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A 1-dimensional finite CW-complex is called a graph. The set of all (piecewise
linear) embeddings T' : G — RS2 of G is denoted by S(G). In this paper, we will
study spatial-graph isotopy and cobordism, equivalence relations on S(G) intro-
duced by Taniyama [6], and obtain interaction between them. The subset of S(G)
consisting of all elements isotopic to (resp. cobordant to) I' € S(G) is denoted by
[Tisotopy (resp. by [I'cobor), and called the isotopy class (resp. the cobordism class) of
I'. Here, we note that any isotopy between two embeddings I, IV € S(QG) is realized
by a finite sequence of blowing-downs \, and ups . In Soma [5] and Inaba-Soma
[2], we saw that it is useful for the study of spatial-graph isotopy to rearrange the
order of blowing-ups and downs, and presented a rearrangement theorem valid for
trivalent graphs, [5, Theorem 2], and that for connected graphs without cut vertices,
[2, Theorem 3]. The following shows that such a rearrangement theorem holds for
any graphs.

Theorem 1 (The Rearrangement Theorem on Spatial-Graph Isotopy). For
any graph G, let T, Ty : G — R2 be embeddings isotopic to each other. Then,
there exists an embedding I's : G — R3 and a sequence of blowing-downs followed
by blowing-ups such thatT'; \,--- \ I3 /' --- /' Is.

Our proof of Theorem 1 is based on arguments in [2]. However, for the com-
pletion of the proof, we must clear the hurdle which the author could not there.

An element '™ € S(G) is said to be isotopically reduced if the ambient-isotopy
type of I'"™d can not be changed by any blowing-down of I'™¢. We note that the
isotopy class [[isoopy Of any I' € S(G) contains an isotopically reduced element,
see [5, §3, Proposition 1]. Corollary 1 is proved by the argument quite similar to
that in [5, Corollary 1] which was effective only for trivalent graphs.

Corollary 1. LetTy, I'y : G — R3 be embeddings of any graph G. Suppose
that T is any isotopically reduced element in [Uilisoropy for i = 1,2. Then, Ty is
isotopic to Ty if and only if T't¢ is ambient isotopic to T'F9.
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The following corollary is a restatement of Corollary 1.

Corollary 2.  For any embedding T : G — R3 of a graph G, the isotopy class
[Clisotopy contains a unique isotopically reduced element up to ambient isotopy.

This corollary suggests the other question whether the cobordism class [['cobor
contains an isotopically reduced element. A graph G is called a generalized bouquet
if G contains a vertex v such that G—{v} is acyclic. According to Taniyama [6, Theo-
rem A, if G is a generalized bouquet, then any embedding I' : G — R3 is isotopic
to a planar embedding T’ : G — R? C RS3, so the quotient set S(G)/isotopy
consists of a single element. If the graph G is non-acyclic, then S(G) has in-
finitely many cobordism classes. However, except the unknotted class [I'o]cobor, any
other classes [I']¢obor CONtain no isotopically reduced elements. For non-generalized-
bouquet graphs, we have the following theorem in contrast to Corollary 2.

Theorem 2. Suppose that G is any graph other than a generalized bouquet.
Then, for any embedding I' € S(G), the cobordism class [[|copor cOntains infinitely
many isotopically reduced elements which are not ambient isotopic to each other.

Note that an embedding IV € S(G) obtained by blowing-downs of I is, in gen-
eral, not cobordant to I". Thus, the blowing-down method is not applicable to con-
struct isotopically reduced elements in [I'cobor- In §3, we will construct such embed-
dings by replacing mutually disjoint, trivial tangles (B, B1 NI'(G)),. .., (Bm, BmN
['(G)) in (S3,T'(G)) by certain simple tangles.

Corollary 3 follows immediately from Theorems 1 and 2.

Corollary 3.  For any graph G, let ¢ : S(G) — S(G)/isotopy be the natural
quotient map. If G is not a generalized bouquet, then for any elementT' € S(G), the
image ¢([T]cobor) S an infinite subset of S(G)/isotopy.

The referee suggested that it is not hard to prove the following proposition
where the positions of isotopy and cobordism in Corollary 3 are exchanged.

Proposition 1.  For any graph G, let ¢ : S(G) — S(G)/cobor be the nat-
ural quotient map. If G is not acyclic, then for any element T' € S(G), the image
Y([Tlisotopy) i an infinite subset of S(G)/cobor.

1. Preliminaries

Let G be a graph, and I the closed interval [0, 1]. Consider a pair of elements
I, I € S(G) admitting a PL-embedding ® : G x I — R3 x I such that, for
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some 0 < € < 1/2, ®(z,t) = (I'(z),t) if (z,t) € G x [0,¢], ®(z,t) = (I'(z),t) if
(z,t) € Gx[1—¢,1], and ®(G X [e,1 —¢]) C R? X [g,1 — ¢]. We say that (i) T is
ambient isotopic to I" if @ is locally flat and level-preserving, (ii) I is cobordant to
I if @ is locally flat, and (iii) I' is isotopic to I if @ is level-preserving.

A graph H is a star of degree n € N and centered at v if H is a tree consisting of
n edges which have v as a common vertex. For a given 3-ball B in R3, we fix a point
v € intB, called the center of B. For an element I' € S(G), the pair (B, BNT(G))
is called a ball-star pair if BNI'(G) is a star centered at v and with 9 C 9B U {v}
for each edge € of BNI'(G). When a = BNT'(G) is a proper arc in B, (B, a) is
regarded as a ball-star pair of degree two even if o contains no vertices of I'(G). A
ball-star pair (B, BNT(G)) is standard if there exists a properly embedded disk D
in B with D D BNT(G). For an embedding I' : G — R3 with a ball-star pair
(B,BNI(Q)), set J = G —T'"!(intB). Then, we say that ' : G — R3 is obtained
from I" by a blowing-down in B and denote it by I' \,g IV (or shortly I" \ TV) if
IV is ambient isotopic to an embedding IV : G — R? such that I'”’|; = I'|; and
(B, BNI''(Q)) is a standard ball-star pair. Conversely, I is said to be obtained from
I by a blowing-up occurring in B and denote it by IV /g T (or IV /' T'). As was
pointed out in [6, §2], for two elements I', I € S(G), T is isotopic to I if and only
if I is obtained from T by a finite sequence of blowing-downs and ups. Consider
double blowing-ups I" /g, I'' /g, I'" for ' € S(G). Since (Bz, B NT'(Q)) is
a standard pair, one can shrink Bz by an ambient isotopy of R? fixing I'(G) as
a set so that either By N By = 0 or By C intB;. If B, C intB;, then the double
blowing-ups can be replaced by a single blowing-up I' g, I'”, see Fig. 3 in [5].

First of all, we will give the proof of Proposition I.

Proof of Proposition 1. Any non-acyclic graph G contains a cycle . For any
embedding I' € S(G) and any n € N, let B,, = B; U---U B, be a disjoint union
of 3-balls in R3 such that each B; NT'(G) is an unknotted, proper arc in B; with
a; = I7Y(B;) C . Consider an embedding I',, € S(G) such that each ', (o) is a
left-handed trefoil in B; and I',|g, = T'|n, for H, = G —int(a; U--- Uay,). Since
I, N\ -+ \ug, T, Ty is contained in [I'jsotopy- Since sign(I', (1)) = sign(T'(1)) + 2n
and since the knot signature is well known to be a cobordism invariant, ¥(I'y,)
(n=1,2,...) are mutually distinct points of S(G)/cobor. This completes the proof.

U

We identify the 3-sphere S with R® U {c0}. So, any element I' € S(G) can be
regarded as an embedding of G into S3. For any subset X of S3, an ambient isotopy
of (83, X) means an ambient isotopy of S® fixing X as a set.
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2. Proof of the rearrangement theorem

Throughout this section, fix a graph G and a pair of blowing-up and down
'y /B2 \\c I's, where 'y, 'y, '3 are elements of S(G) and B, C are 3-balls with
centers vg, vc. Note that isolated vertices and free edges of a graph G do not affect
equivalence relations on S(G) such as ambient isotopy, isotopy and cobordism.
Thus, we may always assume without loss of generality that G contains no isolated
vertices and free edges, that is, the degree of each vertex of G is at least two. If
necessary adding extra vertices to G, we may also assume that any cycle in G contains
at least two vertices of G. In particular, G satisfies the condition (xx) in [2, §2].

It is easily seen that the following proposition implies Theorem 1.

Proposition 2.  With the notation as above, there exist embeddings ', T} €
S(G) and a sequence I'y N\ Iy /g T4 /o I's, where B', C', C" are 3-balls
with centers vg, vc, vo respectively.

Note that, in the case of vg = v¢, the double blowing-ups I', /g Iy /¢ '3
in Proposition 2 are replaced by a single blowing up I';, g~ I's. From now on, for
any proper subset X of S, we set X° = X — X NT'y(G). By [2, Lemma 3], we may
assume that each component of 9B° N AC® is a loop non-contractible both in dB°
and C° (even in the case where B°, C° are compressible in S — I'y(G)). For
each component R of BN dC, let Wg denote the closure in B of a component of
B — R disjoint from vp. A closure Wk, is said to be innermost among these closures
if intWg N AC = (. According to [2, Lemma 2], if Fr = Wr N OB is connected for
an innermost closure Wg, then we have a sequence I'y /g T', \\c' I'5 ¢ T's with
|6B N OC’| < |0B N AC|, where |Y| denotes the number of connected components
of a compact set Y. In fact, when vg # vc, we showed in [2, Lemma 4] that, for
any component R of BN dC, Fg is connected (even if Wg is not innermost), and
hence Proposition 2 was proved inductively. So, it suffices to consider the case of
vp = vc = v. Remark that, in this case, the result corresponding to [2, Lemma 4]
does not hold in general. We will complete the proof of Proposition 2 by showing
that either Fr is connected for at least one innermost Wg or each component of
S$3 —int(BUC) is a 3-ball.

For unoriented loops [, I’ in S3 with [ NI’ = 0, 1k(,!’) is the absolute linking
number of ! and !’ in S3. For a loop [ in the punctured surface (B U C)°, I+
represents a loop in S% — I'y(G) U BU C isotopic to [ in S3 — I'y(G) Uint(B U C).
Intuitively, [ is obtained by pushing ! outside of B U C slightly.

Lemma 1. With the notation and assumptions as above, suppose that X is a
connected component of S — int(B U C). Then, one of the following (i) and (ii)
holds.

(i) X is homeomorphic to a 3-ball.
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(ii) - There exists a simple proper arc a in Q = X N OC connecting distinct compo-
nents 1, I of 8Q such that lk(aUB1U Ba,1) = 1, where 31, B are simple arcs
in B connecting the end points of a with v and satisfying (1 N B2 = {v}.

Proof. We assume that the conclusion (ii) does not hold and will show then
that the conclusion (i) holds. Let Y3,...,Y;, be the components of Q. For each Y;,
there exist mutually disjoint disks Dy), e ,Dg) in 8B such that 8D® C 8Y; and
X N8B c DD, where D is the union DY) U---U Dﬁ?. When 9Y; N intD](.i) £ 0,
i)

consider a component [ of 9Y; ﬂintDé which is not disconnected from 8D§i) by any

other components of 9Y; N intDJ(i). Then the triad of {, I’ = 6D§i) and any simple
arc « in Y; connecting [ with I’ would satisfy (ii), a contradiction. Thus, we have
dY; NintD® = @. Then, the union S; = Y; UD® is a 2-sphere bounding a 3-ball
B; in 83 — intB with B; D X. Our X coincides with the intersection By N---N B,,.

We set W; = S3—int(BU B;) and Z; = OW; —intY;. Note that Z; is a connected
surface in B homeomorphic to Y;. For any distinct 4,5 € {1,...,m}, since ¥; C X
is disjoint from intW;, W; is either contained in W} or disjoint from W;. If W; C W,
then X would meet intW; non-trivially, a contradiction. It follows that W;nW; = 0.
Thus, the boundary 8X = (0B—Z;U---UZ,)U (Y1 U---UY,,) is homeomorphic
to the 2-sphere 9B = (X — Y, U---UY,,)U(Z1 U---UZ,,). This shows that X is
homeomorphic to a 3-ball. ]

Proof of Proposition 2 (and Theorem 1). As was seen above, we may assume
that vg = vo = v.

First, we consider the case where all components X;,..., X, of Ng = S —
int(B U C) are 3-balls. Note that No N I'1(G) = No NT'2(G) = No NT'3(G) and the
graph (BUC)NT;(G) is a star centered at v for ¢ = 1,2, 3. Take mutually disjoint,
simple proper arcs ai,...,am,_1 in B U C such that each a; connects X, with
an+1 and

(1 U - Uam-_1) N (T1(G)UT2(G)UT3(G)) = 0.

The union N; of a small regular neighborhood of a; U---Ua,,—; in BUC and
Ny is a 3-ball with N; NT1(G) = Ny NT'3(G) = N1 NT3(G) and, for the 3-ball
B=8%—intN; and i = 1,2,3, (B, BNT4(G)) = (B, (BUC)NT;(Q)) is a ball-star
pair. This shows that there exists a (common) embedding I} € S(G) admitting
blowing-downs I't \,5 I'y, T2 \,5 I'; and I's \,5 I'5. Thus, we have the pair of
blowing-down and up I'1 \,5 Iy /513 from I'; to I's.

Next, we suppose that S° —int(BUC) contains a component X not homeomor-
phic to a 3-ball. By Lemma 1, there exists a simple proper arc a in @ = X N 9C,
simple arcs (;, B2 in B as in Lemma 1 (ii) and a component ! of 9Q with
k(oo U B U Bo,17) = 1. Consider the 2-fold branched covering p : S3 — S3
branched over [*, and set p~!(v) = {¥1,72}. The preimage p~*(B) (resp. p~*(C))
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Fig. 1.

is a union of mutually disjoint 3-balls Bl, B2 with 77 € Bl, Vg € 32 (resp. Cl, 02
with 7; € Cl, vz € Cg) Let a be the lift of o contained in 602 Since & connects
31 with B2, Cz meets both 31 and Bz Note that [ = p 1 ([2(G)) is a spatial
graph, and (B B ﬂI‘) (C C’ N F) are ball-star pairs for j = 1,2. Since U1 # Vg,
Lemma 4 in [2] 1mp11es that, for any component Rz of Bl N 802, F2 = W2 N 631
is connected and hence homeomorphic to Rz, where Wz is the closure in B1 of a
component of B1 R2 disjoint from v vy When W2 n 801 = 0 for a closure W2
w1th intWs N 802 = (?) we set W = p(Wg) Otherwise, cons1der the closure W1 in
W2 of a component W2 — 8C; with intW; N 8C; = 0 and W, N R2 = (. Note that
R1 = W1 N 801 is a connected surface, see Fig. 1. If 6'2 N thg # (, then 02
would contaln W2 D Rl, and hence C’1 ﬁCz # (), a contradiction. This implies that

CQUWQ is a 3-ball. If W2 Nl #* (Z) then any edge e of the star Fr‘lBl connecting
a pomt of FQOF with v; would meet Rz, so e would tend toward v,. This contradicts
that 7; # ¥,. It follows that (Cj,Cy NT) = (Cj, C, NT) is a ball-star pair centered
at v. By applying Lemma 4 in [2] to the pair of the 3-balls Ch, 02 with distinct
centers, one can show that F1 W1 N 802 W1 N 831 is connected. Then, we set
W = p(W,). In either case, W is a compact 3-manifold in B bounded by the union
of the connected surfaces R = W NAC, F = W N OB and satisfying int N9C = 0.
Then, by [2, Lemma 2], we have a sequence I'y /B I‘gl) N Fgl) /oo I's
with |0B N dCM)| < |8B N AC|. Repeating the same process finitely many times,
we have a sequence I'; g I‘gr) N\’ I’gr) /cn I's such that each component of



SPATIAL-GRAPH IsoToPYy 241

S3 — int(B’ U C’) is a 3-ball. As was seen in the previous case, one can then ex-
change the blowing-up and down of I'; /g Fé,r) N\ rg’) and obtain our desired
sequence. O

3. Construction of isotopically reduced embeddings

In this section, we will prove that, if a graph G is not a generalized bouquet,
then for any embedding I' € S(G), the cobordism class [I']copor contains infinitely
many isotopically reduced elements which are not ambient isotopic to each other.

Our proof here is based on arguments in Soma [3] and [4], where the author
constructed simple links cobordant to given links in S® and closed 3-manifolds by
using certain simple tangles. Here, a (2-string) tangle (B,t1 Uts) is a pair of a 3-ball
B and a disjoint union t; Ut of two simple proper arcs in B. A tangle (B, t; Uts)
is trivial if there exists a properly embedded disk in B containing t; Uts. A tangle
(B, t1Utg) is simple if 9B — 8t Udkt, is incompressible in B —t; Uty and if B—t; Ut
contains no incompressible tori. We refer to [3, §2] for examples of simple tangles.
In particular, a clasp tangle (B, t; Ut3) as in Fig. 2 is simple. Let A be a properly
embedded annulus in the complement B — ¢; U t, of a simple tangle such that A
bounds an annulus A’ in 8B —8t,Udt,. If A is incompressible in B—t; Uty, then any
compressing disk A for the torus T'= AU A’ is contained in the compact 3-manifold
V in B —t; Uty bounded by 7. Since V is a solid torus and each component of A
is contractible in B —intV, A is parallel to A’ in V C B —t; Uts. Here, we say that
a compact surface F' properly embedded in a 3-manifold X is parallel in X to a
surface F” in 8X if there exists an embedding h : F x I — X with h(F x {0}) = F
and h(F x {1}UOF x I) = F'.

A compact, connected surface homeomorphic to a closed region in R? with
n boundary components is called an n-ply connected disk. In particular, a doubly
connected disk is an annulus.

Lemma 2. Let (B,t; Uty) be a clasp tangle, and let R be an incompressible,
triply connected disk properly embedded in B — t, U to. Suppose that there exist
mutually disjoint disks D1, Do, D3 in OB satisfying 9(D1UD,UD3) = R, DiNt; #
0, DoNty # 0 and (D, U Dy) Nty = 0. Then, R is parallel in B —t; Uty to a surface
in OB — 6t1 U 6t2.

Proof. By the assumptions as above, both D; Nt; and D, N ¢; consist of
single points. Since R is incompressible in B —t1 Uty and (D; U Do) Nty = 0, Oty is
contained in D3. The 2-sphere RU D; U D, U D3 bounds a 3-ball C in B containing
t1 U ta. Consider the closure W of B — C in B. Note that F = W N 9B is a triply
connected disk in 0B° = 0B — 8t; U Oty with OF = OR. Let A be an embedded
disk in B as illustrated in Fig. 2 such that A D ¢; and ANty is two points in intA.
It is easily seen that A° = A — AN (t; Uty) is incompressible in B —t; U t;. We
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Fig. 2.

may assume that A meets R transversely, and each loop component of AN R is
non-contractible both in A° and R. Since the arc A N dB connects the end points
of ty, the union J of all arc components of A N R are non-empty. Let A;,..., A,
(n > 2) be the closures in A of all components of A — J such that A,, D t; and A,
is innermost, that is, v = A; N J is a single arc. We need to consider the following
three cases, though the reader will see that Cases 2 and 3 do not occur really.

Case 1.  A; Nty is empty.

In this case, intA; N R contains no loop components, so intA; N R = §. If
A; C C, then for some j € {1,2,3}, D;NA; is an arc separating D; into two disks
Djl and Djz such that Djl ﬂ(tlUtQ) = (). The union A, UDjl is a disk in C —tq Utg
with 8(A; UDj1) C R. Since R is incompressible in C —t; Uta, Ay excises a 3-ball
C; from C — t; Uty. Deforming A in a small neighborhood of C; by an ambient
isotopy of B rel. t; Uts, one can reduce the number |A N R|. Thus, we may assume
that A, NintC = Q. If « is inessential in R, that is, v excises a disk from R, then
one can reduce |A N R| as above by invoking the incompressibility of R in W. In
the case where ~ is essential in R, consider the surface R’ obtained by surgery on R
along A;. The surface R’ consists of at most two annuli which are incompressible
in W. Since the boundary of each component A’ of R’ bounds an annulus in F, A’
is parallel to the annulus in W. This implies that R is parallel in B —t; Utg to F.

Case 2. Aj Nty consists of a single point.

If intA; N R # (), then there would exist a disk Ap in A; with 8Ag C intA; N R,
intApNR = 0 and such that intAgNt, is a single point. Since AgND3 C AgNEB =
and Oty C Ds, the algebraic intersection number of Ay with ¢5 in the 3-ball C would
be zero, a contradiction. Thus, intA; N R is empty. A similar argument implies that
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A;N (DU D) =0, and so A; N D is an arc. Since A Nt; = @, v is inessential in
R, and hence A; excises a 3-ball Cp from C such that tg = Cy Ntz = CoN (¢ Uts)
is a proper arc in Cjy. Since t, is unknotted in B, tq is also unknotted in Cy. Thus,
there exists a disk Fy in Cy bounded by the union of ¢ty and an arc ug in the disk
A; U (Cy N D3) with dug = Oty and such that ug N A; N D3 is a single point.
The tangle (B,t; U tp) admits an orientation reversing involution h which is the
reflection with respect to the horizontal plane containing the barycenter of the 3-
ball B in Fig. 2. By using an elementary cut-and-past argument, one can take Fg so
that Fo N h(Ey) = 0. Move t; in a small neighborhood of Fy U h(Fy) in B by an
ambient isotopy of B rel. t; so that to M A = 0. Then, for a regular neighborhood
N of A in B — t3, 8N — int(N N dB) is a proper disk in B separating ¢; and ts.
This implies that 0B° is compressible in B — t; U to, a contradiction. Thus, Case 2
cannot occur.

Caste 3. Aj Nty consists of two points.

Since A;Nty =0 fori=2,...,n, A;NJ consists of two arcs fori =2,...,n—1
and A, N J consists of a single arc. Moreover, A, is a disk in C with A, N 9C =
OA,, — intt;. For the 3-ball C’ obtained by cutting C open along A, 8C’ — intD3
is a proper disk in B separating t; from t,. This contradiction implies that Case 3
cannot occur. ]

LetI': G — R3 C S° be any embedding of a graph G other than a generalized
bouquet. As in §2, G can be assumed to contain no isolated vertices and free edges.
We denote by V = {v1,...,v,} the set of all vertices of G. Consider the projection
p : R?® — RZ%(C R3) defined by p(z,y,2) = (z,y,0). Slightly deforming T' by
an ambient isotopy, we may assume that p o I' is a regular projection, that is, (i)
the restriction p o I'|y is an embedding, (ii) p(T'(V)) N p(I'(G — V)) = 0, and (iii)
each singular value of poT is a transversal double point. We regard that the image
T = p(T(G)) is a plane graph, where each double point of p o I'|¢ is considered
to be a vertex of I of degree four. Let Dy,..., D, be mutually disjoint disks in
R? such that D; N T is a star centered at 9; = p(I'(v;)) for i = 1,...,n, and let
D = Dy U---UD,. Since G is not a generalized bouquet, for each v; € V, G
contains a cycle [; disjoint from v;. We note that /; may be equal to I; even if i # j.
Let ay,...,a, be mutually disjoint arcs in r-pnl disjoint from the set of vertices
of T and with o; C p(I'(l;)). We set & = (poT) " (a;) and A = & U--- U &,.
Consider simple arcs 84, ..., 3, in R? —intD meeting each other and r transversely
and such that each (3; connects a point in inte; with a point z; in 8D; —BDmf. Let
Iy € §(G) be an embedding ambient isotopic to I" rel. G — A such that po Ty (&)
is an arc which tends toward 8D; along (3;, and meets §; at a point y; near z;, and
then goes round a neighborhood of dD; until meeting y; again, and finally returns
to a; along G; as illustrated in Fig. 3. If necessary deforming I'; by an ambient
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Fig. 3.

isotopy, the plane graph T = poT'1(G) can be assumed to satisfy the following
(2.1) and (2.2).

(2.1) T is connected.

(2.2) fl contains no cut vertices.

Here, a cut vertex v of a graph H means a vertex disconnecting the component
of H containing v. Let {@1,...,®,,} be the set of the vertices of T, corresponding
to the double points of poI';, and let Cy, ..., C,, be small regular neighborhoods of
Wy, ..., Wn in S3. Note that each (C;,C; ﬂfl) is a standard ball-star pair of degree
four centered at w;. Let T, be the regular diagram for I'; obtained by replacing
each C; N T, by a suitable 2-string trivial tangle in Cj.WesetC=C1U---UCh,.
Let I'; : G — S°® be an embedding such that I';(G) — intC = fl — intC, and for
each j = 1,...,m, (C;,C; NT2(G)) is obtained by exchanging each trivial tangle
(C;,¢5n fl) by a clasp tangle so that I'; is cobordant to I'; and hence to T.

Now, we will prove the following lemma which is crucial in the proof of
Theorem 2.

Lemma 3.  With the notation as above, any ball-star pair (B,BNT2(G)) in
(8%, T2(G)) is standard. In particular, Ty is isotopically reduced.

Proof.  The argument quite similar to that in Assertion 1 of (3, Theorem 3]
implies that I'z(G) is “prime”, that is, any 2-sphere in S3 meeting I';(G) transversely
in two points bounds a 3-ball B, in S3 such that By NT2(G) is an unknotted arc
in By. In particular, any ball-arc pair in (8%,T'3(G)) is standard. Thus, we may
assume that B contains a vertex of I'y(G), say 7. As in §2, for a proper subset X
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Fig. 4.

of 3, we set X° = X — X NT3(G). By (2.1), > —CUTL(G) = $* —CuUT, is
irreducible. Since a clasp tangle is simple, dC7 is incompressible in C7. By (2.2),
each 9C7 is also incompressible in S3 — intC U I'y(G). This shows that oCy is
incompressible in $3 — I'y(G) and S3 — I'y(G) is irreducible. Set B = B if 8B° is
incompressible in S3—T'5(G). If 8B® is compressible in S —T'5(G), then we consider
mutually disjoint, compressing disks Aq,...,A, for 8B° in S3 — intB U I';(G)
and 3-balls By,..., B, in S with 8B; C A; U8B and B; NTy(l;) = 0. Then,
the union B = BUB, U --- U B, is a 3-ball disjoint from I'z(1;) and such that
8B° is incompressible in S* — I'y(G). Note that 8B N T'3(G) C 8B NT'5(G), and
8BNTy(G) = dBNT3(G) if and only if dB° is incompressible in $3—T'5(G). Since
83 —T'3(G) is irreducible, B NT'2(G) is non-empty. If necessary deforming oB by an
ambient isotopy of (5'3 I'2(G)), one can assume that oB meets 9C transversely and
each component of 8B N 8C is non-contractible both in 8B° and 8C°. Renumber
w;’s so that the subset {1, ..., W} of {@1,..., W} consists of the double points
of T surrounding 73, and Wy corresponds to the double point y; of p o I'y(ay).
Let e (j =1,...,k— 1) be the edge of I';(G) meeting both v; and Cj, see Fig.
4. Since C; meets I'z(I;) non-trivially for any j = 1,...,k, C; is not contained in
B. If there existed a disk A in dC; with A C 8B N AC;, intA N OB = () and
such that A NTy(ly) is a single point, then A would be a non-separating proper
disk in the 3-ball S® — intB, a contradiction. Thus, in the case of 8B N dC; # 0,
the closure F' in C; of any connected component of 9C; — 8B N aC; is either a
disk with 1 < #(F NT'2(G)) < 3, or an annulus with 0 < #(F NT2(G)) < 2, or
a triply connected disk with F N T'3(G) = 0, where #(X) denotes the number of
elements of a finite set X. If F is either a disk with #(FNI'3(G)) = 3 or an annulus
with #(F NT5(G)) = 2, then F NT,(ly) # 0, and hence F is not contained in B.
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We set C(k) = C; U---UCy, C C. If 8C(k) N B contains a disk component F with
#(FNT5(G)) = 1, then 8F bounds a disk F’ in 8B with #(F' NT'y(G)) = 1. Since
I'5(G) is prime, the 2-sphere F U F” bounds a 3-ball B’ in B such that B’ NTy(G)
is an unknotted arc in B’. This enables us to reduce the number |8C(k) N 8B| by
deforming AC(k) in a small neighborhood of B'. Similarly, if C(k) N B contains
an annulus component F with F N Ty(G) = 0, then one can reduce the number
|8C(k) N 8B, for example see Assertion 2 in the proof of [3, Theorem 3]. Thus, we
may assume that, for each C; (j = 1,...,k) with 8B N 8C; # 0, F; = 8C; N B is
a connected surface which is either a disk with #(F; NT'2(G)) = 2, or an annulus
with #(F; NT'3(G)) = 1, or a triply connected disk with F; NT'2(G) = 0. One can
reduce the former two cases to the latter case, by pushing a small neighborhood of
F; NT3(G) toward the outside of B along the edges of I'y(G) meeting F;. So, it
suffices to consider the case where F; is a triply connected disk disjoint from I'y(G).
Let W; be the closure in Bofa component of B - F; disjoint from 7. It is easy
to see that R; = OW; N 8B is also a triply connected disk. We assume that W, is
innermost among all W;’s, that is, intW; N AC(k) = 0. If W, were not contained in
Ci, then C; would contain 7;, a contradiction. It follows that W, is contained in
C1, and hence Lemma 2 shows that R, is parallel to Fj in C7. This implies that one
can reduce the number |98 N 8C(k)|, and finally get the situation of B NC(k) = 0.

Since 8BNT'2(G) D 8I§OF2(G) # (), at least one of 1,...,ex_1, say 1, meets
oB non-trivially. Let a be the subarc of £; connecting 77 with €, NoB. If anC; # 0,

L) uc(k)

Fig. 5.
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then C; would meet B O « non-trivially. This contradiction implies a N C; = 0.
Since 8B N (T2(ly) UC(k)) = @ and since OB meets any €5 (j = 1,...,k — 1) at
most one point, the component ly of 8B N (R? — int C N R2) containing &; N 8B is
a loop in R? —CNR? bounding a disk A such that AgNT5(G) is a star of degree
k — 1 centered at ¥y, see Fig. 5. Since #(8B NI'y(G)) is equal to the degree of 9, in
T3(G), we have B = B or equivalently that B° is incompressible in S% — I'2(G).
Since each component of 9B — [, is an open disk disjoint from I';(G), one can
deform 8B by an ambient isotopy of (S3,'2(G)) rel. Iy so that 9B N (R?2UC) = lo.
In particular, (B,B NT2(G)) is a standard ball-star pair. This shows that Iy is
isotopically reduced. U

Proof of Theorem 2. For any positive integer m, choose the regular projection
T, = p(T'1(G)) as above so that T'; has at least m double points. Then, for the
isotopically reduced embedding I's € [[eobor given in Lemma 3, the complement
83 —T'5(G) contains at least m mutually disjoint and non-parallel, incompressible,
four-punctured 2-spheres. On the other hand, by Haken’s Finiteness Theorem [1],
there exists a positive integer n(I'2) depending only on the ambient isotopy type
of Ty so that the number of such four-punctured 2-spheres in S® — I's(G) is not
greater than n(I'2). This observation implies that one can construct infinitely many
isotopically reduced elements of [I']copor Which are not ambient isotopic to each
other. U
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