<table>
<thead>
<tr>
<th>Title</th>
<th>Spatial-graph isotopy and the rearrangement theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Soma, Teruhiko</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 35(1) P.235-P.248</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/4009</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/4009</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
A 1-dimensional finite CW-complex is called a graph. The set of all (piecewise linear) embeddings $\Gamma : G \to \mathbb{R}^3$ of G is denoted by $S(G)$. In this paper, we will study spatial-graph isotopy and cobordism, equivalence relations on $S(G)$ introduced by Taniyama [6], and obtain interaction between them. The subset of $S(G)$ consisting of all elements isotopic to (resp. cobordant to) $\Gamma \in S(G)$ is denoted by $[\Gamma]_{\text{isotopy}}$ (resp. by $[\Gamma]_{\text{cobor}}$), and called the isotopy class (resp. the cobordism class) of Γ. Here, we note that any isotopy between two embeddings $\Gamma, \Gamma' \in S(G)$ is realized by a finite sequence of blowing-downs \backslash and ups \slash. In Soma [5] and Inaba-Soma [2], we saw that it is useful for the study of spatial-graph isotopy to rearrange the order of blowing-ups and downs, and presented a rearrangement theorem valid for trivalent graphs, [5, Theorem 2], and that for connected graphs without cut vertices, [2, Theorem 3]. The following shows that such a rearrangement theorem holds for any graphs.

Theorem 1 (The Rearrangement Theorem on Spatial-Graph Isotopy). For any graph G, let $\Gamma_1, \Gamma_2 : G \to \mathbb{R}^3$ be embeddings isotopic to each other. Then, there exists an embedding $\Gamma_3 : G \to \mathbb{R}^3$ and a sequence of blowing-downs followed by blowing-ups such that $\Gamma_1 \backslash \cdots \backslash \Gamma_3 \slash \cdots \slash \Gamma_2$.

Our proof of Theorem 1 is based on arguments in [2]. However, for the completion of the proof, we must clear the hurdle which the author could not there.

An element $\Gamma^\text{red} \in S(G)$ is said to be isotopically reduced if the ambient-isotopy type of Γ^red can not be changed by any blowing-down of Γ^red. We note that the isotopy class $[\Gamma]_{\text{isotopy}}$ of any $\Gamma \in S(G)$ contains an isotopically reduced element, see [5, §3, Proposition 1]. Corollary 1 is proved by the argument quite similar to that in [5, Corollary 1] which was effective only for trivalent graphs.

Corollary 1. Let $\Gamma_1, \Gamma_2 : G \to \mathbb{R}^3$ be embeddings of any graph G. Suppose that Γ_i^red is any isotopically reduced element in $[\Gamma_i]_{\text{isotopy}}$ for $i = 1, 2$. Then, Γ_1 is isotopic to Γ_2 if and only if Γ_1^red is ambient isotopic to Γ_2^red.
The following corollary is a restatement of Corollary 1.

Corollary 2. For any embedding \(\Gamma : G \to \mathbb{R}^3 \) of a graph \(G \), the isotopy class \([\Gamma]_{\text{isotopy}}\) contains a unique isotopically reduced element up to ambient isotopy.

This corollary suggests the other question whether the cobordism class \([\Gamma]_{\text{cobor}}\) contains an isotopically reduced element. A graph \(G \) is called a generalized bouquet if \(G \) contains a vertex \(v \) such that \(G - \{v\} \) is acyclic. According to Taniyama [6, Theorem A], if \(G \) is a generalized bouquet, then any embedding \(\Gamma : G \to \mathbb{R}^3 \) is isotopic to a planar embedding \(\Gamma_0 : G \to \mathbb{R}^2 \subset \mathbb{R}^3 \), so the quotient set \(S(G)/\text{isotopy} \) consists of a single element. If the graph \(G \) is non-acyclic, then \(S(G) \) has infinitely many cobordism classes. However, except the unknotted class \([\Gamma_0]_{\text{cobor}}\), any other classes \([\Gamma]_{\text{cobor}}\) contain no isotopically reduced elements. For non-generalized-bouquet graphs, we have the following theorem in contrast to Corollary 2.

Theorem 2. Suppose that \(G \) is any graph other than a generalized bouquet. Then, for any embedding \(\Gamma \in S(G) \), the cobordism class \([\Gamma]_{\text{cobor}}\) contains infinitely many isotopically reduced elements which are not ambient isotopic to each other.

Note that an embedding \(\Gamma' \in S(G) \) obtained by blowing-downs of \(\Gamma \) is, in general, not cobordant to \(\Gamma \). Thus, the blowing-down method is not applicable to construct isotopically reduced elements in \([\Gamma]_{\text{cobor}}\). In §3, we will construct such embeddings by replacing mutually disjoint, trivial tangles \((B_1, B_1 \cap \Gamma(G)), \ldots, (B_m, B_m \cap \Gamma(G))\) in \((S^3, \Gamma(G)) \) by certain simple tangles.

Corollary 3 follows immediately from Theorems 1 and 2.

Corollary 3. For any graph \(G \), let \(\phi : S(G) \to S(G)/\text{isotopy} \) be the natural quotient map. If \(G \) is not a generalized bouquet, then for any element \(\Gamma \in S(G) \), the image \(\phi([\Gamma]_{\text{cobor}}) \) is an infinite subset of \(S(G)/\text{isotopy} \).

The referee suggested that it is not hard to prove the following proposition where the positions of isotopy and cobordism in Corollary 3 are exchanged.

Proposition 1. For any graph \(G \), let \(\psi : S(G) \to S(G)/\text{cobor} \) be the natural quotient map. If \(G \) is not acyclic, then for any element \(\Gamma \in S(G) \), the image \(\psi([\Gamma]_{\text{isotopy}}) \) is an infinite subset of \(S(G)/\text{cobor} \).

1. Preliminaries

Let \(G \) be a graph, and \(I \) the closed interval \([0,1]\). Consider a pair of elements \(\Gamma, \Gamma' \in S(G) \) admitting a PL-embedding \(\Phi : G \times I \to \mathbb{R}^3 \times I \) such that, for
some \(0 < \varepsilon < 1/2\), \(\Phi(x,t) = (\Gamma(x),t)\) if \((x,t) \in G \times [0,\varepsilon]\), \(\Phi(x,t) = (\Gamma'(x),t)\) if \((x,t) \in G \times [1-\varepsilon,1]\), and \(\Phi(G \times [\varepsilon,1-\varepsilon]) \subset \mathbb{R}^3 \times [\varepsilon,1-\varepsilon]\). We say that (i) \(\Gamma\) is \textit{ambient isotopic} to \(\Gamma'\) if \(\Phi\) is locally flat and level-preserving, (ii) \(\Gamma\) is \textit{cobordant} to \(\Gamma'\) if \(\Phi\) is locally flat, and (iii) \(\Gamma\) is \textit{isotopic} to \(\Gamma'\) if \(\Phi\) is level-preserving.

A graph \(H\) is a \textit{star} of degree \(n \in \mathbb{N}\) and centered at \(v\) if \(H\) is a tree consisting of \(n\) edges which have \(v\) as a common vertex. For a given 3-ball \(B\) in \(\mathbb{R}^3\), we fix a point \(v \in \text{int}B\), called the \textit{center} of \(B\). For an element \(\Gamma \in S(G)\), the pair \((B, B \cap \Gamma(G))\) is called a \textit{ball-star} pair if \(\Gamma_\alpha\) is a star centered at \(v\) and with \(\partial \varepsilon \subset \partial B \cup \{v\}\) for each edge \(\varepsilon\) of \(B \cap \Gamma(G)\). When \(\alpha = B \cap \Gamma(G)\) is a proper arc in \(B\), \((B, \alpha)\) is regarded as a ball-star pair of degree two even if \(\alpha\) contains no vertices of \(\Gamma(G)\). A ball-star pair \((B, B \cap \Gamma(G))\) is \textit{standard} if there exists a properly embedded disk \(D\) in \(B\) with \(D \supset B \cap \Gamma(G)\). For an embedding \(\Gamma : G \rightarrow \mathbb{R}^3\) with a ball-star pair \((B, B \cap \Gamma(G))\), set \(J = G - \Gamma\) and \((J_\alpha, J_\cap \Gamma(G))\) is a standard ball-star pair. Conversely, \(\Gamma\) is said to be obtained from \(\Gamma'\) by a \textit{blowing-up} occurring in \(B\) and denote it by \(\Gamma' / B\). As was pointed out in [6, §2], for two elements \(\Gamma, \Gamma' \in S(G)\), \(\Gamma\) is isotopic to \(\Gamma'\) if and only if \(\Gamma'\) is obtained from \(\Gamma\) by a finite sequence of blowing-downs and ups. Consider double blowing-ups \(\Gamma' / B_1, \Gamma' / B_2, \Gamma''\) for \(\Gamma \in S(G)\). Since \((B_2, B_2 \cap \Gamma'(G))\) is a standard pair, one can shrink \(B_2\) by an ambient isotopy of \(\mathbb{R}^3\) fixing \(\Gamma'(G)\) as a set so that either \(B_1 \cap B_2 = \emptyset\) or \(B_2 \subset \text{int}B_1\). If \(B_2 \subset \text{int}B_1\), then the double blowing-ups can be replaced by a single blowing-up \(\Gamma / B_1, \Gamma''\), see Fig. 3 in [5].

First of all, we will give the proof of Proposition 1.

Proof of Proposition 1. Any non-acyclic graph \(G\) contains a cycle \(l\). For any embedding \(\Gamma \in S(G)\) and any \(n \in \mathbb{N}\), let \(B_n = B_1 \cup \cdots \cup B_n\) be a disjoint union of 3-balls in \(\mathbb{R}^3\) such that each \(B_i \cap \Gamma(G)\) is an unknotted, proper arc in \(B_i\) with \(\alpha_i = \Gamma^{-1}(B_i) \subset l\). Consider an embedding \(\Gamma_n \in S(G)\) such that each \(\Gamma_n(\alpha_i)\) is a left-handed trefoil in \(B_i\) and \(\Gamma_n|_{H_n} = \Gamma|_{H_n}\) for \(H_n = G - \text{int}(\alpha_1 \cup \cdots \cup \alpha_n)\). Since \(\Gamma_n \cap \cdots \cap \Gamma_n\) is contained in \(\Gamma_{\text{isotopy}}\). Since \(\text{sign}(\Gamma_n(l)) = \text{sign}(\Gamma(l)) + 2n\) and since the knot signature is well known to be a cobordism invariant, \(\psi(\Gamma_n)\) \((n = 1,2,\ldots)\) are mutually distinct points of \(S(G)/\text{cobor}\). This completes the proof. \[\square\]

We identify the 3-sphere \(S^3\) with \(\mathbb{R}^3 \cup \{\infty\}\). So, any element \(\Gamma \in S(G)\) can be regarded as an embedding of \(G\) into \(S^3\). For any subset \(X\) of \(S^3\), an \textit{ambient isotopy} of \((S^3, X)\) means an ambient isotopy of \(S^3\) fixing \(X\) as a set.
2. Proof of the rearrangement theorem

Throughout this section, fix a graph \(G \) and a pair of blowing-up and down \(\Gamma_1 / B \Gamma_2 \setminus C \Gamma_3 \), where \(\Gamma_1, \Gamma_2, \Gamma_3 \) are elements of \(S(G) \) and \(B, C \) are 3-balls with centers \(v_B, v_C \). Note that isolated vertices and free edges of a graph \(G \) do not affect equivalence relations on \(S(G) \) such as ambient isotopy, isotopy and cobordism. Thus, we may always assume without loss of generality that \(G \) contains no isolated vertices and free edges, that is, the degree of each vertex of \(G \) is at least two. If necessary adding extra vertices to \(G \), we may also assume that any cycle in \(G \) contains at least two vertices of \(G \). In particular, \(G \) satisfies the condition \((**) \) in [2, §2].

It is easily seen that the following proposition implies Theorem 1.

Proposition 2. With the notation as above, there exist embeddings \(\Gamma'_2, \Gamma'_3 \in S(G) \) and a sequence \(\Gamma_1 \setminus C. \Gamma'_2 / B. \Gamma'_3 / C''. \Gamma'_3 \), where \(B', C', C'' \) are 3-balls with centers \(v_B, v_C, v_C \) respectively.

Note that, in the case of \(v_B = v_C \), the double blowing-ups \(\Gamma'_2 / B. \Gamma'_3 / C''. \Gamma'_3 \) in Proposition 2 are replaced by a single blowing up \(\Gamma'_2 / B'. \Gamma'_3 / C'' \). From now on, for any proper subset \(X \) of \(S^3 \), we set \(X^0 = X - X \cap \Gamma_2(G) \). By [2, Lemma 3], we may assume that each component of \(\partial B^o \cap \partial C^o \) is a loop non-contractible both in \(\partial B^o \) and \(\partial C^o \) (even in the case where \(\partial B^o, \partial C^o \) are compressible in \(S^3 - \Gamma_2(G) \)). For each component \(R \) of \(B \cap \partial C \), let \(W_R \) denote the closure in \(B \) of a component of \(B - R \) disjoint from \(v_B \). A closure \(W_R \) is said to be innermost among these closures if \(\int W_R \cap \partial C = \emptyset \). According to [2, Lemma 2], if \(F_R = W_R \cap \partial B \) is connected for an innermost closure \(W_R \), then we have a sequence \(\Gamma_1 / B \Gamma'_2 \setminus C'. \Gamma'_3 / C'. \Gamma'_3 \) with \(|\partial B \cap \partial C'| < |\partial B \cap \partial C| \), where \(|Y| \) denotes the number of connected components of a compact set \(Y \). In fact, when \(v_B \neq v_C \), we showed in [2, Lemma 4] that, for any component \(R \) of \(B \cap \partial C \), \(F_R \) is connected (even if \(W_R \) is not innermost), and hence Proposition 2 was proved inductively. So, it suffices to consider the case of \(v_B = v_C = v \). Remark that, in this case, the result corresponding to [2, Lemma 4] does not hold in general. We will complete the proof of Proposition 2 by showing that either \(F_R \) is connected for at least one innermost \(W_R \) or each component of \(S^3 - \int (B \cup C) \) is a 3-ball.

For unoriented loops \(l, l' \) in \(S^3 \) with \(l \cap l' = \emptyset \), \(\text{lk}(l, l') \) is the absolute linking number of \(l \) and \(l' \) in \(S^3 \). For a loop \(l \) in the punctured surface \(\partial (B \cup C)^o \), \(l^+ \) represents a loop in \(S^3 - \Gamma_2(G) \cup B \cup C \) isotopic to \(l \) in \(S^3 - \Gamma_2(G) \cup \int (B \cup C) \). Intuitively, \(l^+ \) is obtained by pushing \(l \) outside of \(B \cup C \) slightly.

Lemma 1. With the notation and assumptions as above, suppose that \(X \) is a connected component of \(S^3 - \int (B \cup C) \). Then, one of the following \((i) \) and \((ii) \) holds.

(i) \(X \) is homeomorphic to a 3-ball.
(ii) \textbf{There exists a simple proper arc }\alpha \textbf{ in } Q = X \cap \partial C \textbf{ connecting distinct components } l, l' \textbf{ of } \partial Q \textbf{ such that } lk(\alpha \cup \beta_1 \cup \beta_2, l^+) = 1, \textbf{ where } \beta_1, \beta_2 \textbf{ are simple arcs in } B \textbf{ connecting the end points of } \alpha \textbf{ with } v \textbf{ and satisfying } \beta_1 \cap \beta_2 = \{v\}.\]

Proof. We assume that the conclusion (ii) does not hold and will show then that the conclusion (i) holds. Let \(Y_1, \ldots, Y_m \) be the components of \(Q \). For each \(Y_i \), there exist mutually disjoint disks \(D_1, \ldots, D_i \) in \(\partial B \) such that \(\partial D(i) \subset \partial Y_i \) and \(X \cap \partial B \subset D(i) \), where \(D(i) \) is the union \(D_1 \cup \cdots \cup D_i \). When \(\partial Y_i \cap \text{int}D_j(i) \neq \emptyset \), consider a component \(l \) of \(\partial Y_i \cap \text{int}D_j(i) \) which is not disconnected from \(\partial D_j(i) \) by any other components of \(\partial Y_i \cap \text{int}D_j(i) \). Then the triad of \(l, l' = \partial D(i) \) and any simple arc \(\alpha \) in \(Y_i \) connecting \(\partial Y_i \cup \alpha \) with \(l \) would satisfy (ii), a contradiction. Thus, we have \(\partial Y_i \cap \text{int}D(i) = \emptyset \). Then, the union \(S_i = Y_i \cup D(i) \) is a 2-sphere bounding a 3-ball \(B_i \) in \(S^3 - \text{int}B \) with \(B_i \subset X \). Our \(X \) coincides with the intersection \(B_1 \cap \cdots \cap B_m \).

We set \(W_i = S^3 - \text{int}(B_1 \cup B_i) \) and \(Z_i = \partial W_i - \text{int}Y_i \). Note that \(Z_i \) is a connected surface in \(\partial B \) homeomorphic to \(Y_i \). For any distinct \(i, j \in \{1, \ldots, m\} \), since \(Y_i \subset X \) is disjoint from \(\text{int}W_j \), \(W_i \) is either contained in \(W_j \) or disjoint from \(W_j \). If \(W_i \subset W_j \), then \(X \) would meet \(\text{int}W_j \) non-trivially, a contradiction. It follows that \(W_i \cap W_j = \emptyset \).

Thus, the boundary \(\partial X = (\partial B - Z_1 \cup \cdots \cup Z_m) \cup (Y_1 \cup \cdots \cup Y_m) \) is homeomorphic to the 2-sphere \(\partial B = (\partial X - Y_1 \cup \cdots \cup Y_m) \cup (Z_1 \cup \cdots \cup Z_m) \). This shows that \(X \) is homeomorphic to a 3-ball. \(\square \)

Proof of Proposition 2 (and Theorem 1). As was seen above, we may assume that \(v_B = v_C = v \).

First, we consider the case where all components \(X_1, \ldots, X_m \) of \(N_0 = S^3 - \text{int}(B \cup C) \) are 3-balls. Note that \(N_0 \cap \Gamma_i(G) = N_0 \cap \Gamma_2(G) = N_0 \cap \Gamma_3(G) \) and the graph \((B \cup C) \cap \Gamma_i(G) \) is a star centered at \(v \) for \(i = 1, 2, 3 \). Take mutually disjoint, simple proper arcs \(\alpha_1, \ldots, \alpha_m-1 \) in \(B \cup C \) such that each \(\alpha_j \) connects \(\partial X_j \) with \(\partial X_{j+1} \) and

\[
(\alpha_1 \cup \cdots \cup \alpha_m-1) \cap (\Gamma_1(G) \cup \Gamma_2(G) \cup \Gamma_3(G)) = \emptyset.
\]

The union \(N_1 \) of a small regular neighborhood of \(\alpha_1 \cup \cdots \cup \alpha_m-1 \) in \(B \cup C \) and \(N_0 \) is a 3-ball with \(N_1 \cap \Gamma_i(G) = N_1 \cap \Gamma_2(G) = N_1 \cap \Gamma_3(G) \) and, for the 3-ball \(\hat{B} = S^3 - \text{int}N_1 \) and \(i = 1, 2, 3 \), \((\hat{B}, \hat{B} \cap \Gamma_i(G)) = (\hat{B}, (B \cup C) \cap \Gamma_i(G)) \) is a ball-star pair. This shows that there exists a (common) embedding \(\Gamma_2' \subset S(G) \) admitting blowing-downs \(\Gamma_1 \setminus \hat{B} \Gamma_2' \) and \(\Gamma_3 \setminus \hat{B} \Gamma_2' \). Thus, we have the pair of blowing-down and up \(\Gamma_1 \setminus \hat{B} \Gamma_2' \Gamma_3 \setminus \hat{B} \Gamma_2' \Gamma_3 \) from \(\Gamma_1 \) to \(\Gamma_3 \).

Next, we suppose that \(S^3 - \text{int}(B \cup C) \) contains a component \(X \) not homeomorphic to a 3-ball. By Lemma 1, there exists a simple proper arc \(\alpha \) in \(Q = X \cap \partial C \), simple arcs \(\beta_1, \beta_2 \) in \(B \) as in Lemma 1 (ii) and a component \(l \) of \(\partial Q \) with \(lk(\alpha \cup \beta_1 \cup \beta_2, l^+) = 1 \). Consider the 2-fold branched covering \(p : S^3 \rightarrow S^3 \) branched over \(l^+ \), and set \(p^{-1}(v) = \{\tilde{v}_1, \tilde{v}_2\} \). The preimage \(p^{-1}(B) \) (resp. \(p^{-1}(C) \))
is a union of mutually disjoint 3-balls \tilde{B}_1, \tilde{B}_2 with $\tilde{v}_1 \in \tilde{B}_1$, $\tilde{v}_2 \in \tilde{B}_2$ (resp. \tilde{C}_1, \tilde{C}_2 with $\tilde{v}_1 \in \tilde{C}_1$, $\tilde{v}_2 \in \tilde{C}_2$). Let $\tilde{\alpha}$ be the lift of α contained in $\partial \tilde{C}_2$. Since $\tilde{\alpha}$ connects \tilde{B}_1 with \tilde{B}_2, \tilde{C}_2 meets both \tilde{B}_1 and \tilde{B}_2. Note that $\tilde{\Gamma} = p^{-1}(\Gamma_2(G))$ is a spatial graph, and $(\tilde{B}_j, \tilde{B}_j \cap \tilde{\Gamma})$, $(\tilde{C}_j, \tilde{C}_j \cap \tilde{\Gamma})$ are ball-star pairs for $j = 1, 2$. Since $\tilde{v}_1 \neq \tilde{v}_2$, Lemma 4 in [2] implies that, for any component \tilde{R}_2 of $\tilde{B}_1 \cap \partial \tilde{C}_2$, $\tilde{R}_2 = \tilde{W}_2 \cap \partial \tilde{B}_1$ is connected and hence homeomorphic to \tilde{R}_2, where \tilde{W}_2 is the closure in \tilde{B}_1 of a component of $\tilde{B}_1 - \tilde{R}_2$ disjoint from \tilde{v}_1. When $\tilde{W}_2 \cap \partial \tilde{C}_1 = \emptyset$ for a closure \tilde{W}_2 with $\text{int} \tilde{W}_2 \cap \partial \tilde{C}_2 = \emptyset$, we set $W = p(\tilde{W}_2)$. Otherwise, consider the closure \tilde{W}_1 in \tilde{W}_2 of a component $\tilde{W}_2 - \partial \tilde{C}_1$ with $\text{int} \tilde{W}_1 \cap \partial \tilde{C}_1 = \emptyset$ and $\tilde{W}_1 \cap \tilde{R}_2 = \emptyset$. Note that $\tilde{R}_1 = \tilde{W}_1 \cap \partial \tilde{C}_1$ is a connected surface, see Fig. 1. If $\tilde{C}_2 \cap \text{int} \tilde{W}_2 = \emptyset$, then \tilde{C}_2 would contain $\tilde{W}_2 \supset \tilde{R}_1$, and hence $\tilde{C}_1 \cap \tilde{C}_2 = \emptyset$, a contradiction. This implies that $\tilde{C}_2 = \tilde{C}_2 \cup \tilde{W}_2$ is a 3-ball. If $\tilde{W}_2 \cap \tilde{\Gamma} \neq \emptyset$, then any edge e of the star $\tilde{\Gamma} \cap \tilde{B}_1$ connecting a point of $\tilde{F}_2 \cap \tilde{\Gamma}$ with \tilde{v}_1 would meet \tilde{R}_2, so e would tend toward \tilde{v}_2. This contradicts that $\tilde{v}_1 \neq \tilde{v}_2$. It follows that $(\tilde{C}_2', \tilde{C}_2' \cap \tilde{\Gamma}) = (\tilde{C}_2', \tilde{C}_2' \cap \tilde{\Gamma})$ is a ball-star pair centered at \tilde{v}_2. By applying Lemma 4 in [2] to the pair of the 3-balls \tilde{C}_1, \tilde{C}_2' with distinct centers, one can show that $\tilde{F}_1 = \tilde{W}_1 \cap \partial \tilde{C}_1$ is connected. Then, we set $W = p(\tilde{W}_1)$. In either case, W is a compact 3-manifold in B bounded by the union of the connected surfaces $R = W \cap \partial C$, $F = W \cap \partial B$ and satisfying $\text{int} W \cap \partial C = \emptyset$. Then, by [2, Lemma 2], we have a sequence $\Gamma_1 \not\sim_B \Gamma_2 \not\sim_{C^{(1)}} \Gamma_3$ with $|\partial B \cap \partial C^{(1)}| < |\partial B \cap \partial C|$. Repeating the same process finitely many times, we have a sequence $\Gamma_1 \not\sim_{B'} \Gamma_2 \not\sim_{C'} \Gamma_3$ such that each component of
\(S^3 - \text{int}(B' \cup C')\) is a 3-ball. As was seen in the previous case, one can then exchange the blowing-up and down of \(\Gamma_1 / B' \Gamma_2^{(r)} \backslash C' \Gamma_3^{(r)}\) and obtain our desired sequence.

3. Construction of isotopically reduced embeddings

In this section, we will prove that, if a graph \(G\) is not a generalized bouquet, then for any embedding \(\Gamma \in S(G)\), the cobordism class \([\Gamma]\) contains infinitely many isotopically reduced elements which are not ambient isotopic to each other.

Our proof here is based on arguments in Soma [3] and [4], where the author constructed simple links cobordant to given links in \(S^3\) and closed 3-manifolds by using certain simple tangles. Here, a (2-string) tangle \((B, t_1 \cup t_2)\) is a pair of a 3-ball \(B\) and a disjoint union \(t_1 \cup t_2\) of two simple proper arcs in \(B\). A tangle \((B, t_1 \cup t_2)\) is trivial if there exists a properly embedded disk in \(B\) containing \(t_1 \cup t_2\). A tangle \((B, t_1 \cup t_2)\) is simple if \(\partial B - \partial t_1 \cup \partial t_2\) is incompressible in \(B - t_1 \cup t_2\) and if \(B - t_1 \cup t_2\) contains no incompressible tori. We refer to [3, §2] for examples of simple tangles.

In particular, a clasp tangle \((B, t_1 \cup t_2)\) as in Fig. 2 is simple. Let \(A\) be a properly embedded annulus in the complement \(B - t_1 \cup t_2\) of a simple tangle such that \(\partial A\) bounds an annulus \(A'\) in \(\partial B - \partial t_1 \cup \partial t_2\). If \(A\) is incompressible in \(B - t_1 \cup t_2\), then any compressing disk \(\Delta\) for the torus \(T = A \cup A'\) is contained in the compact 3-manifold \(V\) in \(B - t_1 \cup t_2\) bounded by \(T\). Since \(V\) is a solid torus and each component of \(\partial A\) is contractible in \(B - \text{int}V\), \(A\) is parallel to \(A'\) in \(V \subset B - t_1 \cup t_2\). Here, we say that a compact surface \(F\) properly embedded in a 3-manifold \(X\) is parallel in \(X\) to a surface \(F'\) in \(\partial X\) if there exists an embedding \(h : F \times I \to X\) with \(h(F \times \{0\}) = F\) and \(h(F \times \{1\} \cup \partial F \times I) = F'\).

A compact, connected surface homeomorphic to a closed region in \(\mathbb{R}^2\) with \(n\) boundary components is called an \(n\)-ply connected disk. In particular, a doubly connected disk is an annulus.

Lemma 2. Let \((B, t_1 \cup t_2)\) be a clasp tangle, and let \(R\) be an incompressible, triply connected disk properly embedded in \(B - t_1 \cup t_2\). Suppose that there exist mutually disjoint disks \(D_1, D_2, D_3\) in \(\partial B\) satisfying \(\partial(D_1 \cup D_2 \cup D_3) = \partial R\), \(D_1 \cap t_1 \neq \emptyset\), \(D_2 \cap t_1 \neq \emptyset\) and \((D_1 \cup D_2) \cap t_2 = \emptyset\). Then, \(R\) is parallel in \(B - t_1 \cup t_2\) to a surface in \(\partial B - \partial t_1 \cup \partial t_2\).

Proof. By the assumptions as above, both \(D_1 \cap t_1\) and \(D_2 \cap t_1\) consist of single points. Since \(R\) is incompressible in \(B - t_1 \cup t_2\) and \((D_1 \cup D_2) \cap t_2 = \emptyset\), \(\partial t_2\) is contained in \(D_3\). The 2-sphere \(R \cup D_1 \cup D_2 \cup D_3\) bounds a 3-ball \(C\) in \(B\) containing \(t_1 \cup t_2\). Consider the closure \(W\) of \(B - C\) in \(B\). Note that \(F = W \cap \partial B\) is a triply connected disk in \(\partial B^o = \partial B - \partial t_1 \cup \partial t_2\) with \(\partial F = \partial R\). Let \(\Delta\) be an embedded disk in \(B\) as illustrated in Fig. 2 such that \(\partial \Delta \supset t_1\) and \(\Delta \cap t_2\) is two points in \(\text{int} \Delta\). It is easily seen that \(\Delta^o = \Delta - \Delta \cap (t_1 \cup t_2)\) is incompressible in \(B - t_1 \cup t_2\). We
may assume that Δ meets R transversely, and each loop component of $\Delta \cap R$ is non-contractible both in Δ° and R. Since the arc $\Delta \cap \partial B$ connects the end points of t_1, the union J of all arc components of $\Delta \cap R$ are non-empty. Let $\Delta_1, \ldots, \Delta_n$ ($n \geq 2$) be the closures in Δ of all components of $\Delta \cap R$ that are non-empty. Let $\Delta_1, \ldots, \Delta_n$ ($n \geq 2$) be the closures in Δ of all components of $\Delta \cap R$ that are non-empty. Let $\Delta_1, \ldots, \Delta_n$ ($n \geq 2$) be the closures in Δ of all components of $\Delta \cap R$ that are non-empty. Let $\Delta_1, \ldots, \Delta_n$ ($n \geq 2$) be the closures in Δ of all components of $\Delta \cap R$ that are non-empty.

CASE 1. $\Delta_1 \cap t_2$ is empty.

In this case, $\text{int}\Delta_1 \cap R$ contains no loop components, so $\text{int}\Delta_1 \cap R = \emptyset$. If $\Delta_1 \subseteq C$, then for some $j \in \{1, 2, 3\}$, $D_j \cap \Delta_1$ is an arc separating D_j into two disks D_{j1} and D_{j2} such that $D_{j1} \cap (t_1 \cup t_2) = \emptyset$. The union $\Delta_1 \cup D_{j1}$ is a disk in $C - t_1 \cup t_2$ with $\partial(\Delta_1 \cup D_{j1}) \subset R$. Since R is incompressible in $C - t_1 \cup t_2$, Δ_1 excises a 3-ball C_1 from $C - t_1 \cup t_2$. Deforming Δ in a small neighborhood of C_1 by an ambient isotopy of B rel. $t_1 \cup t_2$, one can reduce the number $|\Delta \cap R|$. Thus, we may assume that $\Delta_1 \cap \text{int}C = \emptyset$. If γ is *inessential* in R, that is, γ excises a disk from R, then one can reduce $|\Delta \cap R|$ as above by invoking the incompressibility of R in W. In the case where γ is essential in R, consider the surface R' obtained by surgery on R along Δ_1. The surface R' consists of at most two annuli which are incompressible in W. Since the boundary of each component A' of R' bounds an annulus in F, A' is parallel to the annulus in W. This implies that R is parallel in $B - t_1 \cup t_2$ to F.

CASE 2. $\Delta_1 \cap t_2$ consists of a single point.

If $\text{int}\Delta_1 \cap R \neq \emptyset$, then there would exist a disk Δ_0 in Δ_1 with $\partial \Delta_0 \subset \text{int}\Delta_1 \cap R$, $\text{int}\Delta_0 \cap R = \emptyset$ and such that $\text{int}\Delta_0 \cap t_2$ is a single point. Since $\Delta_0 \cap D_3 \subset \Delta_0 \cap \partial B = \emptyset$ and $\partial t_2 \subset D_3$, the algebraic intersection number of Δ_0 with t_2 in the 3-ball C would be zero, a contradiction. Thus, $\text{int}\Delta_1 \cap R$ is empty. A similar argument implies that...
Δ₁ \cap (D₁ \cup D₂) = \emptyset, and so Δ₁ \cap D₃ is an arc. Since Δ₁ \cap t₁ = \emptyset, γ is inessential in R, and hence Δ₁ excises a 3-ball C₀ from C such that t₀ = C₀ \cap t₂ = C₀ \cap (t₁ \cup t₂) is a proper arc in C. Since t₂ is unknotted in B, t₀ is also unknotted in C₀. Thus, there exists a disk E₀ in C₀ bounded by the union of t₀ and an arc u₀ in the disk Δ₁ \cup (C₀ \cap D₃) with ∂u₀ = ∂t₀ and such that u₀ \cap Δ₁ \cap D₃ is a single point.

The tangle (B, t₁ \cup t₂) admits an orientation reversing involution f which is the reflection with respect to the horizontal plane containing the barycenter of the 3-ball B in Fig. 2. By using an elementary cut-and-past argument, one can take E₀ so that E₀ \cap h(E₀) = \emptyset. Move t₂ in a small neighborhood of E₀ \cup h(E₀) in B by an ambient isotopy of B rel. t₁ so that t₂ \cap Δ = \emptyset. Then, for a regular neighborhood N of Δ in B – t₂, ∂N – int(N \cap ∂B) is a proper disk in B separating t₁ and t₂. This implies that ∂B° is compressible in B – t₁ \cup t₂, a contradiction. Thus, Case 2 cannot occur.

Case 3. Δ₁ \cap t₂ consists of two points.

Since Δᵢ \cap t₂ = \emptyset for i = 2, \ldots, n, Δᵢ \cap J consists of two arcs for i = 2, \ldots, n – 1 and Δₙ \cap J consists of a single arc. Moreover, Δₙ is a disk in C with Δₙ \cap ∂C = ∂Δₙ – intt₁. For the 3-ball C' obtained by cutting C open along Δₙ, ∂C' – intD₃ is a proper disk in B separating t₁ from t₂. This contradiction implies that Case 3 cannot occur.

Let Γ : G → \mathbb{R}^3 ⊂ S^3 be any embedding of a graph G other than a generalized bouquet. As in §2, G can be assumed to contain no isolated vertices and free edges. We denote by V = \{v₁, \ldots, vₙ\} the set of all vertices of G. Consider the projection p : \mathbb{R}^3 → \mathbb{R}^2(\subset \mathbb{R}^3) defined by p(x, y, z) = (x, y, 0). Slightly deforming Γ by an ambient isotopy, we may assume that p \circ Γ is a regular projection, that is, (i) the restriction p \circ Γ|V is an embedding, (ii) p(Γ(V)) \cap p(Γ(G – V)) = \emptyset, and (iii) each singular value of p \circ Γ is a transversal double point. We regard that the image Γ = p(Γ(G)) is a plane graph, where each double point of p \circ Γ|G is considered to be a vertex of Γ of degree four. Let D₁, \ldots, Dₙ be mutually disjoint disks in \mathbb{R}^2 such that Dᵢ \cap \tilde{Γ} is a star centered at \tilde{v}_i = p(Γ(vᵢ)) for i = 1, \ldots, n, and let D = D₁ \cup \cdots \cup Dₙ. Since G is not a generalized bouquet, for each vᵢ ∈ V, G contains a cycle lᵢ disjoint from vᵢ. We note that lᵢ may be equal to lⱼ even if i ≠ j.

Let α₁, \ldots, αₙ be mutually disjoint arcs in \tilde{Γ} – D \cap \tilde{Γ} disjoint from the set of vertices of \tilde{Γ} and with αᵢ ⊂ p(Γ(lᵢ)). We set \tilde{α}_i = (p \circ Γ)^{-1}(αᵢ) and \tilde{A} = \tilde{α}_1 \cup \cdots \cup \tilde{α}_n. Consider simple arcs β₁, \ldots, βₙ in \mathbb{R}^2 – intD meeting each other and \tilde{Γ} transversely and such that each βᵢ connects a point in intαᵢ with a point xᵢ in ∂Dᵢ – ∂Dᵢ ∩ \tilde{Γ}. Let Γ₁ ∈ S(G) be an embedding ambient isotopic to Γ rel. G – \tilde{A} such that p \circ Γ₁(\tilde{α}_i) is an arc which tends toward ∂Dᵢ along βᵢ, and meets βᵢ at a point yᵢ near xᵢ, and then goes round a neighborhood of ∂Dᵢ until meeting yᵢ again, and finally returns to αᵢ along βᵢ as illustrated in Fig. 3. If necessary deforming Γ₁ by an ambient
isotopy, the plane graph $\hat{\Gamma}_1 = p \circ \Gamma_1(G)$ can be assumed to satisfy the following (2.1) and (2.2).

(2.1) $\hat{\Gamma}_1$ is connected.

(2.2) $\hat{\Gamma}_1$ contains no cut vertices.

Here, a cut vertex v of a graph H means a vertex disconnecting the component of H containing v. Let $\{\hat{w}_1, \ldots, \hat{w}_m\}$ be the set of the vertices of $\hat{\Gamma}_1$ corresponding to the double points of $p \circ \Gamma_1$, and let C_1, \ldots, C_m be small regular neighborhoods of $\hat{w}_1, \ldots, \hat{w}_m$ in S^3. Note that each $(C_j, C_j \cap \hat{\Gamma}_1)$ is a standard ball-star pair of degree four centered at \hat{w}_j. Let $\hat{\Gamma}_1$ be the regular diagram for Γ_1 obtained by replacing each $C_j \cap \hat{\Gamma}_1$ by a suitable 2-string trivial tangle in C_j. We set $C = C_1 \cup \cdots \cup C_m$.

Let $\Gamma_2 : G \to S^3$ be an embedding such that $\Gamma_2(G) - \text{int}C = \hat{\Gamma}_1 - \text{int}C$, and for each $j = 1, \ldots, m$, $(C_j, C_j \cap \Gamma_2(G))$ is obtained by exchanging each trivial tangle $(C_j, C_j \cap \hat{\Gamma}_1)$ by a clasp tangle so that Γ_2 is cobordant to Γ_1 and hence to Γ.

Now, we will prove the following lemma which is crucial in the proof of Theorem 2.

Lemma 3. With the notation as above, any ball-star pair $(B, B \cap \Gamma_2(G))$ in $(S^3, \Gamma_2(G))$ is standard. In particular, Γ_2 is isotopically reduced.

Proof. The argument quite similar to that in Assertion 1 of [3, Theorem 3] implies that $\Gamma_2(G)$ is "prime", that is, any 2-sphere in S^3 meeting $\Gamma_2(G)$ transversely in two points bounds a 3-ball B_0 in S^3 such that $B_0 \cap \Gamma_2(G)$ is an unknotted arc in B_0. In particular, any ball-arc pair in $(S^3, \Gamma_2(G))$ is standard. Thus, we may assume that B contains a vertex of $\Gamma_2(G)$, say \hat{v}_1. As in §2, for a proper subset X
of \(S^3 \), we set \(X^o = X - X \cap \Gamma_2(G) \). By (2.1), \(S^3 - C \cup \Gamma_2(G) = S^3 - C \cup \tilde{\Gamma}_1 \) is irreducible. Since a clasp tangle is simple, \(\partial C_j^o \) is incompressible in \(C_j^o \). By (2.2), each \(\partial C_j^o \) is also incompressible in \(S^3 - \text{int} C \cup \Gamma_2(G) \). This shows that \(\partial C_j^o \) is incompressible in \(S^3 - \Gamma_2(G) \) and \(S^3 - \Gamma_2(G) \) is irreducible. Set \(B = \hat{B} \) if \(\partial B^o \) is incompressible in \(S^3 - \Gamma_2(G) \). If \(\partial B^o \) is compressible in \(S^3 - \Gamma_2(G) \), then we consider mutually disjoint, compressing disks \(\Delta_1, \ldots, \Delta_r \) for \(\partial B^o \) in \(S^3 - \text{int} B \cup \Gamma_2(G) \) and 3-balls \(B_1, \ldots, B_r \) in \(S^3 \) with \(\partial B_i \subset \Delta_i \cup \partial B \) and \(B_i \cap \Gamma_2(l_1) = \emptyset \). Then, the union \(\hat{B} = B \cup B_1 \cup \cdots \cup B_r \) is a 3-ball disjoint from \(\Gamma_2(l_1) \) and such that \(\partial \hat{B}^o \) is incompressible in \(S^3 - \Gamma_2(G) \). Note that \(\partial \hat{B} \cap \Gamma_2(G) \subset \partial B \cap \Gamma_2(G) \), and \(\partial \hat{B} \cap \Gamma_2(G) = \partial B \cap \Gamma_2(G) \) if and only if \(\partial B^o \) is incompressible in \(S^3 - \Gamma_2(G) \). Since \(S^3 - \Gamma_2(G) \) is irreducible, \(\partial \hat{B} \cap \Gamma_2(G) \) is non-empty. If necessary deforming \(\partial B \) by an ambient isotopy of \((S^3, \Gamma_2(G)) \), one can assume that \(\partial \hat{B} \) meets \(\partial C \) transversely and each component of \(\partial \hat{B} \cap \partial C \) is non-contractible both in \(\partial \hat{B}^o \) and \(\partial C^o \). Renumber \(\tilde{w}_j \)'s so that the subset \(\{\tilde{w}_1, \ldots, \tilde{w}_k\} \) of \(\{\tilde{w}_1, \ldots, \tilde{w}_m\} \) consists of the double points of \(\tilde{\Gamma}_1 \) surrounding \(\tilde{v}_1 \), and \(\tilde{w}_k \) corresponds to the double point \(y_1 \) of \(p \circ \Gamma_1(\tilde{\alpha}_1) \). Let \(\varepsilon_j \) \((j = 1, \ldots, k - 1) \) be the edge of \(\Gamma_2(G) \) meeting both \(\tilde{v}_1 \) and \(C_j \), see Fig. 4. Since \(C_j \) meets \(\Gamma_2(l_1) \) non-trivially for any \(j = 1, \ldots, k \), \(C_j \) is not contained in \(\hat{B} \). If there existed a disk \(\Delta \) in \(\partial C_j \) with \(\partial \Delta \subset \partial \hat{B} \cap \partial C_j \), \(\text{int} \Delta \cap \partial \hat{B} = \emptyset \) and such that \(\Delta \cap \Gamma_2(l_1) \) is a single point, then \(\Delta \) would be a non-separating proper disk in the 3-ball \(S^3 - \text{int} \hat{B} \), a contradiction. Thus, in the case of \(\partial \hat{B} \cap \partial C_j \neq \emptyset \), the closure \(F \) in \(\partial C_j \) of any connected component of \(\partial C_j - \partial \hat{B} \cap \partial C_j \) is either a disk with \(1 \leq \#(F \cap \Gamma_2(G)) \leq 3 \), or an annulus with \(0 \leq \#(F \cap \Gamma_2(G)) \leq 2 \), or a triply connected disk with \(F \cap \Gamma_2(G) = \emptyset \), where \(\#(X) \) denotes the number of elements of a finite set \(X \). If \(F \) is either a disk with \(\#(F \cap \Gamma_2(G)) = 3 \) or an annulus with \(\#(F \cap \Gamma_2(G)) = 2 \), then \(F \cap \Gamma_2(l_2) \neq \emptyset \), and hence \(F \) is not contained in \(\hat{B} \).
We set \(C(k) = C_1 \cup \cdots \cup C_k \subset C \). If \(\partial C(k) \cap \hat{B} \) contains a disk component \(F \) with \(\#(F \cap \Gamma_2(G)) = 1 \), then \(\partial F \) bounds a disk \(F' \) in \(\partial \hat{B} \) with \(\#(F' \cap \Gamma_2(G)) = 1 \). Since \(\Gamma_2(G) \) is prime, the 2-sphere \(F \cup F' \) bounds a 3-ball \(B' \) in \(\hat{B} \) such that \(B' \cap \Gamma_2(G) \) is an unknotted arc in \(B' \). This enables us to reduce the number \(|\partial C(k) \cap \partial \hat{B}| \) by deforming \(\partial C(k) \) in a small neighborhood of \(B' \). Similarly, if \(\partial C(k) \cap \hat{B} \) contains an annulus component \(F \) with \(F \cap \Gamma_2(G) = 0 \), then one can reduce the number \(|\partial C(k) \cap \partial \hat{B}| \), for example see Assertion 2 in the proof of [3, Theorem 3]. Thus, we may assume that, for each \(C_j \ (j = 1, \ldots, k) \) with \(\partial \hat{B} \cap \partial C_j \neq \emptyset \), \(F_j = \partial C_j \cap \hat{B} \) is a connected surface which is either a disk with \(\#(F_j \cap \Gamma_2(G)) = 2 \), or an annulus with \(\#(F_j \cap \Gamma_2(G)) = 1 \), or a triply connected disk with \(F_j \cap \Gamma_2(G) = 0 \). One can reduce the former two cases to the latter case, by pushing a small neighborhood of \(F_j \cap \Gamma_2(G) \) toward the outside of \(\hat{B} \) along the edges of \(\Gamma_2(G) \) meeting \(F_j \). So, it suffices to consider the case where \(F_j \) is a triply connected disk disjoint from \(\Gamma_2(G) \).

Let \(W_j \) be the closure in \(\hat{B} \) of a component of \(\hat{B} - F_j \) disjoint from \(\hat{v}_1 \). It is easy to see that \(R_j = \partial W_j \cap \partial \hat{B} \) is also a triply connected disk. We assume that \(W_1 \) is innermost among all \(W_j \)'s, that is, \(\text{int} W_1 \cap \partial C(k) = \emptyset \). If \(W_1 \) were not contained in \(C_1 \), then \(C_1 \) would contain \(\hat{v}_1 \), a contradiction. It follows that \(W_1 \) is contained in \(C_1 \), and hence Lemma 2 shows that \(R_1 \) is parallel to \(F_1 \) in \(C_1 \). This implies that one can reduce the number \(|\partial \hat{B} \cap \partial C(k)| \), and finally get the situation of \(\hat{B} \cap C(k) = \emptyset \).

Since \(\partial B \cap \Gamma_2(G) \supset \partial \hat{B} \cap \Gamma_2(G) \neq \emptyset \), at least one of \(\varepsilon_1, \ldots, \varepsilon_{k-1} \), say \(\varepsilon_1 \), meets \(\partial \hat{B} \) non-trivially. Let \(\alpha \) be the subarc of \(\varepsilon_1 \) connecting \(\hat{v}_1 \) with \(\varepsilon_1 \cap \partial \hat{B} \). If \(\alpha \cap C_1 \neq \emptyset \),

\[\begin{align*}
\Gamma_2(l_t) \cup C(k) \\
\Delta_0 \\
\hat{v}_1 \\
\alpha \\
\end{align*} \]

Fig. 5.
then C_1 would meet $\tilde{B} \supset \alpha$ non-trivially. This contradiction implies $\alpha \cap C_1 = \emptyset$. Since $\partial \tilde{B} \cap (\Gamma_2(l_1) \cup C(k)) = \emptyset$ and since $\partial \tilde{B}$ meets any ε_j $(j = 1, \ldots, k - 1)$ at most one point, the component l_0 of $\partial \tilde{B} \cap (\mathbb{R}^2 - \text{int} C \cap \mathbb{R}^2)$ containing $\varepsilon_1 \cap \partial \tilde{B}$ is a loop in $\mathbb{R}^2 - C \cap \mathbb{R}^2$ bounding a disk Δ_0 such that $\Delta_0 \cap \Gamma_2(G)$ is a star of degree $k - 1$ centered at \tilde{v}_1, see Fig. 5. Since $\#(\partial \tilde{B} \cap \Gamma_2(G))$ is equal to the degree of \tilde{v}_1 in $\Gamma_2(G)$, we have $B = \tilde{B}$ or equivalently that ∂B° is incompressible in $S^3 - \Gamma_2(G)$. Since each component of $\partial B - l_0$ is an open disk disjoint from $\Gamma_2(G)$, one can deform ∂B by an ambient isotopy of $(S^3, \Gamma_2(G))$ rel. l_0 so that $\partial B \cap (\mathbb{R}^2 \cup C) = l_0$. In particular, $(B, B \cap \Gamma_2(G))$ is a standard ball-star pair. This shows that Γ_2 is isotopically reduced.

Proof of Theorem 2. For any positive integer m, choose the regular projection $\hat{\Gamma}_1 = p(\Gamma_1(G))$ as above so that $\hat{\Gamma}_1$ has at least m double points. Then, for the isotopically reduced embedding $\Gamma_2 \in [\Gamma]_{\text{cobor}}$ given in Lemma 3, the complement $S^3 - \Gamma_2(G)$ contains at least m mutually disjoint and non-parallel, incompressible, four-punctured 2-spheres. On the other hand, by Haken's Finiteness Theorem [1], there exists a positive integer $n(\Gamma_2)$ depending only on the ambient isotopy type of Γ_2 so that the number of such four-punctured 2-spheres in $S^3 - \Gamma_2(G)$ is not greater than $n(\Gamma_2)$. This observation implies that one can construct infinitely many isotopically reduced elements of $[\Gamma]_{\text{cobor}}$ which are not ambient isotopic to each other.

Acknowledgement. I would like to thank the referee for some helpful comments.

References
