

Title	On blocks of finite groups with radical cube zero
Author(s)	Okuyama, Tetsuro
Citation	Osaka Journal of Mathematics. 1986, 23(2), p. 461-465
Version Type	VoR
URL	https://doi.org/10.18910/4006
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Okuyama, T.
Osaka J. Math.
23 (1986), 461-465

ON BLOCKS OF FINITE GROUPS WITH RADICAL CUBE ZERO

TETSURO OKUYAMA

(Received January 24, 1985)

Let G be a finite group and k be an algebraically closed field of characteristic p , a prime number. Let B be a block algebra of the group algebra kG with defect group D and let $J(B)$ denote the Jacobson radical of B . It is well known that $J(B)=0$ if and only if $D=1$. Furthermore it is true that $J(B)^2=0$ if and only if $p=2$ and $|D|=2$.

In this paper we shall prove the following theorem.

Theorem 1. $J(B)^3=0$ (but $J(B)^2\neq 0$) if and only if one of the following conditions holds;

- (1) $p=2$, D is a four group and B is isomorphic to the matrix ring over kD or is Morita equivalent to kA_4 , where A_4 is the alternating group of degree 4,
- (2) p is odd, $|D|=p$, the number of simple kG -modules in B is $p-1$ or $p-1/2$ and the Brauer tree of B is a straight line segment such that the exceptional vertex is in an end point (if it exists).

For the prime 2 we have the following.

Theorem 2. Assume $p=2$. Let U be the projective indecomposable kG -module with $U/\text{Rad}(U)=k_G$, the trivial kG -module. If Loewy length of U is 3, then a 2-Sylow subgroup of G is dihedral.

EXAMPLE.

- (1) The principal p -block of the following groups satisfies the conditions in Theorem 1.
 - (a) G is a four group or A_4 and $p=2$.
 - (b) G is the symmetric group or the alternating group of degree p and p is odd.
- (2) Erdmann [6] shows that for each prime power q with $q\equiv 3 \pmod{4}$ the group $\text{PSL}(2, q)$ satisfies the assumption in Theorem 2.

1. Preliminaries

In this section we shall prove some lemmas which will be used to prove

Theorem 1. Throughout this section, B is an arbitrary block algebra of a finite group G . Let D be a defect group of B . For a positive integer n let n_p denote the p -part of n .

Lemma 1. *There exists a simple kG -module S in B such that a vertex of S is D and a source of S is p' -dimensional.*

Proof. There exists a simple kG -module S in B such that $(\dim_k S)_p = |G:D|_p$ (Theorem 4.5, Chap. IV [9]). This module S satisfies the conditions in the lemma.

Let Ω denote the Heller's syzygy functor. Then the following lemma follows from the fact that kG is a symmetric algebra.

Lemma 2. *Let X be a kG -module with no nonzero projective direct summand. Then $\text{Soc}(\Omega^1(X)) \cong X/\text{rad}(X)$.*

Lemma 3. *Let P be a nontrivial cyclic subgroup of D . Then there exists a kG -module X in B such that*

- (1) *a vertex of each indecomposable direct summand of X is P and $(\dim_k X)_p = |G:P|_p$, and*
- (2) *$\Omega^1(X) \cong \Omega^{-1}(X)$.*

Proof. Let $N=N_G(P)$ and $C=C_G(P)$. Then there exists a block b of C with $b^G=B$. Put $B_1=b^N$. There exists an indecomposable kC -module Y in b such that $\text{Ker } Y \supset P$, Y is projective as a kC/P -module and $(\dim_k Y)_p = |C:P|_p$. We claim that $\Omega^1(Y) = \Omega^{-1}(Y)$. Let U be a projective cover of Y . Then $Y \cong U/UJ(kP)$ and $\Omega^1(Y) \cong UJ(kP)$, where $J(kP)$ denotes the Jacobson radical of kP . Furthermore U is an injective hull of Y , $Y \cong \text{Inv}_P(U)$ and $\Omega^{-1}(Y) = U/\text{Inv}_P(U)$. Since P is cyclic and central in C , we have $UJ(kP) \cong U/\text{Inv}_P(U)$ and therefore $\Omega^1(Y) = \Omega^{-1}(Y)$. Thus our claim follows. Let $Y^N = Y_1 \oplus \cdots \oplus Y_n$, where each Y_i is an indecomposable kN -module. Then Y_i is in B_1 and has P as a vertex for each i . Put $X_i = f^{-1}(Y_i)$, where f denotes the Green correspondence with respect to (G, N, P) and set $X = X_1 \oplus \cdots \oplus X_n$. By the properties of the Green correspondence (Theorem 7.8 [9], [11], [12]) X_i is in B , $\dim_k X_i \equiv \dim_k Y_i^G \pmod{p|G:P|_p}$ and $\Omega^m(X_i) \cong f^{-1}(\Omega^m(Y_i))$ for every integer m . Thus $(\dim_k X)_p = |G:P|_p$ and $\Omega^1(X) = \Omega^{-1}(X)$.

2. Proof of Theorem 1

If a block B satisfies one of the conditions (1) and (2) in Theorem 1, then it is easy to show that $J(B)^3 = 0$ and $J(B)^2 \neq 0$. In the rest of this section we assume that $J(B)^3 = 0$, $J(B)^2 \neq 0$ and we shall prove that B satisfies one of the conditions (1) and (2).

Step 1. *If X is a nonsimple nonprojective indecomposable kG -module in B , then $\text{Soc}(X)=\text{Rad}(X)$.*

Proof. Since X is nonprojective, $\text{Rad}(X) \subset \text{Soc}(X)$ ([14]). Then it follows that $\text{Rad}(X)=\text{Soc}(X)$ as X is nonsimple.

Step 2. *If p is odd, then $|D|=p$.*

Proof. Suppose $|D| \neq p$. Let P be a subgroup of D of order p and let X be a kG -module in B which satisfies the conditions in Lemma 3. Then by a result of Erdmann [5] X and $\Omega^1(X)$ have no simple direct summand. By Lemma 2 $\text{Soc}(\Omega^1(X)) \cong X/\text{Rad}(X)$ and $\text{Soc}(X) \cong \Omega^{-1}(X)/\text{Rad}\Omega^{-1}(X)$. As $\Omega^1(X) \cong \Omega^{-1}(X)$ it follows that $\text{Soc}(X) \cong \Omega^1(X)/\text{Rad}\Omega^1(X)$. Then by Step 1 we have $\dim_k X = \dim_k \Omega^1(X)$. On the other hand $\dim_k X + \dim_k \Omega^1(X)$ is divisible by the order of a Sylow p -subgroup of G . Thus we have a contradiction as p is odd and $(\dim_k X)_p = |G: P|_p$.

Step 3. *If $p=2$, then D is elementary abelian.*

Proof. By Proposition (6G) [2] and [15] D is not cyclic. Suppose that there exists a cyclic subgroup P of D of order 4. Then by a similar argument as in the proof of Step 2 it follows that there exists a kG -module X in B such that $(\dim_k X)_2 = |G: P|_2$ and $\dim_k X = \dim_k \Omega^1(X)$. Since $\dim_k X + \dim_k \Omega^1(X)$ is divisible by the order of a Sylow 2-subgroup of G , this is a contradiction. Thus every nontrivial element in D is of order 2 and therefore D is elementary abelian.

Step 4. *If $p=2$, then D is a four group.*

Proof. Suppose that $|D| > 4$ and let P be a four group contained in D . Then by a result of Knörr [13] and Step 3 any simple kG -module in B is not P -projective. Let $I = \{i \in \mathbb{Z}; \Omega^i(k_p)\}$ is a direct summand of $S|_P$ for some simple kG -module S in $B\}$, where k_p denotes the trivial kP -module and \mathbb{Z} denotes the set of all integers. By a result of Conlon [3] each indecomposable kP -module of odd dimension is isomorphic to $\Omega^i(k_p)$ for some integer i . Thus by Lemma 1 we can conclude that I is not empty. Let i be the largest integer in I and choose a simple kG -module S in B such that $\Omega^i(k_p)$ is a direct summand of $S|_P$. Let U be a projective cover of S . By the assumption that $J(B)^3 = 0$ and $J(B)^2 \neq 0$, $\text{Rad}(U)/\text{Soc}(U)$ is nonzero and completely reducible. $\text{Rad}(U)/\text{Soc}(U)$ appears in the Aslander-Reiten sequence; $0 \rightarrow \Omega^1(S) \rightarrow \text{Rad}(U)/\text{Soc}(U) \oplus U \rightarrow \Omega^{-1}(S) \rightarrow 0$ (Proposition 4.11 [1]). Then by the result of Roggenkamp (Proposition 2.10 [17]) $\Omega^{i+1}(k_p)$ is a direct summand of $(\text{Rad}(U)/\text{Soc}(U))|_P$ which contradicts the maximality of i .

Step 5. Conclusion.

First assume $p=2$. Then by Step 4 D is a four group. By results of Erdmann [8] we have two cases (i) and (ii) in Theorem 4, [8]. In the case (i), it follows easily that the basic ring of B is isomorphic to kD . In the case (ii), B has three simple modules S_1 , S_2 and S_3 . Let e_i ($i=1, 2$ and 3) be pairwise orthogonal primitive idempotents with $e_i kG e_i J(kG) = S_i$ and put $e = e_1 + e_2 + e_3$. By Theorem 4, [8] $\dim_k e kG e = 12$ and $\dim_k e_i kG e_j = 1 + \delta_{ij}$. Then we can show that $e kG e$ is isomorphic to kA_4 . Next assume that p is odd. By the theory of Brauer-Dade [4] and a result of Peacock [16], it follows that $\text{Rad}(U)/\text{Soc}(U)$ is simple or a sum of two non-isomorphic simple modules for every projective indecomposable kG -module U in B . Then the result follows easily.

3. Proof of Theorem 2

Put $S = \text{Rad}(U)/\text{Soc}(U)$. Suppose that a Sylow 2-subgroup of G is not dihedral. Then by the result of Webb (Theorem E [18]) and our assumption S is simple and self dual. Let V be a projective cover of S . Since V is also self dual, for any simple kG -module T the multiplicity of T in the composition factors of V is equal to that of its dual. By a result of Fong [10] the dimension of a nontrivial self dual simple kG -module is even. Thus we have a contradiction as the multiplicity of the trivial kG -module in the composition factors of V is 1 and $\dim_k V$ is even.

References

- [1] M. Auslander and I. Reiten: *Representation theory of artin algebras* IV; Comm. Algebra **5** (1977), 443–518.
- [2] R. Brauer: *Some applications of the theory of blocks of characters of finite groups* IV, J. Algebra **17** (1971), 489–521.
- [3] S.B. Conlon: *Certain representation algebras*, J. Austral. Math. Soc. **5** (1965), 83–99.
- [4] E.C. Dade: *Blocks with cyclic defect group*, Ann. of Math. (2) **84** (1966), 20–48.
- [5] K. Erdmann: *Blocks and simple modules with cyclic vertices*, Bull. London Math. Soc. **9** (1977), 216–218.
- [6] K. Erdmann: *Principal blocks of groups with dihedral Sylow 2-subgroups*, Comm. Algebra **5** (1977), 665–694.
- [7] K. Erdmann: *Blocks whose defect groups are Klein four groups*, J. Algebra **59** (1979), 452–465.
- [8] K. Erdmann: *Blocks whose defect groups are Klein four groups: A correction*, J. Algebra **76** (1982), 505–518.
- [9] W. Feit: *The representation theory of finite groups*, North-Holland, Amsterdam, New York, Oxford, 1982.
- [10] P. Fong: *On decomposition numbers of J_1 and $R(q)$* , Symposia Mathematica,

XIII (1974), 415–422.

- [11] J.A. Green: *A transfer theorem for modular representations*, J. Algebra **1** (1964), 73–84.
- [12] J.A. Green: *Walking around the Brauer tree*, J. Austral. Math. Soc. **17** (1974), 197–213.
- [13] R. Knörr: *On the vertices of irreducible modules*, Ann. of Math. (2) **110** (1979), 487–499.
- [14] W. Müller: *Unzerlegbare Moduln über artinschen Ringen*, Math. Z. **137** (1974), 197–226.
- [15] T. Okuyama and Y. Tsushima: *Local properties of p -block algebras of finite groups*, Osaka J. Math. **20** (1983), 33–41.
- [16] R.M. Peacock: *Blocks with a cyclic defect group*, J. Algebra **34** (1975), 232–259.
- [17] K.W. Roggenkamp: *Integral representations and structure of finite group rings*, Les Presses de l'Université de Montréal, Montréal, 1980.
- [18] P.J. Webb: *The Auslander-Reiten quiver of a finite group*, Math. Z. **179** (1982), 97–122.

Department of Mathematics,
Osaka City University,
Osaka 558, Japan.

