Title	On blocks of finite groups with radical cube zero
Author(s)	Okuyama, Tetsuro
Citation	Osaka Journal of Mathematics. 1986, 23(2), p. $461-465$
Version Type	VoR
URL	https://doi.org/10.18910/4006
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. Library.osaka-u.ac.jp/

ON BLOCKS OF FINITE GROUPS WITH
 RADICAL CUBE ZERO

Tetsuro OKUYAMA

(Received January 24, 1985)

Let G be a finite group and k be an algebraically closed field of characteristic p, a prime number. Let B be a block algebra of the group algebra $k G$ with defect group D and let $J(B)$ denote the Jacobson radical of B. It is well known that $J(B)=0$ if and only if $D=1$. Furthermore it is true that $J(B)^{2}=$ if and only if $p=2$ and $|D|=2$.

In this paper we shall prove the following theorem.
Theorem 1. $J(B)^{3}=0$ (but $J(B)^{2} \neq 0$) if and only if one of the following conditions holds;
(1) $p=2, D$ is a four group and B is isomorphic to the matrix ring over $k D$ or is Morita equivalent to $k A_{4}$ where A_{4} is the alternating group of degree 4 ,
(2) p is odd, $|D|=p$, the number of simple $k G$-modules in B is $p-1$ or $p-1 / 2$ and the Brauer tree of B is a straight line segment such that the exceptional vertex is in an end point (if it exists).

For the prime 2 we have the following.
Theorem 2. Assume $p=2$. Let U be the projective indecomposable $k G$ module with $U / \operatorname{Rad}(U)=k_{G}$, the trivial $k G$-module. If Loewy length of U is 3 , then a 2-Sylow subgroup of G is dihedral.

Example.

(1) The principal p-block of the following groups satisfies the conditions in Theorem 1.
(a) G is a four group or A_{4} and $p=2$.
(b) G is the symmetric group or the alternating group of degree p and p is odd.
(2) Erdmann [6] shows that for each prime power q with $q \equiv 3$ (mod. 4) the group PSL $(2, q)$ satisfies the assumption in Theorem 2.

1. Preliminaries

In this section we shall prove some lemmas which will be used to prove

Theorem 1. Throughout this section, B is an arbitrary block algebra of a finite group G. Let D be a defect group of B. For a positive integer n let n_{p} denote the p-part of n.

Lemma 1. There exists a simple kG-module S in B such that a vertex of S is D and a source of S is p^{\prime}-dimensional.

Proof. There exists a simple $k G$-module S in B such that $\left(\operatorname{dim}_{k} S\right)_{p}=$ $|G: D|_{p}$ (Theorem 4.5, Chap. IV [9]). This module S satisfies the conditions in the lemma.

Let Ω denote the Heller's syzygy functor. Then the following lemma follows from the fact that $k G$ is a symmetric algebra.

Lemma 2. Let X be a $k G$-module with no nonzero projective direct summand. Then $\operatorname{Soc}\left(\Omega^{1}(X)\right) \cong X / \operatorname{rad}(X)$.

Lemma 3. Let P be a nontrivial cyclic subgroup of D. The there exists a $k G$-module X in B such that
(1) a vertex of each indecomposable direct summand of X is P and $\left(\operatorname{dim}_{k} X\right)_{p}=$ $|G: P|_{p}$ and
(2) $\Omega^{1}(X) \cong \Omega^{-1}(X)$.

Proof. Let $N=N_{G}(P)$ and $C=C_{G}(P)$. Then there exists a block b of C with $b^{G}=B$. Put $B_{1}=b^{N}$. There exists an indecomposable $k C$-module Y in b such that Ker $Y \supset P, Y$ is projective as a $k C / P$-module and $\left(\operatorname{dim}_{k} Y\right)_{p}=|C: P|_{p}$. We claim that $\Omega^{1}(Y)=\Omega^{-1}(Y)$. Let U be a projective cover of Y. Then $Y \cong$ $U / U J(k P)$ and $\Omega^{1}(Y) \cong U J(k P)$, where $J(k P)$ denotes the Jacobson radical of $k P$. Furthermore U is an injective hull of $Y, Y \cong \operatorname{Inv}_{P}(U)$ and $\Omega^{-1}(Y)=U / \operatorname{Inv}_{P}(U)$. Since P is cyclic and central in C, we have $U J(k P) \cong U / \operatorname{Inv}_{P}(U)$ and therefore $\Omega^{1}(Y)=\Omega^{-1}(Y)$. Thus our claim follows. Let $Y^{N}=Y_{1} \oplus \cdots \oplus Y_{n}$, where each Y_{i} is an indecomposable $k N$-module. Then Y_{i} is in B_{1} and has P as a vertex for each i. Put $X_{i}=f^{-1}\left(Y_{i}\right)$, where f denotes the Green correspondence with respect to (G, N, P) and set $X=X_{1} \oplus \cdots \oplus X_{n}$. By the properties of the Green correspondence (Theorem 7.8 [9], [11], [12]) X_{i} is in $B, \operatorname{dim}_{k} X_{i} \equiv \operatorname{dim}_{k} Y_{i}^{G}$ (mod. $\left.p|G: P|_{p}\right)$ and $\Omega^{m}\left(X_{i}\right) \cong f^{-1}\left(\Omega^{m}\left(Y_{i}\right)\right)$ for every integer m. Thus $\left(\operatorname{dim}_{k} X\right)_{p}=$ $|G: P|_{p}$ and $\Omega^{1}(X)=\Omega^{-1}(X)$.

2. Proof of Theorem 1

If a block B satisfies one of the conditions (1) and (2) in Theorem 1, then it is easy to show that $J(B)^{3}=0$ and $J(B)^{2} \neq 0$. In the rest of this section we assume that $J(B)^{3}=0, J(B)^{2} \neq 0$ and we shall prove that B satisfies one of the conditions (1) and (2).

Step 1. If X is a nonsimple nonprojective indecomposable $k G$-module in B, then $\operatorname{Soc}(X)=\operatorname{Rad}(X)$.

Proof. Since X is nonprojective, $\operatorname{Rad}(X) \subset \operatorname{Soc}(X)([14])$. Then it follows that $\operatorname{Rad}(X)=\operatorname{Soc}(X)$ as X is nonsimple.

Step 2. If p is odd, then $|D|=p$.
Proof. Suppose $|D| \neq p$. Let P be a subgroup of D of order p and let X be a $k G$-module in B which satisfies the conditions in Lemma 3. Then by a result of Erdmann [5] X and $\Omega^{1}(X)$ have no simple direct summand. By Lemma $2 \operatorname{Soc}\left(\Omega^{1}(X)\right) \cong X \mid \operatorname{Rad}(X)$ and $\operatorname{Soc}(X) \cong \Omega^{-1}(X) / \operatorname{Rad} \Omega^{-1}((X))$. As $\Omega^{1}(X) \cong \Omega^{-1}(X)$ it follows that $\operatorname{Soc}(X) \cong \Omega^{1}(X) / \operatorname{Rad} \Omega^{1}((X))$. Then by Step 1 we have $\operatorname{dim}_{k} X=\operatorname{dim}_{k} \Omega^{1}(X)$. On the other hand $\operatorname{dim}_{k} X+\operatorname{dim}_{k} \Omega^{1}(X)$ is divisible by the order of a Sylow p-subgroup of G. Thus we have a contradiction as p is odd and $\left(\operatorname{dim}_{k} X\right)_{p}=|G: P|_{p}$.

Step 3. If $p=2$, then D is elementary abelian.
Proof. By Proposition (6G) [2] and [15] D is not cyclic. Suppose that there exists a cyclic subgroup P of D of order 4 . Then by a similar argument as in the proof of Step 2 it follows that there exists a $k G$-module X in B such that $\left(\operatorname{dim}_{k} X\right)_{2}=|G: P|_{2}$ and $\operatorname{dim}_{k} X=\operatorname{dim}_{k} \Omega^{1}(X)$. Since $\operatorname{dim}_{k} X+\operatorname{dim}_{k} \Omega^{1}(X)$ is divisible by the order of a Sylow 2 -subgroup of G, this is a contradiction. Thus every nontrivial element in D is of order 2 and therefore D is elementary abelian.

Step 4. If $p=2$, then D is a four group.
Proof. Suppose that $|D|>4$ and let P be a four group contained in D. 'Then by a result of Knörr [13] and Step 3 any simple $k G$-module in B is not P-projective. Let $I=\left\{i \in \boldsymbol{Z} ; \Omega^{i}\left(k_{P}\right)\right.$ is a direct summand of $S_{\mid P}$ for some simple $k G$-module S in $B\}$, where k_{P} denotes the trivial $k P$-module and \boldsymbol{Z} denotes the set of all integers. By a result of Conlon [3] each indecomposable $k P$-module of odd dimension is isomorphic to $\Omega^{i}\left(k_{P}\right)$ for some integer i. Thus by Lemma 1 we can conclude that I is not empty. Let i be the largest integer in I and choose a simple $k G$-module S in B such that $\Omega^{i}\left(k_{P}\right)$ is a direci summand of $S_{\mid P}$. Let U be a projective cover of S. By the assumption that $J(B)^{3}=0$ and $J(B)^{2} \neq 0, \operatorname{Rad}(U) / \operatorname{Soc}(U)$ is nonzero and completely reducible. $\operatorname{Rad}(U) / \operatorname{Soc}(U)$ appears in the Asulander-Reiten sequence; $0 \rightarrow \Omega^{1}(S) \rightarrow \operatorname{Rad}(U) / S o c(U) \oplus U \rightarrow$ $\Omega^{-1}(S) \rightarrow 0$ (Proposition 4.11 [1]). Then by the result of Roggenkamp (Proposition $2.10[17]) \Omega^{i+1}\left(k_{P}\right)$ is a direct summand of $(\operatorname{Rad}(U) / \operatorname{Soc}(U))_{\mid P}$ which contradicts the maximality of i.

Step 5. Conclusion.

First assume $p=2$. Then by Step $4 D$ is a four group. By results of Erdmann [8] we have two cases (i) and (ii) in Theorem 4, [8]. In the case (i), it follows easily that the basic ring of B is isomorphic to $k D$. In the case (ii), B has three simple modules S_{1}, S_{2} and S_{3}. Let $e_{i}(i=1,2$ and 3$)$ be pairwise orthogonal primitive idempotents with $e_{i} k G / e_{i} J(k G)=S_{i}$ and put $e=e_{1}+e_{2}+e_{3}$. By Theorem 4, [8] $\operatorname{dim}_{k} e k G e=12$ and $\operatorname{dim}_{k} e_{i} k G e_{j}=1+\delta_{i j}$. Then we can show that $e k G e$ is isomorphic to $k A_{4}$. Next assume that p is odd. By the thoery of Brauer-Dade [4] and a result of Peacock [16], it follows that $\operatorname{Rad}(U) /$ $\operatorname{Soc}(U)$ is simple or a sum of two non-isomorphic simple modules for every projective indecomposable $k G$-module U in B. Then the result follows easily.

3. Proof of Theorem 2

Put $S=\operatorname{Rad}(U) / \operatorname{Soc}(U)$. Suppose that a Sylow 2-subgroup of G is not dihedral. Then by the result of Webb (Theorem E [18]) and our assumption S is simple and self dual. Let V be a projective cover of S. Since V is also self dual, for any simple $k G$-module T the multiplicity of T in the composition factors of V is equal to that of its dual. By a result of Fong [10] the dimension of a nontrivial self dual simple $k G$-module is even. Thus we have a contradiction as the multiplicity of the trivial $k G$-module in the composition factors of V is 1 and $\operatorname{dim}_{k} V$ is even.

References

[1] M. Auslander and I. Reiten: Representation theory of artin algebras IV; Comm. Algebra 5 (1977), 443-518.
[2] R. Brauer: Some applications of the theory of blocks of characters of finite groups IV, J. Algebra 17 (1971), 489-521.
[3] S.B. Conlon: Certain representation algebras, J. Austral. Math. Soc. 5 (1965), 83-99.
[4] E.C. Dade: Blocks with cyclic defect group, Ann. of Math. (2) 84 (1966), 20-48.
[5] K. Erdmann: Blocks and simple modules with cyclic vertices, Bull. London Math. Soc. 9 (1977), 216-218.
[6] K. Erdmann: Principal blocks of groups with dihedral Sylow 2-subgroups, Comm. Algebra 5 (1977), 665-694.
[7] K. Erdmann: Blocks whose defect groups are Klein four groups, J. Algebra 59 (1979), 452-465.
[8] K. Erdmann: Blocks whose defect groups are Klein four groups: A correction, J. Algebra 76 (1982), 505-518.
[9] W. Feit: The representation theory of finite groups, North-Holland, Amsterdam, New York, Oxford, 1982.
[10] P. Fong: On decomposition numbers of J_{1} and $R(q)$, Symposia Mathematica,

XIII (1974), 415-422.
[11] J.A. Green: A transfer theorem for modular representations, J. Algebra 1 (1964), 73-84.
[12] J.A. Green: Walking around the Brauer tree, J. Austral. Math. Soc. 17 (1974), 197-213.
[13] R. Knörr: On the vertices of irreducible modules, Ann. of Math. (2) 110 (1979), 487-499.
[14] W. Müller: Unzerlegbare Moduln über artinschen Ringen, Math. Z. 137 (1974), 197-226.
[15] T. Okuyama and Y. Tsushima: Local properties of p-block algebras of finite groups, Osaka J. Math. 20 (1983), 33-41.
[16] R.M. Peacock: Blocks with a cyclic defect group, J. Algebra 34 (1975), 232-259.
[17] K.W. Roggenkamp: Integral representations and structure of finite group rings, Les Presses de l'Université de Montréal, Montréal, 1980.
[18] P.J. Webb: The Auslander-Reiten quiver of a finite group, Math. Z. 179 (1982), 97-122.

Department of Mathematics, Osaka City University, Osaka 558, Japan.

