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The st:.ruct:ure of nuc]_ear membrane 

The nuc1ei of higher eukaryotic ce1ls are surrounded by nuc1ear 

enve10pe (NE) , that consis七s of two phospho1ipid-containing 

membrane bi1ayers , the inner nuc1ear membrane (INM) and the outer 

nuc工ear membrane (ONM). They are joined a七七he site of nuc1ear 

pore comp工ex (NPC). The membrane in 七his region is ca11ed pore 

nuc1ear membrane (PNM) (Franke e七. a1. , 1981 , for a review , see 

Go1dberg and A11en , 1995). 

The 工NM is a nuc1eop1asmic side of the NE. Using scanning 

e1ec七ron microscopy (EM) , severa1 fi1amentous structures have 

been observed on the surface of the 工NM (Go1dberg and A11en , 

1992 , 1993). The major fi1amentous s七ruc七ure is a nuc1ear 工amina

(Aebi e七 a1. , 工 986; Go1dberg and A工工en ， 1993). The component of 

nuc1ear 1amina was identified as a se七 of intermediate fi1amen七

protein fami工y ， named as 1amin (Gerace and B10be工，工 980). Severa1 

integra1 membrane proteins on 工NM WE3re iden七ified. These are 

thought to be attached with nuc1ear 1amina and a1so with 

chromatin (for a review see Georga七os et. a1. , 1994). 工n

addi七ion，七hin-fi1amentous s七ructure ， which was differen七 from

nuc1ear 1amina , was a1so observed by EM. This structure is ca工工ed

as nuc1ear enve10pe 1attice (NEL) (Go1dberg and A11en，工 992 ，

1993). The precise protein components of this structure have not 

yet been identified. The ONM is a c~{七op1asmica11y opposed side of 

七he NE. The ONM is connec七ed to and resemb1es the rough 

endop1asmic reticu工um (ER). The structura1 feature of 七he ONM is 

七he presence of ribosome partic1es. The PNM is the part of 七he NE 
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Fig. 1. Schematic model!; of nuclear structure. 
(a) Structure of nucleus. 
(b) Structure of nucllear envelope. 
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presen七 in the NPC. The PNM is thought 七o be associated with NPC 

pro七eins ， and may provide a rou七e for transferring integra1 

membrane proteins from the 工NM to 七he ONM or vice versa 

(E11enberg et a1. ，工 997; for a review see Wiese and Wi1son , 

1993). 

The aqueous domain enc10sed by 工NM and ONM is ca1led as NE 

1umen. 工 t over1aps functiona11y with the 1umen of the rough ER , 

but is be1ieved to carry out unique func七ions. 工七 provides the 

environmen七 for one side of the ONM，工NM and PNM , so integra工

proteins of these membranes have 1umena1 domains (for reviews , 

see Gerace and Foisner , 1994; Georga七os e七 a1. ， 1994). The NE 

1umen is known to s七ore high 1eve1s of Ca ions and regu1a七es 七he

工eve1s of Ca ions in the nuc1eop1asm and provab1y 七hat in the 

cytop1asm. The transport of Ca ions is regu1ated by some 

proteins , such as inosito1 七riphosphate receptors (Guihard et 

a1. , 1997; Subramanian et a1. , 1997). 

The prot;ei.:n. component; of nucl_ear en，~el_ope 

The nuc1ear pore comp1ex (NPC) is a supramo1ecu1ar assemb1y 

embedded in the NE , and mediates molecu1ar trafficking between 

the cytop1asm and the nuc1eus in initerphase eukaryotic ce11s. NPC 

of vertebrate cells is estimated to be 120 MD , and is be工ieved to 

be composed of abou七 100 differen七 proteins. The structure of NPC 

has been extensive1y inves七igated by e1ectron microscopy , and 3D 

reconstructions (Unwin and Mi11igan ,. 1982; Reiche1t et al. , 1990; 
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Hinshaw et a1. , 1992; Akey and Radermacher，工 993). The NPC 

accommoda七es both "passive diffusion" and "active 七ranspor七"・

Whereas ions and sma11 metabo1ites diffuse free1y though 10 nm 

diameter aqueous channe1s in the NPC , most of macromo1ecu1es are 

transported though a gated channe1 lby a signa1- and energy-

dependent mechanism. Recen七1y ， severa1 factors , that govern the 

active transport , have been identified (for reviews , see Me工chior

and Gerace , 1995; Hurt et a1. , 1996; U11man et a1. , 1997). 

The component of NPC is grouped in七O 七wo ca七egories. The firs七

is a group of integra1 membrane proteins ，七ha七 is proposed to be 

NPC anchoring pro七eins. The second is a group of periphera1 

membrane proteins that have been cal1ed nuc1eoporins. Some 

nuc1ear pore proteins have a charac-teristic amino acids repeats 

structure , such as FXFG repeats or GLFG repeats. These repeat 

region is thought to be the interaction si七e with solub1e 

transport factors. 工n addition , sorne nuc1ear pore proteins 

possess glycosi1ation site , but the function of this modification 

has not been revea1ed (for reviews , see Pante and Aebi , 1993 , 

1994; Davis , 1995; Doye and Hurt , 1997). p62 is one of the most 

abundant nuc1eoporin. p62 contains FXFG repea七 and O-linked N-

acety1g1ucosamine residues , and is essentia1 for nuc1ear protein 

import (Starr et a1. , 1990; Carmo-Fonseca et a1. , 1991; Cordes 

et a1. , 1991; Fin1aye七 a1. ， 1991; Buss and S七ewart ， 1995). 

Nuc1ear 1amina is composed of intermediate fi1ament (工 F)

proteins ca11ed 1amins which are identified from nematode to 

mamma1s (Gerace and B工obe工， 1980; Mckeon et a1. , 1986; Aebi e七

a1. , 1986; for a review , see Georgatos e七 a1. ， 1994). Lamins fa11 
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into two sub-group , the A-type and 8-type 工arnins ， based on 

prirnary sequence , expression pattern and behavior at rnitosis (for 

review , see McKeon , 1991). On rnarnrnals , A-七ype 工arnin gene is 

七ranslated into two alternatively spliced produc七s ， ca11ed 1arnin 

A and 1arnin C. On the other hand，七wo independen七 genes of 8-type 

1arnin are known to be exist on rnarnrnal , and ca11ed as 1arnin 81 and 

工arnin 82. Recent1y , another tissue and stage specific sp1icing 

variants of A-type and 8-type 1arnin were identified. Larnin C2 is 

a sp1icing variant of 1arnin A (Furukawa et a1. , 1994; A1sheirner 

and 8enavente , 1996) and 1arnin 83 is a sp1icing variant of 1arnin 

82 (Furukawa and Hotta , 1993). On Xenopus , four 1arnin cDNAs were 

iso1ated , those are 1arnin A, 1arnin 81 (L工) , 工 arnin 82 (L工工) and 

1arnin 83 (L工工工). Xenopus 1arnin 83 , which is not a sp1icing 

product as rnarnrna1 , is a unique 1arnin and expressed on1y in 

arnphibian ernbryonic s七ages (Krohne et a1. , 1987; Wo1in et a1. , 

1987; Stick , 1988; Doring and S七ick. 1990; Hoger et a1. , 1990). 

Like other 工F ， 1arnins possess two non-he1ica1 NH2- and COOHｭ

terrnina1 regions (head and tai1 , respective1y) and a coi工ed-coi1

rnidd1e dornain (rod). The rod dornain cornprises three subdornains 

(coi1s 1a , 1b and 2) connected by non-he1ica1 1inkers. Apart frorn 

these features , the 1arnin rno1ecu1es show certain unique 

characteristics , the nuc1ear 1oca1ization signa工 (NLS) in the 

tai1 dornain , and a COOH-terrnina1 site: ('CaaX box') for pos七一

trans1ationa1 isopreny1ation and carboxymety1ation , which governs 

the interaction with the surface of 工NM 1ipid bi1ayer. The CaaX 

box occurs in a11 type 8 工arnins and in a short-1ived 工arnin A 

precursor , but not exis七 in rnature 1arnin A or in 1arnin C (for 
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reviews , see Nigg , 1992; Georgatos et a工.， 1994). 

Some integral membrane proteins have been identified on 工NM

and are suggested 七o be involved in nuclear lamina formation. p58 

is one of such proteins , and also named as "lamin B receptor" 

(LBR). p58/LBR contains eigh七 putative 七ransmembrane domain and 

NH2-terminal chromatin binding domain exposed in七o nuc工eop工asmic

side. p58/LBR is known to form a complex with lamin B , integral 

membrane protein p18 , splicing fac七or (SF2) p32 , LBR kinase , and 

p150 (Worman et al. , 1988 , 1990; Sioms and Georgatos , 1992; Ye 

and Worman , 1994 , 1996; Pyrpasopoulou et al. , 1996; Simos e七 al. , 

1996). LAP1 (工amina associated polypeptide 1) and 

LAP2/七hymopoietin are integral membrane proteins. They contain 

one transmembrane domain and are intE~ract with lamin B (Foisner 

and Gerace , 1993; Furukawa e七 al. ， 1995; Martin et a工.， 1995). 

Otefin is an integra工 membrane protein identified only on 

Drosophila ( Harel et al. , 1989; Pandan e七 al. ， 1990; Asheryｭ

Pandan et al. , 1997). 

Dヲnamics of nuc1.ear membrane and nucl.ear l.amina during mi"tosis 

工 n higher eukaryo七ic cel工 s ， the NE is disassemb工ed comple七ely

during mi七osis. This process is calle:d as "nuclear enve工ope

breakdown (NEBD)" , and the nuclear me:mbrane dissocia七ion and the 

nuclear lamina depolymeriza七ion is involved. NE dynamics were 

studied by several me七hods. The common method is the observation 

of mitotic cells by immunofluorescence microscopy with labeled 
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antibody or a combination with ectopic gene expression system 

(Chaudhary and Courvalin , 1993; Buendia and Courvalin , 1997; 

Ellenberg e七 al. ， 1997; Maison e七 al. ， 1997; Yang et al. , 1997). 

工n addition , the biochemical approach tha七 employs in vitro 

systems is also established. The most widely used systems employs 

extracts prepared from Xenopus laevis eggs. These cytoplasmic 

extrac七s are prepared in either a mito七ic or an interphase state. 

Mitotic extrac七s promote nuclear disassembly , and in七erphase

extrac七s support nuclear assembly around a DNA substrate (Lohka 

and Masui , 1983; Lohka and Maller , 1985; Miake-Lye and Kirschner , 

1985; Newmeyer et al. , 1986; Newport , 1987; Newport and Spann , 

1987; Sheehan e七 al. ，工988) . 

The state of NE membrane during mitosis is controversial. 工七

has been revealed that NE membranes are broken down into small 

vesicles during mitosis. The nuclear mi七otic vesicles were 

fractionated biochemica工工y and their features and protein 

components have been studied on Xenopus eggs (Vigers and Lohka , 

1991 , 1992; Lourium and Krohne , 1993; Pfa工ler and Newport , 1995; 

Lourim et al. , 1996; Weise et al. , 1997) sea urchin eggs (Col工as

et al. , 工 996; Co工工as and Poccia , 1996) , and normal cells (Maison 

et al. , 1993 , 1995; Meier and Georgatos , 1994; Buendia and 

Courvalin , 1997). The two models have been proposed about NE 

membrane vesiculation. The first model is that 工NM ， ONM or ER 

membrane is disassemble independently , resulting in functionally 

different vesicles ，七hat contain differen七 protein componen七s.

The second model is 七ha七工NM ， ONM or ER membrane is disassemble 

as a fused manner , resulting in a sing工e popu工ation of vesicles 
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and no functional difference exis七s on each vesicle (Yang e七 al. , 

1997) .工n addition , recent reports suggested that at the time 

when NEBD occurs at prometaphase , NE membrane is fused to ER 

membrane and incorporated in七o mitotic ER/NE membrane network 

(Ellenberg e七 al. ， 1997). Following this hypothesis , NE and ER 

membrane vesicula七ion dose not occur during mitosis. 

The nuclear lamina is disassembled at prometaphase and 

reassembled at telophase. This behavior is paralle工 with nuc工ear

envelope dynamics (Chaudhary and Courvalin , 1993; Georga七os et 

al. , 1997). The process of assemb工y and disassembly of lamin 

filaments are regulated through reversible phosphorylation. 

cdc2/cyclin B kinase and protein kinase C are known to 

phosphory工ate lamins (Heald and McKeon , 1990; Peter et al. , 1991; 

Dessev et al. , 1991; Hocevar et al. ，工993; Collas et al. , 1997). 

O七her NE pro七eins are a工so known to be phosphorylated at the 

onset of mitosis. These are p58/LBR (Simos et al. , 1992; 

Nikolakaki et al. , 1996 , 1997) , LAP1 , LAP2 (Foisner and Gerace , 

1993) , and some nucleoporins (Macaulay e七 al. ， 1995; Favreau et 

al. ，工996). The phosphorylation of these proteins may be 

importan七 for NEBD and disassemb工Y of nuclear structures , such as 

nuclear lamina and NPC (Dabauvalle et al. , 1990; Finlay et al. , 

工 991;).

The key factor that induces NEBD and another mito七ic event was 

first identified as an activity that :induce meiotic maturation of 

Xenopus oocyte , and named as MPF (maturation promoting factor or 

M-phase promoting factor) (Masui and Markert , 1971). This factor 

was purified and characterized later as an cdc2/cyclin B kinase 
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(for reviews , see Ma工工er ， 1991; Coleman and Dunphy , 1994; 8七ern

and Nurse , 1996). When 七he cdc2/cyclin B kinase is once 

activated , the most nuclear mi七otic events are induced. 80 

cdc2/cyclin B kinase 工 s thought to be as a master regulator for 

mi七osis. 工n addition to cdc2/cyclin B , another factor that 

participa七es in mi七O七工c regulation was also identified. One of 

the candidate regulator for nuclear mitotic even七s is nimA kinase 

family (Fry and Nigg , 1995). Lu and Hunter (1995) repor七ed that 

when Aspergillus derived N工MA proteins were injected in七o Xenopus 

immature oocyte , the NEBD and chromosome condensation were 

induced without the increase of cdc2/cyclin B activity ・工t seems 

that many regulatory factors are involved in NEBD , but these 

factors and the regulation are poorly understood. 

工n the first part of this report ，工 investigated the B-七ype lamin 

dynamics during cel工 cycle on Xenopus A6 culture ce工工 s. 工 n the 

second part 工 investigated the nuclear envelope breakdown of 

isolated nucleus 工n Xenopus egg mitot工c extracts. 
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SUMMARY 

Lamin is a member of intermediate fi1ament proteins and a major 

component of nuc1ear 1amina structure. Lamin possesses non-

he1ica1 N-termina1 and C-termina工 domains and anα-he1ica工 rod

domain. We iso1ated 1amin B1 and 1amin B2 cDNAs frorn Xenopus 

oocyte cDNA 1ibrary , and constructed recombinant 1amin proteins 

using 1amin B1 N-termina工 (N) ， 1amin B1 C-terrnina1 (C) and 工arnin

B2 rod (R) domains. We prepared domain-specific anti-1arnin B 

antibodies from these constructs , and s七udied the subce11u1ar 

dis七ribution during the ce11 cyc1e of Xenopus A6 ce11. 工n

interphase ce工工， antibodies against 1amin B1(C) and 工 arnin B2(R) 

gave nuc1ear rim staining. 工n contrast ，七he antibody against 

工amin B1(N) gave weak nuc1ear rim staining but strong 

intranuc1ear staining. Simi1ar nuc1eop1asrnic signa1s were 

detected within a nuc1eus of Xenopus 1iver. However on 

prophase ce11 , anti-1amin B1(N) antibody stained the nuc1ear rim 

strong1y , and the intensity of rim staining of other antibodies 

a1so became strong. At te10phase when the nuc1ear enve10pe was 

formed around chromosome , anti-1amin B1(N) antibody a1so gave 

strong rim staining. This rim staining v~ere disappeared a七七he

onse七 of interphase. These resu1七s suggest that the nuc工ear

1amina structure and the intranuc1ear lamin structure are 

differently aligned and the conformation change of nuc1ear lamina 

occurs at prophase and telophase. 



INTRODUCTION 

The nuclear 工amina is a filamentous meshwork structure on the 

nucleoplasmic surface of the inner nuclear membrane. The major 

structural protein of nuclear lamina is a nuclear lamin (Gerace 

and 81obel , 1980; McKeon et al. , 1986; Aebi et al. , 1986; for a 

review , see Georgatos et al. , 1994). Lamin is a member of 

intermediate filament (工 F) superfamily. Lamins fall into two subｭ

groups as A-type and 8-type , based on primary sequence , 

expression pattern and behavior at mitosis (for a review , see 

McKeon , 1991). 工n Xenopus laevis , four different lamin cDNAs were 

iden七ified. These are lamin A, 工amin 81 (L工) , 工amin 82 (L工工)， and 

lamin B3 (L工工工). Furthermore , 七wo isoforms were reported on lamin 

83 (Krohne e七 al. ， 1987; Wolin et al. , 1987; S七ick ， 1988; Doring 

and Stick , 1990; Hoger et al. 工 990) . 

The expression of 工amin proteins is regulated during 

development and cell differen七ia七ion on Xenopus. 工n oocytes and 

eggs , lamin 83 is a major subtype , and lamin 81 and 82 are rare. 

During developmen七， lamin 83 is gradua工ly replaced by lamin 81 

and lamin 82 (8enavente et al. , 1985; Stick and Hausen , 

1985;Lourim and Krohne , 1993; Lourim et al. , 1996). 

Lamins and 工F pro七eins have a remarkable structural 

simi工ari七ies. As cytoplasmic 工 F ， lamins have three separa七ed

domains , a central α-helical rod domain and non-α-helical head 

and tail domains. The rod domain is fur七her subdivided in七o three 

α-helical coiled coils characterized by a heptad repeat of 



hydrophobic amino acid. The rod domains are primarily responsible 

for lamin-lamin interactions that govern the formation of 

parallel aligned dimer. The head and tail domains are involved in 

the assembly of dimmers into head一七o-tail aligned polymers (for 

reviews , see McKeon , 1991; Heins and Aebi , 1994). 

Lamins are found not only on nuclear envelope but in foci 

within the nucleoplasm ・ Lamin A and lamin A precursor were found 

a七七he intranuc工ear foci of G1-phase cells (Goldman et al. ，工 992;

Bridger et al. , 1993; Sasseville and Raymond , 1995). Lamin B was 

de七ected on DNA replication foci and suggested 七o be involved in 

DNA replication (Moir et al. , 1994). The involvement of lamin B 

on DNA replication also comes from the experimen七s using Xenopus 

egg cell-free system (Newport et al. , 1990; Meier e七 al. ，工 991;

Jenkins e七 al. ，エ993; Goldberg et al. , 1995; Span et al. , 1997; 

Ellis et al. , 1997). 

During mitosis the distribution of lamins change dynamically 

parallel with the behavior of nuclear envelope. The nuclear 

lamina is disassembled at prome七aphase and reassembled at 

七e工ophase (Chaudhary and Courvalin , 1993; Georgatos et al. , 

1997;). The assemb工y and disassemb1y of lamin filaments are 

regu工ated through reversible phosphorylation. 工 t was reported 

tha七 cdc2jcyclin B kinase and protein ki.nase C phosphorylate 

lamins and disassemble the nuclear lamina structure (Hea工d and 

McKeon , 1990; Peter et al. , 1991; Dessev et al. , 1991; Hocevar et 

al. , 1993; Collas e七 al. ， 1997). 

工n this s七udy ， we examined the subcellular distribution of Bｭ

type lamins of Xenopus A6 cells at interphase and mitosis using 
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domain-specific antibodies. The resul七s obtained here suggest 

七hat B-type lamins form no七 only a nuclear 工amina structure but 

in七ranuc工ear struc七ure ， and conformation 七ransi七ion of nuclear 

lamina occurs at prophase and telophase , respec七ively.



MATER工且LS AND METHODS 

preparation of anti-Xenopus Lamin B an-tJf_serum 

As a souse of antigen , we prepared nuclE~ar skeletal fractions of 

Xenopus erythrocytes. Xenopus laevis were purchased from San-ai 

Shoji. Xenopus blood cells were washed with the EDTA buffer (25 

mM EDTA , 75 mM NaCl , pH 7.5) ，七hen washed with STM buffer (0.6 M 

sucrose , 50 mM Tris-HCl , pH 7.5 , 5 mM MgC工 2' 1 mM PMSF). Prepared 

Xenopus erythrocytes were trea七ed with 100μg/ml saponin and 

homogenized by teflon homogenizer. The pelle七 was collec七ed by 

centrifuga七ion and was used as a nuclear fraction. This fraction 

was treated with Micrococcal nuclease (Worthing七on Biochemica工

Co.) at 1 uni七/ml and washed with the washing buffer (0.4 M r、laCl ，

20 mM Tris , pH 7.5 , 1 mM PMSF) for several times. The precipitate 

was co工工ec七ed by centrifugation and was used as a nuc工ear

skeletal frac七ion. These precipi七a七es were boiled in the sample 

buffer (Laemmli , 1970) , and subjec七ed to SDS-polyacrylamide gel 

elec七rophoresis (PAGE) on 7.5% gels. The doublet major bands with 

a molecular weight of 70 and 68 kD , which were identical to lamin 

B1 and B2 , respectively (Krohne and FranJ<e , 1983) were excised 

from gels. Rabbits and mice were immunizE~d using these bands by 

the standard pro七oco工 s. The produced rabbit anti-lamin antiserum 

was used 七o screen lamin cDNAs. 



cDNA cLoning of Xenopus Lamjns 

A lambda ZAP-derived cDNA library of Xenopus oocytes mRNAs , 

provided by Dr. H. Takisawa (Kubota et a工.， 1995 , 1997) , was 

screened using anti-Xenopus 1amin B antisE~ra (described above). 

5 From 5 X 10~ p1aques , we iso1ated 17 positive c1ones. Each c10ne 

was sequenced partia11y for both strands using an automatic DNA 

sequencer (AB工， 373A) , and compared them wi七h the sequences in 

the database. Six c10nes had the sequence identica1 to 七ha七

reported previously as Xenopus 1amin B1 (accession number X06344 , 

Krohne et a1. , 1987). Six c10nes had simi1ar but different 

sequence from lamin B1 and one c10ne had simi1ar but differen七

sequence from 1amin B2. We determined fu工工 nuc1eotide sequences 

of these clones. We named 七hese isoforms as Xenopus 工amin B1 type 

2 (Bl-2) and Xenopus 1amin 82 type 2 (B2-2). Two lamin B3 c10nes 

were a1so ob七ained ， which were iden七ical to the clone iso1ated by 

Stick (accession number X13169 , Stick , 1988). 

E:xpression and purificat;ion of recombi..nan.t; prot;ei.ns 

Recombinan七 lamin pro七eins were construc'七ed as GST-fusion 

proteins , and expressed in bacteria ce1ls (see Fig. 1). The 

NH2ー七ermina1 fragment of 1amin B1-1 , 七ha七 encodes 7-173 amino 

acid region (lamin B1(N)) , was constructed using EcoR工ーBamH工

fragmen七 of 5' region de1eted c1one , and 1igated in七o expression 

vector pGEX-4T-3 (Pharmacia LKB Biotechnology 工nc. ), using 
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standard protocols. The COOH-terminal fragment of lamin B1-1 , 

七hat encodes 365-583 amino acid region (lamin B1(C)) , was 

constructed using Xba工 -XhoI fragment and ligated in七o pGEX-4T-2 

vec七or. The lamin B2-2 rod，七ha七 encodes 63-418 amino acid region 

lamin B2(R) , was constructed using EcoR工ーXba工 fragment of lamin 

B2 , and ligated into pGEX-4T-3 vector. Each vectors were 

transformed in七o Escherichia coli cells (strain PR745). The 

transformed cells were grown at 25 0 C, and GST-fusion proteins 

were expressed by addition of 0.1 mM isopropyl -゚

thiogalactopyranoside (工PTG) (Nacalai Tesque). The ce工工 s were 

lysed using French pressure cell , and GST fusion proteins were 

affinity purified using glutathione-Sepharose 4B beads (Pharmacia 

LKB Biotechnology). 

Anti.body production and. puri.fication 

The mouse po工yclonal anti-工amin B2(R) antibody was affinity 

purified with recombinant GST-lamin B2 proteins immobi1ized on 

CNBr-activated sepharose-4B beads (Pharmacia) from mouse 

antiserum (see above). The rabbit polyclonal antibody agains七

lamin B1(N) was obtained by immuniza七ion with 七he recombinan七

lamin B1 protein that was eluted from the column by 七hrombin ， and 

affinity-purification wi七h the same lamin B1 construc七S

immobi工ized on sepharose beads. The rabbi七 polyclonal antibody 

against lamin B1(C) was obtained genera七ed by immunization with 

the recombinant GST-lamin B1(C) fusion protein , and affinity-
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lamin 81 隊後傷努~後多修後後物移後グA1
NLS 583 

lamin 81 ・(N)
7 173 

lamin 81 圃(C) '(~~T_I 
365 NLS 583 

lamin 82 協務後後物勿物物務後~d須 t
NLS 623 

lamin 82・(R) GE滋級協グ必修級協物D
63 418 

Figure 1. Scherna七ic rnode工 s of lamin constructs. Whole proteins 

of larnin B1 (type 1) and larnin B2 (七ype 2) are shown in a and d. 

Recornbinan七 GST-larnin B1 N-terminal (N) ，工arnin B1 C-terminal (C) 

and larnin B2-rod (R) fusion proteins are shown in b , c , and e. 

These constructs were used as antigens and used for antibody 

purification by affinity co工urnn chromatography. 
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purifica七ion purified with the same construc七s immobilized on 

sepharose beads. 

ELectropboresis and ImmunobLotting 

SDS-PAGE was performed as described by Laemmli (1970). The 

samples were run on 7.5告 gel or 7.5-15号 gradient gel. 

工mmunoblotting of each sample was performed as described by 

Towbin e七 al. (1979). The separated proteins were transferred 

electrophoretically 七o nitrocellulose membranes and visualized 

with 0.2% Ponceau-S in 1% acetic acid. After blocking with 2告

non-fat dry milk in 七TBS (150 mM NaCl , 50 mM TRIS-HCl , pH 8.0 , 

0.1% Tween-20) ，七he blots were incubated with firs七 antibodies at 

1:500 dilution for over night , followed by goat anti-rabbit or 

goat anti-mouse 工gG coupled to horse radish peroxidase (Bio-Rad) 

for 1 hour. The blo七s were visua工ized by Konica 工mmunostaining

ki七 (Konica Co. , Tokyo , Japan). 

ImmunofLuorescence microscopg 

For indirec七 immunofluorescence microscopy , xenopus A6 cel工 s were 

cultured on coverslips. Cells were fixed in 3.7老 formaldehyde in 

PBS for 10 minutes at room 七emperature ， and treated with 0.2号 NP-

40 in PBS for 10 minutes at room temperature. After blocking with 

2% non-fat dry milk , these cells were incubated with affinity 
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purified prirnary antibodies at dilutions 1:20 in tTBS containing 

2老 non-fat dry rnilk and 20告 goat serurn for over night at 40C. 

After washing w工th PBS , these cells were incubated with a mixture 

of Texas Red-labeled donkey anti-rabbit 工gG (1:50; Amersham) and 

Cye-2-1abe工ed donkey anti-mouse 工gG (1:50; Arnersharn) in tTBS 

containing 2% non fat dry milk for 1 hour at 40C. After washing 

with PBS , these cells were stained wi七h Hoechst dye 33258 and 

viewed with a fluorescent microscopy (O:ryrnpath BH-2). The triple 

staining irnages were taken by cooled CCD camera (Photometrics , 

PXL) with 工P-Lab Spectrurn system (Signal Analy七ics Corporation). 

The confocal irnages were taken by a confocal microscopy (Bio-

Rad) . 

Preparation of Xenopus ~iver nucLeus 

Xenopus fernale liver was dissected into pieces and homogenized in 

STM buffer using loose-fitting teflon homogenizer. To avoid the 

con七arnina七ion of granule , light-colored Xenopus female was used. 

The ce工 1 hornogenate was centrifuged at 3000 rpm (Hitachi) for 5 

rninutes , and the precipitates were used as crude 工iver nuclei 

fraction. This nuclei fraction was fixed with 3.7% formaldehyde 

in PBS for 5 rninu七es and centrifuged on七o coverslip coated with 

l老 poly-L-Lysine a七 1000 rpm for 1 min. After blocking with 2号

non-fat dry rnilk in 七TBS ， nuclei were observed by 

irnrnunofluorescence rnicroscopy. 
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RESULTS 

IsoLaf;ion of Xenopus Lamin B1. and La:min B2 cDNA c1.ones 

We prepared nuc1ear ske1eta1 protein fraction from Xenopus 

ery七hrocytes. This fraction contained 70 and 68 kD doub1et 

protein as major bands on SDS-PAGE. The mo1ecu1ar weights 

correspond to 1amin B1 and 1amin B2 , respective1y (Krohne G. and 

Franke W.W. , 1983). We excised the 70-68 kD doub1et bands from 

ge1 , and immunized a rabbit to prepare antiserum against 1amin B. 

The prepared antiserum recognized the 70 and 68 kD protein bands 

from Xenopus erythrocyte，工iver cells , A6 culture cells by 

immunoblotting. This antiserum also stained nuclear envelope 

strongly by immunofluorescence microscopy (data not shown). 

To iso1ate Xenopus B-type lamin cDNAs , we performed 

immunoscreening of expression cDNA library from Xenopus oocytes 

with this an七iserum. Seventeen independent clones were isolated , 

and each c工one was partia11y sequenced. Compared with reported 

sequences on data base , twe1ve clones were identified as lamin B1 

(a工so known to as 1amin L1) , one as lamin B2 (L2) ，七wo as lamin 

B3 (L3) and two as uncharacterized proteins (data not shown). 

Among them , six 1amin B1 clones matched with 七ha七 previously

iso1ated by Krohne e七 a1. (1987) , and two 1amin B3 clones with 

that iso1ated by Stick (1988) without several nuc1eotide 

differences (data no七 shown). Other six lamin B1 clones and one 

lamin B2 c10ne have similar sequences but were c1ear工y differen七
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from previously reported clones. We decided full sequence of 

ano七her type of lamin B1 , and par七ial sequence of that of lamin 

B2 , and termed as lamin B1-type 2 and B2-七ype 2 , respectively. 

The Xenopus lamin Bl-2 cDNA clone was 2461 nucleotide 工ong and 

had an open reading frame of 1 , 752 nucleotides , a 5'UTR of 190 

nucleotides , a 3'UTR of 518 nucleo七ides and a long poly-A tai 工

sequence. The 3'UTR had AATAAA consensus hexanucleotide sequence 

that is required for mRNA polyadenylation (Wickens ，工990) ， so i七

seems that this clone had complete 3'UTR region. The open reading 

frame gave 91.6号 identity with previously reported type 1 clone 

(accession number X06344; Krohne et al. , 1989). The predicted 

protein was 584 amino acids long and gave 91.6号 identity compared 

with 583 amino acids long lamin B1-1 protein. The Xenopus lamin 

B2-2 partial cDNA clone , which lacks about 180 nucleotides of 

5'region of open reading frame , gave 93.2老 identity with type 1 

C工one (accession number X54099; Hoger et al. , 1990). The 

predicted lamin B2-2 protein fragments gave 94.1号 identity

compared with lamin B2-1 pro七ein.

Preparat:ion of doma:i:n specific ant:i-l�Din ant:ibodies 

We prepared rabbit polyclonal antibodies against 工amin B1 NH2-

terminus (N) and COOH-terminus (C) , and mouse polyclona1 

antibodies against lamin B2 rod domain (R) ・ The construc七s used 

for the preparation of the antibodies were shown in Fig. 1. The 

specificity of these antibodies was determined by immunob工O七ting
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of who1e xenopus A6 ce11 proteins (Fig. 2 , a and b). Each 

antibodies reacted with sing1e pro七ein band. An七i-1arnin B1(N) 

and anti-1arnin B1(C) antibodies recognized 70 kD band , whi1e 

anti-1arnin B2(R) antibody recognized 68 kD band (Fig. 2 b). The 

rno工ecu1ar weights of these bands correspond those of 1arnin B1 and 

1arnin B2 , respective1y. The specificity of two 1arnin B1 

an七ibodies was further studied by Western b10tting against 

bacteria11y expressed GST-fusion pro七eins (Fig. 2 c). Anti-NH2-

terrninus antibody on1y reacted with NH2.-terrninus fusion protein 

but no七 COOH-terrninus fusion pro七ein (Fig. 2 , c 1anes 3 and 4). 

The sarne resu1七 was obtained on anti-COOH-terminus an七ibody as 

we11 (Fig. 2 , c 1anes 5 and 6). 

Antibod福s against N-terminal and c-termjnal of ~amin B~ 

differenti~~g stai.ned nuc~ei of Xenopu回且6 ce~~ and ~iver ce~~ 

To determine the 工oca1iza七ion of 1amin B in nuc1eus , 

immunof1uorescence experiments were performed on Xenopus A6 ce11s 

using prepared an七ibodies (Fig. 3). Anti-1amin B1(C) antibodyand 

anti-1arnin B2(R) an七ibody gave strong nuc1ear rim staining. 

Furtherrnore , both antibodies gave a dot-1ike staining pattern in 

the nuc1eus. These dot-1ike structures were reported previous1y 

and sugges七ed as 'nuc1ear enve10pe invaginations' (Fricker et 

a1. , 1997). Doub1e staining showed 七ha七七he two antibodies 

recognized the sarne nuc1ear compartrnen七， the nuc1ear 1amina and 

the dot-1ike structures (Fig. 3 , d-e and d' ー e' ) . 
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Figure 2. Characterization of specific antibodies against 1amin 

B1(N) , 1amin B1(C) and 1amin B2(R). a and b ，工mmunob1otting of 

tota1 ce11 1ysates from A6 ce11s with specific antibodies (a , 

7.5-15 5，き gradient ge1s. b , 7.5号 ge1s). Proteins were visua1ized by 

Coomassie b1ue staining (lanes 1). 工mmunob1o七tings were performed 

using antibodies against 1amin B1(N) (lanes 2) ，工amin B1(C) 

(lanes 3) and 1amin B2(R) (lanes 4) , respective1y. c , Bacteria11y 

expressed GST-1amin B1(N) fusion proteins and GST-1amin B1(C) 

fusion proteins were separa七ed on SDS-PAGE (7.5-15号 gradient

ge工s) and ana1yzed by 工mmunob1otting. Lane 1 and 1ane 2 , 

Coomassie b1ue staining . 工mmunob1ot七ings were performed using 

antibodies against 1amin B1(N) (lanes 3 and 4) and 1amin B1(C) 

(lanes 5 and 6) , respective1y. 
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Figure 3. 工mmunofluorescence staining of Xenopus A6 interphase 

cells with the antibodies agains七 lamin B1(N) , lamin B1(C) and 

lamin B2(R). A6 cells were incubated with a mixture of rabbit 

polyclonal antibodies agains七 lamin B1(N) (a to c) or lamin B1(C) 

(d to f) with mouse polyclonal antibodies against lamin B2(R) 

an七ibodies ， followed by incubation wi七h a mixture of 

Cye-2 anti-rabbit and Texas red anti-mouse secondary an七ibodies.

They were observed by fluorescent microscopy using Cye-2 fi工七er

for lamin B1(N) (a) or lamin B1(C) (d) or Texas red filter for 

lamin B2(R) (b and e). Cells were stained with Hoechst dye 33258 

at the same 七ime (c and f). Bar , 10μm. a' to f' indicate 

magnified images showed on (a) and (d) by arrowheads. a' and d' 

show anti-lamin B1(N) and anti-lamin B1(C)) antibody 

s七aining ， respec七ively. b' and e' show anti-工amin B2(R) 

staining. c' and f' show Hoechst s七aining. Nuclear envelope 

invaginations and nuc工eop工asmic dots are indicated by large and 

small arrowheads , respectively. Bar , 10 仰TI.



工n contrast , anti-lamin Bl(N) antibody gave weak nuclear rim 

s七aining but gave s七rong nucleoplasmic staining (Fig. 3 , a-b and 

a'-b'). The staining pattern of this an七ibody was similar to the 

Hoechst pa七tern. This an七ibody stained not only the nuclear 

envelope invaginations which were recognized by anti-lamin B2(R) 

antibody simul七aneously ， bu七 other nuclear do七-like s七ructures

which were not recognized by an七i-lamin B2(R) antibody (Fig. 3 , 

a' and b'). Confocal images supported the above results (Fig. 4 , 

a and b). Anti-lamin Bl(C) antibody stained the rim of nucleus 

strongly and also 七he invaginations , while anti-lamin Bl(N) 

antibody stained nuclear rim fain七工y ， bu七 strongly the inside of 

nucleus. 

Since both anti-lamin Bl(C) , and anti ー工amin B2(R) antibodies 

stained 七he nuclear rim , lamin B molecule must exist at nuclear 

rim. 工 f so , the special situation 七hat anti-lamin Bl(N) antibody 

also recognize lamin B on nuclear rim mus七 exis七. This idea was 

true. When the cells were fixed with cold methanol , anti-

lamin Bl(N) antibody showed nuclear rim staining as other 

antibodies (data no七 shown) . 

The different staining due to anti-lamin Bl(N) and anti-lamin 

B2(R) antibodies was given not only on A6 cell nuclei but on 

isolated nuc工ei prepared from Xenopus liver (Fig. 5). As shown in 

the figure , anti-lamin B2(R) showed strong rim s七aining. However , 

anti-lamin Bl(N) antibody showed week rim staining and strong 

in七ranuclear staining , as observed on A6 cells. 
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Lamin B1(N) Lamin B1(C) 

Figure 4. Confocal staining images of Xenopus A6 cell nucleus. 

A6 cells were stained with rabbit polyclonal an七ibodies agains七

lamin B1(N) (a) or rabbit polyclona1 antibodies against 1amin B1 

(C) (b). They were observed using a confocal microscopy. 

Bar , 10μm. 
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Figure 5. 工mmunofluorescence staining of Xenopus liver nucleus 

with the antibodies against lamin Bl(N) and lamin B2(R). xenopus 

liver nuclei were fixed onto cover slips and double-labeled with 

a mixture of rabbit anti-lamin Bl(N) antibody (a) or anti lamin 

B1(C) antibody (d) with mouse anti-lamin B2(R) antibody (b and 

d). DNAs were visualized with Hoechst dye 33258 (c and f). 

Bar , 10μm. 
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Di.fferent. st.aining pat.t.erns wit.h t.wo ant:i-Lami.n ant:i.bod.ies on 

mit.ot.ic ceLLs 

Next , we examined the 1amin B distribution on mitotic ce工工 using 

these antibodies (Figs. 6 , 7 and 8). As shown in Fig. 6 b , when 

chromatin started to condense at early prophase , the nuc1ear rim 

s七aining by anti-1amin B2(R) became stronger than tha七 of

interphase ce11s (Fig. 4b). A七 this stage , anti-1amin Bl(N) 

antibody a1so showed gave nuc1ear rim staining (Fig. 6a). A dot-

1ike staining of nuc1ear invagination was a1so observed even a七

七his stage. However , the nuc1eoplasmic staining at this stage was 

different from 七ha七 at interphase. On interphase ce11s 

nucleop1asmic lamin B signa1s seem to be co1oca1ized with Hoechst 

staining , bu七 a七 this phase 1amin Bl(N) signa1s seem 七o separate 

from DNA staining. Fig. 6 , d to f show 七he staining image at 

1ater prophase. As the shape of nuc1ei was deformed , deep 

invaginations were began to be formed and s七rong 1amin B signa工s

were detected on invagination region as we1l as nuc1ear rim with 

anti-lamin B2(R) antibodies (Fig. 6 , d and e). Staining pattern 

of an七i-工amin Bl(N) antibody became 七o co1oca1ize we11 with that 

of an七i-1amin B2(R) antibody (Fig. 6 , d and e) , but nuc1eoplasmic 

signa1s were still observed (Fig. 6 d). A七 1ate prophase , 

staining of nuc1ear rim and invaginations by either an七i-1amin

Bl(N) and 1amin B2(R) antibodies became diffused and two antibody 

signa1s were a1most co1oca1ized (Fig. 6 , g and h). 

At early me七aphase ，七he 七wo antibodies gave a1mos七 co1oca工ized

images (Fig. 7 , a and b). The lamin B signa1s that had been 
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Lamin B1(N) Hoechst 

Figure 6. 工mmunofluorescence staining of prophase Xenopus A6 

cells with an七i-lamin B1(N) and lamin B2(R) antibodies. 

Unsynchronized A6 cells were fixed and double-labeled with a 

mixture of rabbit anti-lamin B1(N) antibody (a , d and g) and 

mouse anti-lamin B2(R) antibody (b , e and h). DNAs were 

visualized with Hoechst dye 33258 (c , f and i). Cells in early 

prophase (a 七o c) , middle prophase (d to f) and la七e prophase (e 

to i) were shown. Bar , 10μm. 



Lamln B1(N) Lamin B2(R) Hoechst 
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Figure 7. 工mmunofluorescence staining of metaphase and anaphase 

Xenopus A6 cells with anti-lamin Bl(N) and lamin B2(R) 

antibodies. Unsynchronized A6 cells were fixed and double-

labeled with a mixture of rabbit anti-lamin Bl(N) antibody (a , d 

and g) and mouse anti-lamin B2 (R) an1:ibody (b , e and h). DNAs 

were visualized with Hoechst dye 33258 (c , f and i). Cells in 

early metaphase (a to c) , metaphase (d to f) and anaphase (e 七o

i) were shown. Bar ， 10μm. 



observed on nuclear rim at prophase were disappeared and 

dispersed into cytoplasm except chromosomal region , but partial 

nuclear shape was still observed. The staining intensity of both 

antibodies a七 this stage was much stronger than that at 

interphase. From metaphase to anaphase both antibodies stained 

cytoplasm except chromosome (Fig. 7 , d-e and g-h). 

St.aining pat.t.erns witl1 t.wo ant.i-Lamin B ant.ibodies duri:n.g nucLear 

format.ion 

A七 telophase ， two antibodies gave similar images. The dispersed 

lamin B signals began to localize around chromosome (Fig. 8. a 

and b). The signal around chromosome was much stronger than that 

of in七erphase signal. Anti-lamin Bl(N) also showed strong nuclear 

rim staining at this stage (Fig. 8a). At late telophase both 

antibodies gave signals not only on nuclear rim bu七 on nuclear 

invagination or around partially decondensed chromatin (Fig. 8 , d 

to f and g 七o i). After telophase , the signals of two antibodies 

became weak and showed different staining patterns as observed in 

interphase (Fig. 3). 
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Figure 8 . 工mmunofluorescence staining of telophase Xenopus A6 

cells with anti-lamin B1(N) and lamin B2(R) antibodies. 

Unsynchronized A6 cells were fixed and double-labeled with a 

mixture of rabbit an七i-lamin B1(N) antibody (a , d and g) and 

mouse anti-lamin B2(R) an七ibody (b , e and h). DNAs were 

visualized wi七h Hoechs七 dye 33258 (c , f and i). Cells in early 

telophase (a 七o c) , late telophase (d 七o f) and interphase (e to 

i) were shown. Bar ， 10μm. 
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D工scuss工ON

cDNA cLoning of t:hree 馮pes of Lami.n. B :f'ram Xenopus oocy-tes cDNA 

Library 

We iso1ated 1amin cDNAs using antiserum against Xenopus 1amin B 

by screening the cDNA 1ibrary of Xenopus oocytes. We iso1ated 

three types of 1amin cDNA，工amin B1 ，工amin B2 and 1amin B3. This 

resu1七 shows that Xenopus oocytes contain three types of 1amin 

mRNA. However , エ七 was repor七ed that the protein amounts of 1amin 

B1 and 1amin B2 in Xenopus oocytes and eggs were much 10wer than 

that of 1amin B3 (Lourim and Krohne , 1993; Lourim et a1. ，工 996).

工 t was a1so reported that during oocyte maturation , the protein 

1eve1 of 1amin B1 increased about ten times , probab1y by the 

resu1t of activation of protein synthesis. 工n addi七ion，七he

protein amoun七 of 1amin B1 increased further after the 

midb工astu1a transition. The protein amount of 1amin B2 a1so 

increased after gastru1a stage (for a review see Krohne and 

Benavente , 1986). Therefore , it seems tha七七rans1ation of 1amin 

B1 and 1amin B2 is regu1ated during devE~lopment. The mRNAs of 

工amin B1 and 1amin B2 may be stored as an inactivated state in 

oocytes , and the trans1ation of these mRNAs is activa七ed at 

appropriate stages for protein synthesis (see Richter , 1991). 
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Presence of two t:gl杷5 of Lamin B1. and B2 in. Xenopus 

We iso1ated two types of Xenopus 1amin 81 and 1amin 82 

cDNAs , respective1y (see RESULTS). The existence of severa1 

isoforms of 1amin 83 was reported previous1y by Doring and Stick 

(1990). They showed by genomic southern b10tting that two lamin 

B3 genes exist in Xenopus genome. The partia工 sequence of 

secondary isoform represen七ed 90号 identities on nuc1eotide 1eve1. 

So , it can be said that in Xenopus , two types of 1amin B1 ，工amin

B2 and 1amin 83 genes are presen七 in Xenopus genome , 

respectively. 工n addition , two a1ternative1y sp1iced products 

were reported on one of 1amin 83 gene (Doring and Stick , 1990). 

The functiona1 difference of these 1amin isoforms on Xenopus is 

not c1ear. 工七 is proposed 七hat Xenopus laevis species is 

te七rap10id with respect to DNA content. So mos七 of the xenopus 

genes may be present in two copies in the hap10id genome (see 

discussion Doring and Stick , 1990). 工n fact ，七wo sets of cDNA are 

reported on various protein products , such as importin-α ， MCM 

fami1y proteins , cyc1in E , and so on (Gor1ich et a1. , 1994; 

Cheva1ier et a1. , 1997; Kubota et a1. , 1997). 

stxuct.ure of Lamins and t.he domai..n spec主xic ant.i.1Jodies 

工七 has been shown from primary sequence as we1l as s七ruc七ura工

ana1ysis that 1amins has 七ripar七ite domain struc七ure with a 

centra1 rod domain with α-he1ica1 coi1s and non-α-he1ica1 head 



and tai1 domains. 工 t was suggested that fi1amen七ous s七ructure is 

formed by the head 七o tai1 interaction. COOH-termina工 tai1

portion contains nuc1ear 10ca1iza七ion signa1 , interac七ion site 

wi七h DNA , and that with membrane. The NH2-termina1 truncated form 

of 1amin induce aggregation of 1amin proteins (Spann et a1. , 

1997). 工n this study , we prepared antibodies against NH2-termina工

region of 1amin B1 , COOH-termina1 region of 1amin B1 and rod 

region of 1amin B2 (Fig. 1). These an七ibodies interact 

specifica11y with 1amin B1 or 1amin B2. Furthermore , they 

interac七 specia11y with NH2-termina1 and COOH-termina1 domains of 

lamins (see Fig. 2). 

stxucture of i.ntranucLear Lamjns i.n i.ntE~rphase ceLLs 

We performed indirect immunof1uorescence microscopy studies on 

Xenopus A6 culture ce11s using three different antibodies (Fig. 

3). Affinity purified rabbit an七ibody raised against lamin B1(C) 

and mouse antibody against 1amin B2(R) 9ave typica工 nuclear rim 

staining (Fig. 3 , d-d' and e-e'). These 七wo an七ibodies a1so gave 

signals on nuclear enve10pe invaginations , which were observed on 

mos七 of interphase nuc1eus as dot patterns. The posi七ions of 

invaginations which were de七ected by each an七ibodies were 

comp1etely matched on double immunostaining (Fig. 3 , d' and e'). 

Therefore , 1amin B1 and 1amin B2 are coloca1ized on nuclear 

工amina in interphase ce11s. 

工n contrast , affinity purified rabbi七 antibody against lamin 
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B1(N) gave weak nuclear rim staining. While this antibody gave 

rela七ively strong 工ntranuclear staining (Fig. 3 , a and a'). This 

an七ibody also recognized nuc工ear invagination which were detected 

by lamin B2(R) antibody , and showed 七he similar pattern to 

he七erochromatin excluding nucleolus (Fig. 3 , a' and b'). The 

similar results were obtained using Xenopus liver nucleus (Fig. 

5 ) . 工七 is thought that 工amin B1 and lamin B2 have similar 

properties. The func七ion of intranuclear lamin B1 structure , 

which we observed , is not clear , but several speculations are 

available. These lamins may be excessive:ly synthesized products 

for cell division or may be free molecules before targeted into 

nuclear lamina. The nucleoplasmic lamins may form a functiona工

structure that is required for maintenance of nuclear matrix or 

chromatin , or involved in some nuc工ear even七s ， such as DNA 

replication. 

The existence of intranuclear lamin s七ruc七ures was reported by 

Fricker et al. (1997) using confocal microscopy and 3D 

visualization method. They showed two types of intranuclear dot-

like lamin s七ruc七ures by anti-lamin antibody. The former 

structure was on nuclear envelope invagina七ions ， since エ七

coloca工ized with fluorochrome labeled Con A signals , that 

indicated membrane. Whi工e the latter was not colocalized wi七h Con 

A signals. These resul七s agree with our observation. 

Moir et al. (1994) reported previously 七hat the an七ibody

agains七 B-type lamins gave intranuclear foci staining. These B一

七ype lamin foci were observed only at mid and late S-phase and 

were colocalized with PCNA , which is a component of DNA 
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replication cornplex , and the sites of incorporation of 

brornodeoxyuridine (BrDU). 80 , it seems that intranuclear B-type 

lamin structures are involved in DNA replication. The 

relationship between Bー七ype lamins and DNA replication was 

suggested by the experirnents using Xenopus egg cell-free extracts 

(Meier et al. , 1991; Goldberg et al. , 1995; Ellis et al. , 1997). 

工n addi七ion to B-type lamins , A-type larnins were also reported 

to exis七 in intranuclear sites. Bridger et al. (1993) reported 

the in七ranuclear foci and fiber structures on human derma工

fibroblasts by irnrnunofluorescence using monoclonal antibodies 

against A-type 工arnin. These structures were detected only at G1 

phase and were not detected at 8 phase. Sasseville and Raymond 

(1995) reported the intranuclear foci on human epi七heloid

carcinorna cells by immunofluorescence using anti-larnin A 

precursor specific antibody. The function of intranuc工ear larnin A 

and larnin A precursor is not yet clear , though it was proposed 

七hat these s七ructures are 七he ternpora工 s七ores for processing or 

modification of Aー七ype 工 arnins and 七he stored proteins are 

gradually translocated into nuclear lamina. 

The antibody against larnin B1(N) gave weak nuclear rim 

staining cornpared with 七he other antibodies (Fig. 3 , a' and b'). 

We speculate that this is a result of the difference in the 

accessibili七Y of 七hese an七ibodies. The antibodies against larnin 

B1(C) and larnin B2(R) may be able 七o access to the nuclear lamina 

S七ruc七ure easily and recognize the epi七ope. On the 0七her hand , 

antibody against larnin B1(N) may not be able 七o access to the 

epitope easily. The epitope may be on 七he inside of the struc七ure
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and masked by another molecule. 

The resu工t showing epi七ope masking was reported by Buss and 

Stewar七 (1995) ， using antibodies against nucleoporin p62 , which 

is a componen七 of nuclear pore complex. They generated specific 

antibodies against p62 NH2-terminal domain and p62 COOH-termina工

rod domain. The an七i-NH2 -terminal antibody gave strong nuclear 

rim staining bu七 an七i-COOH-terminal antibody gave weak nuclear 

rim staining by immunofluorescence staining. They showed the same 

resu工ts using do七 blotting experimen七s using native p62 

containing protein complex. They explained that the p62 rod 

epitope are masked when protein complex are formed. The result 

presented here also suggest that epitopes of an七i-lamin B1(N) 

antibody is masked in 七he nuclear lamina in the in七erphase cells. 

SubceLLuaar dynamics of B-type Lamins during mitosis 

We performed immunofluorescence s七ainin.g on mi七otic A6 cells 

(Figs. 6 to 8). 工n interphase cells nucleoplasmic lamin signals 

that were detected by an七i-lamin B1(N) antibody , coincide wi七h

chromatin-Hoechst signals (Fig. 6 , a to c) , but at early 

prophase , these two signals were separa七ed (Fig. 6 f). 工七 seems 

that lamin proteins were separated from par七ially condensed 

chromatin at this stage. At mid prophase , many deep invaginations 

were observed by either lamin B1(N) and 工amin B2(R) antibodies 

(Fig. 6 , d-e and g-h). These results show that B-type lamins were 

highly accumulated on deep invagination. Similar nuc工ear deep 
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invagination structures were reported by Georgatos et al. (工 997)

on prophase human 工 shikawa cells and mouse fibrob工as七s.

The mos七 striking event at late prophase is that anti-lamin 

B1(N) an七ibody gave relatively strong nuclear rim s七aining (Fig. 

6g). This result indicates 七ha七七he lamin B1 N-terminal epitopes 

recognized by this antibody became unmasked at this phase. 

Therefore , a structural change such as loosening of nuclear 

lamina may occur and the accessibility of antibody is increased. 

These events may be induced by the phosphorylation of lamins or 

other lamina proteins , or the release of molecules tha七 masked

the epitopes. 工n addition , the signals of anti-lamin B2(R) 

antibody became stronger at prophase than that at interphase. 

This result also suggests that lamin proteins become 

depolymerized and protein-protein interaction of lamin is reduced 

during mitosis. 80 the accessibility of an七i-lamin antibodies is 

increased at mitosis. At late prophase , nucleop工asmic lamin 

signals of anti-lamin B1(N) an七ibody became weak compared with 

early prophase (Fig. 6 , a and g). 工七 seems that nucleop工asmic

lamins are dispersed earlier than nuclear lamina , or nuclear 

enve工ope invagination and the nucleoplasmic lamin proteins may be 

incorporated in七o these structures. 

From metaphase to anaphase，工amin proteins are dispersed into 

cytoplasm (Fig. 7) , as reported previously by Krohne and 

Benaven七e (1986). Both antibodies gave cytoplasmically-dispersed 

staining patterns 七ha七 excluded only condensed chromosomes. 

Lourim and Krohne (1996) repor七ed the similar staining pa七terns

using specific antibodies against lamin B1 and B2 on metaphase 
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Xenopus A6 cells. We noticed that the in七ensity of signa工s is 

stronger than 七ha七 of interphase cells (Fig. 7 , a and b). This 

result may be the reflection of increased accessibility of 

antibodies , as discussed before. 

At early telophase , dispersed lamins were accumulated around 

condensed chromosomes (Fig. 8 , a to c). At late telophase , the 

cytoplasmically dispersed lamin signals became incorpora七ed in七O

nucleus probably by the import system through nuclear pore , but 

some dispropor七ion of lamin signals was observed on nucleus (Fig. 

8 , d and e). This structure seems to be the nuclear envelope 

invagina七ions or the reflection of chromatin decondensation. 

Through the telophase of mi七osis ， both anti-lamin Bl(N) and antiｭ

lamin B2(R) antibodies colocalized , and the signals of these two 

antibodies were relatively stronger compared to that at 

interphase (Fig. 8 , a-b and d-e). 

At the end of telophase , the intensity of lamin signals was 

the same level as that of interphase cells (Fig. 8 , g and h). 

These results indica七e tha七七he accessibility of antibody 

decreases at telophase , perhaps by 七he resul七 of epitope masking. 

工七 seems that at ear工Y 七e工ophase the accumulated 工am工n structure 

around chromosomes is loose and immature , bu七 it become 七ight and 

the matured structures are formed at the end of telophase. 工n

addi七ion ， the difference on staining pa七七erns between two 

antibodies became obvious at the end of 七elophase (Fig. 8 , g and 

h
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Hode]_s of B-t::gpe ]_amin dynamics during ce]_]_ cgc]_e 

We propose one hypothetica1 mode1 shown in Fig. 9 for the 

dynamics of B-type 1amins during ce11 cyc1e. The resu1七s obtained 

here can be exp1ained by this mode1. 工n interphase ce11 , B-type 

1amins are 工ncorporated into nuc1ei and form a nuc1ear 1amina 

struc七ure on nuc1eoplasmic side of the nuc1ear enve1ope. B-type 

lamins are a1so present in the nuc1eop1asm and probably 

constitute an intranuc1ear structure. B一七ype lamins may be 

aligned at different mode in these two s 七ruc七ures. Our 

immunof1uorescence data suggests that NH2-terminus of 1amin B is 

masked in the nuc1ear 1amina , but not in 七he intranuc1ear 

structure (see Fig. 3). A七 prophase ， when chromosomes start to 

condense , B-type 1amins are sti11 present a七 the nuclear 

enve1ope , but the nuclear 1amina structure are partia11y 

disrupted and 100se. This conformation change was proposed by the 

increase intensity of immunof1uorescence of anti-1amin B 

antibodies shown in Fig. 6. A七 metaphase and anaphase , B一七ype

1amins are completely dispersed into cytop1asm. This disassemb1y 

of B-type 1amins is though七七o be caused by mitotic 

phosphory1a七ion. At te1ophase , when nuclear enve10pe is formed 

around par七ially decondensed chromosome , B-七ype lamins become 

10ca1ized at the nuc1eop1asmic side of 1:he nuc1ear envelope , 

forming a nuclear 1amina structure , bu七七he struc七ure is no七

comp1ete and immature. At 1ate te1ophase , B-type 1amins in 

nuc1ear 1amina begin to form a 七igh七 1amina structure beneath the 

nuc工ear enve1ope. 
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Figure 9. Schematic model for dynamics of B-type lamin during 

cell cycle. 
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From our result , we propose the possibility that two types of 

lamin B structure are present at interphase nucleus and 

conforma七ion change of nuclear lamina occurs during mitosis by 

the me七hod of immunofluorescence microscopy and antibody epitope 

masking. The resul七 obtained here provide a framework for the 

future investiga七ion on the mechanism of forrnation and disruption 

of nuclear lamin structure. 
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Part 工工工

In vitro nuclear envelope breakdown of isolated nucleus in 

xenopus egg mitotic extracts 
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SUMMARY 

xenopus egg cell-free extrac七 is a useful system to s七udy the 

nuclear dynamics during cell cyc1e. We found that when nuc1ei 

prepared from Xenopus erythrocyte or 1iver were incubated in 

Xenopus M-phase extracts at 25 oC in the presence of ATP , nuc1ei 

en工arged first , then e10nga七ed and condensed 七o a "worm-shape" 

structure within 60 min. Contrary 七o mitosis in usua1 ce11s ，七he

nuc1ear membrane , observed by DHCC-staining , began to disperse 

before the chromosome condensation. Lamin 82 and nuc1ear pore 

complex protein p62 , observed by immunofluorescence microscopy , 

a1so disappeared before the chromosome condensation. These 

resu1ts indicate 七ha七七he regu1atory mechanism of mitotic event 

observed in Xenopus egg extract is differen七 from normal nuc1ear 

mi七otic events in the ce11 , and that chromosome condensation and 

nuclear enve10pe break down are regu1ated by a differen七

mechanism. This in vitro system is good 七001 to investigate the 

mechanism of nuc工ear enve10pe breakdown. 
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INTRODUCT工ON

The nuclear enve10pe is cornposed of rnany proteinaceous 

s七ructures ， such as nuc1ear 1arnina and nuc1ear pore cornp1ex (NPC) 

(for reviews , see Georgatos et a1. , 1994; Go1dberg and A工1en ，

1995). The nuc1ear 1arnina is a fi1amen七ous rneshwork structure 

1ying on the inner nuc1ear rnernbrane , and consists of nuc1ear 

interrnedia七e fi1arnent proteins ca11ed 1amins (Gerace and B10be1 , 

1980; Aebi et a1. ，工986 ， McKeon et a1. , 1986). Larnins fa11 into 

two groups , A-type 1arnins and B-type 1arnins (for reviews , see 

McKeon , 1991; Nigg , 1992). Various 工arnina-associated proteins are 

a1so known to exist , such as p58j1arnin B receptor (Worrnan et a1. , 

1988 , 1990; Ye and Worrnan , 1994) , LAP1 (Martin et a1. , 1995) , 

LAP2j七hirnopoietin (Furukawa et a1. , 1995) and 0七efin (Pandan et 

a1. , 1990). 

Nuc1ear enve10pe shows dynarnic rearrangernent during rnitosis. 

At prornetaphase the nuc1ear enve10pe is broken down. The nuc1ear 

mernbrane and its protein cornponen七s are dispersed into cytop1asrn. 

At te10phase rnitotic nuc1ear rnernbrane vesic1es and the protein 

cornponents are recruited 七o the surface of chrornosorne and form a 

nuc1ear enve10pe (Chaudhary and Courva1in , 1993; Buendia and 

Courva1in , 1997; Georgatos et a1. , 1997; Maison et a工.， 1997) ・

E11enberg et a1. (1997) recent1y suggested that the nuc1ear 

rnernbrane is not vescu1ized during rnitosis and rearranged as a 

tubu1ar network with ER rnernbrane. 

The dynarnics of nuc1ear enve10pe are be1ieved to be regu1ated 



by reversib1e phosphory1ation. Lamins are high1y phosphory1ated 

during mitosis. This phosphory1ation is mediated by p34/cdc2 and 

other mi七otic kinase , and this modification is invo1ved in 

nuc1ear 1amin dissociation. (Hea1d and McKeon , 1990; Peter et 

a1. , 1990; Dessev et a1. , 1991; Hocevar et a1. , 1993; C011as et 

a1. , 1997). During mitosis A-type 1amins are dispersed as 

s01ubi1ized state , whereas B-七ype 1amins are dispersed as 

rnembrane bound state. p58/LBR is a1so phosphory工ated at mitosis , 

and this phosphory1ation is a1so involved in the dissociation of 

nuc1ear enve10pe and nuc1ear 1amina (Simos and Georgatos ，工992;

Meier and Georgatos , 1994; Nik01akaki et a1. , 1996 , 1997; C011as 

et a1. , 1996). 

The NPC is a 1arge protein comp1ex with a m01ecu1ar weigh七s of 

about 120 MD , and composed of more than 100 proteins. The NPC is 

responsib1e for import and export of s01ub1e m01ecu工es (for 

reviews , see Davis , 1995; Doye and Hurt , 1997). As a nuc1ear pore 

protein , p62 is we工 1 characterized (Starr et a1. ，工 990; Cordes e七

a1. , 1991). The assemb1y and reassemb1y of nuc1ear pore complex 

are a1so caused at mitosis , and the processes are a1so regu工ated

by a reversib1e phosphory1ation (Macau1ay et a1. , 1995; Favreau 

et a1. , 1996). p62 is known to be dispersed at mitosis as a 

mu1ti-pro七ein comp1ex (Dabauva1工e et a1. , 1990; Fin1ay et a1. , 

1991; Buss and Stewart ，工995; Hu e七 a1. ， 1996). The precise 

mechanism of nuc工ear enve10pe breakdown and reformation , and the 

recruitmen七 of nuc1ear enve10pe proteins are no七 we1工 understood.

The ce11-free system is a good to01 to investigate nuc1ear 

enve10pe dynamics , because biochemica1 procedures are easi1y 



available. The mos七 widely used system for cell-free analysis is 

xenopus egg ex七racts (Lohka and Masui , 1983). The extract 

prepared from xenopus M-phase eggs have an activities to induce 

mitotic even七s ， such as nuclear envelope breakdown , chromosome 

condensa七ion and mitotic spindle formation. As a souse of nuclei , 

Xenopus sperm pronucleus , and isolated nuclei from rat cells have 

been used wel工. The mitotic activity for nuclear envelope 

breakdown is due to MPF (cdc2/cyclin B) and other mitotic kinases 

(Miake-Lye and Kirschner , 1985; Vigers and Lohka , 1992: pfaller 

and Newpor七， 1995). 

工n this report , we investigated nuclear mi七otic even七s using 

Xenopus egg ce工工-free extrac七s and nuclei derived from Xenopus 

erythrocyte and liver. Nuclear enve工ope breakdown and chromosome 

condensation occurred rapidly in this combination. However , 

contrary to mito七ic events in normal cell , the nucleus swelled 

first and nuclear the envelope breakdown occurred before the 

chromosome condensation. 
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MATER工且LS AND METHODS 

Antibody preparation 

To obtain rabbit po1yc1ona1 antibody against nuc1ear pore protein 

p62 , we iso1a七ed Xenopus p62 cDNA. The 1ambda ZAP-derived cDNA 

library of Xenopus oocytes was provided by Dr. Takisawa (Kubota 

et a1. 1995 , 1997). Monoc1ona1 antibody 414 (mAb 414 , BAb Co , 

Richmond , CA; Davis and B1obe1 , 1986; Vigers and Lohka 1992) was 

used to screen Xenopus p62 cDNA . The iso1ated c10nes were 

identica1 to previous1y iso1ated Xenopus p62 (accession number 

S59344 , Cordes et a1. , 1991). The DNA fragment，七ha七 encodes 103-

433 amino acid region , was constructed using EcoR工ーXho工 fragment 

of one of p62 c1ones. This fragment was ligated into expression 

vector , pGEX-4T-3 (Pharmacia) , using standard pro七oco1 ， and we 

obtained GST-fusion protein. Recombinant GST-p62 fusion protein 

was purified by trapping 七o gluta七hione-sepharose 4B beads 

(Pharmacia LKB Bio七echno1ogy 工nc.) and elution with thrombin. The 

purified p62 fragments were separated by SDS-po1yacry1amide-ge1 

(PAGE) (Laemm工 i ， 1970) , and corresponding bands were excised and 

immunized onto rabbi七s by the standard protoco1s. The produced 

rabbit antiserum was affinity-purified wi七h GST-p62 proteins 

immobi1ized on CNBr-activated Sepharose-4B beads (Pharmacia) , and 

was used as rabbi七 po1yc1ona1 antibody against Xenopus p62. 

Rabbit anti-Xenopus 1amin B antisera and mouse po1yc1ona工

antibody against Xenopus 1amin B2 rod-domain (R) were prepared as 
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described in the previous paper (Takamori and 工noue ， submitted) ・

E]_ecrrophoresis and i:mmunob]_otting 

SDS-PAGE was performed as described by Laemm1i (1970). The 

samp1es were run on to 7.5-15号 gradient ge1 and the protein bands 

were visua1ized by Coomassie-b1ue. 工mmunob1otting was performed 

as described by Towbin et a1. (1979). The separated proteins were 

transferred e1ectrophoretica11y to nitroce11u1ose membranes , and 

visua1ized with 0.2% Ponceau-S in 1老 acetic acid. After b10cking 

with 2% non-fat dry mi1k in tTBS (150 mM NaC工， 50 mM TR工S-HC1 ， pH 

8.0 , 0.1告 Tween-20) ，七he b10七s were incuba七ed with firs七

antibodies at 1:500 di1ution for over night , fo11owed by goa七

anti-rabbi七 or goat anti-mouse 工gG coup1ed 七o horse radish 

peroxidase (Bio-Rad) for 1 hour. The b10ts were visua1ized by 

Konica 工mmunostaining ki七 (Konica Co. , Tokyo , Japan). 

Preparation of Xenopus egg exrracts and in virro reaction 

Adu1t fema1e Xenopus laevis were purchased from San-ai Shoji. Egg 

extracts were prepared from unactiva七ed Xenopus eggs. Ovu1ated 

eggs were co11ected 12-13 hours after the injection with 700 

units human chorionic gonadotropin (Sigma). Eggs were washed and 

deje11ied wi th 2 mM DTT in deje11y buffE~r (110 mM NaC工 and 20 mM 

Tris-HC工 pH 8.8). The eggs were washed again with the extraction 
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buffer (80 mM ß-glycerophosphate , 20 mM EGTA , 15 mM MgC1
2

, 20 'mM 

Hepes-NaOH pH 7.0 , 5 mM ATP , 1 mM DTT and 1 mM PMSF) , packed by 

centrifugation at 2 , 000 g for 5 seconds , and then cen七rifuged a七

15 , 000 g for 10 minutes. The resulting low-speed supernatant 

between the lipid cap and the pellet was collected. The 

superna七ant was centrifuged again a七 15 ， 000 g for 10 minutes to 

remove residual lipid and pigment. The low speed supernatant was 

rapidly freezed with liquid N2 , and stored at -40oC for later 

experiments. This extract was used as Xenopus M-phase egg 

extract. 

Xenopus erythrocyte and liver nuclei were prepared as described 

previously. (Takamori and 工noue ， submi七ted). Xenopus erythrocy七es

were washed with EDTA buffer (25 mM EDTA , 75 mM NaCl , pH 7.5) , 

then washed with STM buffer (0.6 M sucrose , 50 mM Tris-HCl , pH 

7.5 , 5 mM MgC1 2 , 1 mM PMSF). Prepared Xenopus erythrocyte were 

treated with 100μg/m工 saponin ， and homogenized by teflon 

homogenizer. The pellet was collected by centrifuga七ion ， and was 

used as a nuclear fraction. xenopus female (gray) liver was 

dissec七ed into pieces and homogenized in STM buffer. The cell 

homogenate was centrifuged at 3000 rpm (Hitachi) for 5 minutes 

and the precipitates were used as a liver nuclei fraction. 

The in vitro reaction was performed as follows. The nuclei 

were washed with the extraction buffer in 1.5 ml tube. After 

centrifugation a七 300 g for 5 minutes , the supernatant was 

removed. The Xenopus M-phase extracts were added to the pelle七，

mixed and incubated a七 25 0 C for various time. 
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ImmunofLuorescence microscopg 

The nuclei were incubated in M-phase extracts for various tirne. 

The nuclear rnernbrane was stained with 3 ， 3' ー dihexyloxacarbocyanine

(DHCC) and DNAs wi七h Hoechst dye 33258. For indirec七

immunofluorescence rnicroscopy , sarnples were fixed wi七h PBS 

containing 3.7告 formaldehyde for 5 minu七es a七 25 oC. The nuclei 

were then centr工 fuged onto coverslips coated with 1老 poly-L-

Lysine at 1 , 000 rpm for 1 minutes. Samples were incuba七ed wi七h

rabbit anti-Xenopus lamin B antisera (工 :100) or a mixture of 

rabbit anti-p62 antibody (1:20) and mouse anti-Xenopus lamin 

B2(R) antibody (1:20) in tTBS containing 2告 non-fa七 dry milk and 

20告 goat serum for over night a七 4 oC. After washing with PBS , 

samples were incubated with Cye-2-1abeled donkey anti-rabbit 工gG

(1:50; Amersham) or a mix七ure of Texas-Red-labeled donkey antiｭ

rabbi七工gG (1:50; Amersham) and Cye-2-1abeled donkey an七i-mouse

IgG (1:50; Amersham) in tTBS containing 2老 non-fat dry mi工k for 1 

hour at 4 oC. After washing with PBS ，七he sample was further 

stained with Hoechst dye 33258. All Samples were viewed with a 

fluorescen七 rnicroscopy (Orynpath BH-2). S七aining images were 

taken by coo工ed CCD camera (Photometrics , PXL) with 工P-Lab

Spectrum system (Signal Analytics Corporation). 



RESULTS 

preparation of antibodies 

We prepared an七ibodies against B-type larnin and nuclear pore 

pro七ein p62. The specificity of antibodies was deterrnined by 

irnrnunoblotting of proteins frorn Xenopus erythrocyte nucleus (Fig. 

1). Rabbit antiserurn against Xenopus B-type larnin recognized 

about 68 kD and 70 kD doub工et proteins (data not shown). The 

molecular weights of these proteins were identica工七o those of 

larnin B1 (upper band) and larnin B2 (lower band) (Krohne and 

Franke , 1983; Krohne et al. , 1987; Hoger e七 al. ， 1990). Mouse 

affini七y-purified antibody against xenopus larnin B2 rod region 

(see Takarnori and 工noue ， subrnitted) recognized only the lower 

band (data not shown). Rabbi七 affinity-purified an七ibody against 

Xenopus nuclear pore protein p62 recognized single 70 kD pro七ein

(Fig. 1 , lane 2). Monoclona工 antibody 414 , which had been 

reported to react wi七h Xenopus p62 (Viger and Lohka 1992) , a工so

recognized the sarne band (Fig. 1 , lane 3). 

NucLear enveLope break. dawn of isoLated erythrocヲte nuc1.ei in 

Xenopus egg H-phase ex.tracts 

Xenopus M-phase egg extract is a good sys七ern to investigate 

mitotic even七s in vitro (Lohka and Masui; 1983). To inves七igate
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Figure 1. Specifici七Y of antibodies against p62. Xenopus 

erythrocyte nuc1ear fraction was separated on SDS-PAGE (7.5-15% 

gradient ge1) and proteins were visua1ized by Coomassie b1ue 

staining (lane 1). 工mmunob1o七ting was performed using rabbi七

po1yc1ona1 antibody agains七 Xenopus p62 (lane 2) and monoc1ona1 

antibody 414 (lane 2). 
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dynamics of nuclear envelope during mitosis , we tried to 

establish an in vitro nuclear envelope breakdown system using 

Xenopus egg M-phase cell free extracts. As a source of nucleus , 

we prepared Xenopus erythrocyte nucleus. The nuclei were 

incubated in Xenopus egg M-phase extrac七s a七 25 oc in the 

presence of 5 mM ATP , and mixed with DHCC for membrane staining 

and Hoechs七 dye 33258 for DNA staining. By incubation for 30 

minutes , the nuclei were en工arged and elongated (Fig. 2 , c and 

d) , and the DHCC signals became weak. By incubation for 60 

minutes 七he nuclei were condensed and elongated 七o "worm shape" 

(Fig. 2 , e and f). DHCC signals were almost undetectable. This 

resu工t showed that 七he nuclear envelope was broken down and 

dispersed into 七he extracts. The 七ime course of 七his reac七ion was 

not definite and depended on used eggs. The time necessary for 

chromosome condensation varied be七ween 60 minutes and 120 

minutes. 

Next , we tried other nuclear envelope marker for the detection 

of nuclear envelope breakdown. Fig. 3 shows the result observed 

by indirect immunofluorescence microscop~{ using anti-Xenopus 

lamin B an七iserum. A七 time 0 , an七i-lamin B an七iserum stained the 

nuclear envelope (Fig. 3a). Af七er 30 minutes 

the nuclei swelled and lamin B signal became weak (Fig. 3 , c and 

d). The chromatin was not condensed at this time (Fig. 3 d) , but 

at 60 minutes , the nucleus became elonga七ed and condensed (Fig. 

3 , e and f). The B-type lamins became dispersed , bu七 some signals 

remained on condensed chromosome surface and were seen as do七ー

like pattern. 
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Figure 2. DHCC and Hoechst staining of Xenopus erythrocyte 

nuc工eus in Xenopus M-phase egg extracts. 工solated Xenopus 

erythrocyte nuclei were incubated in Xenopus egg M-phase extrac七S

for 0 min. (a and b) , 30 min. (c and d) , 60 min. (e and f) , and 

visualized with DHCC for membrane staining (a , c and e) and with 

Hoechst dye 33258 for DNA staining (b , d and f). Bar , 10μ，m. 
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Figure 3. 工mmunofluorescence staining of Xenopus erythrocyte 

nucleus in Xenopus M-phase egg extracts with anti-lamin B 

antisera. 工 solated Xenopus erythrocyte nuclei were incubated in 

Xenopus egg M-phase extracts for 0 min. (a and b) , 30 min. (c and 

d) , 60 min. (e and f). Each nuclei were fixed onto coverslips and 

stained with rabbit antisera agains七 Xenopus B-type lamin (a , c 

and e). DNAs were visualized with Hoechst dye 33258 (b , d and f). 

Bar , 10μ，m. 
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Nuc1.ear enve1.ope breakdown of iso1.a"ted Xenopus l.iver nuc1.ei in 

xenopus egg H-ph.ase exrrac"ts 

Liver nuclei are frequently used for biochemical studies , however 

Xenopus liver contains a large amoun七 of dark granule , and this 

granule contaminates 七he nuclear fraction. We prepared nuclei 

from light-colored Xenopus female，七hat contain less amount and 

small size of the granule. Fig. 4 shows 七he result when Xenopus 

liver nuclei were incubated in Xenopus egg M-phase extracts a七 25

oc in the presence of 5 mM ATP. The nuc工ei was observed after 

mixing DHCC for membrane staining and Hoechst dye 33258 for DNA 

staining. By incuba七ion for 30 minutes ，七he nuclei enlarged and 

the shape became e工onga七ed (Fig. 4 c) , as erythrocy七e nuclei. The 

DHCC signals were weak at this time (Fig. 4 d). By incubation for 

60 minutes , the nuclei were condensed (Fig. 4 e) , and DHCC 

signa工 s were almost undetectab工e.

We observed this reaction by indi~~む七 immunofluorescence 

microscopy using an七ibody against Xenopus lamin B2 rod domain 

(Fig. 5). At time 0 , anti-lamin 82 an七ibody s七ained s七rongly the 

nuc工ear rim (Fig. 5 c). After 30 minutes ，七he nuclei swelled , 

lamin B staining became weak , and non-s七εlined region appeared on 

nuclear envelope (Fig. 5 , d 七o f). A七 60 minutes ，七he nuc工eus

became elongated and condensed (Fig. 5 , e and f). The B-type 

工amins became dispersed , but a part of signals remained on 

condensed chromosome. 
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Figure 4. DHCC and Hoechst staining of Xenopus 1iver nuc1eus in 

Xenopus M-phase egg extracts. 工 so1ated Xenopus 1iver nuclei were 

incubated in Xenopus egg M-phase extracts for 0 rnin. (a and b) , 

30 rnin. (c and d) , 60 rnin. (e and f) , and visua1ized with DHCC 

for rnernbrane staining (b , d and f) and with Hoechs七 dye 33258 for 

DNA staining (a , c and e). Bar , 10μrn. 
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Figure 5. 工mmunofluorescence staining of Xenopus liver nucleus in 

M-phase egg extracts with anti-lamin B2 antibody. 工 sola七ed

Xenopus liver nuclei were incubated in Xenopus egg M-phase 

extracts for 0 min.(a to c) , 30 min. (d 七o f) , 60 min. (g to i). 

After fixation , each nuclei were stained with anti-lamin B2 

antibody (c , f , i). b , e , and h are the phase contras七 images.

DNAs were visualized with Hoechst dye 33258 (a , d , g). Bar , 10 

μm. 
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DgIliJlD.ﾍcs of B-t:ヲpe 1.a.min and nuc]_ear pore jlrOt:ei.n p62 of iso]_at:ed. 

eryt:hrocyt:e nuc1.eus i.n Xenopus egg H-phase ext:ract:s 

We compared 七he time course of dissociation of nuc1ear 1amina and 

nuc1ear pore comp1ex. We performed indirec .七 immunof1uorescence

microscopy using an七エbodies against 1amin B2 and p62 (Fig. 6). A七

o time , signa1s of either 1amin B2 and p62 were strong (Fig. 6 , a 

and b). At 15 minutes when nuc1eus was en1arged，七he signa1s 

became week , and non-stained region appeared on nuc1ear enve10pe 

for ei七her 1amin B2 and p62 (Fig. 6 , d and e). After 30 minutes , 

non-stained region extended (Fig. 6 , g and h). However , staining 

pattern of two markers was simi1ar. By incubation for 15 minutes 

to 30 minu七es ， the nuc1ear enve10pe proteins were dispersed , but 

chromatin was not condensed (see Figs. 2 , 3 and 6 , d to j). At 60 

minutes , nuc1eus became e10ngated and condensed (Fig. 6 1). 

Swe11ed nuc1eus was a1so seen. At this time , both 1amin B2 and 

p62 signa工 were �1most dispersed (Fig 6 , j and k). 
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p62 Lamin 82 Hoechst 

Figure 6. 工mmunof1uorescence staining of Xenopus erythrocyte 

nuc1ei in M-phase egg extracts with anti-1amin B2 rod domain and 

anti-p62 antibodies. 工 solated Xenopus erythrocyte nuc1ei were 

incubated in Xenopus egg M-phase extracts for 0 min. (a to c) , 15 

min. (d to f) , 30 min. (g to i) and 60 min. (j to 1). After 

fixation , each nuc1ei were doub1e-1abe1ed with a mixture of mouse 

anti-1amin B2 rod domain (a , d , 9 and j) and rabbi七 anti-p62 (b , 

e , h and k) an七ibodies. DNAs were visua1ized with Hoechs七 dye

33258 (c , f , i and 1). Bar , 10μm. 
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D工scuss工ON

NucLear enveLope breakdawn in Xenopus H-phase egg exrract:s 

We investigated nuclear envelope breakdown of isolated Xenopus 

nucleus us工ng Xenopus egg M-phase extrac七s. The results obtained 

in this report are summarized schematically in Fig. 7. Isolated 

nuclei from Xenopus erythrocyte and liver were incubated in Mｭ

phase egg extracts at 25 oC in the presence of ATP (a). After 15 

minutes , nuclei were enlarged and swelled (b). After 30 minutes , 

nuclear envelope started 七o break down (c). This process was 

monitored by the decrease of DHCC signal (nuclear membrane) and 

dispersion of lamin B (nuclear lamina) and p62 (NPC). After 60 

minutes , chromosome was condensed and elongated (d). 

Lohka and Maller (1985) reported that preincubation with 

Xenopus in七erphase egg low speed supernatant (LSS) is necessary 

七o induce nuclear envelope break down (NEBD) on Xenopus brain or 

liver nucleus. They explained that cytoplasmic componen七 involved

in NEBD and chromosome condensation is incorpora七ed in七o nucleus 

and proceed the following events ・ Miake-lye and kirschner (1985) 

performed the similar experiments that 七he isola七ed nucleus 

derived from rat cells were preincubated with Xenopus interphase 

egg LSS and following addition of M-phase high speed supernatan七

(HSS) ・ Newport and Spann (工 987) reported that the time required 

for complete NEBD varied with the type of exogenous nuclei added. 

They explained that the time required for NEBD is depend on 七he
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Figure 7. Schema七ic illustration for dynamics of nucleus in Mｭ

phase egg cell-free extracts. The mitotic even七s of nucleus in 

Xenopus M-phase egg extrac七s are shown (a to d). First , the 

incuba七ed nucleus begins 七o en工arge and B-type lamin and p62 

signals become weak (b). Second , the nucleus starts to e工ongate

and the nuclear envelope breaks down (c). The B-type 工amin and 

p62 signa工 s become dot-like pa七tern. Finally，七he nuclear 

envelope is almost dispersed and 七he chromosome is condensed and 

elonga七e like "worm shape" (d). 
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state of exogenous nuc1ei. However , in our experirnents using 

Xenopus erythrocyte and 1iver nuc1eus , which are in GO-phase , 

NEBD are induced by incubation for 30-60 minutes. 80 , we 

speculate tha七七he timing of NEBD on M-phase egg extracts is 

independen七 on 七he state of exogenous nuclei. The nuc1ear souse 

of anirnal species rnay be invo1ved in the tirning. 

After the en1argement of nuc1ei , the NEBD are induced. The 

tirne when NEBD started was about 30-60 rninutes after the start of 

incubation. We could not detect the tirne difference between the 

10ss of DHCC signa1 and 1arnin B signa1. Miake-Lye and Kirschner 

(1985) reported the difference of timing between the 

phosphoryla七ion and dispersion of 1amin and the NEBD. They showed 

that phosphorylation and dispersion of 1arnin occurred as a first 

step , and the nuclear structure becarne weak. The NEBD were 

induced 10 minutes later. 80 , the tirne 1ag rnay exist between the 

two process. Newport and 8pann (1987) reported that at high 

concentration of nuclei in egg extracts , the NEBD was blocked but 

the larnin depo1yrnerization was induced norrnal1y. These resu1ts 

suggest these reactions are regulated separate1y . 

After NEBD，七he chrornosorne condensation occurred. 工n our 

experirnent , nuc工eus was condensed and e10ngated 1ike a "worrn 

shape" , and individua工 chrornosorne was not appeared. The 

individua工 chrornosome were probab1y fused before each chromosome 

became condensed completely. 工n addition , the chrornosome 

condensa七ion occurred after NEBD. The order of these two even七S

was different from normal cell cycle (discussed 1ater). This 

result agrees with previous reports using Xenopus ce11-free 
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system (Miake-Lye and Kirschner , 1985; Lohka and Maller , 1985 , 

1987; Newport and 8pann , 1987). 

Re伊I.1.at.ion of nuc1.ear mit.ot.ic event.s 

On normal cell division , chromosome condensation and NEBD occur 

sequentially during prophase and metaphase (Georgatos et a1. , 

1997). At prophase , the firs七 sign of mi七otic events is the 

chromosome condensation. As the next eveni: , nuc1ear enve10pe 

invagina七ions are formed , and nuc1ear 1amina structure becomes 

100se (Georgatos et al. , 1997; Takamori and 工noue ， prepared for 

submi七). The A-type lamins are solubilized faster than NEBD , but 

B-type lamins are no七 (Georgatos e七 a1. ， 1997). Then , NEBD is 

induced and the components of nuc1ei and nuc1ear enve10pe are 

dispersed in七o cytoplasm. 

The nuclear mi七O七ic events are regu工ated firm工y ， probab1y by 

several mito七ic inducers and checkpoint system. The key factor 

that induce mi七otic events have been ca1led MPF (M-phase 

promoting factor) , and was previously characterized as 

cdc2/cyclin B kinase (Masui and Markert , 1971; for reviews , see 

Ma工工er ， 1991; Co1eman and Dunphy , 1994; Stern and Nurse; 1996). 

When cdc2/cyclin B kinase is once activated , the mos七 of nuc1ear 

mi七otic events are induced. 80 , cdc2/cyclin B kinase is thought 

to be as a mas七er regulator for mitosis. 工n addition to nuc1ear 

mi七otic inducers , the targets of mi七otic phosphoryla七ion that 

exists on NE have been characterized. The well known target 
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proteins are 1arnin , p58/LBR , LAP1 , LAP2 , and nuc1eoporin , such as 

p62 , and gp210 (Foisner and Gerace , 1993; Macaulay et al. , 1995; 

Favreau et a1 , 1996; Niko1akaki et a1 , 1996 , 1997). The 

phosphory1a七ion of these proteins rnay be irnportant for NEBD and 

dispersion of nuc1ear struc七ures ， such as nuc1ear 1amina and NPC. 

The rnechanisrn of regulation of nuc1ear membrane structure in 

M-phase egg extracts is probab1y differen七 from that in norma1 

cel1 division. The ce1l cyc1e of Xenopus egg at ear1y 

developrnenta1 stage is 60-90 rninutes , and is much faster than 

七hat of norrna1 ce工工 cycle. 工n addition , 七he sequence of ce11 

cyc1e in norrnal cel1 are regulated by checkpoint system. For 

exarnple , M-phase ac七ivity is not increased before DNA rep1ication 

is cornp1ete , and induced on1y a七 G2-phase. Such a system is not 

clear in Xenopus egg extract. The iso1ated nucleus derived from 

GO or G1-phase ce11s a1so induced mitotic events. 

Finally , recent reports demonstrated that a七七he time when 

NEBD occurs at prometaphase , nuc1ear membrane is fused 七o ER 

rnernbrane and incorporated in七o mitotic ERjNE membrane network 

(E11enberg e七 al ・， 1997; Yang et al. , 1997; Wiese et a工.， 1997). 

This ER-NE interac七ion is probably 10s七 on iso1ated nuc1eus. The 

invo1vernen七 of ER mernbrane on NEBD regu1ation is not c1ear. 

The systern reported in this paper is very usefu1 system 七0

investigate the rnechanisrn and regulation of NEBD. By s七udying the 

differen七 and comrnon rnechanism of the ce1l-free system and norma1 

ce11 cyc1e，七he process of NEBD may be unders七ood we11 in the 

future. 
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