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Abstract 

Unilateral labyrinthectomy (UL) causes ocular and postural asymmetries, which disappear over time in the processes of equilibrium 
recovery known as vestibular compensation. It has been reported that N-methyl-D-aspartate (NMDA) receptors are involved in vestibular 
compensation. In the present study, in order to elucidate the NMDA receptor-mediated neural circuit responsible for the development of 
vestibular compensation, we used Fos expression as a marker of neural activation and examined the effects of MK801, a specific 
antagonist of NMDA receptors, on UL-induced Fos expression in the rat brainstem. After UL, Fos-like immunoreactive (-LIR) neurons 
were observed in the ipsilateral medial vestibular nucleus (ipsi-MVe), the contralateral prepositus hypoglossal nucleus (contra-PrH) and 
the contralateral inferior olive beta subnucleus (contra-IOb). Fos-LIR neurons then gradually disappeared in the processes of vestibular 
compensation. It is suggested that the activation of the ipsi-MVe, the contra-PrH and the contra-IOb neurons after UL are the initial event 
of vestibular compensation. Intraperitoneal injection of MK801 in the processes of vestibular compensation caused reappearance of 
UL-induced behavioral deficits. During the decompensation induced by MK801, Fos-LIR neurons appeared in the contra-MVe, the 
ipsi-PrH and the bilateral-IOb. It is suggested that the contra-MVe, the ipsi-PrH and the bilateral-IOb neurons are inhibited by 
glutamatergic synapses driving inhibitory neurons via NMDA receptors in the processes of vestibular compensation and that disinhibition 
of these nuclei induced by MK801 causes decompensation. However, MK801 caused neither Fos expression nor behavioral decompensa- 
tion after vestibular compensation is accomplished. All these findings suggest that the NMDA receptor-mediated inhibitory modulation in 
the central vestibular system plays an important role for the initial processes of the development of vestibular compensation. 
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1. Introduct ion 

Unilateral labyrinthectomy (UL) induces severe postural 
(barrel rotation, head tilt) and oculomotor (nystagmus) 
asymmetry. However, the functional deficits recover grad- 
ually after the lesion. This progressive restoration of bal- 
ance is referred to as vestibular compensation [28,35]. 
Since UL results in a permanent loss of vestibular inputs 
from the ipsilateral vestibular periphery [16], vestibular 
compensation has been attributed to functional reorganiza- 
tion of the central vestibular system [35] and used as a 
model of lesion-induced neural plasticity in the central 
nervous system (CNS) [20]. 

The N-methyl-D-aspartate (NMDA) receptor is a type 
of glutamate receptor that plays a crucial role in the CNS 
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plasticity [2,39]. There are several lines of evidence that 
the NMDA receptor plays a key role in vestibular informa- 
tion processing. Electrophysiological studies have shown 
that the NMDA receptor is involved in neural activation of 
vestibular nuclei via vestibular commissures [6,11,19]. Re- 
cent morphological studies have revealed substantial ex- 
pression of the NMDA receptor at both the mRNA and 
protein level in the rat vestibular nuclei [23,26,41]. More- 
over, in guinea pigs, a specific antagonist of NMDA 
receptor, MK801, has been demonstrated to cause reap- 
pearance of UL-induced behavioral deficits, i.e. decompen- 
sation [31,36,40]. These findings suggested that the NMDA 
receptor takes part in the neural plasticity of the central 
vestibular system after UL. 

In the present study, to clarify the NMDA receptor- 
mediated neural circuit responsible for the development of 
vestibular compensation, we used Fos expression as a 
marker. Fos is the protein product of c-los, a nuclear 



T. Kitahara et al. /Brain Research 700 (1995) 182-190 183 

proto-oncogene, which is rapidly induced in neurons in 
response to various kinds of stimulation [4,21]. Previous 
studies by both ourselves [29] and Kaufman et al. [17] 
showed that asymmetrical Fos expression was induced by 
UL in the vestibular and vestibular-related nuclei in rats. 
We first examined changes in Fos expression with time 
after UL in the rat brainstem immunohistochemically, and 
then the effects of MK801 on the UL-induced Fos expres- 
sion were examined. 

2. Materials and methods 

2.1. Labyrinthectomy 

Adult Wistar rats weighing about 150 g were used. 
Animals were anesthetized with ether and the right tym- 
panic membrane, malleus and incus were removed by the 
retroauricular approach under an operating microscope, 
The stapes crura were fractured and the stapes foot plate 
was removed to open the oval window. Then, a small 
opening was made on the bony horizontal semicircular 
canal with a small dental burr. Through these two open- 
ings, the membranous labyrinth was surgically removed 
with a small right-angled hook and chemically destroyed 
by injection of 100% ethanol. At the end of surgery, 
antibiotic cream (Furacin) was topically applied to the 
opened labyrinth to prevent infection and the temporal 
bone was sealed with dental cement. The operative wound 
was sutured and the animal was allowed to recover in the 
light. 

At each post-operative interval of 1, 2, 6, 12 h and 1, 3, 
7, 14, 28 days, four animals were deeply anesthetized with 
sodium pentobarbital (60 m g / kg ,  i.p.) and transcardially 
perfused with 100 ml of ice-cold saline, followed by 250 
ml of Zamboni's fixative. 

2.2. Drug 

At each post-UL interval of 6 h and 1, 3, 7, 14, 28 days, 
four animals received intraperitoneal (i.p.) injection of 
MK801 (Research Biochemical Inc., MA, USA). Each 
animal of these different post-operative groups was in- 
jected only once. The dose of 1.0 m g / k g  was chosen, 
because previous studies reported that this dose of MK801 
induced full decompensation in unilateral labyrinthec- 
tomized guinea pigs [36]. MK801 was dissolved in 0.85% 
saline to a volume of 1.0 ml /kg .  Two and six hours after 
administration of MK801, animals were then treated for 
perfusion and fixation as described above. 

2 -3  days. Frozen serial sections (18 /zm thick) were cut 
on a cryostat. The avidin-biotin complex (ABC) method 
was used to visualize the immunohistochemical reaction. 
Briefly, sections were incubated sequentially in the follow- 
ing solutions at 4°C: 1% bovine serum albumin (BSA) and 
normal goat serum (NGS) in 0.3% Triton X-100 in PBS 
for 3 h; antisera against Fos (diluted 1:500) in 1% BSA 
and NGS in 0.3% Triton X-100 in PBS for 48 h; 0.1 M 
PBS for 15 min; biotinylated goat anti-rabbit IgG (Vector 
Labs. Inc., USA) in 1% BSA and NGS in 0.3% Triton 
X-100 in PBS for 24 h; 0.1 M PBS for 15 min; Vectastain 
reagent (Vector Labs. Inc., USA) for 24 h; diaminobenzi- 
dine tetrahydrochloride ( D A B ) / H 2 0  2 for 15 min, and 
then examined under a light microscope. The antibody 
raised against Fos was obtained from Oncogene Science 
(NY, USA; catalog number PC05). This Fos antibody is a 
rabbit, affinity-purified polyclonal antibody raised against 
the peptide S-G-F-N-A-D-Y-E-A-S-S-S-R-C correspond- 
ing to residues 4-17  of human Fos [9]. 

2.4. Cell counting 

Transverse 18 /zm brainstem sections were examined 
under bright-field microscopy at 40 X and 100 X magnifi- 
cation to detect Fos-LIR cells. Only cells that had signifi- 
cant levels of DAB reaction product in their nucleus above 
tissue background levels were counted with a digital image 
analysis system (Universal Imaging Software). 

2.5. Behavior 

Vestibular-ocular and vestibular-spinal reflex are usu- 
ally used as a marker of the development of vestibular 
compensation. In the present study, we chose the fre- 
quency of horizontal spontaneous nystagmus (SN) as a 
marker, because it is reliably measured by a video camera. 

Eye movements were videotaped using a Panasonic 
NV-M7 video camera with a zoom lens and replayed using 
a Mitsubishi E7 Black Diamond video recorder and a Sony 
Trinitron color monitor. The frequency of SN was mea- 
sured as the number of quick phase beats occurring over 
periods of 15 s. The eye movements were replayed and 
counted 3 times for each animal (n = 4) and the means 
obtained. These measurements were made at 0.5, 1, 2, 6, 
12, 18, 24, 42, 48 and 72 h post-UL. SN induced by 
MK801 at various post-operative intervals was also mea- 
sured as described above. 

3. Results 

2.3. Immunohistochemistry 

The rat brain was immediately removed after perfusion, 
post-fixed in the same fixative at 4°C for 1-2  days, and 
then placed in 30% sucrose-phosphate buffer at 4°C for 

3.1. Vestibular compensation after UL and MK8Ol-in- 
duced decompensation 

After right UL, the quick phase of SN toward the left 
(intact) side appeared. The frequency of SN reached a 
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maximum of 27-28 beats/15 s (27-28/15  s) half-an-hour 
after UL. Then, the frequency of SN was gradually de- 
creased and disappeared by 48 h post-operation (Fig. 1A). 
On day 3 after UL, i.p. injection of MK801 at a dose of 
1.0 m g / k g  caused reappearance of SN toward the intact 
side (the same direction as in the case after UL). The 
frequency of SN reached a maximum of 20-25 /15  s 
half-an-hour after injection. The freqency of SN was 
quickly decreased and disappeared by 6 h post-injection 
(Fig. 1B). 

Fig. 2 shows the maximum frequencies of SN after UL 
and SN induced by MK801 (1.0 mg/kg)  on days 3, 7 and 
14 after UL. The maximum frequency of MK801-induced 
SN on day 7 was less than that on day 3. MK801 did not 
induce SN on day 14 after UL. Thus, the decompensation 
(reappearance of SN) induced by MK801 was observed 
only when administered up to day 7 after UL. 

Saline injections did not cause reappearance of SN in 
unilateral labyrinthectomized rats (n = 2, data not shown). 
In normal rats, MK801 injections did not induce any kind 
of nystagmus (n = 4, data not shown). 

After right UL, the head of animals was tilted toward 
the right (lesioned) side. The degree of the head tilt (HT) 
was gradually, but incompletely compensated. On day 3 
after UL, MK801 (1.0 mg/kg)  caused exacerbation of HT 
toward the lesioned side (the same direction in the case 
after UL), which quickly disappeared by 6 h post-injection. 
But, MK801 did not cause the exacerbation of HT on day 
14 after UL. 

3.2. Fos expression after UL 

beats/15soc 

UL day3 day7 day14 
MK801 M K 8 0 1  MK801 

Fig. 2. The maximum number of spontaneous nystagmus (beats/15 s) 
after unilateral labyrinthectomy (UL) (open column) and those induced 
by MK801 (1.0 mg /kg ,  i.p.) at post-UL intervals of 3, 7 and 14 days 
(filled columns) in rats. Columns represent means+S.E.M, for four 
animals. 

nuclei (n = 2, data not shown). One hour after UL, Fos-LIR 
neurons appeared in the medial vestibular nucleus ipsilat- 
eral to the lesioned side (ipsi-MVe), the prepositus hy- 
poglossal nucleus (contra-PrH) and the inferior olive beta 
subnucleus (contra-IOb) contralateral to the lesioned side. 
The level of Fos expression in these nuclei reached a 
maximum by 6 h post-operation (Fig. 3), and then was 
gradually reduced. Fos-LIR neurons in the contra-PrH and 
the contra-IOb disappeared on day 3 after surgery. Resid- 
ual expression of Fos was still observed in the ipsi-MVe 
on day 3, but not on day 7 after UL. The distributions of 
Fos-LIR neurons in the brainstem and the changes in their 
number with time after UL are shown schematically in Fig. 
6A-E. 

In normal rats, Fos-like immunoreactive (-LIR) neurons 
were not observed in the vestibular or vestibular-related 

3.3. Fos expression during MK8Ol-induced decompensa- 
tion 
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Fig. 1. Changes in frequency of spontaneous nystagmus with time after 
unilateral labyrinthectomy (A) and the effect of MK801 (1.0 mg / kg ,  i.p.) 
on the frequency of spontaneous nystagmus on post-operative day 3 (B) 
in rats. Data are expressed as mean frequency + S.E.M. of quick phase 
beats per 15 s for four animals. UL, unilateral labyrinthectomy; MK801, 
injection of MK801. 
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A schematic representation of the effects of MK801 on 
Fos expression in the rat brainstem after UL is shown in 
Fig. 6F-J.In normal rats, 2 h after i.p. injection of MK801, 
Fos-LIR neurons were not seen in the MVe or the PrH, but 
they were present in the bilateral IOb symmetrically (Figs. 
4 and 6F). Six hours later, however, no Fos expression was 
observed in the IOb. During the decompensation induced 
by MK801 (1.0 mg/kg),  which was administered up to 
day 7 after UL, Fos-LIR neurons appeared in the contra- 
MVe and the ipsi-PrH. Two h after injection at a post-UL 
interval of 6 h, in addition to Fos-LIR neurons in the 
ipsi-MVe and the contra-PrH induced by UL, MK801-in- 
duced Fos-LIR neurons were also observed in the contra- 
MVe and the ipsi-PrH (Fig. 6G). On days 3 and 7 after 
UL, Fos-LIR neurons were observed only in the contra- 
MVe and the ipsi-PrH 2 h after injection of MK801 (Fig. 
6H,I). At a post-UL interval of 14 d, MK801 induced 
neither decompensation nor Fos-LIR neurons in these re- 
gions (Fig. 6J). The Fos expression level in the contra-MVe 
and the ipsi-PrH induced by MK801 reached a maximum 2 
h after injection and disappeared 6 h later. 
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In the IOb, MK801 induced asymmetrical Fos expres- 
sion. At a post-UL interval of 6 h, the Fos expression in 
the contra-IOb was stronger than that in the ipsi-IOb (Fig. 
6G). Then, on day 3 after UL, the expression in the 
ipsi-IOb was stronger than that in the contra-IOb (Fig. 
6H). The asymmetrical Fos expression became evident 2 h 
after injection of MK801 and disappeared after a further 6 
h. On days 7 and 14 after UL, MK801-induced Fos 
expression was symmetrical as the case with injection into 
normal rats (Fig. 6I,J). 

Injection of the same volume of saline into lesioned 
animals had no effect on Fos expression (n = 2, data not 
shown). 

Histological examination after UL showed that the sur- 
gical and chemical destruction of the membranous labyrinth 

had been achieved and that no vestibular hair cells had 
regenerated (data not shown). 

4. Discussion 

In the present study, half-an-hour after UL, the fre- 
quency of SN toward the intact side reached a maximum 
in rats. The initial increase of SN was probably due to 
recovery from ether anesthesia, because the quick phase of 
nystagmus was suppressed by anesthesia [32,36]. Then, the 
frequency of SN was gradually decreased and disappeared 
by 48 h post-operation (Fig. 1A). Fos-LIR neurons ap- 
peared in the MVe, PrH and IOb after UL in the rat 
brainstem (Fig. 6A-E).  The level of Fos expression in the 

Fig. 3. Bright-field photomicrographs showing Fos expression in the ipsi-MVe, the contra-PrH (A) and the contra-IOb (B) 6 h after unilateral 
labyrinthectomy (UL6h). Bar = 200 /zm. OPE, operated side; CONT, control side. 
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ipsi-MVe, the contra-PrH and the contra-IOb reached a 
maximum 6 h after surgery (Fig. 3). Then, Fos expression 
in these nuclei was gradually reduced and hardly observed 
by the 3rd post-operative day. Thus, Fos expression seems 
to be reduced in accordance with recovery from UL-in- 
duced behavioral deficits. Since Fos is expressed in neu- 
rons following synaptic excitation by various kinds of 
stimulation [4,21], these findings suggest that neural acti- 
vation of  the ipsi-MVe, the contra-PrH and the contra-IOb 
is the initial event of the development of vestibular com- 
pensation. Our previous study [29] and Kaufman et al. [17] 
showed that asymmetrical Fos expression was induced by 
UL in the vestibular and vestibular-related nuclei in rats. 
However, we did not observe UL-induced Fos expression 
in the inferior vestibular nucleus or the dorsolateral central 
gray, which Kaufman et al. previously reported [17]. 

In the previous electrophysiological study [34], the rest- 
ing activity in the ipsi-MVe type I neurons, which directly 
receive primary afferent inputs, was decreased after UL. 
But, the resting activity in the ipsi-MVe type II interneu- 
rons, which receive commissure inputs, was increased after 
UL. Thus, Fos-LIR activated neurons in the ipsi-MVe may 
be the type II interneurons. However, we did a preliminary 
experiment that showed a part of Fos-LIR neurons in the 
ipsi-MVe projected their axons to the vestibulo-cerebellum 
by means of  retrograde tracing and immunohistochemical 
techniques (unpublished observation). 

Previously, we showed that the expression of pre- 
proenkephalin (PPE) mRNA, a precursor of Met- and 
Leu-enkephalin, was increased in the MVe on the operated 
side after UL [30]. The level of  PPE mRNA expression in 
the ipsi-MVe reached a maximum 1 day after the opera- 

Fig. 4. Bright-field photomicrographs showing Fos expression in normal rats 2 h after injection of MK801 (1.0 mg/kg, i.p.) (MK2h). No Fos expression 
was observed in the MVe or the PrH (A), but in the bilateral-IOb (ipsi = contra) (B). Bar = 200 /~m. 
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tion, and then gradually returned to normal. Thus, changes 
in PPE mRNA expression in the ipsi-MVe after UL seem 
to follow those observed here in Fos expression. A PPE 
gene has a DNA binding site called AP-1 site in its 
promoter region and its expression is regulated by Fos-Jun 
complexes [38]. These findings suggest that Fos expression 
after UL is involved in vestibular compensation by induc- 
ing PPE mRNA expression in the ipsi-MVe. 

In the present study, MK801 caused reappearance of 
SN toward the intact side. Half-an-hour after injection of 
MK801 on day 3 after UL, the frequency of SN reached a 
maximum. The frequency of SN was then quickly de- 
creased and disappeared by 6 h post-injection (Fig. 1B). 
These results in rats are consistent with the findings of 

MK801-induced decompensation in labyrinthectomized 
guinea pigs [36], suggesting that MK801 transiently dis- 
rupts the plastic processes in vestibular compensation in 
rats. As the post-UL interval became longer, the maximum 
frequency of SN induced by MK801 was reduced (Fig. 2). 
MK801 never induced SN on day 14 after UL. These 
results suggest that MK801 induces decompensation only 
before vestibular compensation is accomplished. The 
MK801-sensitive period during the development of 
vestibular compensation was also suggested by Darlington 
et al. [8]. Therefore, it is likely that an NMDA receptor- 
mediated neural circuit is involved in the initial processes 
of vestibular compensation. 

In the present study, Fos-LIR neurons were never seen 

A UL3d MK2h 

Fig. 5. Bright-field photomicrographs showing Fos expression in the contra-MVe, the ipsi-PrH (A) and the bilateral-lOb (ipsi > contra) (B) 2 h after 
injection of MK801 (1.0 mg/kg, i.p.) in labyrinthectomized rats on day 3 after the operation (UL6hMK2h). Bar = 200 /zm. OPE, operated side; CONT, 
control side. 
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in the MVe or the PrH after injection of MK801 in normal 
rats (Figs. 4 and 6F). However, during decompensation 
induced by MK801 in labyrinthectomized rats, Fos-LIR 
neurons appeared in the contra-MVe and the ipsi-PrH (Fig. 
6G-I) .  Since Fos is induced in activated neurons, it is 
suggested that the contra-MVe and the ipsi-PrH were 
inhibited via NMDA receptors in the initial period of 
vestibular compensation, and that MK801 probably acti- 
vated these nuclei by disinhibition, resulting in decompen- 
sation. Since the NMDA receptor is not directly mediated 
in inhibitory transmission, it is likely that after UL the 
contra-MVe and the ipsi-PrH were inhibited by certain 
inhibitory neurons driven by glutamatergic synapses via 
NMDA receptors. As vestibular compensation developed, 
the number of MK801-induced Fos-LIR neurons was re- 
duced (Fig. 6G-J).  MK801 never induced Fos-LIR in 
these neurons on day 14 after UL. This decay profile of 
MK801-induced Fos-LIR seems to be correlated with that 
of MK801-induced reappearance of SN (decompensation) 
(Figs. 2 and 6H-J).  These results suggest that the in- 
hibitory regulation of the contra-MVe and the ipsi-PrH 
after UL by certain inhibitory neurons driven by gluta- 
matergic synapses via NMDA receptors plays an important 
role for the initial processes of the development of vestibu- 
lar compensation. 

There are three possible origins of the NMDA 
receptor-mediated inhibitory projection to the contra-MVe 
and the ipsi-PrH in the development of vestibular compen- 
sation. (1) Commissures: the MVe and the PrH neurons 
receive commissural fibers from neurons in the opposite 
nuclei, respectively [13]. These commissures make synap- 
tic contacts on GABAergic interneurons via NMDA recep- 
tors [10,27,37]. Taken together with the present findings, it 
is suggested that the ipsi-MVe and the contra-PrH neurons 
activated after UL inhibit the contra-MVe and the ipsi-PrH 
through glutamatergic commissures driving GABAergic 
interneurons via NMDA receptors in the development of 
vestibular compensation. (2) Mossy fibers: the MVe and 
the PrH neurons give rise to their axons to the vestibulo- 
cerebellum [1]. The mossy fibers from the nuclei make 
synaptic contacts on the granule cells, which project their 
glutamatergic axons to Purkinje cells in the vestibulo- 
cerebellum via NMDA receptors [14,25,26,33]. Axons of 
the Purkinje cells then make GABAergic synaptic contacts 
on the MVe and the PrH [24]. The reciprocal projection 
between the vestibular nuclei and the vestibulo-cerebellum 
may be responsible for NMDA receptor-mediated inhibi- 
tion of the contra-MVe and the ipsi-PrH in the develop- 
ment of vestibular compensation. By means of retrograde 
tracing and immunohistochemical techniques, it was re- 
vealed that enkephalinergic neurons in the MVe project 
their axons to the vestibulo-cerebellum [18]. We reported 
that the expression of PPE mRNA was increased in the 
ipsi-MVe after UL [30]. Therefore, it is possible that the 
enkephalinergic mossy fiber is a component of the NMDA 
receptor-mediated inhibitory projection in the development 

of vestibular compensation. (3) Climbing fibers: the IOb 
neurons also project their glutamatergic axons, known as 
climbing fibers, directly to Purkinje cells in the vestibulo- 
cerebellum via NMDA receptors [3,5,14,26]. Ito et al. 
previously reported that climbing fibers receive visual 
inputs and make neuronal control of the response of 
cerebellar Purkinje cells to parallel fibers [14,15]. Since 
UL-induced nystagmus causes severe visual disturbances, 
the lOb neurons may be activated after UL and convey 
visual information to the vestibulo-cerebellum. Therefore, 
it is very likely that the contra-IOb neurons activated after 
UL also inhibit the contra-MVe and the ipsi-PrH by gluta- 
matergic synapses of climbing fibers driving GABAergic 

n o r  "~" / "" ~}/ 

i ).,-ol / 
UL 

Fig. 6. Schematic representation of Fos expression in rat brainstem 
sections at the level of MVe, PrH and lOb. A: normal rats. B-E: 
unilateral labyrinthectomized rats 6 h (B), 3 days (C), 1 week (D) and 2 
weeks (E) after the operation. F: normal rats 2 h after MK801 injection 
(1.0 mg /kg ,  i.p.). G-J:  unilateral labyrinthectomized rats 2 h after 
MK801 injection (1.0 mg /kg ,  i.p.) at post-operative intervals of 6 h (G), 
3 days (H), 1 week (l) and 2 weeks (J). The average number of 
Fos-labeled neurons per nucleus is indicated by the dots (n = 4). One dot 
represents twenty Fos immuno-positive neurons. Note that the rats in G, 
H and 1 showed reappearance of UL-induced behavioral deficits (decom- 
pensation) after MK801 injection. OPE, operated side; CONT, control 
side. 
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project ions  o f  Purkinje  cel ls  v ia  N M D A  receptors  in the 

deve lopmen t  o f  ves t ibular  compensa t ion .  

Dur ing  the deve lopmen t  of  ves t ibular  compensa t ion ,  

there are two events  for the correct ion o f  the imbalance  o f  

the rest ing act ivi ty  be tween  bilateral M V e  neurons.  One  is 

the r ecovery  o f  the rest ing act ivi ty  in the ip s i -MVe neu- 

rons and the other  is the inhibi t ion o f  the con t ra -MVe 

neurons.  Here,  we  propose  a hypothesis  that the N M D A  

receptor -media ted  inhibi tory project ion to the con t r a -MVe  

and the ips i -PrH plays a crucial  role for the latter event.  

Af te r  in ject ion o f  MK801  into normal  rats, Fos -LIR  

neurons  were  modera te ly  detected in the bilateral lOb  

symmet r ica l ly  (Figs. 4 and 6F). Previous  morpho log ica l  

studies also showed  that inject ion o f  MK801  into normal  

rats leads to induct ion o f  Fos in some  nuclei  in the C N S  

[12,22]. A possible  m e c h a n i s m  of  act ivat ion o f  these neu- 

rons is that N M D A  antagonism results in dis inhibi t ion of  

g lu tamaterg ic  synapses  which  lead inhibi tory cells  via  

N M D A  receptors  [7,42]. Dur ing  the decompensa t ion  after 

MK801  inject ion into l abyr in thec tomized  rats, Fos expres-  

sion in the IOb was  asymmetr ica l .  Fos express ion in the 

cont ra- IOb was  s t ronger  than that in the ips i - IOb w h e n  

MK801  was  adminis tered  6 h after U L  (Fig. 6G), and then 

vice  versa  w h e n  MK801  was  adminis tered  3 d after U L  

(Figs. 5 and 6H). On  day 7 after UL,  MK801  never  

induced asymmet r ica l  Fos  express ion in the lOb  (Fig. 6I). 

Thus,  the lOb  neurons may  also be invo lved  in the decom-  

pensat ion induced by MK801 .  

In conclus ion,  after UL,  the ips i -MVe,  the contra-PrH 

and the cont ra- IOb neurons  are first act ivated and then 

inhibit  the con t ra -MVe,  the ips i -PrH and the b i la tera l - lOb 

by g lu tamaterg ic  synapses dr iv ing  inhibi tory neurons via 

N M D A  receptors.  The  N M D A  receptor -media ted  in- 

hibi tory modula t ion  in the central  ves t ibular  sys tem plays 

an important  role for the initial processes  o f  the deve lop-  

ment  o f  ves t ibular  compensa t ion .  
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ROLE OF THE FLOCCULUS IN THE DEVELOPMENT OF 
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Abstract After unilateral labyrinthectomy in rats, Fos-like immunoreactive neurons appeared in the 
ipsilateral medial vestibular nucleus, contralateral prepositus hypoglossal nucleus and contralateral 
inferior olive beta subnucleus, and thereafter gradually disappeared in accordance with the development 
of vestibular compensation. This finding indicated that the activation of these nuclei is the initial event of 
vestibular compensation. In the present study, retrograde tracing experiments revealed that these Fos-like 
immunoreactive neurons project a proportion of their axons to the vestibulocerebellum (uvula-nodulus, 
flocculus). Before vestibular compensation was accomplished, right, left or bilateral flocculectomy was 
performed in right-labyrinthectomized rats. All these treatments caused reappearance of unilateral 
labyrinthectomy-induced behavioral deficits and Fos expression in the left medial vestibular nucleus and 
right prepositus hypoglossal nucleus. Since floccular efferents are GABAergic, these results indicate that 
the neurons in which Fos expression was detected by flocculectomy had been inhibited after unilateral 
labyrinthectomy by floccular Purkinje neurons and that disinhibition of these neurons induced by 
flocculectomy caused decompensation. 

Based on our present findings, we propose a hypothesis that the bilateral flocculus serves the restoration 
of balance between intervestibular nuclear activities to induce vestibular compensation after unilateral 
labyrinthectomy. Copyright ~) 1996 1BRO. Published by Elsevier Science Ltd. 

Key words: labyrinthectomy, uvula-nodulus, Fluoro-Gold dye, decompensation, nystagmus, neural 
plasticity. 

Unilateral labyrinthectomy induces severe postural 
(barrel rotation, head tilt) and oculomotor (nystag- 
mus) asymmetry. The functional deficits recover 
gradually after the lesion. This progressive restora- 
tion of balance is referred to as vestibular compensa- 
tion.lS,J 7 Since unilateral labyrinthectomy results in 
a permanent loss of vestibular input from the ipsi- 
lateral vestibular periphery, 8 vestibular compensa- 
tion has been attributed to functional reorganization 
of the central vestibular system 17 and used as a model 
of lesion-induced neural plasticity in the CNS] 3 

In previous studies in rats, Fos-like immunoreac- 
rive (LIR) neurons appeared in the ipsilateral medial 
vestibular nucleus (MVe), contralateral prepositus 

++To whom correspondence should be addressed. 
Abbreviations: BSA, bovine serum albumin; CHAT, choline 

acetyltransferase; FG, Fluoro-Gold; IOb, inferior olive 
beta subnucleus; LIR, -like immunoreactive; MK-801, 
dizocilpine maleate; MVe, medial vestibular nucleus; 
NGS, normal goat serum; NMDA, N-methyl-D- 
aspartate; PBS, phosphate-buffered saline; PrH, preposi- 
tus hypoglossal nucleus; SN, spontaneous nystagmus. 

hypoglossal nucleus (PrH) and contralateral inferior 
olive beta subnucleus (IOb) after unilateral labyr- 
inthectomy, and then gradually disappeared in 
accordance with the development of vestibular com- 
pensation. 3'9'12'16 This finding indicated that the 
activation of these nuclei is the initial event of 
vestibular compensation. Intraperitoneal injection of 
dizocilpine maleate (MK-801), a specific antagonist 
of N-methyl-D-aspartate (NMDA) receptors, caused 
reappearance of unilateral labyrinthectomy-induced 
behavioral deficits. During the decompensation in- 
duced by MK-801, Fos-LIR neurons appeared in the 
contralateral MVe, ipsilateral PrH and bilateral 
IOb.~ 1 These findings suggest that the activated neur- 
ons in the ipsilateral MVe, contralateral PrH and 
contralateral IOb after unilateral labyrinthectomy 
inhibit the contralateral MVe, ipsilateral PrH and 
bilateral IOb by inhibitory neurons via NMDA re- 
ceptors and that the NMDA receptor-mediated in- 
hibitory modulation in the central vestibular system 
plays an important role in the initial processes of the 
development of vestibular compensation. 

571 
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There  are two possible origins of  the inhib i tory  
project ions to the cont ra la te ra l  MVe,  ipsilateral P rH 
and  bilateral  IOb in the deve lopment  of  vest ibular  
compensa t ion .  One is the vest ibular  commissures  and 
the o ther  is the vest ibulocerebel lum (uvula-nodulus ,  
flocculus). Previous works have demons t ra t ed  tha t  
the lat ter  plays an  i m p o r t a n t  role in vest ibular  com- 
pensat ion.  6~7 In the present  study, to clarify the 

involvement  of  the vest ibulocerebel lum in the in- 
h ibi tory  circuits responsible  for the deve lopment  of  
vest ibular  compensa t ion ,  we first examined the 
project ion of  Fos -L I R  neurons  after  unilateral  labyr- 
in thec tomy to the vest ibulocerebel lum by means  of  
re t rograde t racing and  immunohis tochemica l  tech- 
niques. We also studied the effects of  f locculectomy 
on uni lateral  l abyr in thec tomy- induced  Fos  
expression. 

EXPERIMENTAL PROCEDURES 

Retrograde tracing 

Adult male Wistar rats (Kiwa Experimental Animal Co. 
Ltd, Japan) weighing about 150 g were used. Fluoro-Gold 
dye (FG; Fluorochrome Inc., U.S.A.) was dissolved in 
saline (100 gg/5 gl saline) and used as a retrograde tracer. 
The caudal cerebellum was exposed and FG was injected 
through a glass micropipette connected to a 1-gl syringe 
(Hamilton). For uvula-nodulus injections (n=4), a posterior 
surgical approach was adopted. The posterior part of the 
bone situated under the occipital bone crest was removed 
and the dura incised. The micropipette was inserted through 
the dorsal uvula into the ventral aspect of the uvula and into 
the nodulus at several medial-lateral locations, as described 
previously by Barmack et al. 1 For injections into the right 
or left flocculus (n=4), an ipsilateral retroauricular approach 
was adopted. A small opening of the temporal bone was 
made at the cristata petrosa near the external auditory 
meatus with a small dental finishing burr and then the 
flocculus covered with the dura was exposed. The micro- 
pipette was inserted through this opening to inject FG into 
the flocculus. A total of 0.25 gl was pressure injected at 
each site. After three days postoperative survival, animals 
were right-labyrinthectomized and then perfused for 
immunohistochemical analysis. 

Labyrinthectomy 

Three days after FG injection, animals were anesthetized 
with ether and the right tympanic membrane, mallus and 
incus were removed by the retroauricular approach under 
an operating microscope. The stapes crura were fractured 
and the stapes foot plate was removed to open the oval 
window. Then, a small opening was made on the bony 
horizontal semicircular canal with a small dental finishing 
burr. Through these two openings, the membranous labyr- 
inth was surgically removed with a small right-angled hook 
and chemically destroyed by injection of 100% ethanol. At 
the end of surgery, antibiotic cream (Furacin) was topically 
applied to the opened labyrinth to prevent infection and the 
temporal bone was sealed with dental cement. The operative 
wound was sutured and the animal was allowed to recover 
in the light. 

Immunohistoehemistry by the indirect immunofluorescenee 
method 

At a post-unilateral labyrinthectomy interval of 6h, 
FG-injected animals were anesthetized with sodium pento- 
barbital (60mg/kg, i.p.) and transcardially perfused with 
100 ml of ice-cold saline, followed by 250 ml of Zamboni's 
fixative. 

The brain was immediately removed after perfusion with 
Zamboni's fixative, postfixed in the same fixative at 40C for 
one to two days and then placed in 30% sucrose phosphate 
buffer at 4°C for two to three days. Frozen serial sections 
(18 gm thick) were cut on a cryostat and processed using the 
indirect immunofluorescence method. Briefly, sections were 
incubated sequentially in the following solutions at 4°C: 1% 
bovine serum albumin (BSA) and normal goat serum (NGS) 
in 0.3% Triton X-100 in phosphate-buffered saline (PBS) for 
3 h; antisera against Fos (diluted 1:500) in 1% BSA and 
NGS in 0.3% Triton X-100 in PBS for 48 h; 0.1 M PBS for 
15 min; donkey anti-rabbit immunoglobulin G conjugated 
with Texas Red (diluted 1:250) in 1% BSA and NGS in 0.3'/,, 
Triton X-100 in PBS for 24 h; 0.1 M PBS for 15 min. They 
were then examined under a light microscope. FG has gold 
fluorescence when viewed using a V dichroic mirror filter. 
Neurons with Fos-LIR on the same section showed red 
fluorescence under a G dichroic filter. The antibody raised 
against Fos was obtained from Oncogene Science (New 
York, U.S.A.; catalog no. PC05). This Fos antibody is a 
rabbit, affinity-purified polyclonal antibody raised against 
the peptide S-G-F-N-A-D-Y-E-A-S-S-S-R-C corresponding 
to residues 4 17 of human Fos. s 

Flocculectomy 

At each post-unilateral labyrinthectomy interval of three, 
seven and 14 days, animals were anesthetized with ether and 
received right, left or bilateral flocculectomy using the same 
approach as in the cases with FG injection into the flocculus 
(n=4 in each case). A part of the temporal bone near the 
crista petrosa was carefully removed and the flocculus was 
exposed. Through the hole on the temporal bone, a small 
right-angled hook and a suction pipette were inserted to 
destroy mechanically and absorb the posterior part of the 
flocculus. Then, proceeding anteriorly along the petrous 
bone, the lesion could be extended to the anterior floccular 
lobules. 

Two and six hours after flocculectomy, animals were 
treated for perfusion and fixation as described above. 

hnmunohistochemistry using the avidin-biotin complex 
method 

The avidin-biotin complex method was used to visualize 
Fos expression after uni- or bilateral flocculectomy. Briefly, 
sections were incubated sequentially in the following solu- 
tions at 4°C: 1% BSA and NGS in 0.3% Triton X-100 in 
PBS for 3 h; antisera against Fos (diluted 1:500) in 1% BSA 
and NGS in 0.3% Triton X-100 in PBS for 48 h; 0.1 M PBS 
for 15 min; biotinylated goat anti-rabbit immunoglobulin G 
(diluted 1:250; Vector Labs, Inc., U.S.A.) in 1% BSA and 
NGS in 0.3% Triton X-100 in PBS for 24h; 0.1 M PBS for 
15 min; Vectastain reagent (diluted 1:500; Vector Labs, Inc., 
U.S.A.) for 24h; diaminobenzidine tetrahydrochloride/ 
H202 for 15 min. Sections were then examined under a light 
microscope. 

Cell counting 

To detect FG-fluorescent and Fos-LIR neurons, trans- 
verse 18-gm brainstem sections were examined under a 
fluorescence microscope at x 40 and x 100 magnification 
using the indirect immunofluorescence method. On the 
other hand, to detect Fos-LIR cells after flocculectomy, 
sections were examined under a bright-field microscope at 
x40 and x 100 magnification using the avidin-biotin 

complex method. Only cells that had significant levels of 
immunofluorescent or diaminobenzidine reaction product 
in their nucleus above tissue background levels were 
counted with a digital image analysis system (Universal 
Imaging Software). 

Behavior 
Vestibulo-ocular and vestibulospinal reflexes are 

usually used as markers of the development of vestibular 
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Fig. 1. (A C) Fos-LIR cells in the ipsilateral MVe (A), contralateral PrH (B) and contralateral IOb (C) 6 h 
after unilateral labyrinthectomy. (D F) FG-labeled cells in the same fields as A (D), B (E) and C (F) after 
injection of FG into the uvula-nodulus (u,n). Arrowheads indicate double-labeled cells. Scale bar=50 ~m. 

Fig. 2. (A-C) Fos-LIR cells in the ipsilateral MVe (A), contralateral PrH (B) and contralateral IOb (C) 6 h 
after unilateral labyrinthectomy. (D-F) FG-labeled cells in the same fields as A (D), B (E) and C (F) 
after injection of FG into the ipsilateral flocculus (ipsi-f). Arrowheads indicate double-labeled cells. 

Scale bar=50 ~tm. 

compensation. In the present study, we chose the frequency 
of horizontal spontaneous nystagmus (SN) as a marker, 
because it can be reliably measured using a video camera. 

Eye movements were recorded using a Panasonic NV-M7 
video camera with a zoom lens, and replayed using a 
Mitsubishi E7 Black Diamond video recorder and a Sony 
Trinitron color monitor. The frequency of SN was 
measured as the number of quick phase beats occurring 
over periods of 15 s. The eye movements were replayed and 
counted three times for each animal and the means ob- 
tained. These measurements were made at 0.5, 1, 2, 6, 12, 
18, 24, 42. 48 and 72 h post-unilateral labyrinthectomy. SN 
induced by flocculectomy at various postoperative intervals 
was also measured as described above. 

The statistical significance of differences was evaluated 
using Student's t-test. 

RESULTS 

Fos expression in cerebellar afferent neurons after 
unilateral labyrinthectomy 

Pressure injections of  F G  into the vestibulo- 
cerebel lum (uvula-nodulus ,  flocculus) labeled a large 

n u m b e r  of  vest ibular  and  vest ibular-related nuclei. 
Fol lowing F G  injections into the uvula-nodulus ,  
MVe,  inferior vest ibular  nucleus, superior  vest ibular  
nucleus, PrH and  IOb neurons  were labeled bilater- 
ally. In the case of  F G  injections into the unilateral  
flocculus, MVe, inferior vest ibular  nucleus, nucleus X 
and  PrH neurons  were labeled a lmost  symmetrically 
and  IOb neurons  were labeled only contralateral ly.  

Unilateral  labyr in thec tomy-induced Fos-LIR 
neurons  6 h after unilateral  l abyr in thec tomy in the 
ipsilateral MVe, contra la tera l  P rH and contra la tera l  
IOb are shown in Figs 1A C and  2A C. FG-labeled 
neurons  are shown in Figs 1D F (after F G  injections 
into the uvula-nodulus)  and  2D F (after F G  injec- 
t ions into the flocculus ipsilateral to the unilateral  
labyr in thectomized side). Ar rowheads  indicate 
double- labeled neurons.  A b o u t  20% of  ipsilateral 
MVe, 15°/,, of  contra la tera l  PrH and  70%, of contra-  
lateral IOb Fos-LIR neurons  were double- labeled 
by F G  injections into the uvula-nodulus.  In the ipsi- 
lateral MVe, most  of  these double-labeled neurons  
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Fig. 3. Changes in frequency of SN with time after right 
unilateral labyrinthectomy (A) and the effects of right 
unilateral flocculectomy on the frequency of spontaneous 
nystagmus on postoperative day 3 (B) in rats. Data are 
expressed as mean frequencies-4- S.E. of quick phase beats 
per 15 s for four animals. UL, unilateral labyrinthectomy; 
ipsi-UF, unilateral flocculectomy ipsilateral to the unilateral 

labyrinthectomized side. 

were dorsolateral to caudally located. Following FG 
injection into the ipsilateral flocculus, about 20% of 
ipsilateral MVe, 20% of contralateral PrH and 30% 
of contralateral lOb Fos-LIR neurons were FG 
fluorescent. In the ipsilateral MVe, most of these 
double-labeled neurons were dorsomedial to caudally 
distributed near the ventricular surface. Following 
FG injection into the flocculus contralateral to the 
lesioned side, double-labeled neurons were rarely 
observed. 

Vestibular compensation aJier unilateral labyrinthec- 
tomy and flocculectomy-induced decompensation 

After right unilateral labyrinthectomy, the quick 
phase of SN toward the left (intact) side appeared. 
The frequency of SN reached a maximum 30 rain 
after unilateral labyrinthectomy. Then, the frequency 
of SN gradually decreased and disappeared by 48 h 
post-unilateral labyrinthectomy (Fig. 3A). On day 3 
after right unilateral labyrinthectomy, right unilateral 
flocculectomy caused reappearance of SN toward the 
left side (the same direction as in the case after right 
unilateral labyrinthectomy). The frequency of SN 
reached a maximum 30 min after unilateral flocculec- 
tomy. The freqency of SN decreased and disappeared 
by 6 h post-unilateral flocculectomy (Fig. 3B), Left or 
bilateral flocculectomy gave similar results with re- 
gard to the direction and the number of reappearing 
SN (data not shown). 

Figure 4A shows the direction and maximum 
frequencies of SN following right unilateral flocculec- 
tomy alone, right unilateral labyrinthectomy alone 
and right unilateral flocculectomy on days 3, 7 and 14 
after right unilateral labyrinthectomy. When right 
unilateral flocculectomy was performed in normal 
rats, the quick phase of SN toward the right (le- 
sioned) side appeared. The maximum frequency of 

right unilateral flocculectomy-induced SN in normal 
rats was significantly less than that of right unilateral 
labyrinthectomy-induced SN (P<0.05; ignoring the 
direction of SN). In right-labyrinthectomized rats, 
right unilateral flocculectomy caused SN toward the 
left (intact) side, the same direction as after right 
unilateral labyrinthectomy. The maximum frequency 
of unilateral flocculectomy-induced SN on day 7 
after right unilateral labyrinthectomy was signifi- 
cantly less than that on day 3 (P<0.01). Right 
unilateral flocculectomy induced not left- but right- 
directed SN on day 14 after right unilateral labyr- 
inthectomy, as was the case with right unilateral 
flocculectomy performed in normal rats. Thus, the 
decompensation (reappearance of SN toward the left 
side) induced by right unilateral flocculectomy was 
observed only when performed up to day 7 after right 
unilateral labyrinthectomy. 

Figure 4B shows the direction and maximum fre- 
quencies of SN following left unilateral flocculectomy 
alone, right unilateral labyrinthectomy alone and left 
unilateral flocculectomy on days 3, 7 and 14 after 
right unilateral labyrinthectomy. When left unilateral 
flocculectomy was performed in both normal and 
right-labyrinthectomized rats, the quick phase of SN 
toward the left (flocculectomized) side appeared. The 
maximum frequency of left unilateral flocculectomy- 
induced SN in normal rats was significantly less than 
that of right unilateral labyrinthectomy-induced SN 
(P<0.05). Unilateral flocculectomy-induced SN on 
day 3 after unilateral labyrinthectomy was slightly, 
but not significantly, stronger than that in normal 
rats. 

When bilateral flocculectomy was performed in 
normal rats, the direction of SN was very unstable 
and the number of SN could not be counted. 

After right unilateral labyrinthectomy, the head of 
the animals was tilted toward the right (lesioned) 
side. The degree of head tilt showed gradual but 
incomplete recovery. On day 3 after right unilateral 
labyrinthectomy, right, left or bilateral flocculectomy 
caused exacerbation of head tilt toward the right side 
(the same direction as after right unilateral labyr- 
inthectomy), which almost disappeared by 6h  
post-flocculectomy. Flocculectomy caused little exac- 
erbation of head tilt on day 14 after unilateral 
labyrinthectomy, as observed with flocculectomy 
performed in normal rats (data not shown). 

Fos expression during flocculectomy-induced decom- 
pensation 

In normal rats, 2 h after right unilateral flocculec- 
tomy, Fos-LIR neurons were seen in the bilateral 
MVe, PrH and left IOb (Figs 5, 9C). The right MVe, 
left PrH and left IOb contained significantly more 
Fos-LIR neurons than the opposite sides (P<0.01; 
Fig. 6, Table 1). Six hours later, no Fos expression 
was observed. 
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Fig. 4. (A) The direction and the maximum number of SN (beats/15 s) after right unilateral flocculectomy 
(r-UF; open column), after right unilateral labyrinthectomy (r-UL; filled column), and those induced by 
right unilateral flocculectomy at post-unilateral labyrinthectomy intervals of three, seven and 14 days 
(stippled columns) in rats. (B) The direction and the maximum number of SN after left unilateral 
flocculectomy (I-UF; open column), after right unilateral labyrinthectomy (filled column), and those 
induced by left unilateral flocculectomy at post-unilateral labyrinthectomy intervals of three, seven and 
14 days (stippled columns) in rats. Columns represent means ± S.E. for four animals. R, right direction: L, 

left direction. *P<0.05, **P<0.01. Note that the direction of SN is neglected in A. 

_ _ I  .s 

Fig. 5. Bright-field photomicrographs showing Fos expression in the bilateral MVe, PrH (A) and 
contralateral IOb (B) 2 h after unilateral flocculectomy (UF2h). Scale bar--200p, m. X, unilateral 

flocculectomized side; O, intact side. 

In right-labyrinthectomized rats, during reappear- 
ance of SN induced by right or left unilateral floc- 
culectomy, which was performed up to day 7 after 
right unilateral labyrinthectomy, Fos-LIR neurons 
appeared only in the left MVe, right PrH and bilat- 
eral IOb (Figs 7, 9E, F). Fos-LIR neurons were rarely 
observed in the right MVe and left PrH. The numbers 

of Fos-LIR neurons induced by right unilateral floc- 
culectomy in the left MVe and the right PrH in 
right-labyrinthectomized rats (Fig. 9E) increased sig- 
nificantly in comparison with those in normal rats 
(Fig. 9C, Table 1A, P<0.01). In contrast, the num- 
bers of Fos-LIR neurons induced by left unilateral 
flocculectomy in the right MVe and the left PrH in 
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Fig. 6. Numbers of Fos-LIR neurons in MVe, PrH and lOb neurons after unilateral flocculectomy on 
normal rats. Columns represent means ± S.E. for four animals. The ipsilateral MVe, contralateral PrH and 

contralateral IOb contain significantly more Fos-LIR neurons than the opposite sides (**P<0.01). 

Table 1. The numbers of Fos-like immunoreactive neurons after unilateral flocculectomy in normal and unilateral 
labyrinthectomized rats 

r-MVe 1-MVe r-PrH I-PrH 

(A) Normal-rUF 191.05 + 19.05 68.98 • 7.10 48.88 i 4.98 93.20 + 8.99 
rUL-rUF 9.88 + 3.23 197.25 :L 27.89 79.52 ± 9.91 9.65 ± 3,05 

(B) Normal-lUF 68.98 ± 7.10 191.05 :~ 19.05 93.20 + 8.99 48.88 ± 4.98 
rUL-IUF 8.27 ± 2.58 200.38 • 25.18 88.78 ± 9.98 7.44 ± 3.53 

(A) The numbers of Fos-LIR neurons induced by right unilateral flocculectomy in the left MVe and right PrH in right 
unilateral labyrinthectomized animals were increased significantly in comparison with those in normal animals (P< 0.01). 
(B) The numbers of Fos-LIR neurons induced by left unilateral flocculectomy in the right MVe and left PrH in right 
unilateral labyrinthectomized animals were decreased significantly in comparison with those in normal animals (P<0.01). 
Numbers represent means ± S.E. for four animals. Normal-rUF, right unilateral flocculectomized animals only (c£ Fig. 
9C); rUL-rUF, right unilateral flocculectomy on right unilateral labyrinthectomized animals (cf. Fig. 9E); normal-lUF, 
left unilateral flocculectomized animals only (cf. Fig. 9D); rUL-1UF, left unilateral flocculectomy on right unilateral 
labyrinthectomized animals (cf. Fig. 9F); r-MVe, right medial vestibular nucleus; 1-MVe, left MVe; r-PrH, right 
prepositus hypoglossal nucleus; 1-PrH, left PrH. 

right-labyrinthectomized rats (Fig. 9F) decreased 
significantly in comparison with those in normal rats 
(Fig. 9D, Table 1B, P<0.01). At a post-unilateral 
labyrinthectomy interval of 14 days, unilateral floc- 
culectomy showed similar SN induction as with 
unilateral flocculectomy performed in normal rats 
(Fig. 4). Furthermore, the pattern of unilateral 
flocculectomy-induced Fos expression in labyrinthec- 
tomized rats (Fig. 8) was also very similar to that seen 
following unilateral flocculectomy in normal rats 
(Fig. 5). The Fos expression level in the MVe and 
PrH induced by unilateral flocculectomy reached a 
maximum 2 h after unilateral flocculectomy and dis- 
appeared 6 h later. To make the results much more 
accessible, the effects of right or left flocculectomy on 
Fos expression in the rat brainstem after right uni- 
lateral labyrinthectomy are shown in Fig. 9 and 
Table 1. 

DISCUSSION 

Thirty minutes after unilateral labyrinthectomy, 
the frequency of SN toward the intact side reached 
a maximum in rats. The frequency of SN then 

gradually decreased and disappeared by 48 h post- 
operation (Fig. 3A). The recovery from unilateral 
labyrinthectomy-induced behavioral deficits is re- 
ferred to as vestibular compensation. Fos-LIR neur- 
ons appeared in the ipsilateral MVe, contralateral 
PrH and contralateral IOb after unilateral labyr- 
inthectomy in the rat brainstem (Figs 1A-C, 2A-C, 
9B) and then gradually disappeared by the third 
postoperative day. Thus, Fos expression seems to 
be reduced in accordance with the development of 
vestibular compensation. 3'9'12'16 As Fos is expressed 
in neurons following synaptic excitation by various 
stimuli, 2'1°'14 these findings suggest that neural acti- 
vation of the ipsilateral MVe, contralateral PrH and 
contralateral IOb is the initial event in the develop- 
ment of vestibular compensation after unilateral 
labyrinthectomy. 

The present combined retrograde tracing and 
immunohistochemical study revealed that substantial 
numbers of Fos-LIR neurons after unilateral labyr- 
inthectomy project their axons directly into the 
uvula-nodulus and ipsilateral flocculus (Figs 1D-F, 
2D-F). These results suggest that the vestibulo- 
cerebellum contributes to the initial event of 
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Fig. 7. Bright-field photomicrographs showing Fos expression in the left MVe and right PrH 2 h after right 
floeculectomy (A) and left labyrinthectomy (B) on day 3 after right labyrinthectomy (UL3d*UF2h). Scale 
bar=200 ~tm. X t, unilateral labyrinthectomized side (right); X2, unilateral flocculectomized side (A, right; 

B, left); O, intact side (left). 

the development of vestibular compensation after 
unilateral labyrinthectomy. It has been reported that 
choline acetyltransferase (ChAT)-containing second- 
ary vestibular neurons project their axons into the 
vestibulocerebellum.~ The pattern of the distribution 
of ChAT-containing cerebellar afferent neurons is 
very similar to that of unilateral labyrinthectomy- 
induced Fos-LIR cerebellar afferent neurons. These 
findings suggest that secondary vestibular cholinergic 
neurons which have synaptic effects on the vestibulo- 
cerebellum are activated in the development of 
vestibular compensation after unilateral labyrinthec- 
tomy. We also performed a preliminary immuno- 
histochemical experiment which showed that some of 
the unilateral labyrinthectomy-induced Fos-LIR 
neurons contained ChAT-LIR (unpublished 
observation). 

In normal rats, 30 rain after unilateral flocculec- 
tomy, the frequency of SN toward the unilateral 
flocculectomy side reached a maximum (Fig. 4). The 
frequency of SN then decreased and disappeared 
by 6 h post-unilateral flocculectomy. At that time, 
Fos-LIR neurons appeared in the bilateral MVe 
(ipsilateral>contralateral), PrH (contralateral> 
ipsilateral) and contralateral IOb in the rat brainstem 
(Figs 5, 6, 9C, D, Table 1), then disappeared by 6 h 

post-unilateral flocculectomy. Since Fos is a marker 
of synaptic excitation by various stimuli, 2'~°:4 it is 
suggested that unilateral flocculectomy-induced 
asymmetrical cerebellar disinhibition of the 
MVe, PrH and IOb neurons causes unilateral 
flocculectomy-induced oculomotor asymmetry. How- 
ever, the number of unilateral flocculectomy-induced 
SN in normal rats was significantly less than that in 
unilateral labyrinthectomy-induced animals (P<0.05; 
Fig. 4). Moreover, the barrel rotation and the obvi- 
ous head tilt were hardly observed after unilateral 
flocculectomy, unlike after unilateral labyrinthec- 
tomy. These differences between behavioral deficits 
after unilateral flocculectomy and after unilateral 
labyrinthectomy may be due to the extent of imbal- 
ance of intervestibular nuclear activities caused by 
unilateral flocculectomy and unilateral labyrinthec- 
tomy. The disappearance of unilateral flocculectomy- 
induced SN and Fos expression by 6 h after unilateral 
flocculectomy may be due to the recovery from 
intervestibular imbalance by some other components, 
such as the uvula-nodulus and commissures. 

In right-labyrinthectomized rats, right flocculec- 
tomy was performed before vestibular compensation 
was accomplished. This treatment caused reappear- 
ance of unilateral labyrinthectomy-induced behav- 
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Fig. 8. Bright-field photomicrographs showing Fos expression in the bilateral MVe, PrH (A) and left IOb 
(B) 2 h after right flocculectomy on day 14 after right labyrinthectomy (UL2w,UF2h). Scale bar=200/am. 
X~, unilateral labyrinthectomized side (right); X 2, unilateral flocculectomized side (right); O, intact side 

(left). 

ioral deficits and Fos expression in the left MVe, 
right PrH and bilateral IOb (Figs 7A, 9E). Since Fos 
is induced in activated neurons, it is suggested that 
the left MVe, right PrH and bilateral IOb had been 
inhibited via floccular projections during vestibular 
compensation after right unilateral labyrinthectomy, 
and that flocculectomy probably activated these 
nuclei by disinhibition, resulting in decompensation. 
Therefore, the flocculus ipsilateral to the unilateral 
labyrinthectomized side is a component of inhibitory 
circuits for the development of vestibular compen- 
sation after unilateral labyrinthectomy. 

Labyrinthectomy changed the floccular inhibitory 
control on the brainstem vestibular system. The 
numbers of Fos-LIR neurons induced by unilateral 
flocculectomy ipsilateral to the unilateral labyrinthec- 
tomized side in the MVe contralateral to the uni- 
lateral flocculectomized side and the PrH ipsilateral 
to the unilateral flocculectomized side in labyrinthec- 
tomized rats (Fig. 9E) were increased significantly in 
comparison with those in normal rats (Fig. 9C, Table 
IA, P<0.01). Since Fos expression after unilateral 
flocculectomy is due to unilateral flocculectomy- 
induced disinhibition, the numbers of unilateral 
flocculectomy-induced Fos-LIR neurons are corre- 
lated with the degree of floccular inhibition of the 

brainstem vestibular system before flocculectomy. 
Therefore, these findings suggest that inhibitory 
effects of the flocculus ipsilateral to the unilateral 
labyrinthectomized side on the contralateral MVe 
and ipsilateral PrH neurons were increased after 
unilateral labyrinthectomy. In contrast, the numbers 
of Fos-LIR neurons induced by unilateral flocculec- 
tomy contralateral to the unilateral labyrinthec- 
tomized side in the MVe contralateral to the uni- 
lateral flocculectomized side and the PrH ipsilateral 
to the unilateral flocculectomized side in labyrinthec- 
tomized rats (Fig. 9F) were decreased significantly in 
comparison with those in normal rats (Fig. 9D, Table 
1B, P<0.01). These findings suggest that the flocculus 
contralateral to the unilateral labyrinthectomized 
side removes inhibitory effects on ipsilateral MVe 
and contralateral PrH neurons after unilateral labyr- 
inthectomy. It has been reported that the neural 
activity of the ipsilateral MVe second-order neurons 
was markedly suppressed by deafferentation and that 
of the contralateral MVe second-order neurons was 
slightly increased by commissural disinhibition in 
acute labyrinthectomized guinea-pigs. 4 Therefore, it 
is reasonable that the bilateral flocculus serves an 
equilibrative function by inhibition and disinhibition 
of second-order MVe neurons at the acute stage after 
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unilateral labyrinthectomy. As vestibular compen- 
sation developed, the pattern of  unilateral 
flocculectomy-induced Fos expression in labyrinthec- 
tomized rats (Fig. 8) became more like that in normal 
rats (Figs 5, 9C). This reversible profile of  unilateral 
flocculectomy-induced Fos expression was well cor- 
related with that of  unilateral flocculectomy-induced 
reappearance of  SN (decompensation; Fig. 4A). 
These findings suggest that labyrinthectomy-induced 
changes in the floccular inhibitory control on the 
brainstem vestibular system play an important  role in 
the initial processes of  vestibular compensation to 
restore a balance between intervestibular nuclear 
activities. 

CONCLUSION 

In our recent study, the injection of  MK-801 (a 
specific antagonist  of  N M D A  receptors) into right- 
labyrinthectomized rats before vestibular compensa- 
tion was accomplished caused reappearance of  SN 
toward the intact side. During the decompensation, 
Fos -LIR neurons appeared in the left MVe, right 
PrH and bilateral IOb. ~ These results are well 
correlated with those following flocculectomy in 
labyrinthectomized rats in the present study. In 

floccular Purkinje cells, parallel fiber afferents are 
mediated by N M D A  receptors and Purkinje effer- 
ents are GABAergic.  Taken together, it is suggested 
that the neurons in which Fos expression was 
detected by flocculectomy had been inhibited alter 
unilateral labyrinthectomy partially by mossy 
and/or parallel glutamatergic fibers driving floccular 
GABAergic  neurons via N M D A  receptors, and that 
disinhibition of  these neurons induced by flocculec- 
tomy caused decompensation. Therefore, it is likely 
that the floccular inhibitory control on the brain- 
stem vestibular system was changed by floccular 
afferent neurons activated after unilateral labyr- 
inthectomy via N M D A  receptors, resulting in 
the restoration of  balance between intervestibular 
nuclear activities. 
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