforma-
tion of V if Epy'o(A)=0. An Einstein holomorphic infinitesimal deformation
is said to be essential if it is orthogonal to all trivial infinitesimal deformations
of V, and the space of all Einstein holomorphic essential infinitesimal deforma-
tions is denoted by EHEID(V).



YaNGg-MiLLs CONNECTINOS AND MODULI SPACE 161

By a similar way as Theorem 2.7, we get

Theorem 6.7. Let V be an Einstein holomorphic connection. There are a
neighbourhood U of V in S5 and a closed C*-submanifold Z of U’ whose tangent
space at V coincides with EHEID(V) such that the se¢ EHLPM(V) of all Einstein
holomorphic connections in U* is a real analytic set of Z.

Moreover, the combination of an obvious inclusion: EHLPM(V)C
YMLPM(V) and the converse inclusion YMLPM(V)C EHLPM(V) by Corollary
6.5 means that EHLPM(V)=YMLPM(V). Let V be a connection. Define a
map Io: H (A’ QgF)DH ~(gr)—~H (A’ ®¢F)D3 by

Io(P, 7) = (p"*(d"P), 3-part of 7).
Lemma 6.8. The map I is an identity for Egy.
Proof. For any V, we see
P (PR = PR =0,
and (6.3.1) means that 3-part of (w, R")—c, vanishes. Q.E.D.

Therefore if V is an Einstein holomorphic connection and Ker I;/Im Egy'y
vanishes, then the local pre-moduli space EHLPM(V) of Einstein holomorphic
connections forms a manifold with tangent space EHEID(V) at V.

Theorem 6.9. Let V be an Einstein holomorphic connection. In general, the
space EHLPM(V) forms a real analytic set of the support manifold Z whose tangent
space at V is isomorphic with the cohomology group H*'(M, ¢%). If H**(M, g%)=0
and H°(M, §%)=<3€, then the psace EHLPM(V) coincides with the support manifold.

Proof. We must show that EHEID(V)=H"'(M, g%) and Ker Iy/Im Ez,/y
=H"Y(M, ¢8)DH(M, gr)[3, where H°(M, gp) denotes the vector space of all
parallel sections of g,. First we see that the sequence

(6.9.1)  C=(85) = C=(A'®8r) 7— C~(A"*RaF)DC(gr) —> C~(A™®gf)
v EEH v prOI v

is an elliptic complex. Therefore

(6.9.2) (Ker Iy/Im Eg,/o)P3=Ker (prely)/Im Eg,'y
=Ker (proly) N Ker (Egy'v)* .

Let (P, )€ Ker (prely) N Ker (Ezy'y)*. We easily see that
(6.9.3) (w,d%A) = 4 Re(~/—1V?4;) .

Thus (P, n)=Ker (Egzy’y)* means that
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(6.9.4) (P, n), (p**(d7A), 4Re(v/ —1 V*4;))> =0
for all A= C~(A'®g;), from which we have
(6.9.5) —~VPPa+2v/ =1V =0.

Here we know that VEVHPM:O since V is Einstein. Therefore we see that
(6.9.6) —VPP;z; =0 and Vy=0.

Combining with the assumption that (P, )& Ker(prely), we see that P is har-
monic and 7 is parallel. The converse is obvious, and we get

(6.9.7) Ker(prolo) N Ker (Epy'o)*=H"(M, g8)H"(M, g5) .
Let A EHEID(V). Then by definition and equality (6.9.3) we get
(6.9.8) VsAsg—Vsd; =0,
(6.9.9) V?A,€C=(8p)
and
(6.9.10) V*A;+V*4,=0.

Thus we see that p™'4 is harmonic and so the first isomorphism holds. Q.E.D.
The above results are resumed as follows.

Theorem 6.10. Let V be an Einstein holomorphic connection. The space
EHLPM(V) coincides with the space YMLPM(V) around ¥V, which is a real ana-
lytic set of the support manifold Z whose tangent space at V coircides with the space
EHEID(V). If H*¥(M, a§)=0 and H (M, §%)=3C, then the space EHLPM(V)
cotncides with the support manifold Z.

ReMARk 6.11. The above statement suggests the equality YMEID(V)=
EHEID(V), which in fact holds.

7. The deformation of Einstein holomorphic connections caused by
a deformation of complex structure of the base manifold

In this section we discuss on deformations of Einstein holomorphic con-
nections in a similar situation as in section 4. Let (M, ], g) be the base Kuhler
manifold and (J,, g;) be a one-parameter family of Kiahler structure such that
(Jor &0)=(J, g). Define maps E, I

E: (—& &)X — H Y (A*QgS)DH'(g;),
Ly H (A Q0S)DH "\ (85) — H (A% R¢%) D3
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E(t, V) = (p"°R", (w4, R"");—cy)
and

Iy )(P, 7) = (p™*(d"+P), 3-part of 3),

where all operators and ¢,E4 depending on base Kihler structure are defined
by (Ji» &) Then we know that [ is an identity for E.

Theorem 7.1. Let V be an Einstein holomorphic connection on (M, ], g).
If H"Y(M, §$)=0 and H M, §,)=34, then for any deformation (J,, g;) of Kahler
structures of (J,g) there exists a ome-parameter family of connections V, of P so
that each V, is an Einstein holomorphic connection over (M, [, g,), provided that
|| is sufficiently small. Moreover, each local pre-moduli space EHLPM(V,) over
(M, ], g;) forms a manifold of the same dimension.

Proof. The obstruction space for E-deformation of (0, V) with respect to
1 coincides with the space

Ker Io/Im E(, v) ,

where I is introduced before Lemma 6.8. It is a quotient space of the space
Ker I;/Im Egy’y and vanishes by assumption. Therefore by Lemma 3.3 the set
E~Y(0) around (0, V) forms a manifold whose tangent space at (0, V) is given by
Ker E{,,y). But here the projection map from Ker E{; ) to To(—&, &) is sur-
jective, which completes the proof by the implicit function theorem. In fact,
for ue Ty(—¢, €), we get Ejy v)(u, 0)=Ker I, therefore by assumption there is
ATy’ such that E), o)(u, 0)=Eg, o(A), i.e., E{y v(u, —A)=0. Q.E.D.

8. Einstein holomorphic connections and holomorphic structures

For a connection V of P we denote by ¥(V) the (0, 1)-part of V, which is
an almost holomorphic structure of P€. Remark that the map ¥ commutes
with the action of the gauge group &. Therefore ¥ induces a map from the
moduli space of Einstein holomorphic connections to the moduli space of hol-
omorphic structures. This map locally corresponds to a map ¢: EHLPM(V)—
HLPM(0), where V is an Einstein holomorphic connection and 9=Y(V).

Theorem 8.1. Let V be an Einstein holomorphic connection. If H(M, gp)
=<3, then the map po¥W gives a bijection between EHLPM(V) and HLPM (¥ (9))
around V, where the map p: W—8§%, is defined by Propotition 5.1.

Proof. Set E={V,€S83; (0, R"1)—c,=0}. The derivative of the map f:
Vi—>(w, R"1)—¢, at V is given by
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A— 2/ 1 (VPA4;—V*4,) .
Set A;=+/—1 V¥ for yy€H**'(g;). Then
AsTS;
and
2v/ 21 (VP45;—V*4,) = 2V*V.

Therefore the image of the derivative of the map f from S is closed in H*7'(g5),
and coincides with the orthogonal complement of H%(M, g5). Therefore by as-
sumption and Lemma 6.8, the map f from &3 to the orthogonal complement of
3 has surjective derivative, from which we see that € is a manifold whoes tangent
space at V coincides with the space

{AeH (N'Qg5); —V°A; = 0} .

Since the derivative of the map po¥ from & is nothing but the correspondence:
A—>(0, 1)-part of A, poyr gives a local diffeomorphism from &€ to §;. If v,
EHLPM(V) then poW(V,)e HLPM (¥ (V)), conversely, if 9, HLPM(¥(V))
then (po¥|£)7Y(3,) is Einstein holomorphic by definition of &£. Q.E.D.

ReMARK 8.2. Theorem 8.1 and Theorem 5.4 give another proof of Theorem
6.10.

Combining with Theorem 6.10, we get the following

Theorem 8.3. Let V be an Einstein holomorphic connection and set 9=
W(V). Then there exists a natural correspondence

YMLPM(V) = EHLPM(V) — HLPM(3),

where — is an injection, and becomes a bijection if Ker V=3.

9. A structure on the moduli space

Let V be an Einstein holomorphic connection and set 0=Y(V). Assume
that H3(g%)=3¢ and HZ(g$)=0. Then the manifolds EHLPM(V)and HLPM({(3)
are isomorphic by Theorem 8.1, and become complex manifolds by Theorem
5.4. The complex structures are realized by the almost complex structures
given by multiplying «/—1 on T;HLPM(3) and J on T(EHLPM(V), where [ is
defined by (JA);=—A4; J';. In fact, we see that

Y(JA) = (JA)®™ = —4s JPa = vV—14; = V=1%(4).

On the other hand, the space C° has the riemannian metric <-, -, which is
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invariant under the action of G**!. Therefore the manifold EHLPM(V) has a
canonical riemannian metric, which is given as follows. Let V,&EHLPM(V)
and 4, BET,, EHLPM(V). The elements 4 and B are Einstein holomorphic
infinitesimal deformations of V,, and are decomposed into the essential parts Az,
B and trivial parts A;, By (see (1.5.2)). We define the inner product of 4 and
B by {Ag, B;>. From Lemma 13.1, we see that this inner product becomes a
C®-riemannian metric.

DeFINITION 9.1. The above riemannian metric on EHLPM(V) is called
the natural riemannian metric.

RemARk 9.2. Let V, and V, be Einstein holomorphic connections and as-
sume that there are Vo EHLPM(V,) and v € G*** such that v*V,& EHLPM(V,).
Then for each Ve EHLPM(V,) sufficiently close to V, there is Y& G*** so that
v*VeEHLPM(V,), and this correspondence: V—>7*V becomes an isometry.
Therefore we may say that the canonical riemannian metric is independent of V.

Theorem 9.3. Let V be an Einstein holomorphic connection and set 0=
W(V). If H3(8%)=3¢ and HZ(8%)=0, then the canonical riemannian metric on
EHLPM(V) is a Kdhler metric with respect to the complex structure on HLPM(?).

Proof. We easily see that the canonical riemannian metric is a hermitian
metric. We have to show that the Kihler form is closed. We replace V by
V, and denote by V elements of HLPM(V,) regarded as variable. Conisder the
fiber bundle p: PX EHLPM—EHLPM. In general, a diffeomorphism from a
fiber to another fiber which commutes with the action of G' and fixes M pull
backs a G-invariant structure, and so if a vector field v on PX EHLPM is p-
projectable, G-invarant and z*v=0, where z is the projecticn to M, then the
Lie derivation £, on a family of G-invariant structures is defined. For example,

.C,,VEJL (exp s2)*V .
ds lo

If we decompose v into the P-part v, and the EHLPM-part v,,, we see that
LYV = WM[V]'l_LvPV .

Now, we denote the almost complex structure on EHLPM by J%, the
canonical riemannian metric by g and the Kihler form by «f. Decompose
v T(EHLPM) into v; and v, so that [, V is essential and [,V is trivial.
This decomposition is not unique, but we may assume that it depends C=-ly on
v by Lemma 13.1. Then we see that

'E(]EV)EV = ].C,EV ’
gE(.v’ ‘ZO) = <-£mv’ -Ewnv> ’
wE(v) w) = gE(]E.v’ w) = <.7‘Cvnv) £wyv> b
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where J is defined in the first paragraph of this section. We may assume that
[v, w]=[w, 2]=[2, v]=0 without loss of generality, and see that

(do®) (v, w, 2) = v+ (w, 2)+alternating terms
= 0+ l{J L0V, L,V +alt.
— (T LigLogVy LoV +LJ Loy, Ly LogV>+alt .
= T LogLagV, J Leg V> Loy Loy T LaugV>+alt .
= ~{[L,gs Logl V> J Lo,VD>+alt.
= L LlogwmV> J LegVD+alt .

But here py[vz, wg]=[v, w]=0 and so [vg, wg] is vertical, which implies that
LiygwmV is trivial. Q.E.D.

10. Example I

Let M be a flat torus T% P the trivial principal U(2)-bundle and V, the
canonical connection of P. V, is a flat connection, and so an Einstein holo-
morphic connection. Therefore, by Lemma 6.3, all Einstein holomorphic con-
nections of P are flat. Fix a point x in M and an element p in P,. Any closed
curve ¢ (¢(0)=c(1)=x) in M is horizontally lifted to a curve ¢ in P so that &(0)=
p, and we get an element &(1) in P,. Let a be an element of U(2) such that
Z(1)=p-a. Since V is flat, this mapping: ¢—a induces a homomorphism:
m(M)—U(2), defined by [c]—>a. Taking generators {[¢,], [¢,]} of =, (M), we
get corresponding elements {a;, a;} in U(2) such that ai'-a3'-a,-a,=id. Denote
by f(V) this pair (a;, @;). We see that by a gauge transformation % of P,
f(V)=(a,, ) is transformed as

(10.1) fer*V) = (b7 +a,+b, 67"+ a;+b),

where be U(2) is defined by 5(x)-p=p-b.

Thus the global moduli space of Einstein holomorphic connections is identi-
fied with the quotient space {commuting pair in U(2)X U(2)} /~, where ~ is
defined by (67 -a,+b, b7'+a,+b) ~ (a,, @,) for b€ U(2). By diagonalization, this
space becomes the space T%X T? ~, where

al v 0 ) (a0 v’ O)
((0,3)’(0 3) ((0 3’)’(0 8’ )
if and only if they coinside or B'=a, a’'=g, 8'=1v and v'=34.
On the other hand, the space EHEID(V,) is the space of harmonic sections of

A'Qu(2), and is isomorphic with R*@u(2). Let A EHEID(V,) and consider
the connection V,+A4. Since V,4=0, we see that



YanGg-MiLLs CONNECTIONS AND MODULI SPACE 167

En(Vo+A) = (0, 2[A®D, A®1)),
and
(w, d"B) = 2+/—1 (VS-'BE—VSB,) :

which implies that V,+4 is an element of the support manifold of EHLPM(V,).
Thus we see that the support manifold is locally isomorphic with R*Qu(2). More-
over V,+A4 belongs to EHLPM(V,) if and only if

[, 46:5] — 0.

Therefore the space EHLPM(V,) is a proper subset of the support manifold.
Moreover, the group &g =<U(2) acts on the space EHLPM(V,) analogously as
(10.1), and we see that

G \EHLPM(V,)=R*X R*|~ .

By a similar way we see that the space HEID(d,) is canonically isomorphic
with the space C®gl(2, C), and 3,+HEID(3,) is the support manifold of
HLPM(3,). In this case, the space HLPM(3,) is an open set of the support
manifold. We can see more details as follows. The group G¢ acts on the space
HLPM(0,), and

GE\HLPM(@)=GL(2, C)\gl(2, C),

whose elements are classified using Jordan’s normal form. An element of
gl(2, C) corresponds to an Einstein holomorphic connection if and only if it is
diagonalizable. Thus

G \EHLPM(V,)5 GE\HLPM(3,) .
Remark that the space GS\HLPM(d,) is not a Hausdorff space. In fact,

any neighbourhood of the element (07” ;3) in U(2) implies some ( )(t=l=0),

Al
0x
D . e (A1
which is conjugate with <O 7\) .

11. Example II

Let (M, g) be an Einstein-Kihler manifold with Ricci tensor=e-g, V an
Einstein holomorphic connection and 9=¥(V). Then we can see that

(11.0.1) {(8%9+280%) A} ;=(V*VA)z+ed;+2[R";, A5
= 2{— VPV d +ed;+[R;, Al

for g§-valued (0,1)-form 4,
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(1102) {(% 5%5+-200%)4} 45

= (V*VA)z5+2e4;5+2[R" 5, Ayg]+2[R7 5, Asy]

for g§-valued (0,2)-form 4. Therefore, to see whether H} and H} vanish, we
have to get eigenvalues of these operators.

Let M be a homogeneous space K/H and P the principal G-bundle K X ,G,
where p is a homomorphism: H—-G. Then we have

Gp =KX AdpG , 8p=KX JER

As usual, we identify C=(gp) with C~(K, g);. Let f=%H-+m be an H-invariant
decomposition and define a differential operator D: C=(K, g)z—C=(K, m*Qg)y
by

(D$) (X) = (X$).

Then this operator D gives a covariant derivative of gp, which is identified
with the standard connection V of P. Let Cx (resp. Cy) be the Cassimir op-
erator of the K-module (resp. H-module) C=(K, g);. We can check that

V*V = Cx—Cy
and
R'(X,Y)= —p[X, Y] for X, Yem.

(See e.g., [10, Proposition 5.3].)

Therefore the eigenvalues of operators (11.0.1) and (11.0.2) are calculated
explicitly by the representation theory. The calculation is easy but complicated,
and we omit the detail. See e.g. [10, §7].

Let M=P"(C)=SU(n+1)/S(U(n)x U(1)) and P the unitary frame bundle
of T*M. Then g=m~@m*, and the operator (11.0.1) has only positive
eigenvalues. Thus Hj (M, g§)=0.

Proposition 11.1. The standard connection of the unitary frame bundle of
T+P"(C) is isolated in the moduli space.

Next, let P be the unitary frame bundle of the symmetric tensor product
S?2T*M of T*M. Then g=(S*m~)@(S?m*). In this case the operator (11.0.1)
has 0 as an eigenvalue, ard all eigenvalues of the operator (11.0.2) are poitive.
Moreover, we can easily check that Hg (M, g¢)=3¢. Thus by Theorem 6.10,
we get the following

Proposition 11.2. The local pre-moduli space around the standard connec-
tion of the unitary frame bundle of S*T+P"(C) (n>2) forms a non-trivial manifold.
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12. Regularity of Yang-Mills connections

In this section we consider not a family of connections but one connection.
Let V be a Yang-Mills C***-connection of P (0<a<1). Le., if we represent V
by a local frame {£,} of g, as

Vo £, =Th &,

then T'Y, are C*®. A local section & of g, is said to be harmonic if V¥*VE=0.
The defining equation of harmonic section is a linear elliptic differential equation
with C'**-coefficients. Therefore we can take a local frame by harmonic sec-
tions, which are C*** ([2, p. 228 Theorem 1]). The coefficients I'}, with respect
to the frame are C?*®. But we know that {I'},} satisfies Yang-Mills equation:

£"8,(8,1'%,—0,T",)+lower terms = 0,
and harmonic equation
g40,Tf,+lower terms = 0,

which is quasi-linear elliptic system with C~-coefficients. Thus I'}, are C=([11,
Theorem 6.8.1]). If (M, g) is a C*-riemannian manifold, then I'?, are C* ([11,
Theorem 6.7.6]).

Theorem 12.1. Let (M, g) be a C= (resp. C°) riemannian manifold and V
a Yang-Mills C3-connection. Then there exists a C®-gauge transformation 7y so
that y*V is C= (resp. C*).

Corollary 12.2. Let (M, g) be a simply connected C“-riemannian manifold.
Let V, and V, be Yang-Mills connections on M. Assume that there is an open set
U of M and a gauge transformation v on U such that v*V,=V,. Then 7y extends
to a global gauge transformation ¥ so that ¥¥V,=V, on M.

Proof. We may assume that y=:d on U and V,is C®. For x&U and y&
M, take a joining geodesic c¢: [0, 1]—=M and a C“-tubular neighbourhood V=
(—& 1+&)xD** of ¢[0,1]. Take a C“-frame of g, on {0} X D""! and take the
parallel extension {£,} (resp. {E,}) for the direction (—&, 14-€) with respect to
V. (resp. V,). Let 7 be the gauge transformation on V' which transforms {£,} to
{€,}. Since V, is C* with respect to {€,}, ¥7*V, is C* with respect to {£,}.
But here #=id on U, which implies that ¥7'*V,=V, on V by analyticity.
Moreover the extension of ¢ to ¥ is unique and well-defined since M is simply
connected. Q.E.D.

RemARk 12.3. This is an analogy of the unique extension theorem of
Einstein metrics in [3, Section 5].
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13. Some basic lemmas

Lemma 13.1 ([8, Lemma 4.3]). Let v, be a family of volume elements on M,
E,, F, families of vector bundles over M with fiber metrics gf, gf and Q,: C=(E)—
C=(F,) a family of differential operators of order k with injective symbol. Assume
that v,, E,, F,, gf, gi and Q, depend C=-ly (resp. real analytically) on t. That
is, there are bundle isomorphism e,: E,—~E, and f,: F,—F, such that the coef-
ficients of e¥ gf, f¥ gl and (fi")x°Q,o(e,)x depend C=-ly (resp. real analytically)
on t. Then the dimension of the space Ker Q, is upper semicontinuous. If the
dimension of the space Ker Q, is constant, then the decompositions

(13.1.1) HYE,) = Qf(H**!F,))®Ker O,,
(13.1.2) HY(F,) = Q(H***(E,))®Ker OF

depend C=-ly (resp. real analytically) on t, where Q¥ is the formal adjoint operator
of Q, with respect to gf, gf and v,. Moreover the isomorphisms

(13.1.3) OF¥+1: Q(H***(E,))DKer Q, — H'(E)),
(13.1.4) O,+1: QF(H***(F,))®DKer QF — H'(F,)
also depend C=-ly (resp. real analytically) on t.

Lemma 13.2 ([4, Theorem 3.12]). In the real analytic category in Banach
spaces, the implicit function theorem holds.

Lemma 13.3 ([8, Lemma 13.7]). Let E and F be vector bundles over M and
EC€, F€ their complexifications. Let f be a C*-cross section of E and {y: E—F a
fiber preserving C=-map defined on an open set of E which contains the image of f.
Assume that ) has an extension to a fiber preserving map ¢: EC—FC defined on
an open set of E€ such that the restriction S to each fiber ES is holomorphic. Then
the map ¥: H'(E)—H*(F) defined by

(13.3.1) Y(u) = Pou,
defined on an open neighbourhood of f, is real analytic provided that s>[n|2]+1.
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