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Let G be a finite group and k& be an algebraically closed field of charac-
teristic p, a prime number. Let B be a block algebra of the group algebra kG
with defect group D and let J(B) denote the Jacobson radical of B. It is well
known that J(B)=0 if and only if D=1. Furthermore it is true that J(B)’=
if and only if p=2 and |D|=2.

In this paper we shall prove the following theorem.

Theorem 1. J(B)*=0 (but J(B)*=+0) if and only if one of the following
conditions holds;

(1) p=2, D is a four group and B is isomorphic to the matrix ring over kD
or is Morita equivalent to kA, where A, is the alternating group of degree 4,

(2) p is odd, |D|=p, the number of simple kG-modules in B is p—1 or
p—1/2 and the Brauer tree of B is a straight line segment such that the excep-
tional vertex is in an end point (if it exists).

For the prime 2 we have the following.

Theorem 2. Assume p=2. Let U be the projective indecomposable kG-
module with U|Rad(U)=kg, the trivial kG-module. If Loewy length of U is 3,
then a 2-Sylow subgroup of G is dihedral.

EXAMPLE.

(1) The principal p-block of the following groups satisfies the conditions
in Theorem 1.

(a) G is a four group or 4, and p=2.

(b) G is the symmetric group or the alternating group of degree p and
p is odd.

(2) Erdmann [6] shows that for each prime power ¢ with ¢=3 (mod. 4)
the group PSL (2, q) satisfies the assumption in Theorem 2.

1. Preliminaries

In this section we shall prove some lemmas which will be used to prove
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Theorem 1. Throughout this section, B is an arbitrary block algebra of a
finite group G. Let D be a defect group of B. For a positive integer 7 let
n, denote the p-part of #.

Lemma 1. There exists a simple kKG-module S in B such that a vertex of
S is D and a source of S is p'-dimensional.

Proof. There exists a simple AG-module S in B such that (dim,S),=
|G:D|, (Theorem 4.5, Chap. IV [9]). This module S satisfies the conditions
in the lemma.

Let Q denote the Heller’s syzygy functor. Then the following lemma
follows from the fact that 2G is a symmetric algebra.

Lemma 2. Let X be a kG-module with no nonzero projective direct sum-
mand. Then Soc(Q((X))==X/rad(X).

Lemma 3. Let P be a nontrivial cyclic subgroup of D. The there exists a
kG-module X in B such that

(1) @ vertex of each indecomposable direct summand of X is P and (dim, X),=
|G: P|, and

(2) Q(X)=0"Y(X).

Proof. Let N=Ng(P)and C=C¢(P). Then there exists a block b of C
with =B. Put B;=b". There exists an indecomposable kC-module Y in &
such that Ker YDP, Y is projective as a kC/P-module and (dim, Y),=|C: P|,.
We claim that Q(Y)=Q(Y). Let U be a projective cover of Y. Then Y=<
U|UJ(kP) and Q'(Y)=<U]J(kP), where J(kP) denotes the Jacobson radical of kP.
Furthermore U is an injective hull of Y, Y=Inv,(U) and Q7(Y)=U/Inv,(U).
Since P is cyclic and central in C, we have UJ(kRP)=U/Invp(U) and therefore
Q(Y)=Q7(Y). Thus our claim follows. Let Y¥=Y,H---PY,, where each
Y, is an indecomposable AN-module. Then Y;is in B; and has P as a vertex
for each 7. Put X;=f"'(Y;), where f denotes the Green correspondence with
respect to (G, N, P) and set X=X,P---PX,. By the properties of the Green
correspondence (Theorem 7.8 [9], [11], [12]) X; is in B, dim, X;=dim, Y¢ (mod.
p|G: P|,) and Q"(X;)=f1(Q"(Y,)) for every integer m. Thus (dim,X),=
|G: P|, and OY(X)=Q7(X).

2. Proof of Theorem 1

If a block B satisfies one of the conditions (1) and (2) in Theorem 1, then
it is easy to show that J(B)*=0 and J(B)’=+0. In the rest of this section we
assume that J(B)*=0, J(B)?#0 and we shall prove that B satisfies one of the
conditions (1) and (2).
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Step 1. If X is a nonsimple nonprojective indecomposable kG-module in B,
then Soc(X)=Rad(X).

Proof. Since X is nonprojective, Rad(X)C Soc(X) ([14]). Then it follows
that Rad (X)=Soc(X) as X is nonsimple.

Step 2. If p is odd, then |D|=p.

Proof. Suppose |D|=p. Let P be a subgroup of D of order p and let X
be a kG-module in B which satisfies the conditions in Lemma 3. Then by a
result of Erdmann [5] X and Q'X) have no simple direct summand. By
Lemma 2 Soc(Q'(X))=< X/Rad(X) and Soc(X)=Q}X)/RadQ7'((X)). As
QY(X)=Q7(X) it follows that Soc(X)=0Q!(X)/RadQ'((X)). Then by Step 1
we have dim, X=dim,Q'(X). On the other hand dim, X+dim, Q'(X) is divisi-
ble by the order of a Sylow p-subgroup of G. Thus we have a contradiction as
pis odd and (dim, X),=|G: P|,.

Step 3. If p=2, then D is elementary abelian.

Proof. By Proposition (6G) [2] and [15] D is not cyclic. Suppose that
there exists a cyclic subgroup P of D of order 4. Then by a similar argument
as in the proof of Step 2 it follows that there exists a kG-module X in B such
that (dim,X),=|G: P|, and dim, X=dim,Q(X). Since dim, X-+dim,Q'(X)
is divisible by the order of a Sylow 2-subgroup of G, this is a contradiction.
Thus every nontrivial element in D is of order 2 and therefore D is elementary
abelian.

Step 4. If p=2, then D is a four group.

Proof. Suppose that |D|>4 and let P be a four group contained in D.
Then by a result of Knorr [13] and Step 3 any simple AG-module in B is not
P-projective. Let I={i€Z; Q(kp) is a direct summand of S, for some simple
kG-module S in B}, where kp denotes the trivial RP-module and Z denotes the
set of all integers. By a result of Conlon [3] each indecomposable #P-module
of odd dimension is isomorphic to Q'(kp) for some integer . Thus by Lemma
1 we can conclude that 7 is not empty. Let ¢ be the largest integer in I and
choose a simple AG-module S in B such that Q(k;) is a direci summand of
Sip. Let U be a projective cover ¢f S. By the assumption that J(B)*=0 and
J(B)?*=0, Rad(U)/Soc(U) is nonzero and completely reducible. Rad(U)/Soc(U)
appears in the Asulander-Reiten sequence; 0— Q'(S)— Rad(U)/Soc(U)® U —
Q7Y(S)—0 (Proposition 4.11 [1]). Then by the result of Roggenkamp (Pro-
position 2.10 [17]) Qi*'(kp) is a direct summand of (Rad(U)/Soc(U)),, which

contradicts the maximality of z.



464 T. OKUYAMA

Step 5. Conclusion.

First assume p=2. Then by Step 4 D is a four group. By results of
Erdmann [8] we have two cases (i) and (ii) in Theorem 4, [8]. In the case (i),
it follows easily that the basic ring of B is isomorphic to kD. In the case (ii),
B has three simple modules S, S, and S;. Let ¢; (i=1,2 and 3) be pairwise
orthogonal primitive idempotents with ¢;kG/e; J(RG)=S; and put e=e,+¢,4-e,.
By Theorem 4, [8] dim,ekGe=12 and dim,e;kGe;=1+45;;. Then we can
show that ekGe is isomorphic to k4,. Next assume that p is odd. By the
thoery of Brauer-Dade [4] and a result of Peacock [16], it follows that Rad(U)/
Soc(U) is simple or a sum of two non-isomorphic simple modules for every
projective indecomposable £G-module U in B. Then the result follows easily.

3. Proof of Theorem 2

Put S=Rad(U)/Soc(U). Suppose that a Sylow 2-subgroup of G is not
dihedral. Then by the result of Webb (Theorem E [18]) and our assumption
S is simple and self dual. Let V" be a projective cover of S. Since V is also
self dual, for any simple kG-module T the multiplicity of T in the composition
factors of V is equal to that of its dual. By a result of Fong [10] the dimen-
sion of a nontrivial self dual simple kG-module is even. Thus we have a con-
tradiction as the multiplicity of the trivial 2G-module in the composition factors
of V'is 1 and dim,V is even.

References

[1] M. Auslander and I. Reiten: Representation theory of artin algebras 1V; Comm.
Algebra 5 (1977), 443-518.

[2] R. Brauer: Some applications of the theory of blocks of characters of finite groups
1V, J. Algebra 17 (1971), 489-521.

[3] S.B. Conlon: Certain representation algebras, J. Austral. Math. Soc. 5 (1965),
83-99.

[4] E.C. Dade: Blocks with cyclic defect group, Ann. of Math. (2) 84 (1966), 20-48.

[5] K. Erdmann: Blocks and simple modules with cyclic vertices, Bull. London Math.
Soc. 9 (1977), 216-218.

[6] K. Erdmann: Principal blocks of groups with dihedral Sylow 2-subgroups, Comm.
Algebra 5 (1977), 665-694.

[7] K. Erdmann: Blocks whose defect groups are Klein four groups, J. Algebra 59
(1979), 452-465.

[8] K. Erdmann: Blocks whose defect groups are Klein four groups: A correction,
J. Algebra 76 (1982), 505-518.

[9] W. Feit: The representation theory of finite groups, North-Holland, Amster-
dam, New York, Oxford, 1982.

[10] P. Fong: On decomposition numbers of J, and R(q), Symposia Mathematica,



(11]
[12]
[13]
(14]
[15]

[16]
(17]

[18]

BLocks ofF FiNiTE GRroups 465

XIII (1974), 415422,

J.A. Green: A transfer theorem for modular representations, J. Algebra 1 (1964),
73-84.

J.A. Green: Walking around the Brauer tree, J. Austral. Math. Soc. 17 (1974),
197-213.

R. Knorr:  On the vertices of irreducible modules, Ann. of Math. (2) 110 (1979),
487-499.

W. Miiller: Unxzerlegbare Moduln iiber artinschen Ringen, Math. Z. 137 (1974),
197-226.

T. Okuyama and Y. Tsushima: Local properties of p-block algebras of finite
groups, Osaka J. Math. 20 (1983), 33—41.

R.M. Peacock: Blocks with a cyclic defect group, J. Algebra 34 (1975), 232-259.
K.W. Roggenkamp: Integral representations and structure of finite group
rings, Les Presses de I’Université de Montréal, Montréal, 1980.

P.J. Webb: The Auslander-Reiten quiver of a finite group, Math. Z. 179 (1982),
97-122.

Department of Mathematics,
Osaka City University,
Osaka 558, Japan.








