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0. Introduction

There are many researches on deformations of Yang-Mills connections
over 4-dimensional manifolds. In this paper, we generalize the results into
higher dimensional cases. In 4-dimensional case, the Hodge #-operator acts
on A2M and the notion of (anti-)self dual connection is introduced, which
brings beautiful results in Atiyah, Singer and Hitchin [1], Therefore, in higher
dimensional cases, we have to assume some properties on the base riemannian
manifold. In [1], it is already pointed out that if M is a (2-dimensional) com-
plex manifold, an anti-self dual connection defines a holomorphic structure of
the bundle. Itoh [6] considers in full this situation, which we will generalize
by the notion of "Einstein holomorphic connection" over a Kahler manifold.
However, the moduli space of Yang-Mills connections over a higher dimensional
Kahler manifold may have many singularities, and probably we can not expect
that the moduli space becomes a manifold.

The fundamental notions in this paper come from [1], and fundamental
idea comes from Koiso [9]. It is remarkable that the results for the moduli
space of Einstein metrics and that of Yang-Mills connections are quite analog-
ous. In fact we will get the following results.

Theorem 2.7 (c.f. [9, Theorem 3.1]). The local pre-moduli space is a
finite dimensional real analytic set.

Corollary 6.5 (c.f. [9, Theorem 10.5]). If the initial structure (Einstein
metric or Yang-Mills connection) is compatible with a complex structure, then also
around structures are compatible with some complex structures.

Theorem 9.3 (c.f. [9, Theorem 12.3]). Under some assumption, the local
pre-moduli space has a canonical Kahler structure.

However, there is an important difference. For Einstein metrics, we have
no effective obstruction spaces for deformation ([9, Proposition 5.4]), but for
Yang-Mills connections we have one (Theorem 6.9).
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1. Yang-Mills connections

Let (M,g) be a compact riemannian manifold, G a compact Lie group, P a
principal G-bundle over M. Denote by g the Lie algebra of G and by GP (resp.

QP) the associated fiber bundle Px AdβG (resp. Px ±d&Q) The space C of all con-
nections of P is an affine space whose standard vector space is C00(Λ1®flp), where
Λ* denotes the vector bundle of p-forms on M (see [1, p430]). We fix an
effective representation G-*GL(V) and identify a connection of P with a covariant
derivation on Px GV or Px GEnd(V). In this sence, for a connection V of P and
an element A of C°°(Λ1®gP) the curvature tensor is transformed as

(1.0.1) R*+A = Pr+dΆ+lAΛA],

where dv and f Λ ] are defined by

(1.0.2) (JM) (X, Y) = (VXA) (Y)-(V*4) (X)

and

(1.0.3) [AΛB] (X,Y) = \ ((A(X), B(Y)]-[A(Y), B(X)}).

We fix a G-invariant inner product on fl. Then the vector bundle QP admits a
canonical fiber inner product ( , ) and the vector space C°°(Qp) admits a (global)

inner product < , >. We denote by 11 11tne L2-norm defined by < , >. Define
an action integral FYM for connections by

DEFINITION 1.1. The function FYM on C is called the Yang-Mills functional,
its Euler-Lagrange equation is called the Yang-Mills equation and its solution is
called a Yang-Mills connection.

Let us represent the Yang-Mills equation by a tensor equation. Let V/

be a 1-parameter family of connections on P and set V=V0 and A=(dldt)QVt.
Then

/ d
dt

= 2<A, δvjR7>,

where (•)* denotes the formal adjoint and the operator 8V from C°°(A.P®QP) to
C~(Λ*-1®gP) is defined by

(i.i.i) (β^W^-vV.**-!-
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Thus Yang-Mills equation becomes

(1.1.2) J?rjί(V)

Next, we consider infinitesimal deformations of a Yang-Mills connection.
From now on, we enlarge the space of C°°-sections to the space of /Γ-sections,
and denote by HS(E) the space of all ίΓ-sections of a fiber bundle E over M,
where s is assumed to be sufficiently large. ίΓ-norm will be denoted by || |l*
The completion of the space C etc. with respect to ίΓ-topology will be denoted
by C5 etc.

DEFINITION 1.2. Let V be a Yang-Mills connection. A solution of the
equation

(1.2.1) (EYMYV(A) = 0

is called a Yang-Milk infinitesimal deformation, where / denotes the Frechet
derivative. The space of all Yang-Mills //"'-infinitesimal deformations is <fe-
notedbyΎMlΌs(V).

Lemma 1.3. (EYMγv(A)=δrrdvA+tτ[Rv, A],

tΰhere tr[R*, Ab=f'[SXt, A,].

Proof.
dt dt

V I "D^t
t K li

where A = ——
dt

V,. Q.E.D.

The automorphism group ^=C°β(GP) of the bundle P is called the gauge
group of P, and it acts on C by pull-back as

(1.3.1) 7*V

If V is a Yang-Mills connection, then <y*V is so. In particular, if
parameter family of gauge transformations such that γ0=idp, then

becomes a Yang-Mills infinitesimal deformation of V.

is a 1-

DEFINITION 1.4. Let V be a Yang-Mills connection. A Yang-Mills in-
finitesimal deformation is said to be trivial if it coincides with Vα for some v e
Hs*\Qp). A Yang-Mills infinitesimal deformation is said to be essential if it is
orthogonal to all trivial Yang-Mills infinitesimal deformations. The space of
all essential Yang-Mills infinitesimal deformations is denoted by YMEID(V).
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By definition, a Yang-Mills infinitesimal deformation A^HS(A1®QP) is es-
sential if and only if (Vv,Ay= 0 for any v^Hs+1(Qp), which is equivalent to
that δM=0. Thus the defining equation of the space YMEID(V) becomes

(1.4.1) δvdM+tr[J?v, A] = 0

and

(1.4.2) δM = 0.

This system is elliptic, and so the space YMEID(V) is finite dimensional and
each element is C°°.

The following lemma will be used later.

Lemma 1.5. For any connection V, equality

(1.5.1) δ*E7M(V) = 0

and decomposition

(1.5.2) ^(Λ'φflp) = Im(V |ffs+1)ΘKer δv

λo/d. If V is a Yang-Mills connection, then the sequence

(1.5.3) C-^-C-ίΛ1®^)-^
V (^TΛfJv &

is an elliptic complex. In particular, the following decompositions as Hilbert space
hold.

(1.5.4) JΓίΛ'φflp) = Im(EYM'\Hs+2)®YMEID®lm(V\Hs+1) ,

(1.5.5) Ker(£rA/|/Γ) = YMEID®lm(V\Hs+1) ,

(1.5.6) Ker(δv |ίΓ) = YMEID®lm(EYM'\H*+2) .

Proof. Equality (1.5.1) is easy to check directly, but here we show it using
an idea from variation. Since the function FYM on C is invariant under the
action of the group 3y we see that

(FγMΪv(Vv) = 0 for any

i.e., <£™(V), V^> = 0 ,

which implies (1.5.1). Decomposition (1.5.2) follows from Lemma 13.1. Let
V be a Yang-Mills connection. Then the space ImV is the space of trivial
infinitesimal deformations, hence (EYM)'voV=Q. From equality (1.5.1) we derive
the equality
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Thus sequence (1.5.3) is a complex, and its ellipticity is easy to check. There-
fore we have decomposition

(1.5.7) Hs(Al®QP) = lm(V\Hs+l)®lm((EYMγv*\Hs+2)

Here we have V*=δ7 and so we get (1.5.4) if we show that (EYM)'V is self-
adjoint. But we see

<(EYMγv(A), By = (Hess FYU) (A, B) ,

regarding FYM as a function on C\ hence (EYM)'V is symmetric with respect to
<( , • >. Since the space Im(V\Hs+1) is closed in Hs(A1®QP)ί decomposition
(1.5.5) is reduced to the definition of the space YM£7Z)(V). If we remark that
the space Ker(δv|£Γ) is the orthogonal complement of the space Im(V|jfiP+1),
then (1.5.6) follows from (1.5.4). Q.E.D.

2. Moduli space of Yang-Mills connections

To define "local pre-moduli space", we need some preparation. We use
some basic facts on Cω-maρs in Hubert space category. (See Lemmas 13.2, 13.3.)

Remark that the space QS=HS(GP) is a Cω-(infinite dimensional) Lie group.
In fact, if we take a complexification Gc of G and set G¥=PxAdβG°y then to
multiply and to get inverse element are extended to maps: ίΓ(G£) X /fs(G£)->

H5(G$), H\G?)-*HS(G9) so that the restriction on each fiber is holomorphic.

Therefore, by Lemma 13.3, they are Cω.
Let V be a connection and β$ the group of isotropy, i.e., S?= {γeώ"; Vγ—

0} (see (1.3.1)). Since V is an elliptic operator, we see that S^=β^ and so we
simply denote it by Q^. The exponential map exp : g->G defines a Cω-maρ exps:
Hs(Qp)-*Ss (by Lemma 13.3) and we can easily check that the quotient space
SV\QS admits a Cω-structure and that there exists a local cross section %5: 3^\βa

-*QS so that the domain Us is uniform on sy i.e., equations US+1=(SV\SS+1) Γ) U*
and XS+1=I)C I Us+1 hold for any s. Define a Cω-map

Jίs : Us+1 X ( V+Ker(δv I if)) -* Cs

by JLs(uy VO = Xs+1

Its derivative at ([id], V) is given by

and is bijective by decomposition (1.5.2). Therefore there exists a local inverse
map (Jls)-1=qsχps: Cs-*Us+1x(V+Kετ(8v\Hs)}. By an analogous way with

Ebin's Slice theorem in [4, Theorem 7.1], we get the following
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Proposition 2.1. Let VeC00. There exist a neighbourhood Us+1 of [id] in
βv\βs+l, a neighbourhood Vs of V in V+Ker(δv |ίΓ) and a neighbourhood Ws of
V in Cs so that

JL5: Us+lxV*^Ws

is a C°-diffeomorphism. Moreover if7^3v then γ*( Vs) = Vs, and γ*( Vs) Π Vs Φ
φ if and only if

Proof. Only the last statement is not shown. Since <?v is a compact group
and preserves Ker γv, taking Γir^£v7*(Vs) if necessary, we may assume that

7*(V*)= Vs if γe£v. We now show that if 7* (Vs) (Ί FΦφ then «ye£v. If
[7] belongs to C/s+1, then bijectivity of Jΐ implies that γe.ffv. Hence we as-
sume that for any Vs there is γe£s+1 such that 7* (Vs) Π F'Φφ but [γ]<$ t/s+1.
This means that there are a sequence -{γ,-} in 5s"1"1 and sequences {Vι, } and {V2, }
in (V+Ker(δ7|ίΓ)) which converge to V such that γfVu=V2ί and [7jφί7*+1.
Then by the following lemma, a subsequence of {%•} converges to an element
%» in £s+l, and so γ^ίϊγ and [γ, ]eC7s+1 for some ί, which contradicts the
assumption. Q.E.D.

Lemma 2.2. Let {%•} , {Vι, } and {V2( } be as above. Then a subsequence of

{%•} converges in Ss+l.

Proof. The equation ίy*Vll =V2, is equivalent to the equation γ71Vlίγl =
V2ί- Vκ Set ̂ = Vu— V and β,-=V2ί- V. Then we see that Vγ^γ^fi— ΛO

In general, we have

for some real number Cλ and C2, and HyJ^Cg since G is compact. Therefore

Since the multiplication: H'xH*-*!!* for £<s is continuous (see [12, Section
9]), we see that

Thus we see by induction that the sequence ||TilL+ι is bounded, and so a
subsequence of {γ, } converges in Hs, which we replace by {γ, } . Then we have

T,-) = (ji(Bl-Ai)-Ai Ύl)-(Ύl(Bf-A ,)-A j yy) ,

and so

for some C4 and C5, and {</,-} is a Cauchy sequence in ffs+1-toρology. Q.E.D.



YANG-MILLS CONNECTIONS AND MODULI SPACE 153

DEFINITION 2.3. The manifold Vs in Proposition 2.1 is called the slice at
V and is denoted by <S?.

A priori, the slice may degenerate for ί-»oo. But we have following lem-
mas, which say that we can take slices "uniformly" and they are "natural".

Lemma 2.4. Let t>s and set Ut+l=Us+1Γl(Sv\£t+1), Vt=VΛΓ(Ct and
W'= W5 Π C*. Then Proposition 2.1 holds when s is replaced by ΐ.

Proof. It is sufficient to prove for t=s+l. The map

JP+1: U5+2x Vs+1 -> Ws+1

is a Cω-injective immersion.
(surjectivity) Let V1eίΓf+1. Then there is γ Gπ~\Us+1) so that 7*Vιe

Vs. Set Λ^Vi-V and ̂ 2=γ*V1-V. Then A^H'+^Qp), A2(ΞHS(QP), and
V7=7^42— Atf. Since 8M2=0, we have

where Vγ®A2<=H5 and δ^Atf) <Ξ /ίs. Thus 7 e 5S+2.
(surjectivity of derivative) Let u0^Us+2 and V+-40ePr*+1. Then the

derivative of the map JV is given by

where φ is defined by φ(u)=X(u)^')C(uQ) 1. Let B be any element of HS+1(QP).
Then there are u'&TUQUs+1 and A'^TAQVS so that

This implies that

where the right hand side belongs to fl"*""1. Thus φ'(u')^Hs+l, and so the right
hand side belongs to H\ and φ'(u')£ΞHs+2. Therefore u'tEHs+2 and A'^HM.

Q.E.D.

Lemma 2.5. Let V^SS

V. If there is γ<=Ss+l such that
.̂ /w particualr, if γ^tΞC00, then Vl e C00.

Proof. Let {%•} be a sequence in ώ>/+1 which converges to 7 in ίZ"5"1"1-
topology. Then 771*7*V1-*V1 in Cs, and so for some i γ71*γ*V1 belongs to Ws

in Proposition 2. 1 . But here γT1*^! e £'. Therefore by Lemma 2.4 TΓ1*^* Vx

e ̂ , and so ^(ryr1) e ?7ί+1 and Vi e ̂ . Q.E.D.
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Corollary 2.6. Let V^S? be a Yang-Mills connection. Then V

Proof. By Theorem 12.1, Vι satisfies the condition in Lemma 2.5. Q.E.D.

Theorem 2.7. Let V be a Yang-Mills connection. There are a neigh-

bourhood Us of V in cSy and a closed Cω-submanifold Z of Us whose tangent space
at V coincides vΰith YMEID(V) such that the set YMLPM(V) of all Yang-
Mills connections in Us is a real analytic set of Z. Moreover, the spaces Z and

YMLPM(V) do not depend on s.

Proof. Set φs=EYM \ <S$. Then by (1.5.2) we see

Im φV = EYM',(Kπ(8*\Hs)) = Im(EYM'v\Hs) .

On the other hand, from (1.5.4) and (1.5.5) we have

= lm(EYM'\Hs)®Ker(EYM'\H*-*)

Let ps (resp. qs) be the projectoin to the first (resp. second) component. Then
the Cω-maρ psoφs has surjective derivative at V and by the implicit function

theorem there is a neighbourhood Us of V in <S$ so that the set Z= {V^ Us\p$

09>5(Vι)=0} is a Cω-submanifold of Us. The tangent space TVZ coincides with
the space YMEID(V) and the set YMLPM(V) is the zero of the map qs°φs on Z.

Next we have to show that if we set Z'=ZΠ Sv and U'= Us Π <S$ for t>s
then Z* coincides with Z as manifold and ptoφt has surjective derivative at any

point of Z'. Let V+A^Z. Then by the definition of Z and Lemma 1.5 we
have

8M = 0, EYM'τ(EYM(V+A)) = 0 .

Since this is an elliptic system, A is C°°, and so Z'=Z as set. Let Vi^Z'. Since
psoφs has surjective derivative at VD for any AGΪm(EYM'V]\H') there are
Ker(δv I Hs) and C<=Ker(£m'v | H

s) so that (φsγV](B)=A+C. Then

and SVB= 0. Therefore J3eίΓ, which implies that p^φ* has surjective deriva-
tive at Vi, and so Zt is a closed Cω-submanifold of U*. Moreover, the identity:
Z'->Z is bijective and its derivative also, hence is a diffeomorphism. Q.E.D.

DEFINITION 2.8. The set YMLPM(V) is called the local pre-moduli space
of Yang-Mills connections around V and the set Z is called its support manifold.

We may summarize results as

Theorem 2.9. Let V be a Yang-Mills connection. The local pre-moduli
space YMLPM(V) of Yang-Mills connections has the following properties, a)
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YMLPM(V)d<Sv. b) If Vi is a Yang-Mills connection sufficiently close to V, then
there is7tΞ3s+1 so that 7*V^YMLPM(V). c)If*/*YMLPM(V)r\YMLPM(V)
Φφ/or γe£s+1, then γ*V=V, i.e., VΎ= 0.

REMARK 2.10. The global moduli space S\ {Yang-Mills connections} is
locally homeomorphic with the coset space <3V\YMLPM(V). Since Q^ is a
compact Lie group, almost all local properties of the global moduli space is
reduced to that of YMLPM(V).

Corollary 2.11. (1) Let V be a Yang-Mills connection. If YMEID(V)
=0, then [V] is isolated in the global moduli space of Yang-Mills connections.
(2) The Yang-Mills functional FYM is constant on the space YMLPM, and locally
constant on the global moduli space. (3) If a connection V minimizes the func-
tional FYM on C, then any Yang-Mills connection sufficiently close to V also min-
imizes FYM. (4) Any Yang-Mills connection sufficiently close to a flat connection
is flat. (5) Let M be ^-dimensional. Any Yang-Mills connection sufficiently
close to a self -dual (resp. anti self -dual) connection ts self -dual (resp. anti self -dual).

Proof. (1) The assumption implies that the support manifold Z is a point.
(2), (3) The set YMLPM forms a real analytic set and its points are critical
points of FYM. (4) A connection V is flat if and only if FYM(V)=ΰ. (5) A
connection V is (anti) self-dual if and only if FYM(V) coincides with a topological
invariant of the principal bundle (see [1, p. 432]). Q.E.D.

3. The obstruction for deformations

We have shown that the local pre-moduli space YMLPM(V) is a real
analytic set of the support manifold. Therefore we want to know when YMLPM
coincides with the support manifold. In this section we introduce a notion
which will be used later.

Let 3? be an open set of a Hubert space, Q and Sί Hubert spaces. Let E:
ίP-><2 and /: &xQ-+Si be C°°-maps and define Ip: Q-*& for each

DEFINITION 3.1. If Ip is linear for each p^3? and Ip(E(ρ))=Q for all
, then 7 is called an identity for E.

If 7 is an identity for E and E(p)—Q, then we see that 7^0^=0, i.e.,

DEFINITION 3.2. Let 7 be an identity for E and assume that E(ρ)=0.
The space Ker 7^/Im E'p is called the obstruction space for E-deformations of p
with respect to I.

Lemma 3.3. Let I be an identity for E and p^E~l(G). If the obstruction
space Ker 7^,/Im E'p vanishes, then the set E~\ϋ) around p forms a manifold whose
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tangent space at p coincides with Ker Ep, provided that one of the following condi-
tions is satisfied. (1) The map E is Cω. (2) The space Im Ip is closed in 31.

Proof. By a similar way as in Proof of Theorem 2.7, we see that there

exists the * Support manifold" Z whose tangent space at/) coincides with Ker Ep

such that jB~1(0)=(/)cojB|Z)"1(0) around />, where pc is the projection to a
complement C of Im E'p in Q. Set έ=E\Z: Z-»C and 1=1 \(ZxC): ZxC->
31. It is enough to prove that j£=0. Remark that Ker l^=Ker Ip Π C=Im Ep

Π C=Q and so 1̂  is injective. Assume condition (2). Then Im ΪP=IP(C)=
Ip(ImE'pξ&C)=Im Ip, and so Im ϊ^ is closed in 5i, hence ϊ^ is an isomorphism

from C into Si. Therefore 1̂  is injective if p\€ΞZ is sufficiently close to p. But
here we know that lPl(&(p$)=0. Thus έfa)=0.

Next we assume condition (1) and show the r-th derivative J^(r) vanishes
for all r^O by induction. By taking r-th derivative of the identity ϊpt(έ(pt))=Q

and setting v=~— pt, we get
dt

ί / A (p\b*t

By induction we may assume that the right hand side vanishes, and so the left
hand side vanishes. But we know that ί̂  is injective, hence ̂ r)=0. Q.E.D.

REMARK 3.4. This Lemma essentially is "KuranishΓs method" ([8]).

4. The deformation of Yang-Mills connection caused by a defor-
mation of base metric

We want apply Lemma 3.3 to a deformations of Yang-Mills connection.
Unfortunately, it is not possible if we use Yang-Mills equation itself. In 6,
we will introduce the notion of "Einstein holomorphic connection" and apply
Lemma 3.3.

Now, by equation (1.5.1), δv is an identity for EYM, and the obstruction
space

Ker δv/Im Erj/v« YMEID(V)

by equation (1.5.6).

Proposition 4.1. Let V be a Yang-Mills connection. The obstruction space
for EYM-deformaίion of V with respect to δv is isomorphic with the space YMEID(V)
of essential infinitesimal deformations.

Hence we apply Lemma 3.3 to the situation that we deform the metric g
on M and Yang-Mills connection follows it. Denote by c5K5 the space of all
ίΓ-riemannian metrics on M and define maps E, I by
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E: 3HS+1 X Cs+2 -> HS(A}® Qp) (g, V) -̂  δ* R* ,

* /Γ(gP); (̂  V, φ) -> δ> .

Then / is an identity for E.

Theorem 4.2. Let V be a Ύang-Mills connection over (M,g)y i.e., E(g, V)
=0. If YMEID(V)=Q, then for any deformation gt of g there exists a \-para-
meter family of connections V/ so that each Vt is a Yang-Mills connection with
respect to gt> provided that \t\ is small.

Proof. The obstruction space for £*-deformation of (g, V) with respect to
/ coincides with the space

Ker SJ/Im E^ ,

which is a quotient space of the space YMEID(V) by equation (1.5.6), and
vanishes by assumption. Therefore by Lemma 3.3 the set E""\0) arround (g, V)
forms a manifold whose tangent space at (g, V) coincides with Ker E(gtV). But
here the projection map from Ker E'g^ to TgJMs+1 is surjective, which completes
the proof by the implicit function theorem. In fact, for any Ae TgJMs+1, we get
E(gtV)(h, 0)eKer δj, therefore by equation (1.5.6) and assumption, there is A^L
TVC

S+2 such that Ker E^(h9 0)=EYM'V(A), i.e., E(gtV)(h, —A)=0. Q.E.D.

5. Holomorphic structures

Let M be a compact complex manifold and Pc a principal Gc-bundle, where
Gc is a complexification of G. A Gc-invariant almost complex structure on Pc

is called an almost holomorphic structure of Pc. If it is integrable, then it is
called a holomorphic structure. An almost holomorphic structure can be re-
garded as a first order differential operator

(5.0.1) 9: C~(a£) -> C-ίΛ^ΘβP) ,

and it is a holomorphic structure if and only if the torsion Tφ) of 9 vanishes,
where T(θ) ε C°°(Λ° 2<8>β?) is denned by

(5.0.2)
An almost holomorphic structure 3 extends to the operators

(5.0.3)

and if S is a holomorphic structure, then they defines an elliptic complex and
the cohomology groups

(5.0.4) H°'*(QΪ) = Ker S'/Im 5#+1
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are defined.
We can study deformations of holomorphic structures by a similar way as

deformations of complex structures on manifold (c.f. [13, pp 172-176]), but we
use here notations similar with [6].

The space JlSί of all almost holomorphic structures forms an affine space
with standard vector space C00(Λ0'1®8?), and the complex gauge group Sc=
C-(G?) acts on it. Let Sξ be the group of isotropy, i.e., βξ= {J^SC\ 7*3=9} .
Then the £P+1-gauge group £c $+1 acts on JIM* holomorphically and the coset
space S% \<3C>5+1 forms a complex analytic manifold. The following proposition
is proved by a similar manner as Proposition 2.1.

Proposition 5.1. Let ϋ^Jl^ί. There exist a neighbourhood <Sξ s o f f i i n d
+Ker(5*|#s), a neighbourhood Uc s+l of [id] in S£\SC>5+1 and a neighbourhood
Wc s of 3 in JISi* so that the action

jp... uc s+lx<Sξ s-+ Wc>5

becomes a complex analytic dίffeomorphism. Here, the formal adjoint 8* of 3 is
defined by some (and fixed) hermitian inner product of Qp.

Let 9 be a holomorphic structure of Pc. For ^4eC00(Λ0'1®ap) we see that
T(B+A)=T(d)+ϋ1A+[A/\A]. Therefore the equation of infinitesimal defor-
mation of holomorphic structure of cϊ is given by

(5.1.1)

The space of all essential infinitesimal deformations of fi is given by

(5.1.2) EHID(ϋ) = Ker & Π Ker 9* .

By a similar way as Theorem 2.7, we have

Theorem 5.2. Let 3 be a holomorphic structure. There are a neighbour-
hood UCtS of 3 in Sξ's and a complex analytic submanifold Zc of Uc>s so that the
set of all Hs -holomorphic structures in Uc>s forms a complex analytic set of Zc.

DEFINITION 5.3. The set of all ίΓ-holomorphic structures in Uc>s is called
the local pre-moduli space of holomorphic structures around 3 and denoted by
HLPM(ΰ). The manifold Zc is called its support manifold.

Equalities (5.1.2) and (5.0.4) mean that the space HEID(d) is canonically
isomorphic to H° l(g$). Moreover, for any d^JlM we have

(5.3.1)

which means that 32 is an identity for J1. Therefore, by Lemma 3.3, we get
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Theorem 5.4. Let 3 be a holomorphic structure. If #°>2(g?)=:0, then the
space HLPM(ϋ) forms a (complex) manifold whose tangent space at 3 coincides
with the space HEID(d).

REMARK 5.5. Since the action of gc>5+l on JLMS is complex analytic, the
complex structure of the above space HLPM(d) is canonical. I.e., if c^G
HLPM(d), then the "projection map": HLPM(dί)->HLPMφ) defined Jby
Proposition 5.1 is complex analytic.

REMARK 5.6. The space HLPMφ) has similar properties as YMLPM(V)
in Theorem 2.9. But property (c) does not hold for HLPM(d), because Gc is
not compact. Therefore the quatient space S%\HLPM(d) is not necessarily
identified with an open set of global moduli space of holomorphic structures.

6. Einstein holomorphic connections

Let (M,g) be a compact Kahler manifold, ω its Kahler form. Then the
(0, 1) component of a connection V on P is a almost holomorphic structure 3
ofPc. Since T(3) coincides with the (0, 2) component of Λv, 3 is a holomorphic
structure if and only if R7 is of type (1, 1).

DEFINITION 6.1. A connection V of P is said to be holomorphic if the
(0,1) component of V is a holomorphic structure, or equiavlently, if Rv is of
type (1, 1). (Remark that this definition is not exactly the same with [6].)

Denote by RH (resp. RS) the hermitian (resp. skew-hermitian) part of R*.
Elements of Lie algebra J of the center Z(G) of G define parallel sections of
C°°(Qp)9 and are denoted also by J.

DEFINITION 6.2. A holomorphic connection V is called an Einstein holo-
morphic connection if (ω, R7)^^ as section.

For example, if G= U(r), a connection V is an Einstein holomorphic con-
nection if and only if V is an Einstein hermitian connection for some holo-
morphic structure.

Lemma 6.3 (Itoh, Personal communication). An Einstein holomorphic con-
nection takes the minimum value of the Yang-Mills functional FYM on C. Con-
versely a connection which takes the value is an Einstein holomorphic connection.

Proof. Let V be a connection of P and consider the characteristic classes
of P. For each cej, the classes represented by (c, Rv) and Ύr(Rv/\RV) do not

depend on V, and so the values ί (^Λ^Λω11"1 and ί Tr(ΛvΛΛv)ΛωΛ '2 are
JM Jjif

constant for V. Therefore there are £0ej and a real number C such that
equalities
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(6.3.1) <ω®

and

(6-3.2) l|JSIMI

hold for all V. Let (ω, R*)=c1+v where ^ej and v is orthogonal to 8 with
respect to the global inner product. Then

for any cej. Therefore C1=c0 and

\\RV\\2=\\RW+\\RW

= c+lkoll'+NI2

>C+lkoll2

The equality ||Λv||2=C+|k0||
2 holds if and only if ΛI-0 and 0=0, i.e., (ω,

ej. Q.E.D.

REMARK 6.4. We saw that if V is an Einstein holomorphic connection
then (ω, Rv)=cΌ.

Corollary 6.5. All Einstein holomorphic connections are Yang-Mills con-
nections. Conversely all Yang-Mills connections which are sufficiently close to an
Einstein holomorphic connection are Einstein holomorphic connections.

Proof. Easy to see by Corollary 2.11 (3). Q.E.D.

Next we consider infinitesimal deformations of Einstein holomorphic con-
nections. Define a map EEff: C5-*Hs-\A!i>2®Q$)®Hs-l(QP) by

(6.5.1) V^te°»2^(ω,Λ*)-c0),

where p°'r is the projection map from Λr to Λ°*r and c0G% is defined in Proof of
Lemma 6.3. By Remark 6.4, a connection V is an Einstein holomorphic connec-
tion if and only if EEff(V)=0.

DEFINITION 6.6. Let V be an Einstein holomorphic connection. An
element A of HS(A}®QP) is called an Einstein holomorphic infinitesimal deforma-
tion of V if EEff'v(A)=Q. An Einstein holomorphic infinitesimal deformation
is said to be essential if it is orthogonal to all trivial infinitesimal deformations
of V, and the space of all Einstein holomorphic essential infinitesimal deforma-
tions is denoted by EHEID(V).
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By a similar way as Theorem 2.7, we get

Theorem 6.7. Let V be an Einstein holomorphic connection. There are a

neighbourhood Us of V in Ss

v and a closed C^-submanifold Z of Us whose tangent

space at V coincides with EHEID(V) such that the set EHLPM(V) of all Einstein

holomorphic connections in Us is a real analytic set of Z.

Moreover, the combination of an obvious inclusion: E7ϊLPM(V)C

YMLPM(V) and the converse inclusion YMLPM(V)^EHLPM(V) by Corollary
6.5 means that EHLPM(V)= YMLPM(V). Let V be a connection. Define a

map 7V: HS-\A

Lemma 6.8. The map I is an identity for EEH.

Proof. For any V, we see

p0 \dv(pθ>2K*)) = p°'\dvRv) = 0 ,

and (6.3.1) means that J-part of (ω, Rv)—c0 vanishes. Q.E.D.

Therefore if V is an Einstein holomorphic connection and Ker /v/Im EEH'V
vanishes, then the local pre-moduli space EHLPM(V) of Einstein holomorphic

connections forms a manifold with tangent space EHEID(V) at V.

Theorem 6.9. Let V be an Einstein holomorphic connection. In general, the

space EHLPM(V) forms a real analytic set of the support manifold Z whose tangent

space at V is ίsomorphic with the cohomology group HQ-\M, g?). If HQ>2(M, QP)=Q

andH\M, g?)^5c, then the psace EHLPM(V) coincides with the support manifold.

Proof. We must show that EHEID(V)^HQ \M, g?) and Ker /v/Im EEH^

^H°'2(M, g?)θ/f°(M, gp)/δ, where H°(M, QP) denotes the vector space of all

parallel sections of QP. First we see that the sequence

(6.9.1) C"(gP) - C^Λ^gp) — > C~(Λ°'2®g£)ΘC"(gP) — t C~(Λ° 3®g?)
V &EB v pr°Jv

is an elliptic complex. Therefore

(6.9.2) (Ker 7v/Im ̂ /v)05-Ker (pro/v)/Im Esff'v

^Ker (pro/v) n Ker (E^'J* -

Let (P, η) e Ker (ρro/v) n Ker (EEH'v)*. We easily see that

(6.9.3) (ω, JM) = 4

Thus (P, 97) e Ker (EEH'τ)* means that
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(6.9.4) <(P, ,), (fP VM), 4Re(V=T VM.))> = 0

for all A^C°°(A.1®Qp)> from which we have

(6.9.5) - V^s+2χ/^ϊ VS9? = 0 .

Here we know that VΛV^P^S— 0 since V is Einstein. Therefore we see that

(6.9.6) _v?P^ = 0 and 7^ = 0.

Combining with the assumption that (P, 97)^Ker(pro/v), we see that P is har-
monic and 97 is parallel. The converse is obvious, and we get

(6.9.7) Ker(pro/v)

Let A<Ξ EHEID(V). Then by definition and equality (6.9.3) we get

(6.9.8) V^-Vjμί. = 0 ,

(6.9.9) VδΛ<ΞC~(gP)

and

(6.9.10) VM.+VM. - 0 .

Thus we see that pϋtlA is harmonic and so the first isomorphism holds. Q.E.D.

The above results are resumed as follows.

Theorem 6.10. Let V be an Einstein holomorphic connection. The space
EHLPM(V) coincides with the space YMLPM(V) around V, which is a real ana-
lytic set of the support manifold Z whose tangent space at V coincides with the space
EHEID(V). If H°'2(M, fl?)=0 and Ή*(M, 8?)-δc, then the space EHLPM(V)
coincides with the support manifold Z.

REMARK 6.11. The above statement suggests the equality YMEID(V)=
EHEID(V\ which in fact holds.

7. The deformation of Einstein holomorphic connections caused by
a deformation of complex structure of the base manifold

In this section we discuss on deformations of Einstein holomorphic con-
nections in a similar situation as in section 4. Let (M, J, g) be the base Kahler
manifold and (//,£/) be a one-parameter family of Kahler structure such that

(To, go)=(J> g)- Define maps E, I

E: -
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by

and

Λ,,v)(Λ *) = (P*'\d**P\ 3-part of η) ,

where all operators and ct^% depending on base Kahler structure are defined
by (Jtj gt). Then we know that / is an identity for E.

Theorem 7.1. Let V be an Einstein holomorphic connection on (M,J,g).
IfH»>2(M, β?)=0 and H*(M, β^)=8, then for any deformation (/„&) of Kahler
structures of (J, g) there exists a one-parameter family of connections V/ of P so
that each Vt is an Einstein holomorphic connection over (M9Ji9gt)f provided that
\t\ is sufficiently small. Moreover, each local pre-moduli space EHLPM(Vt) over
(M,Jty gt) forms a manifold of the same dimension.

Proof. The obstruction space for ^-deformation of (0, V) with respect to
/ coincides with the space

Ker /v/Im £"('o,v) ,

where 7V is introduced before Lemma 6.8. It is a quotient space of the space
Ker /v/Im EEH'^ and vanishes by assumption. Therefore by Lemma 3.3 the set
E~l(G) around (0, V) forms a manifold whose tangent space at (0, V) is given by
Ker £(Ό,v) But here the projection map from Ker £f0,v) to T0(— £, £) is sur-
jective, which completes the proof by the implicit function theorem. In fact,
for u^TQ(— 8, 6), we get E'otV)(u, 0)eKer 7V, therefore by assumption there is
At=TvC

5 such that E(0^(u, Q)=EEa'γ(A)9 i.e., E(0ιV)(u, —A)=0. Q.E.D.

8. Einstein holomorphic connections and holomorphic structures

For a connection V of P we denote by Ψ(V) the (0, l)-part of V, which is
an almost holomorphic structure of Pc. Remark that the map Ψ commutes
with the action of the gauge group Q. Therefore Ψ induces a map from the
moduli space of Einstein holomorphic connections to the moduli space of hol-
omorphic structures. This map locally corresponds to a map φ: EHLPM(V)-+
HLPMφ), where V is an Einstein holomorphic connection and 8=Ψ(V).

Theorem 8.1. Let V be an Einstein holomorphic connection. If H\M, QP)
s*J, then the map p°Ψ gives a bijection between EHLPM(V) and HLPM(Ψ (5))
around V, where the map p: WCι$-^S^) is defined by Proportion 5.1.

Proof. Set β= {Vxe^; (ω, RΊ)—cQ=0} . The derivative of the map /:
Vr-*(ω, Rvι)— cQ at V is given by
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Set AS=V^Ϊ V.ψ for ψeHs+1(flP). Then

and

Therefore the image of the derivative of the map /from <Sy is closed in /i5""1(gp),
and coincides with the orthogonal complement of ίf°(M, QP). Therefore by as-
sumption and Lemma 6.8, the map / from <S5

V to the orthogonal complement of
j has surjective derivative, from which we see that 6 is a manifold whoes tangent
space at V coincides with the space

Since the derivative of the map p°Ψ from 6 is nothing but the correspondence:
-4->(0, l)-part of A, p°ψ gives a local diffeomorphism from 6 to <S|. If Vi^
EHLPM(V) then />oψ(vθeff£PM(Ψ(V)), conversely, if ^e/fLPM^O?))
then (poψ \ β)'1^) is Einstein holomorphic by definition of 6. Q.E.D.

REMARK 8.2. Theorem 8.1 and Theorem 5.4 give another proof of Theorem
6.10.

Combining with Theorem 6.10, we get the following

Theorem 8.3. Let V be an Einstein holomorphic connection and set 15=
Ψ(V). Then there exists a natural correspondence

YMLPM(V) = EHLPM(V) -* HLPM(d) ,

where -> is an injection, and becomes a bijection if Ker V=J.

9. A structure on the moduli space

Let V be an Einstein holomorphic connection and set 9=Ψ(V). Assume
that HJ(β?)=δc and JEΓJ(β?)=0. Then the manifolds EHLPM(V) and#LPM(S)
are isomorphic by Theorem 8.1, and become complex manifolds by Theorem
5.4. The complex structures are realized by the almost complex structures
given by multiplying \/~^ϊ on T^HLPM(β) and /on TVEHLPM(V), where /is
defined by (jA)i= —Aj J* ',. In fact, we see that

On the other hand, the space Cs has the riemannian metric < , •>, which is
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invariant under the action of S5+l. Therefore the manifold EHLPM(V) has a
canonical riemannian metric, which is given as follows. Let V^EHLPM^)
and Ay -BeTVι EHLPM(V). The elements A and B are Einstein holomorphic
infinitesimal deformations of V^ and are decomposed into the essential parts AE>

BE and trivial parts AT9 Bτ (see (1.5.2)). We define the inner product of A and
B by (AE, BEy. From Lemma 13.1, we see that this inner product becomes a

Cω-riemannian metric.

DEFINITION 9.1. The above riemannian metric on EHLPM(V) is called
the natural riemannian metric.

REMARK 9.2. Let V2 and V2 be Einstein holomorphic connections and as-
sume that there are V^EHLPM(Vλ) and γe^s+1 such that τ*V0e£JΪLPM(V2).
Then for each V^EHLPM(Vι) sufficiently close to V0 there is γeώ*4*1 so that
fγ*V^EHLPM(V2), and this correspondence: V->7*V becomes an isometry.
Therefore we may say that the canonical riemannian metric is independent of V.

Theorem 9.3. Let V be an Einstein holomorphic connection and set 5=

Ψ(V). If H%(Q$)=%€ and Hl(Qp)=Q, then the canonical riemannian metric on
EHLPM(V) is a Kάhler metric with respect to the complex structure on HLPM(5).

Proof. We easily see that the canonical riemannian metric is a hermitian
metric. We have to show that the Kahler form is closed. We replace V by
V0 and denote by V elements of HLPM(V0) regarded as variable. Conisder the
fiber bundle p: PxEHLPM-^EHLPM. In general, a diffeomorphism from a
fiber to another fiber which commutes with the action of G and fixes M pull

backs a G-invariant structure, and so if a vector field v on PxEHLPM is p
projectable, G-invarant and π*v=Q, where π is the projection to Λf, then the
Lie derivation J2υ on a family of G-invariant structures is defined. For example,

(exp sv)*V .
' ds

If we decompose v into the P-part vp and the EHLPM-part VM, we see that

Now, we denote the almost complex structure on EHLPM by JE

y the
canonical riemannian metric by gE and the Kahler form by ωE. Decompose

v^T (EHLPM) into VE and vτ so that J?,ΛV is essential and -£fΓV is trivial.
This decomposition is not unique, but we may assume that it depends C°°-ly on

v by Lemma 13.1. Then we see that

= g*(J*v, v>) =
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where / is defined in the first paragraph of this section. We may assume that
[v> ϊ0]=[«7, #]=[#, ΐ>]=0 without loss of generality, and see that

(dωε) (v, w, z) — v ωε(w, #)+ alternating terms

= *> <J-C.JgV,-CM]lV>+*lt.

= -<J-C.rC.J7,

-£J V,

But here p*\vE, WE}=\VI w]~ 0 an(i so [*>£> WJ *s vertical, which implies that
J .̂̂ V is trivial. Q.E.D.

10. Example I

Let M be a flat torus T2, P the trivial principal t/(2)-bundle and V0 the
canonical connection of P. V0 is a flat connection, and so an Einstein holo-
morphic connection. Therefore, by Lemma 6.3, all Einstein holomorphic con-
nections of P are flat. Fix a point x in M and an element p in Px. Any closed
curve c (c(Q)=c(l)=x) in M is horizontally lifted to a curve £ in P so that £(0)=
^>, and we get an element £(1) in PΛ. Let a be an element of t/(2) such that
£(!)= p a. Since V is flat, this mapping: c->a induces a homomorphism:
πί(M)-+U(2), defined by [c]-*a. Taking generators {[rj, [̂ 2]} of zr^M), we
get corresponding elements {a^ a^ in t/(2) such that af1 aϊ1 a^ a2= id. Denote
by /(V) this pair (̂ , α2). We see that by a gauge transformation -η of P,

)=(al9 a2) is transformed as

(10.1)

where άe ί7(2) is defined by η(x) p=p b.
Thus the global moduli space of Einstein holomorphic connections is identi-

fied with the quotient space {commuting pair in U(2)x Z7(2)}/~, where ~ is
defined by (b^ a^by b~l a2 lί) ^(a^ a^ for ieί7(2). By diagonalization, this
space becomes the space T2χ T2/~, where

' 0
)

(ΎαO\ / 7 0 \ \ //«' 0\ /
U o / f f / ' V o s / / 1 UoS'r

if and only if they coinside or /3'=α, α'— /3, δ'— γ and γ'=δ.
On the other hand, ί/^ space EHEID(VQ) is the space of harmonic sections of

Λ1®u(2), and is ίsomorphic with Λ2®u(2). Let A^EHEID(V0) and consider
the connection V0+A. Since Vo^4=0, we see that



YANG-MILLS CONNECTIONS AND MODULI SPACE 167

I — ί U, Δi \fl ' , Ά. ' \ ) y

and

which implies that VQ+A is an element of the support manifold of EHLPM(V0).
Thus we see that the support manifold is locally isomorphic with R2®n(2). More-

over Vo+A belongs to EHLPM(V0) if and only if

AV V] = 0 .

Therefore the space EHLPM(V0) is a proper subset of the support manifold.
Moreover, the group <2Vo^U(2) acts on the space EHLPM(VQ) analogously as
(10.1), and we see that

By a similar way we see that the space HEID(d0) is canonically isomorphic
with the space C®gl(2, C), and 30+fl£/D(S0) is the support manifold of

HLPM(dQ). In this case, the space HLPM(dQ) is an open set of the support
manifold. We can see more details as follows. The group Q^ acts on the space
HLPM(d0), and

Sl\HLPM(dQ)^GL(2, C)\9I(2, C) ,

whose elements are classified using Jordan's normal form. An element of
gl(2, C) corresponds to an Einstein holomorphic connection if and only if it is
diagonalizable. Thus

Remark that the space ££Q\HLPM(d0) is not a Hausdorίf space. In fact,

any neighbourhood of the element ί j in U(2) implies some ί j (£ΦO),

(
v -j \ ^0 X/ \ϋ X/

J .
u x/

11. Example II

Let (Myg) be an Einstein-Kahler manifold with Ricci tensor=e £, V an
Einstein holomorphic connection and 9=Ψ(V). Then we can see that

(11.0.1) {(3*3+233*) A}^

= 2{

for g?-valued (0,l)-form A,
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(11.0.2) {(
o

β> A.,]

for g£-valued (0,2)-form A. Therefore, to see whether H% and £f| vanish, we
have to get eigenvalues of these operators.

Let M be a homogeneous space K/H and P the principal G-bundle Kx PG,
where p is a homomorphism: H-+G. Then we have

Gp = Kx AdpG , Qp=Kx Adpa .

As usual, we identify C°°(gP) with C°°(K, Q)H. Let l=$+m be an /f-invariant
decomposition and define a differential operator D: C°°(K, Q)H-+C°°(K, tn*®g)jy
by

Then this operator D gives a covariant derivative of gp, which is identified
with the standard connection V of P. Let Cκ (resp. CH) be the Cassimir op-
erator of the ^-module (resp. ίf-module) C°°(K, Q)H. We can check that

and

ΛV(X, Y) = -P[X, Y] for Jϊ, Yem .

(See e.g., [10, Proposition 5.3].)
Therefore the eigenvalues of operators (11.0.1) and (11.0.2) are calculated

explicitly by the representation theory. The calculation is easy but complicated,
and we omit the detail. See e.g. [10, §7].

Let M=Pn(C)=SU(n+l)/S(U(n)x C7(l)) and P the unitary frame bundle
of T+M. Then g=m"®m+, and the operator (11.0.1) has only positive
eigenvalues. Thus H\ (M, g?)=0.

Proposition 11.1. The standard connection of the unitary frame bundle of
T+P*(C) is isolated in the moduli space.

Next, let P be the unitary frame bundle of the symmetric tensor product
S2T+M of T+M. Then g=(52m-)®(52m+). In this case the operator (11.0.1)
has 0 as an eigenvalue, ard all eigenvalues of the operator (11.0.2) are poitive.
Moreover, we can easily check that H^ (M, g?)=Sc. Thus by Theorem 6.10,
we get the following

Proposition 11.2. The local pre-moduli space around the standard connec-
tion of the unitary frame bundle of S2T+Pn(C) (n> 2) forms a non-trivial manifold.
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12. Regularity of Yang-Mills connections

In this section we consider not a family of connections but one connection.
Let V be a Yang-Mills C2+Λ-connection of P (0<α<l). I.e., if we represent V
by a local frame {ξp} of QP as

then Tip are C2+Λ. A local section ξ of QP is said to be harmonic if V*V^— 0.
The defining equation of harmonic section is a linear elliptic differential equation
with C1+Λ-coefficients. Therefore we can take a local frame by harmonic sec-
tions, which are C3+Λ ([2, p. 228 Theorem 1]). The coefficients Tq

ip with respect
to the frame are C2+Λ. But we know that {Γq

ip} satisfies Yang-Mills equation:

gkldk(deT
q

ip-diΓ
q

lp)+loweτ terms = 0 ,

and harmonic equation

gkldkΓϊp+loweϊ terms = 0 ,

which is quasi-linear elliptic system with C°°-coefficients. Thus Tq

ip are C°°([ll,
Theorem 6.8.1]). If (M, g) is a Cω-riemannian manifold, then Γq

ip are Cω ([11,
Theorem 6.7.6]).

Theorem 12.1. Let (M, g) be a C°° (resp. Cω) riemannian manifold and V
a Yang-Mills C3-connection. Then there exists a C3-gauge transformation 7 so
that 7*V is C°° (resp. Cω).

Corollary 12.2. Let (M,g) be a simply connected C^ -riemannian manifold.
Let Vi and V2 be Yang-Mills connections on M. Assume that there is an open set
U of M and a gauge transformation 7 on U such that γ*V1=V2. Then 7 extends
to a global gauge transformation 7 so that <y*Vι=V2 on M.

Proof. We may assume that 7— id on U and Vi is Cω. For #e U and jye
M9 take a joining geodesic c: [0, l]->Λf and a Cω-tubular neighbourhood V^
(-6, l+6)xD»-1 of c[0, 1]. Take a Cω-frame of QP on {0} xD"'1 and take the
parallel extension {ξp} (resp. {!/,}) for the direction (— £, 1+f) with respect to
Vi (resp. V2) Let 7 be the gauge transformation on V which transforms {ξp} to
{ζp} - Since V2 is Cω with respect to {f p} ,

 <γ~1*V2 is Cω with respect to {ξp} .
But here j=id on C7, which implies that 7~1*V2=Vι on F by analyticity.
Moreover the extension of 7 to 7 is unique and well-defined since M is simply
connected. Q.E.D.

REMARK 12.3. This is an analogy of the unique extension theorem of
Einstein metrics in [3, Section 5].
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13. Some basic lemmas

Lemma 13.1 ([8, Lemma 4.3]). Let vt be a family of volume elements on M,
Eit Ft families of vector bundles over M zoith fiber metrics g f , g^ and Qt : C°°(Et)— >
C°°(Fί) a family of differential operators of order k zΰith injective symbol. Assume
that vt, Ety Fty gf, g? and Qt depend C°°-ly (resp. real analytically) on t. That
is, there are bundle isomorphism et : E0->Et and ft : F0-^Ft such that the coef-
ficients of e? gf, f f g ? and (f7l)*°Qi°(et)* depend C°°-ly (resp. real analytically)
on t. Then the dimension of the space Ker Qt is upper semicontinuous. If the
dimension of the space Ker Qt is constant, then the decompositions

(13.1.1) H\Et) = ρ?(#'+TO)θKer Ot ,

(13.1.2) Hs(Ft) = ρ^Jζp+TOJθKer Qf

depend C°°-ly (resp. real analytically) on t, rthere Qf is the formal adjoint operator
of Qt with respect to g f , gf and vt. Moreover the isomorphisms

(13.1.3) Qf +1 : ρ,(tf *+2*(£,))0Ker Qi _> H

s(Et) ,

(13.1.4) ρ,+ l : Qf(Hs+2k(Ft))®Ker Qf - Hs(Ft)

also depend C°°-ly (resp. real analytically) on t.

Lemma 13.2 ([4, Theorem 3.12]). In the real analytic category in Banach
spaces, the implicit function theorem holds.

Lemma 13.3 ([8, Lemma 13.7]). Let E and F be vector bundles over M and
Ec, Fc their complexifications. Let f be a C°° -cross section of E and ψ: E-+F a
fiber preserving C°°-map defined on an open set of E which contains the image of f.
Assume that i/r has an extension to a fiber preserving map Λ]TC: EC-^FC defined on
an open set of Ec such that the restriction ψ£ to each fiber E% is holomorphic. Then
the map Ψ: HS(E)-*H\F) defined by

(13.3.1) ψ(κ)

defined on an open neighbourhood of f, is real analytic provided that s>[n/2]-\-l.
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