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1. Introduciton.

It is well known that a necessary condition to solve an initial-boundary value
problem in a proper domain of R" is that the data of the problem satisfy, at the
boundary of the domain, compatibility conditions of a certain order, which generally
depends on the regularity assumed of the data, and required of the solution. In
many situations, one is led to consider approximations of the solutions, obtained
by solving problems with more regular data; thus, one needs to construct more
regular data that not only approximate the given ones, but also satisfy compatibility
conditions of higher order. A typecal example occurs when, in order to prove

the existence of a solution to the original problem by means of energy methods,
one first establishes the required energy estimates on more regular solutions (which
it is possible to differentiate), and then resorts to a density argument. This is,
for instance, the method followed by lkawa, [8], and Shibata, [16], for linear
hyperbolic equations of second order with Neumann type boundary conditions,
and by Dan, [6], for a linear coupled hyperbolic-parabolic system, again with
Neumann boundary conditions. A similar situation was considered by Rauch and
Massey, [15], while proving the regularity of solutions to a linear first order
hyperbolic system, under general boundary conditions.

More recently, Beirao DaVeiga ([1,2,3,4,5]) presents and develops a general
method to prove the strong continuous dependence with respect to the data of
solutions to nonlinear hyperbolic problems, including the nonlinear Neumann
problems considered by Shibata-Kikuchi, [18], and Shibata-Nakamura, [19], as
well as several systems of nonlinear fluid dynamics; in particular, the model
nonlinear Neumann problem

u, —div A(Vu)=f(x,1) in Qx]0,T[
(1.1 u(x,0) =ug(x), ulx,0)=u,(x) in Q
v A(Vu) + b(u) = ¢(x,?) in 0Qx1]0,T[
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with Q = R" bounded open domain with smooth boundary dQ and (small) 7>0 is
considered in [3]. DaVeiga’s method is partially based on a regularizing procedure
for the linearized equations, and the required compatible regularizing data are
constructed by adapting the procedure of Rauch and Massey; this essentially
consists in approximating all data in a standard way, and then modifying one of
the regularized initial values so as to satisfy the compatibility conditions (this is
also the method followed by Ikawa and Shibata). As another application of his
method, in [4] DaVeiga shows the strong convergence, under certain conditions,
of solutions of the compressible Euler equations to that of the incompressible ones;
in a similar way, we can consider, as in [11], the convergence of solutions to the
dissipative quasilinear hyperbolic equation

(1.2) ey +u— Y, a;u,Vu)ddu=f(x,1)

ij=1

to the solution of the corresponding limit parabolic equation

n

(1.3 u— Y, a;fu,Vu)ddu=[(x,1)

iLj=1

as ¢|0: in the case Q=R", weak convergence is proved in [11], and strong
convergence in [12].

All these results on the nonlinear problem are obtained by the usual method
of linearizing, and constructing compatible regularizing data for the linearized
equations; thus, the problem of such construction under minimal regularity
assumptions on the coefficients is of fundamental importance. In this respect, the
mentioned results of Ikawa, Rauch and Massey, Shibata and Dan are not optimal,
in that the regularity of the coefficients makes their results unsuitable for direct
application to the corresponding nonlinear problems; in fact, DaVeiga explicitly
shows in [1] and [5] how the procedure of Rauch and Massey can be suitably
adapted, so as to be applicable to the nonlinear problem.

With these motivations in mind, in this note we present a simple, direct and
selfcontained method to construct compatible regularizing data in the two model
cases of a linear second order hyperbolic equation, with Dirichlet or Neumann
boundary conditions, under the minimal regularity assumptions of the coefficients
that are sufficient for applications to the corresponding nonlinear problems. More
precisely, we consider the problems

n

u,— Y afx,000u=f(x,1) in Qx]0,T[

(1.4) u(x,0)=uy(x), u(x,0)=u,(x) in Q
u(x,1)=0 in 0Qx]0,T[
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and

uy— Y. ax,000u=f(x,1) in Qx]0,T[

ij=1

(1.5) u(x,0)=uy(x), u(x,0)=u,(x) in Q

En: via{x,0)0u(x,t) = P(x,1) in 0Qx10,T[

i,j=1

where v is the outward unit normal to dQ; as an application, we shall show how our
method can be used to give a direct, simplified proof of DaVeiga’s result on the
strong well-posedness of the quasilinear Neumann problem (1.1). The Dirichlet
problem could be treated in a similar way (for an alternative, simpler method, see
also [13]). Finally, we would like to remark that our method should be sufficiently
general to also apply to parabolic equations; for instance, following a similar
technique, in [10] we prove the strong well-posedness in the large for Sobolev
solutions of (1.3) with Dirichlet boundary conditions. Although we have not
checked the details, we believe it should also apply to first order systems, as
considered by Rauch and Massey, [15], thereby recovering the improved results
of DaVeiga, [1].

2. Notations and results.

Let Q < R" be a bounded domain, with a smooth boundary 0Q, whose outward
unit normal we denote by v, and T>0; we consider in Q=Q x 10,7 the linear
hyperbolic initial-boundary value problems (1.4) and (1.5) for u=u(x,f)e R", with
u,=0u/ot and du=0u/dx; Following the theory developed by Kato in [9], we
consider solutions with values in Sobolev spaces; thus, given m € N, we set H™ = H™(Q),
H"=H"NH} if m>2, and note ||‘|,, the norm in H™, |-| the norm in
H°=L2 Similarly, we set A"=H"(0Q) and note « ‘>, its norm. We also set

x= (T, x3= () CO.T): ),

j=0 j=0
5 . o
X,= () C(0,1T]; ),
j=0
and endow these spaces with their canonical norms, noted |||-[l, «-»», that

is, we set

llulll7,= max i lofud7-

0<t<Tj=0

KuY)? = max % < Ou(t)»}_;.

0<t<Tj=0
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We assume that the coefficents a;;e X°, with integer s>[5]+2, so that in particular
a;;€ C'(Q); that they are symmetric and strongly elliptic, ie. a;=a;; and
(2.1) Ja>0 V(x,)e O, VEER", Y a,fx,)EE >alé>

ij=1

In the sequel, we shall assume a=1, and abbreviate

Y. a;{x,0)0,0u=a(x,0)0%u;

hj=1

also, whenever it makes sense, we define

22) u?(x) = £(x,0) +a(x,0)0%u,(x).

To describe the compatibility conditions on the data, necessary to solve the
Dirichlet problem (1.4), we introduce the spaces

@1 = {(uo,“l,f)h‘o eHia ul EH(I), fE Llp([O’ T] ’Lz)}a
@2 = {(uO’uISﬂIuO € Hi’ ul € H?p uz EH(I), f€ Xl’ _/;E Llp([O, T] ’Lz)}’
and we say that {ug,u,,f} satisfy the compatibility conditions of order one [two]
if {uguy,f}€2, [2,]; note that, indeed, u,e H' if {uouy,f}€2,, while if
{uo,uy,f}€2,, then in general u,eL? only, so it does not necessarily have a
trace on 0Q2. Analogously, for the Neumann problem (1.5), we say that the data

{uo,uy,f,g} satisfy the first or second order compatibility conditions if they belong
respectively to the spaces

‘Ml = {(u09ul’f;g)|uOEH2, ul EHla fE Llp([oa T] ;Lz);

g Lip([0,T; 12), a'(x,0)0u(x) =g(x)}
‘/V2 = {(anuhf;g)luO € H3a ul € HZ’ fE Xl, f;G Llp([o, T] ;Lz)’

~ ~1
g€ X3, g,€Lip([0,T]; H?),

av(x’ O)a"o(x) = g(x9 0),
av(x’ O)au l(x) + a:(x’ O)a“o(x) = gl(x’ 0)}a

where we have abbreviated

Y. via{x,00u=a"(x,1)0u;

i,j=1
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again, note that if {ug,u,.f,g}€.A",, then u,e H' and the two conditions at the
~1 . .
boundary make sense in H2, while if {uo,u;,f,g}€A",, then in general u,e L*Q)

only, and only the first condition makes sense in ﬁ%.

It is well known then that, under the stated assumptions on the coefficients,
to solve the Dirichlet and Neumann problems (1.4) and (1.5) it is necessary and
sufficient that the data satisfy the compatibility conditions; in fact, setting

D?*={0i0%;j+|a| <2}, we have the following theorem.

Theorem 1. Leti=1,2. Givenany {u,,uy,f} €9, there exists a unique ue X'***,
solution of (1.4). Moreover, there exists M >0, depending on T and ||all,, such that
Vie[0,T]

T
2.3) ID?u(®)|*> < M{|. D*u(0)|| + 1| (., 0)|* +J 1£012}.
0

Proof. See e.g. Kato, [9] (II, 10.1), and Ikawa, [7] (Prop. 2.6).

Theorem 2. Let i=12. Given any {uou,,f,g}€ N, there exists a unique
ue X'*1, solution of (1.5). Moreover, there exists M >0, depending on T and ||al||,,
such that Yte[0,T]

T
24 I1D*u(®)* < M{|| D*uw(0)||* + Il £(, )12 +I I/l + «g(.,0>3}.
0

Proof. See Shibata, [16](sct. 4. We recall that the second order estimate
(2.4) is a consequence of the first order estimate

@25)  lu®l*+ I Dur))l* + f

«<u» 3 < M{lluoll} + ||u1||3+f||f||2+f<<8>>§},
0 0 0

where D={d,,0,}; estimate (2.5) was first established for solutions of (1.5) by

Miyatake in [14]; (2.4) follows then by regularization, differentiation in ¢, and
ellipticity. O

We now address the following question for the Dirichlet problem: given
{uo,uy,f}€92,, construct a sequence {up,u},f*}€2, such that, as 1]0,

(2.6) luf i >0,  i=0,1,2

T
2.7) 10— (.0 >0, J I =£1% =0,
0
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and, calling u* the solution to (1.4) corresponding to {ug,u},f*} (so that u*e X?),
(2.8 (ljoe* —ull| - .

Similarly, for the Neumann problem, given {u,,u,,f,g} € 4|, we want to construct
a sequence of data {(ug,ui,f* g*}e A", such that, as 4]0, (2.6) and (2.7) hold,
together with

T
29 «<gH(.,0)—g(.,0)>, -0, j «gt—g>»3 -0,

0

and, with the analogous meaning of u*e X3, (2.8) as well.
Our goal is to show that the stated assumptions on the coefficients a;; are
sufficient to construct such compatible regularizing data; in fact, we claim:

Theorem 3. Given any {uy,u,,f}€2,, there exists a sequence {u,u},f*}e€2,,
such that (2.6), (2.7) and (2.8) hold.

Theorem 4. Given any {uq,u,,f,g} € Ny, there exists a sequence {ud,u},f*.g*} €
Ny, such that (2.6), (2.7), (2.8) and (2.9) hold.

As we mentioned, the regularity a;;€ X* assumed of the coefficients is precisely the
minimal one sufficient for applications to nonlinear problems; actually, since we
only need that a;;e C'(Q) (while Ikawa, [8], and Shibata,[16], assumed a;;e C*(Q)), it
would be sufficient to assume that a;;e C° ([0,T]; H)nCY[0,T]; H*~'). As an
application, we shall indicate how to merge our method with DaVeiga’s one to
prove the strong well-posedness of the nonlinear Neumann problem (1.1) (with,
for simplicity, b = 0); thus, under the usual assumptions on A, which we shall
recall in section 5, we claim (compare to [3], Theorem 1.1):

Theorem 5. Let f,ge Z(T)=X"'nC¥[0,T];L?; ¢,y Z(T)= X’s_* N C¥[0,

TY; BY); ug,v9e H°*Y; uy,0, € H be such that {ug,u,,f, ¢} and {vo,v,,8, ¥} satisfy the
compatibility conditions of order s (to be recalled explicitly in section 5). Let
uve Xt (T") (T"€]0,T]) be the local solutions to (1.1), corresponding to such
data. Then, given any &> 0, there exists 6>0 such that, if ||| f—glll? + Kd— Y2,
+ lluo—vollZs 1 + lluy — 0,112 < 6%, then |llu—ollss, <e.

(We recall that local in time solvability in X**! for (1.1) under the stated
assumptions on the data is established by Shibata- Kikuchi in [ 18]; see section 5).
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3. Peoof of Theorem 3.

We start with the following technical result:
Lemma 1. H®NH} is dense in H2.

Proof. Given ue H2, let {°} be a sequence from H®, such that
(3.1 lo® ~ull, = 0.

To correct »” at 9Q so that its trace is zero, we define w? to be the solution of the elliptic
problem

— AW+ In?=0 in Q,

(3.2) s s
w’=y on 0Q.

Indeed, (3.2) has, for sufficiently large A>0 (which can be chosen independently

of 8), a unique solution w®e H®. Then u".=v"—w"eH°°nH},; and since u’—u

solves the problem

(33) — A’ —u)+ 2’ —u)= — AP —u)+ A’ —u)  in Q,
' W —u=0 on 0Q,

it satisfies the elliptic estimate

34 ll® —ull, <c{llw® —ull + (A = ° =)} <c{llu’ —ull + |0° —ul ,}.

From (3.3), using (3.1), we see that |u’—u| -0 as 6|0; thus, from (3.4), using
again (3.1), we deduce that ||u®—u|, - 0. O

Since C(Q) is dense in both L? and H}, by Lemma 1 we can choose sequences
{ud}, {u}} and {u}} from H®n Hj such that (2.6) holds as A |0 (again, note that
u, is defined, by (2.2), in L?). Following Ikawa, [8] (sct. 3), by mollification in
t we can also construct a sequence h* from C%([0,T];H*) such that

T
(3.5 J I —fl1> -0

0

as 10, holds. Define
(3.6) () = h*(x,0) — uh(x) + a(x,0)0%ud(x):

then, since a(.,0)e H* and s>2%+1, *e H'. Define further
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(3.7 Lo, ) = B x, ) — I(x) = A (x, ) — R (x, 0) + ui(x) — a(x,0)0*ud(x):

then f*e C=([0,T]; H") and
(3.8) uj(x)=/"(x,0) +a(x,0)0%ug(x),

so {ud,u},f*}€2,. Since f* = h}, (3.5) implies the second part of (2.7); moreover,
from (3.8) and (2.2) we have

S4x,0)— £ (x,0) = uj(x) —u5(x) — a(x,0)0*(ug(x) — ue(x)),
and therefore
1400 =G0 < s — s || + lla( -, 0) |- 1 0%(uh — uo)I,

whence the first part of (2.7) follows, by means of (2.6). Finally, (2.8) is a consequence
of estimate (2.3), applied to the difference u*—u, with f replaced by f*—f, and
(2.6), (2.7). O

4. Proof of Theorem 4.

We now turn to the Neumann problem (1.5), and follow a similar procedure. At
first, we choose sequences {uj}, {u}} from C=([0,77]; H®) such that (2.6) and (2.7)
hold, and a sequence {#*} from C*®([0,T];H®) such that

T

@1 «<h*(.,0)—g(.,0)»>, -0, J «hl—g>»3-0
(1]

as 110, holds. Define, for xedQ,

4.2) I§(x) = a*(x,0)0ug(x) — h*(x,0),

4.3) () = a"(x,0)0ui(x) + a;(x,0)0ug(x) + h}(x,0):

then, since a(.,0)e H* and a(.,0)e B~ 1, I} and /} are in H%, at least if n>2. (If
n=1, 0Q reduces to two points, say {x,,x,}; g is in fact a pair of functions
{g(x1,.),8(x2,.)}, and we choose sequences {hi},{h3}e C=([0,T]), approximating
g in the sense that

1A(0) — g(x,0)l - 0, Jrlh?(t)—g(xi,t)lzdt -0
0

as 110, for i=1,2). Consider now a function pe C(R), such that p(r)=1 in a
neighborhood of =0, and set
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4.4 ;1 1 P2
4.4) R’l_}( + «li»3),
i - A A ().
8 (x,0)=h"(x, 1)+ I5(x) + tp(R, ) (x):

then, clearly, g*e C([0, T];ﬁ%), and

(4.5) g6, =h{(x, )+ [p(R,1) +(R1)p (R )]/ (x).
Thus, from (4.2) and (4.3) we have that, since p(0)=1,

4.6) 24(x,0)=h*(x,0) + 15(x) = a*(x,0)0ul(x),

4.7 gH(x,0)=h}(x,0) + I3(x) = a"(x,0)0u’(x) + a} (x,0)0ud(x).

Since {ug,u;,f,8}€ A"y, we have that g(x,0)=a"(x,0)0u(x), and therefore, by (4.6),

<<g‘(‘,0)—-g(.,0)>>*5c Z ||ai1{.,0)6,(ué-—uo)||1SC Z "aij("o)"s—1"“3_“0"2;
1

i,j= i,j=1
thus, the first part of (2.9) follows from (2.6). Next, from (4.5) we have that
gl(x, 1) — g x, 1) = hi(x,1) — g (x,0) + (R 1)I}(%),

where x(t)=p(?)+tp'(t); thus,

T T T
4.8) J <<gf—g,>>§sj <<hf—g,>>§+2<<l{>>§f |x(R,?)|%dt.

0 V] 0
Now, by our choice (4.4) of R,,

T 0
J Ix(th)lzdtsi xG)Pds<cA(1+ <li>»3) 7,
0 R;Jo

and therefore the second part of (2.9) follows from (4.8) and the first part of
(4.1). Finally, (2.8) follows from (2.6),(2.7) and (2.9), by means of estimate (2.4),
with u, f and g replaced by u*—u, f*—f and g*—g. O

5. Proof of Theorem 5.

5.1. We assume that 4:% < R" > R" is a smooth function with symmetric
derivatives, that is, setting a;;=0;4,, a;;=a;;, and that (compare to (2.1))

n

(UE) Iu>0Npe®, VgeR", Y aypla'q’>uiql”.

ij=1
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To describe the natural compatibility conditions on the data at dQ for 1=0, we
formally compute by recursion from (1.1) the functions

u=(@u)0)  for 0<k<s+1

with their usual interpretation: i.e., for instance,

uy(x)=/1(x,0)+ div A(Vuy(x)),
u3(x) =/,(x,0) +div [4'(Vuo(x)) - Vuy (x)],

etc; note that our assumptions on u,, u, and f guarantee that u,e F**! 7% for

0<k<s+]1, and moreover, setting #i#2, , =Z5t1]lw )2, ;s

(.1 Hiio#l s <c{lluolZs s+ llugl2},

for suitable ¢>0 depending on |ju,,4+, and |ju,|,. Also, we can define on 0Q
the functions, that we formally denote by

affx) = O(a(Vu(x, )= o,

in the usual recursive way, that is for instnce

ajx=a;(Vuo(x)),

ajj(x)=aj{Vue(x)) Vuy (x),

etc; again, we have that afje A* %%,
Accordingly, we say that the data {ug,u,,f; ¢} satisfy the compatibility conditions
of order s if the following conditions hold on 0Q:

v- A(Vug)=¢(.,0),.

D vi<k)a:iaiuk—r= o ¢(.,0) forl1<k<s.
“ T\,

r=1i,j

(5.2)

5.2. We now sketch the main ideas of the proof of Theorem 5. At first, we
recall from Shibata- Kikuchi, [18], that problem (1.1) has a unique local solution
ue X**Y(T’), for some T'€]0,T], corresponding to {ugu,,f;$} satisfying the
compatibility conditions of order s. Similarly, there is a unique ve X**!(7),
T"€]0,T7], corresponding to {v,,v,,g,¥} satisfying the same compatibility conditions;
in the sequel, we rename T by min(7,7T",T").

We can differentiate (1.1) r times in ¢, for 1 <r<s—1, and find that dfue X**!~"
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is solution of the problem

(O5u),, — o(x, )0*(O5u) = F'(x, 1) in Qx7]0,T[
(5:3) (Gru)x,0)=ux), (Ofu)(x,0)=1u, (x) in Q
o (x, )3(@u) =¥ (x, 1) in 0Qx70,T[

with a={a;} ={a;(Vu)}, F'=08;f+F], ® =0;¢—@], ®{=0, and

Fii Z <r) Z (af“ij)(a:_kaiaju) for r>1,
k=1\K/ij=1

=) (r_l> Y, vidr(o;)0; o) for r=2.
=1\ k Jij=1

We have a similar set of equations satisfied, for 0<r<s—1, by dlve X**! 7", with
coefficients f={p;;} ={a;(Vv)}, and G’, ¥’ defined analogously to F’, @"; since

uve X**!, we have that o,feX* and, as it is not difficult to verify,
F',G"e CY([0,T];L? and @",¥" e C'([0,T]; A?) at least.

We now proceed first to establish the Lipschits type estimates for lower order
norms in H™, 1<m<s,

(54 e —2llm < vl —glI7 + KD —¥IDi- s+ luo—vollZ+ 1 + g —04117),

with y depending on T, ||lulll,+, and ||o|ll;+,. The difference dju— v satisfies the
equations

(Oru— O),, — 0 0*(Ou— Ov) = F" — G" + (o — B)3*d’w,
(5.5.2) (Oru—0p)0)=u,—v,, (Fu—0i)0)=tt41—0y+1,

a*0(0u—Ofv) =0 — " + (" — B)0%0%v,

for r>1 and
(u—)— z 2 fu=) =S~
(5.5.0) (u—v)0)=uo—vo, (—0)0)=u,—0,,
S, vildfu—o)=¢—V,

i,j=1

for r=0 where oj;=[3a;(V(v+6(u—0)))dd, and therefore, by Shibata, [17] (Thm.
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3.8), it satisfies, for 0<r<s—2, the elliptic estimate
"a:u—a;v"s—rs ||5:f_a:g||s-r—2 +dr"F; —G; "s—r—2

(5.6) +d, (2~ P* O sy - 2+ <O — Y>3

+d,(<(l)'i _‘Il'i >>s—r—3/2+dr<<(av_ﬂv)a(a:v)>>s—r—3/2

+ "6:+2u'—a:+20"s—r—2 = Al + e +A7’
with M depending on ||lulll,,, via the coefficients {a;;} and {«;;}, where d,=1 for
r>1 and =0 for r=0. Following again Shibata, [17] (sct. 4), by means of
Sobolev’s product estimates and classical calculus inequalities we can estimate A,
and A in terms of X§_,||0*u—d*v||,_,_,, with quantities that depend at most on
Nlellls+1 and |||ollls+,; the same is true for A; and Ag, keeping in mind that

*ve C([0,T]; B**'~%. Thus, summing all inequalities (5.6) for 0<r<s—1, and
using the interpolation inequality

10k — Bkvlly - - 1 < cllOfu— Bfoll s 5| Oku— foll3,
with a=-1; and adding the two extra terms for r=s—1 and r=s, we
deduce the estimate
s s—2
Y Nofu—atol 2 < M{ Y |10; f—diglli—k-
k=0 k=0
(57) 522 k k 2 - ak _ak 2 as—-l _as—l 2
+ Y, <dp—y>2, ot L N0u—0wl* + 16 u—8;""0l13}
k=0 k=0

The last two terms of (5.7) can be estimated by means of the first order energy
estimate (2.5) applied to (5.5) for 0<r<s—1; note, however, that when r=s—1 we
can estimate ||[F{~!—G{™!|, etc., only in terms of Zj_,|l0*u—ad*v|,_,. Still, we
obtain from (5.7) that

2

s s—2 s—
Y |laf“—5fv||s2—kSM{ Y ok f—akghioi-a+ Y, <<5f¢—5fl//>>s2—k—g
k=0 k=0 k=0
s s
+ Y lwe—vdd+ Y s s — 04112
k=0 k=0

s—1 T

s—1 (T
+5 wmwm&bﬁzj«ﬂwwwxﬂ%
k=0J0 k=0J0

+szmwma}
k=0J0

from which, recalling (5.1),(5.4) follows by Gronwall’s inequality.
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5.3. We now consider the highest order norm ||lu—u|||;,,. Exactly in the
same way we established (5.7), we obtain from (5.5) for 0<r<s—1 the estimate

s+1

lea“u ] [ k<M{Z||3"f Orgli-i-1

(5.8) + Z «OP—aY>»2 s+ Y ofu—arollZ_,
k=0 k=0

+||D26f_1u—D26f~lv||2};

thus, because of the lower order estimates (5.4), to estimate |||u— |||, ; it is sufficient to
estimate ||D?*w—D?z||, where w=0"'u and z=0{"'ve X2 This we cannot do

directly, because of the loss of regularity (that is, we cannot consider (5.5) for r=s);
rather, we remark that from the boundary conditions in (5.3) for r=s—1 we deduce

that, since u,_,eH?> and u,e H', setting F=F"!, ®=®°"! we have that

{us_ 1, u,F,®}e N ,. Thus, we can apply Theorem 4 to (5.3), and construct a
sequence {ul_,ul, F,®*} from approximating {u_,,u,F,®} in 4", and such that
(from (2.8))

(5.9) lllw—w?ll, =0
as 1]0. Applying (2.4) to the difference z—w?* we obtain
ID2(8)— D*wH(e)l|> < M{|| D*2(0) — D*wH(0)||>
+1GO)—F0)I> + 11 BX(0)))?
+ <¥(0)—- ®40)»> 3 + « B}0)»}

5.10
10 qu —F? +f 1B
J«‘P (I>‘>>,}+J «B}»}?
0 0
EC1+"'+C9,

where B*=(f—a)d?w* and B*=(a"—p"ow*. We split

(5-11) Cy <2M{||D?2(0)— D*w(0)|1* + | D*w(0) — D*w*0) %},

and similarly for the terms C,, C,, Cg, Cs; we note that
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(5.12) 1D?2(0)— D*w(O)|* = llo - 1 — 45— 1 I3 + l2g— 0413

1054 1 =ty 1 1> < Bilg— To#2, 4.

Next, we decompose F,—G,=d 'g—d5"1f+0,G°"'—0,F~!, and analogously for
®,—¥; carrying out the differentiation and adding and subtracting similar terms,
proceeding as in the estimate of 4, and A it is not difficult to obtain the estimate

s—1
(5.13) 10,G*~ ' =0 F° " 1>+ «0,¥, —0,@,» <M}, 0u—0t0l}1 1 -
k

=0
Exactly in the same way, we also obtain

1G(0)— RO)|I> + «<'¥(0) - ®(0)» 3
(5.14) <1;7'g0) & fO)I> + «&;~ 'W(0)— & ' p(0)»}

+M Y, 10{u(0)— ;01
k=0

finally, recalling that ||0?w*(.,#)| is uniformly bounded with respect to A (and f),
we have

(.15 IBHI? + < Bi» 3 < M(1+10*wll) Y, 19u—dkoll2-
k=0

(5.16) IB*O)|* + « BX0)> 3 < Mty —iok2, ;.
Replacing (5.11), -+ (5.16) into (5.10) we obtain
1D?2(t) — D*w(t)||> < 2| D*w(t) — D*wA(e) |2 + 2[| D?2(f) — D*w(®)||>
SM{HDZW(I)—Dzw‘(t)HZ + il —ToH2,
+ 1 D*w(0)— D*wH0) 1> + Il f—glll + K —¥ D}

(5.17) +]|F0)— FX0)]|2 + < ®(0)— ®*(0)» 2

T T
+ f Vo= F2+ f « @02
0 0

; f A+ 1) S ua:‘u—afvuz-k}
0 k=0
= Dl + .- +D10.

Recalling (5.9), we have that
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Dl +D3 +D6 +D7 +D8+D9 Sk(l),
with k(1) |0 as 1] 0; thus, from (5.17) we obtain

1D22() — D*w(1* <k(A)+ M{#ito— To82,  + Il —glll?
+ <<<¢_'//>>>‘2‘*+J‘(1 +10*w}11?) Xs: 105 —0Foll3-i}-
0 k=0

Adding this to (5.8), and recalling the lower order estimates (5.4), we obtain that
et —ollZ+ s <K(A)+ M{#ito — 9642, 1 + Il f—glll3

+ =YWy +A+r)Tllu—2ll2},

where the function r(1)=max,,.7/|0>wi(?)||*> is not necessarily bounded as 4| 0.
By (5.4) with m=s, we deduce from (5.18) that

(5.18)

(e —2ll1Z+ ; k() +MA +(L+ ()TN f—gllI?
+ <<<¢_'//>>>s2—i-+ luo—voll 24 4 + lluy _U1||s2};

therefore, to conclude the proof of Theorem 5, given £>0 it is sufficient to first
fix A=1 so that k(1) <1e?, and then to choose 6 >0 so that M&*(1+(1 +r(A)T)<ie:
from (5.19) with A=71 we deduce that ||ju—u|||,+,<e. O O

(5.19)
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