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1. Introduction

We considered in [3] ergodic properties of one-dimensional piecewise linear map-
pings, and solve the spectral problem of the Perron-Frobenius operator associated with
these mappings. The main tool to solve it is a renewal equation on a signed symbolic
dynamics. By this renewal equation, we define a matrix which we call the Fredholm
matrix, and the spectral problem of the Perron-Frobenius operator and also the dynam-
ical zeta function are characterized by this matrix.

Extending this idea to Cantor sets in the unit interval, we considered in [5] and
[6] the ergodic properties of the dynamical systems on them. Also extending the idea
of signed symbolic dynamics in one-dimensional dynamical system, which express the
orbits of endpoints of subintervals of monotonicity, we introduced signed symbolic dy-
namics on a plane in [4], which corresponds to vertices and edges of polygons, and
studied dynamical systems on it.

In this article, combining these ideas, we will study the Hausdorff dimension of
Cantor sets in a plane. We will consider two types of Cantor sets which is generated
by Koch-like mappings and Sierpinskii-like mappings (definition will be giverg3).

As in 1-dimensional mappings, we construct t¢-redholm matrix® £ :«), and take
ap the maximal solution of def(— ®(1: o)) = 0, and putdes = 2. The theorem
which we will prove in this paper is the following:

Theorem 1. Let F be a Koch-like mapping or a Sierpinskii-like mapping. As-
sume thatde /2 is the simple zero oflet — ®(1: «)), and £de/2 — v > 0. Then the
Hausdorff dimension of the Cantor set generatedrby  eqdals

The numberst, which we call the lower Lyapunov number, andare defined by

& = liminf esslinf} log|detD (F" )(x ),
xX€E n

n—oo

and

v = lim supsup% log#{w: |w| =n,{w)yNl #0},

n—oo l
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Fig. 1. Koch curve
where D ") is the Jacobian matrix df” , and sup is the supremum over all seg-

ments/ . The definion of words |w| and (w) will be given in §2. We also define

£=1im supE ess sugdog [maximum of |the eigenvalue oD K" X \),

n—oo M xeI

& =liminf Ees:slinflog [minimum of |the eigenvalue o K" X|).
[S

= n—oo N x

We call F expanding if§ > 0.

2. Bernoulli type

In this section, we will consider two simple examples and explain the aim of this
paper. First examples are Bernoulli Koch curves. See Fig. 1. We will denote the trian-
gle APQR by I, APQS ={a), AQRT = (b) and AQST = Xo. A mapping F from
(a) U (b) to I is defined as follows: the triangl& PQS is mapped to the triangle
APRQ, and the triangleARQT is mapped to the trianglé&\RP Q. More precisely,

take
_ (0 (1 (1 () (1= N
p=(o)-0= (o) #=(1) 5= () et (i)
where \,, A\, > 0 and )\, + \, < 1. The mappingF is expressed as

F4(x) = M“x if x € (a),

F(x) = B 1 1 .
F(x) = M (x — <1>> + <1> if x e (b),
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Fig. 2. Sierpinskii gasket

where
1 12 -1
MY =
@)
-1 1
b
M= <yM—1 J'
Moreover, we assume the eigenvaluesmfm® are complex conjugates. Set

C={xel: F'(x) ¢ X for all n},

where F" is then -th iteration o' . Namely, is the set of points whose orbit always
stay in (a) or (b). This C becomes a fractal, and it becomes the usual Koch curve
when )\, = A, = 1/3, which satisfies all the above assumptions.

Another examples are Bernoulli Sierpinskiis gasket shown in Fig. 2. Sg@e =
T Q. We will denote the triangle\P QR by I, APSU = (a), ASQT = (b), ARUT =
(c) and ASTU = Xo. A mapping F on{a) U (b) U (c) is defined as follows: the
triangle APU S is mapped to the trianglé&\P QR, the triangle AQST is mapped to
the triangle AQ PR, and the triangleARUT is mapped the triangl&A\RQ P. More
precisely, takeP, O, R same as Koch curves and

_ )\a _ AI) _ 1
s=(5)-0=(0)m= ()
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where 0< \,, A\, < 1. ThenF is defined as

Fo(x) =M% if x € {(a),

bx)=M" | x — ! 1 if x
o] "0 (= (a)) (o) e
Fe(x)=M° <x - (1)) + (i) if x € {c),

= ().

(™ wa)

. —1/), 1/,
M= <1/(1)\,,)1/)\a 1/Aa)'

where

Mb

We assume the eigenvalues M M¢ are complex conjugates. Set also
C={xel: F'(x) ¢ X, for all n}.

The usual Sierpinskii gasket is the case wherr )\, = 1/2, and this also satisfies all
the assumptions in the above.
First note that the eigenvalues of matrices are
1. ++/1/), for M¢, and+,/1/), for M? in Koch curves,
2. +/1/(\ap) for M4, 1/(1— \,) for M? and ++/1/{\.(1 — \;)} for M¢ in
Sierpinskii gaskets.
Namely, two eigenvalues of each matrix equal in modulus. This is one of the key point
of these examples to show the argument in this section rigorously.
Moreover, note that

. (1 OaN) — 1A —1/N 1/,
MM’ = < —1/) 0

— <(1 - /\a)/(_)\a)\b + )\a)\%) 1/()\a/\b)
B —1/(ha = Aa) 0

) for Koch curves,

MM ) for Sierpinskii gaskets.

Therefore, for)\, and )\, which satisfies

1-20+ M)+ (o —M)? <0  for Koch curves,
(1—X)? =41 - )X\, <O for Sierpinskii gaskets,

the assumptions are satisfied. Thus)\jf = \,, then the assumptions are satisfied for
Koch curves ifA, > 1/4 and for Sierpinskii gaskets iX, > 1/5.
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Now we will consider dynamical systems @hfor both Koch curves and Sierpin-
skii gaskets. We can express them as symbolic dynamics with alpbbela, b} for
Koch curves and4 = {a, b, c} for Sierpinskii gaskets. We define here notations about
symbolic dynamics. A finite sequence of symbals aF--a, (a; € A) is called a
word, and we define

|lw| =n (the length of a word),

(w) = mfzj)l(F")*l«a,-ﬂ)) (the region corresponding to a word),

wlk] = a; for L <k <n,

w[k, l] = apQp+1 -0 - qp for 1 <k<Il<n,

Ow =wl2, lw|]]=az---ay,

FY = Fn...Fa

n(w) = n(az) - - - nlay),
where n(a) = | detM®|~ is the reciprocal of the Jacobian &f  restricted(t). We
consider the empty word with length 0. For simplicity, we considefe) = I, and
(e[1]) = I. We call a wordw admissible ifw) # 0, and define by the set of all
admissible words. Note that the empty ward W. For an integerM , we denote by
Wu the set of admissible words with lengtt . NamelW), = {e}, W1 = A and
W =Uy_oWu.

We can extend® as a mapping froRT into itself. Thus, for any wordy € W,

we can extend {* ) as a mapping froml  int&Rk?. For x € I, we denote bywx €

R? a point which satisfieg™™ u{x )=x .We calblx exists (we sometimes deBote)
if wx € (w). Namely, ify =wx exists, then

F*(y) € (*w) (0<k <|w|-1),
Fl’”l(y) =x.

Take 0< a < 1. Define for a Koch curve
a b
) _a (NS A
)=, (zAg zxg)’
and for a Sierpinskii gasket

a b c

a 2(AaAp)® 2(AaAp)® (A X))
D)= b | z(1-X) (- A)* (- M)* |,

¢ \z(Aa(XT = Ap))*  z(Aa(l = Ap))*  2(Aa(d = Ap))*

where z is a complex number. We call these matriceBredholm matrices. For ex-
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ample, ¢,a ) and 4, b ) components @ z () of Koch curves are determined as
times the reciprocal of detM“|®, and ¢,a) and &, b ) components ¢b z (a) are
determined ag times the reciprocal of (8t ®. Note thatF (a)) D {(a), (b), and
F({b)) D (a), (b). The a-Fredholm matrices are intrinsically structure matrices with
weight.

We will calculate the Hausdorff dimensions of Koch curves and Sierpinskii gas-
kets in terms of thex-Fredholm matrices. In this section, we will show only a heuris-
tic argument. So, we will consider coverings by worflav)},=, of C with same
lengthn @ € W,). Roughly speaking, the total Hausdoff measure with coefficient
2« is the limit of

1) > (Lebesw))”,

|w|=n

where Lebe&w) is the Lebesgue measure of a get). We can express (1) in terms
of the a-Fredholm matrices.

w1 [ (Lebega))*
1,101« <(Lebes{b))“> for Koch curves,
) D= (Lebega))”
(L 1L 1P (1:)" | (Lebegh))” | for Sierpinskii gaskets.
(Lebegc))

As a heuristic argument, since the diameter of a(sétis proportionate to the square
root of the Lebe&w), the Hausdorff dimension is the valuex@ such that (1) con-
verges to 0 for anyy > ag and diverges for any < ag. Namely fora < «ag at least
one eigenvalue ofd (1) is greater than 1 in modulus, and far> ag every eigen-
value of @ (1:«) is less than 1 in modulus. Noticing the fact thiat (d):are positive
matrices and by (2)qo is the maximala such that® (1) has eigenvalue 1, that is,
ap is the maximal solution of det(— ®(1: o)) = 0. More precisely,

Ao+ N °=1 for Koch curves
1 1 1
+ + =
()‘a /\b)uo (1 - )\a)Z(xo ()\a(l - )\b))ao
for Sierpinskii gaskets.

Particularly. for a Koch curve with\, = A, = 1/3, ap is the solution of 2(13)* = 1,
that is, 2o = 2log 2/log 3. And for a Sierpinskii gasket with, = X\, = 1/2, aq is the
solution of 3(¥/2)?* =1, that is, 2 = log3/log2.

We will construct another transformatioli associated withF . See Fig. 3. Take
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0

~»

Fig. 3. Mappingi7 for Koch curves and Sierpinskii gaskets
A=A =1- )%, Let (a) = APQS and (b) = AQRS, and define

Mx if x € (a),

F@ =3 o <x _ <1>> " <1> if x e (b),
1 1

<o (1 YA —1
o= ()

. 1 1
M= (1/(1&)1 1)‘

Note that the Fredholm matrix (1-Fredholm matrix) associated withequals

where

®(z: ap), and <1 A X ) (the vector with the area corresponding to each symbol) is

an eigenvector ofb (1¢yg) associated with eigenvalue 1. For Sierpinskii gaskets, we
can not expresg” as a mapping on a plane. So we express it gn [0 1]. Define the
length of eachaz, b and¢ by

N 1
Lebee{a> = W 5
1
Lebeib m
Lebegc) = !

(Aa(L = Ap))>o’

and

(@) = [0, Lebesa)),
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(b) = [Lebega), Lebega) + Lebegb)),
(¢) = [Lebeda) + Lebesgh), 1].

Then we define

1 | A
mx if x € (a),
~ 1 ~ . A
F(x) = M(x — Lebe$a>) if xe <b>,
1 ) o A
M(x — Lebesga) — Lebegh)) if x € (¢).

Lebega)
Note also the Fredholm matrix of equals® { :ap), and the vector(Lebes{B)) is
Lebegc)
an eigenvector ofb (leyg) associated with eigenvalue 1. This mappifgwill help to
prove the calculation of the Hausdorff dimensionfigorously.

3. Models

We also consider two types of transformations. One is mappings essentially with
two symbols like Koch curves, and the other is mappings essentially with three sym-
bols like Sierpinskii gaskets.

We will explain Koch-like mappings first. Lef be a triangte P QR. Take two
points S and7T onPR such thakS ST arlR  are disjoint segments. Take
APQS, I, = AQRT and Xo = AQST as in the previous section. Denote by an
alphabet with finite symbols. We dividgl into two sets.A; and A, (A = A; U Ay
and A; N A, = (). For eacha € A; (i = 1,2), (a) is a convex polygon and; =
Usea, (a) U X; is a partition ofI; (; is an empty set or a union of polygons). Let a
transformationF I, U I, — I satisfy

Ml(x—P)+P if x el
F(x) = .
M2(X*R)+R if x €y,

and the eigenvalues aff; and M, equal +=\; and +)\,, respectively and\;, A, > 1.
We assume that the eigenvaluesMfM, are complex conjugates. Then the Cantor set
which we consider is

C={xel:F"(x) € Usea(a) for all n}.

Moreover, we assume thdt s irreducible, that is, for any € C and a neighbor-
hoodU ofy there exista such tha&" x (€)U. We denoteX =2 X;. Fora € A,
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we denote by@ the maximal connected set which contaifa$ and does not intersect
other (b) (b # a). Note that(a)\(a) C X.

Another examples, Sierpinskii-like mappings can be defined almost the same. Let

I be a triangleAPQR. S, T andU are points on edge3Q QR amkR , respec-
tively. Take I = APSU, I, = ASQT, I3 = ARTU and Xo = ASTU also as in the
previous section. An alphabet with finite symbols is divided into three set$;, A
and A; (A = U2, A4; and they are mutually disjoint). For eaehe A; (i = 1, 2 3), (a)
is a convex polygon and; S,c.4,{a)UX; is a partition of; §; is an empty set or
a union of polygons). Let a transformatidn U2, /; — I satisfy

Ml(x—P)+P if x €1,
F(x) = ¢ My(x — Q)+ Q if x € I,
M3(x — R)+R if xeIs.

The eigenvalues oM; and M3 equal +)\; and +\3, respectively and\;, A3 > 1, and

(0
M2—<0 )\2> Ao > 1.

We assume the eigenvalues df; M3 are complex conjugates. Then the Cantor set
which we consider is the same as before

C={xel: F'(x)€ Useala) for all n}.
We also assume that is irreducible. We densite UlgX;, and define<aN> (ac A
as in the Koch-like mappings.

Every eigenvalues of the matrices appeared in our models is greater than 1 in
modulus. Therefore, our model is expanding. When we extend the domaih of to
I'U X using suitable map fronX té U X, the map becomes an extending map from
I U X onto itself. Thus{{a): a € A} U{X} is a generator, that is,

{FKI): T =@ @eAorJ=X; @i)k=012..}

generates the usual Boretalgebra on/ U X.
From the definition, we get

7 logmax A1, A2} if F is Koch-like mapping,
logmax A1, A2, A3} if F is Sierpinskii-like mapping.

> log min{ A1, A2} if F is Koch-like mapping,

= |logmin{\1, A2, A3} if F is Sierpinskii-like mapping,
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Moreover, from the definition,

26 <E< .

Thus, if A\; = A, = X for Koch-like mapping or\; = A, = A3 = X for Sierpinskii-like

mapping,£ = ¢ = log ), and ¢ = 26 = 26 = 2logA.
For simplicity, we use the notation

M*=M; ifacA.

4, Hausdorff dimensions

We will define several ‘Hausdorff dimensions’.

Derinimion 1. LetC, I and so on be as above. We will define 5 types of ‘Haus-
dorff measures’ with coefficient, and their difference except the last one mainly de-
pends only on families of covers a.

1. (usual) Hausdoff dimension: let

Vo(C) = 5|iLnOinfZ(oliameter of J; ¥,

where inf is taken over all cover§J;} of C by compact sets with their diameter less
than §. The Hausdorff dimensiody of is the critical point ofa wherev,(C) con-
verges or diverges.

2. Hausdorff dimension using only covers by words: let

vr(C) = ;@Oian(Lebes{wi»a,

where inf is taken over all coverbw;} of C by words with their Lebesgue measure
less thand. The Hausdorff dimensiod, of using only covers by words satisfies

o if a< d—w,

v (C) = 4
0 if 2.

T o> >

3. Hausdorff dimension using only covers by words with same length: let
v2'(C) = lim inf"(Lebeguw;))”,

where inf is taken over all coversw;} of C by words with their length equal . The
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Hausdorff dimension?/, of C using covers by words with same length satisfies

/

oo if a< 2,

va'(€) =

/

d
0 if =,
T o> 2
4. Hausdorff dimension with respect to a probability meaguren |: Let

V(€)= liminf Y (u((wi))°,

where inf is taken over all coveraw;} of C by words with their measurg({(w;)) < 4.
The Hausdorff dimensiod,, of C with respect toy satisfies

. d
oo if a< £,

V) = :
i el
0 ifa> 5>

Note thatd, equals the Hausdorff dimension with respect to the Lebesgue measure on
I (dw = dLebeS)-

5. Hausdorff dimension defined by Fredholm determinant: This is a bit different from
other definitions. Letd { n) be the a-Fredholm matrix. Then determiney as the
maximal solution in modulus of

det(/ — ®(1: «)) = 0.

Then we calldy = 2, the Hausdorff dimension defined by Fredholm determinant.
The a-Fredholm matrix for general mappings will be given later.

From the definition, it is trivial thatly < d,, < d!,. The heuristic discussions in
§2 for Bernoulli cases showd,, = dg.

5. Markov cases

In this section, we only treat the Markov mappings.

Derinimion 2. A Koch-like mapping or a Sierpinskii-like mapping described

above is called Markov ifF {@))° N (b)Y # O for a,b € A, then F({a)) D (b), where
J° and J is the interior and the closure of a sét , respectively.

RemArRk 1. The Markov property means for amy b € A

Fa | ®cx.

b: F({a))D(b)
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Now we define am-Fredholm matrix® £ «) by

: _ Jan(@)* it F({a)) > (b),
qD(Z- a)a.b = .
0 otherwise.
Note again that)(a) = |detM“|~1 and M* =M; ifa € A;.
We will prove Theorem 1 for Markov cases, that is, the theorem which we will
prove in this section is the following:

Theorem 2. Let F be a Markov Koch-like mapping or a Markov Sierpinskii-like
mapping. Assume th@ts/2— v > 0. Then the Hausdorff dimension of the Cantor set
C generated byF equal8y (dy = do).

Lemma 1. For a Markov mappingF, d,, < de.

Proof. SinceF is Markov, the area div) (w = a3---a,) is greater than or
equal to

n(anfl) o 7]((11) X Lebegan%

and less than or equal to

n(an—l) o '77(“1) X Lebes<an>'
Therefore,v”’(C) is greater than or equal to
(L Do(L:a)"*(Lebeda)uca,

and less than or equal to

(1., 1)@(1: o) *((Lebes(a)*)oe s

Note that® (1:«) is a non-negative matrix. Therefore, the maximal eigenvalue in
modulus is non-negative real and simple. This shows that & «ag then ® (1:a)"
diverges, and ifx > ag then it converges to 0. Therefore far> ag, v*’(C) = 0. This
showsd), < do. O

Now, we will construct another mapping from [0, 1] into itself as we did ir§2.
We consider an arbitrary order ine A. Let (v(a)).ca be an eigenvector ob (1)
associated with eigenvalue 1 such thaf_ , v(a) = 1. Note thatv ¢ )> 0, because we
assumeF irreducible. Divide the interval, [0 1] by the subintervals with lemgth () in
an order. We ignore the endpoints, because they are unessential in our discussion. Let
us denote the interval correspondingdo  with length ( )(BY. From the definition
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of ®(1: ag), we can construct a piecewise linear mappifg[0, 1] — [0, 1] which
maps (@) onto U'_, (b;) with slopen(a)~°, where (b;) C F((a)) and

k
Fla)\ | Jbi) c X
i=1

for eacha € A. Note that the Fredholm matrix of equals® £ :ao) (cf. [3]), and F
is expanding and irreducible.
Now, we appeal to the following theorem:

Theorem 3 (Billingsley[1]). For probability measuregs, po,

o lim (09ra({a*[L, n])) :a}
€c { S log p2((a*[1, n]))

for some0 < a < oo, then
du, = ad,,,
wherea*[1,n] € W, is a word with lengthn such thata*[1, n]) > x.
Lemma 2. d, =d), =de.

Proof. Let 1 be the probability measure ofi which is induced through the
symbolic dynamics from the Lebesgue measure gn [0 1] wherkts, andu, be the
Lebesgue measure an . Then

o logua((a[Ln)) _
C C {x. ”ILmoom—ao}'

On the other hand, the Hausdorff dimension of [0 1] whéreacts equals 1, hence,
from the definition,d,, = 2. Therefore, by the Billingsley theoremdcpes = d,,, =
2ap(= dyp). As we remarked in the definitiom epes= d,,, @andd., > d,,. Therefore, by
Lemma 1, we getl,, . = 2ap. O

It remains to provel, =y . To prove this, we need the following assumption.

AssumpTion 1. There exists a constait > 1 which satisfies:
1. For anyd >0 andx € C, there exists a wordv & - - -a, such thatx € (w) and
§2/K < Lebegw) < 2.
2. For any wordw , the diameter of the circumcircle @) is not greater thark
times the diameter of the inscribed circle.
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We need a very simple lemma.

Lemma 3. PutO< a < 1. Then for anyay, ..., a, > 0 such thata;+- - -+a, =c,
we get

The proof is easy, thus we omit it.
Lemma 4. Assume that Assumptidnholds for someK > 1. Thendy = d,,.

Proof. We only need to showy > d,,. Take any compact set whose diameter

is shorter thany. We consider a rectangle with length of edges being equal amd
containing/ . We will cover it by words whose area are betwé&emnd 62/K. Every

word which intersects the rectangle must be contained in a rectangle with length of
edges equals @ +d4) Therefore, since the area of words are greater g, the
number of words which intersect with is at mostk(2 #K) Take anya > dy.

Then for anye > 0, there existsy > 0 such that there exists a covering ©fby
compact setq J;} for which their diameters are less thanand

Z(the diameter of/; ¥ < e.

For eachJ; , we can cover it by at mostk(2 #&)words {w;;} with their area be-
tween 5,-2 and 6,-2/1(, where{; is the diameter of/; . Thus, using Lemma 3, we get

D0 (Lebesw;;)™ < (K +1PK) > | Lebegw;;)
i Jj i Jj

< (2K +1PK) (2K +17* ) 62

< (2K +1PK e,
This shows 2 > d,, for any 2v > dy. Thusdy > d,. O
Therefore, we only need to show our models satisfy Assumption 1.

Lemma 5. Markov Koch-like mappings and Markov Sierpinskii-like mappings
satisfy Assumption 1

Proof. For Koch-like mappings, note that/{)?> and (M,)? are the identity ma-
trix times constants. Thus, for any word & ---a,, M,, --- M, can be expressed
in the form Uy(M1M»)*U,x constant with somé& , wher&, is either M or the iden-
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tity matrix and U, is either M; or the identity matrix. From the assumption that the
eigenvalues of\i; M, are complex conjugates + gi,

M,, - M, = UV *N*VU, x constant
()
q9 P
with some matrixV . Since the matriX  is the matrix which only rotates and expands,
it does not change forms of polygons. Therefore the matrices which deform polygons

are at most three matriced;, M, and V . We assume that mappings are Markov, that
is,

(@) > FI((w)) > (a)

with somea € A. This proves the lemma for Koch-like mappings, and the proof of
Sierpinskii-like mappings is almost the same. ]

For Markov cases, we can estimate

v = Iimsupsup% log#{w: |w| =n, (w) NI #0}.

n— o0 l

Note first any wordw with lengthh  satisfieB” (w) D (a) with at least onex € A.
Therefore, there exists a constarit > 0 such that

3) the diameter ofw) > Cle*E”.

Thus for any segment , the number of words with length  which crasses is at most
Cret" with some constantC, > 0. This showsr < &. Note that even for general
mapping, F"(w) C I U X. Therefore there exists a constary > 0

the diameter of(w) < Cze .
Thus we getv > ¢£.

Remark 2. For non-Markov cases, the equation (3) does not necessarily holds.
This means it is not easy to calculatein general.

6. Renewal equation for Markov case

In this section, we will explain a renewal equation for Markov Koch-like map-
pings and Markov Sierpinskii-like mappings, and using this we defifleredholm ma-
trices, which has deep connection with the Perron-Frobenius operator associated with
F onC.
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Assume thatF is a Markov mapping ah . Fere A andg € L, define a
formal power series

(4) G a)= 32 [ 3 ) 1 gt
n=0 |w|=n

where 1, is the indicator function of a s¢t , and a meagtirés the Lebesgue mea-
sure restricted t@J,c 4(a). Dividing into the first term and the rest of terms and then
changingF ¢ ) tox andi ta — 1, we get

0G0 = [ LT+ > 2 3 ) [ L wne)ax

n=1 |lw|=n
= / g(x)dx + zn(a)® Z 7" Z n(w)® Z / 1) (wx)g(x) dx
(a) n=0 |w|=n b: <b>CW
= / g(x)dx + zn(a)” Z s§b>(z: Q).
(=) b: (b) CF@)

Take vectors

sg(z: @) = (sg(z: @))aea

acA
Then we get
Se(z: @) = xo(z: @) + D(z: a)sg(z: ).
This is the renewal equation for Markov cases. Heyg(z: ) does not depend on

both z anda, but as we see later, for general cases it depends on them.
For any setJ C I, we can define as before

sg(z: Q) = Zz” / Z n(w)*1; (wx)g(x)dx.

n=0 |w|=n
Note that from the definition, for a disjoint union of polygods J&U Js,
s;(z: ) = sgjl(z: Q) +sé{2(z: Q).

We can construct several-Fredholm matrices. The smallest one can be constructed
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using

sp(z:a) = Zz”/ Z n(w)® Z 1) (wx)g(x)dx.

n=0 |w|=n acA;

Then

Z s§“>(z: Q)

acA;

Z (/< > gdx +zn(a)” Z sg<b>(z: a))
a€A; a

b: (b)CF((a))

Z </< > gdf+zn(a)as£(<“>)(z: a)) .

acA;

s; (z: @)

Renewing the last term repeatedly unfif ({(a)) containsu;I;, we get a renewal equa-
tion of the form

sz';,(zi Q) = Xig(zi a)+z¢,~,j(zi a)sg(zi a),
J

with some polynomialsxg(z: a) and ¢; j(z: o). Define ®g(z: o) = (¢ ;(z: ). We
can also construct anotherFredholm matrix®,, { :«) using W, the set of admis-
sible words with lengthM as an alphabet.

Lemma 6. The ap-Fredholm determinantdet(! — ®(z: «g)) equals theagp-
Fredholm determinant defined before. For abg; the induced mappind’ is the same.

Rough sketch of the proof. They-Fredholm matrix is the Fredholm matrix df.
It expresses the eigenvalues of the Perron-Frobenius operator associatdd Wising
[3], we can prove the lemma (see [3] for detail).

We can express the-Fredholm matrix with 2< 2 matrix for Koch-like mappings
and 3x 3 matrix for Sierpinskii-like mappings. For example, let us consider a Koch
curve with Ay = {a, b}, Az ={c}, and F (a))\({(a) U (b)), F((b))\(c) and F (c))\(a)
are contained inX . Then the-Fredholm matrix using alphabdt, b, ¢}, or in other
words, usingss” (z: a), s{”(z: @) ands{”(z: a), equals

gz 0
0 0 znf'].
s 0 0
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On the other hand, the-Fredholm matrix using;g”Mb> (z: @) and sg<“> (z: @) equals

( g znf)
2(pm)® 0 )°

wheren;, n, are |detM;| =1, | detM,| 2, respectively. Note heré?((c)) D (a) U (b).

Now we will consider det{ — ®(z: «)) for both first and second-Fredholm matrices.
Multiplying the third row of the first one by),, then add to the first row. Then we

can erase the third row and column, and we get the second one. In a similar way, we
can show then-Fredholm determinant det ®(z: «)) is invariant whatever partition

we take.

Remark 3. Note thatF is expanding. We can construct an invariant probability
measurey "absolutely continuous with respect to the Lebesgue measure(cf. [3]). Since
F onC and F on [0, 1] can be expressed on a same symbolic dynamics, we can in-
duce i to a probability measur@ on C which is invariant under .

Remark 4. In the definition ofs] { :), if we take integrals by the Hausdorff
measurev,,, instead of the Lebesgue measute restricted toU,c 4(a), we get

S [ 30 nw) e @dvan = - [ PaL e,
n=0 n=0

|lw|=n

=32 [ 16 @) dvan
n=0
where P, is the Perron-Frobenius operator associated with the mapping C,en.0.

7. Signed Symbolic Dynamics

To construct thex-Fredholm matrix for non-Markov cases, we need to use signed
symbolic dynamics.

Let J be a polygon. We denote bpJ and D] the set of vertices and the set of
edges of/ , respectively. S&’ BJUD/. For each vertex? € D, there exists two
edgesPQ, PR € Dj. Take two half linesPQ o) and PR (o) through PQ or PR
as in Fig. 4, that is,Q and®k lie o®Q o) and PR (), respectively. We call the
union of two half linesP Q €o) and PR (o) a O-dimensional screen associated with
the vertexP . It divide the plane into two parts. We call the part which contdins an
interior part of this screen. For each edge& < D/, we can take a linech)P Q(cc)
on which bothP andQ lie. We call this line 1-dimensional screen associated with the
edge PQ . It also divide the plane into two parts. We call the part which contains
an interior part of this screen. Fé € D’, we denote the screen associated with it
by J?. Fora € A or w € W, abbreviating brackets, we denote screens:yor w?
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P R 00 00 P 0 00
J 1 1 J |
0
oo 0-dimensional screen 1-dimensional screen
Fig. 4.

instead of(a)? or (w)?, respectively. We denote the set @t (a € A, d € D) and
w? (weW,de D) by A and W, respectively.

As we described in the introduction, we will use the results in [4]. We will review
its outline without proof.

Set for a screew?

5 +1 if xbelongs to the interior part af 2,
o(J% x) =

—1 otherwise.

+% if 0¢e Dg,
s(Ja) = 1

-5 if o€ Dj.

Lemma 7. For a polygonJ,

Z s(]a)a(Ja,x)+1 =1, () a.e.x.

aoebD’

The proof is quite easy. But this is a key lemma to construct renewal equations.

Now we will construct renewal equations. However, it is almost impossible to con-
struct it for sg’Q :a) defined in§6. So we divide them into several generating func-
tions. Define for a polygo C {(a) (¢« € A) andg € L*®

@)= [arew 3w o w),
<u'[;]g O(a)

wx

where the sum is over all the words  either empty word, or its first symbol equals
a € A and there exists a point € I such that

FI=1(y) = x,
Fiiy) e wli+1]) (1<i<|w/-1).

Note that we need not assume the existence of a pdirt (a) such thatF (') =y,
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that is, we do not assumex € (w) (recall the definition ofwx ). Our aim is to con-
struct a renewal equation crga(z: «) above. In [4], since we considered usual dy-
namical systems on a plane, we constructed it with coefficigfug instead ofn(w)®.
Nevertheless, the construction of the renewal equation is just the same.

Using Lemma 7, we get the following lemma.

Lemma 8. For a polygonJ C (a) for somea € A and g € L*°,

e 0) = [ e T amasic ) 3 5O o)

oeD’

sé(z: a) = #A/gd)?+z (Z n(a)o‘> sé(z: a) + Z Z sga(z: Q).

acA ac€A e Dia)

This lemma suggests that the singularitieSsééfz &) :are determined by the sin-
gularities ofsgfa(z: ).

To solve the problem of singularities ega(z: «), we construct a renewal equa-
tion. We need several notations which we mentioned in [4].

Fora andb &,b € A), we say that a screert of a polygonJ crosseab if
J C (a) and F* ()N (b) # 0. Set

~ {{x € (b): o(F*(J), x) = +1} if J crosses ab,
(ab, J) = .
0 otherwise.

A screen(ab, J)? with a faced € D7) such that(ab, 7)? and b7 are different
as sets for any’ € D? is called a new screen generated By 7) (n (b), and we
denote by Ne\wb J) the set of all the new screens afb, J).

Let w =a;---a, be a word of lengtm > 2 andb € A. We call a screery of a
polygonJ crossesb if

J C <Cl1>,
FU(Ao(w[1,i], I N (@) 20 (A<i<n-—1),
Fo(K)n (b) #0,

for some K € New(w, J), where we define inductively the setsy(wb, J), (wb, J)
and the new screens Néwb, J) generated byF” ) in (b) as follows:

(wb, T = Nk eneww. 7y (@b, K) if J crosseswb,

’ ] otherwise,
{(wb, 7)?: (wb, J)? #b? ,¥9' € D)}, if J crosseswb,
0 otherwise,

New(wb, J) = {
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and

Aotwb, Ty = 40 ENAE) it w= e,
o (F¥(7) N Al{wb, T)\A(b) otherwise,

where AJ is the boundary of a sét

Derinimion 3. We denote byF]l the set of new screens generated 1y a?)(in
some(b) (a,b € A, € D), that is, FA=Ugpen Upep New(ab, a?). Forn > 2,
let F"A be the set of new screens generatedAsyJ) if some (b) (a,b € A, J e
F"~14, J C (a)), which do not belong taJ! -} F* A.

DeriniTioN 4. For a screery and g € L, set

0= [ swoln) @ Y our(0).0) [ ),
) beA

¢ (b: @) = s(byn(a)* o (F*(1). b),

S(1: 0) = (@) 3 oa(F(T). byn(e)”.

be A

and

if o(F9(J), x)=—1 holds for a.ex € (b),
otherwise,

~ -1
o1(F(J), b) = {+1
+1 if a(F“(J) x)=+1 for all x € <13>

or if J crossesub and = (ab, J)°
for somed € Dlab-J),
—1 otherwise.

o (F(J),b) =

Set for a screen, L € U FKA (J C (a) for somea € A) of a polygonJ

(L:a) if Lel,
. 2:n(a)®s(J) if a,b € A such_ that] crossesab
o(J, L)(z: o) = and L € UZ FFA is a new screen
generated byF“ f) in (D),

0 otherwise,
and

(7, D(z: @) = 2267 (1: a).

Then we get a renewal equation of the form using Lemma 7:
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Lemma 9. For all a € A, polygonsJ C (a) and g € L, we get a formal
expression

G sla)=x@a+ Y 67 Dk st a)+ o0, D a)slz: o).

Leugs,FrA
This renewal equation leads an infinite dimensional renewal equation for

CHER) Teug Fr AULT

Using this renewal equation, we want to determine the singularitieg af «) :

Renewing all the terms corresponding tg2, ,,F*A in (5), we can construct a
finite dimensional Fredholm matri®, z( a), which is Ul_oF*A x Ui_,F* A matrix
and augzoF"]l vector x, ,(z: o). We need complicated notations and calculations to
show how to construct them, thus we omit it. See [4] for detail. We get the following
theorem.

Theorem 4. For any ¢ > 0, there existsng and forn > ng ®,(z: «) and
Xen(z: @) are analytic injz| < e**~¥~¢ and for anyg € L> they satisfy

(I - Qn(z: a))sg,n(z: a) = Xg,n(z: a)v
where
Senl(zi @) = (sé{(z: a))ieu’;:OF"A'

Using the above theorem, we can prove the singularities/ of ) (J: polygon)
in |z] < e**~¥~¢ are the solutions of

det( — ®,(z: o)) = O.

AssumpTioN 2. Assume that there exisis such that forn > ng there exists a
solution o > v/¢ of

(6) det( — ®,(1: ) =0.
We denote byg the maximal solution of (6).

Hereafter, for notational convenience, we fix for which ag is the maximal solution
of (6).

For Markov mappings, we have constructed two types of Fredholm matrices.
Noticing the fact that they are constructed to express the singularitie§ of o) the
zeros of the Fredholm determinant det{ ®(z: o)) are the same.
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8. Estimate of Hausdorff dimension

343

8.1. The inequality Zxo > dy Let J be a polygon contained in sonfe) (a« €

A). We constructed a renewal equation for

Sé{a(zi ) = /d)?g(x) Z ZIp(w)¥e (72, wx)

(w[l]) > (a)

30wx
in §7. We define another generating function:

)= [avew Y w)rew? w),

(w[1]) D (a)

w=e or JOwx
where
+1 if w=e andx[1]N interior of J9 # ),

a(J?, wx) = { +1 if w #e and ((fw)x[1]) N interior of F<(J?) # 0,
—1 otherwise,

wherex [1] =b if x € (b) (b € A). Then, as in Lemma 8
> @)y @)+ [ el)dir @) sye: o) = 50 a).
deD@ !
where

SUCOED D SIS Sy FETE

n=0 L\U'Erlllzll b: (wb) 70

Thus, takingg = 1, then -th coefficient ofy _,_ , QYI)(zS «) equals

> Y nw)*Lebes(r) > > Y n(w)*Ka(Lebes(b)))”

|w|=n b: (wb) 7D |lwl=nb: {(wb)#D

> Ko Y (Lebes(w))”.

|w]|=n+1
where

K. = min Lebes(b))
“  beA (Lebes(b)))>”

Thus_,c4 gi‘”(l: «) diverges as1 — oo for 2a < d!

w*
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Define

X;(z: a) = /g(j,x)d)?+ zn(a)® Zgl(F”j,b)/g(x)df,

be A

where
o, (F*T.b) = o(F*J.x) (x € (b)).
Then we get as (5)

(" £§(15 @) :Xg(ﬂ a)+ Z o(J, L)(z: a)gg(z: )+ o7, 1)(z: a)gi,(z: a).

Leugg, FrA

Thus, the singularities oig(z: «) are the same a§:’(z: «). Namely, takeng which is
defined in Assumption 2 and reduce the infinite dimensional Fredholm matex «)( :
above toU;2 F* A dimensional Fredholm matrix,,(z: «) as in (6). Thens,(z: a)
satisfies the similar renewal equation

Sene(zi @) = Xg’no(z: Q@) + Dpe(z: s, (20 ).

Thus, the maximal singularity oig(z: a) equalsag. This shows &g > d, that is,
26!0 2 dH.

8.2. The inequality 2xg < dy For any non-Markov transformatiof’r , we will
construct Markov transformationsy  for which
1. {(a)y C {(a), where (a)y and (a) are the polygons corresponding o and
(a € A,
2. {(a)y is monotone increasing iV andy{a)y = (a),
3. Fy is the restriction ofF taJ,c4(a)n,
4. the components of the Fredholm matfixz ¢, Fy) almost coincides until the co-
efficientszV with® ¢ :a), where® ¢ :«, Fy) the a-Fredholm matrix associated with
Fy.

Then we getCy C C, whereCy is the Cantor set generated 5 . Therefore, the
Hausdorff dimension of y is less than or equal tdy

Lemma 10. Assume&a > v.
1. detl — ®(1: «, Fy)) converges taet(l — ®(1: «, F)) as N — oo,
2. for sufficiently largeN ¢{ya > vy, Whereéy is the lower Lyapunov number asso-
ciated with Fyy .

Proof. Let us denote byw)y the polygon corresponding to a wornd deter-
mined by Fy . Note firstFy is the restriction df . Therefore, the matrices which de-
termine F andFy are the same, that is, for a ward |w| € n), the Jacobian orw)
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of F" and the Jacobian ofw)y of F} concide if w is admissible with respect to
both F andFy . From the definition, for any word (w)y C (w). This means ifw

is admissible with respect t¢y , then it is also admissible with respedi to . Thus,
& > &v. On the other hand{w)y — (w) as N — oo. Therefore, for an admissible
word w with respect toF , there exist$, such that forN > Ny (w)y is admissible.
This shows limy_ ., &y = £. Again, since{w)y C (w), we getvy < v. From the as-
sumption thatta > v, 1 < e$“~%. Moreover, sinced A «, Fy) almost coincides until

the coefficientssy  with® { «), det( — ®(1: «, Fy)) converges to def(— ®(1: «)).

This proves the lemma. ]

Let agy be the maximal zero of dgt(— ®(1: a, Fy)). BecauseFy is Markov,
200,y equals the Hausdorff dimension 6fy which is less than or equal t@y . This
showsdy > 2aq .

Markov transformationgy satisfying the above conditions are constructed as fol-
lows. Arrange screend € A which are generated by edges in an ordgrds,, . . .. Let

05 = {FX@a):a e A, 1<k <N}

Considere; = a1 N A{ay), that is, e; is an edge of(a;) which generateg;. Choose
words {w!} which satisfy:

1. |wi| > N.

2. (w)) C{a).

3. (A{wi))Nes #0, that is, (w}) has an edge contained .

4. AU (wh)) D er.

5. If FkK(b) intersectse; (1 < k < N, b € A), there exists only onev’ which

intersects it. _

6. Lete; = (A(U;(wi))) \e1. Then, for any edge ofb) (b € A), F¥i(e} N

A({wh))) intersectse at most once for any<lk < N.
We can choose such taking |wi| sufficiently large. Now take(a)\(U(w})) as a
new polygon associated withy and @1\e1) U ¢ as a new screed;. We can natu-
rally define new screens generated by verticega@f using new screens generated by
edges. Now defined} using newd; as we define0%. Next consideri, and choose
words {w5}; same as before and do the same thing. Continue this procedure, and we
get new polygons and screens. When we want to emphasize new or old polygons or
screens, we will write such a&)y or (a)oq etc. Note that

(a)n =Ngep interior of new screens af? ¢ (@) old-
Take Yy the union of newa) (Ynv = > ,c4{(a)n), and defineFy the restriction of

F to Yy. We denote byCy the Cantor set generated B . Then from the definition
Cy C C, and Fy is a Markov transformation (cf. Remark 1). Hence, by Lemma,5,
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satisfies Assumption 1. Now consider for a polygbr {(a)y (a € A) andd € D’

sé{a(z: a, Fy) = ZZ" Z n(w)“

n=0  weW: |w|=n

/ ox (2, wx)SL (WAl > (@)n. (w)y # 0g() dx.

wheredx is the Lebesgue measure restrictedrip . Let us denot® by ., (Fi) the
a-Fredholm determinant. Sincéy  is Markov, the Hausdorff dimensiog yofequals
2a0,n, Whereag y is the maximal solution of

8) det( — ®(L: a, Fy)) =O0.

Note also, from the construction of theFredholm matrix® £ «, Fy), the singulari-
ties of sé{ @ :«, Fy) (J: a polygon) is determined by the equation

9) det( — ®(z: «, Fy)) =0.

Without loss of generality, we can assume > ng, whereng is determined in As-
sumption 2.

Lemma 11. Fix anye > 0. Then there exists a constark > 0 such that for a
word w (Jjw| > N) andn < N

(10) the coefficient ot”  0f{")(z: o) < K||g|loce™ €~V
Proof. We have

the coefficient of:" ofs{" (z: @) = | [ Y n()* L) (ux)g(x) dx|

|u|=n

(11) < K/e*(fafa)IZHgHOO Z /1<w>(ux)dx

|u|=n

with some constank’. From the assumption < N, only oneu satisfies 3, (ux) = 1.
Therefore,

rhs. of (11)< K’e~€2=9||¢]| Lebegw),
and Lebeéw) < K¢~V with some constank”. This proves the lemma. [J

Recall that the renewal equation 0¥(z: «) is constructed by looking the posi-
tions of F* (J) and (b). We will review the construction of the renewal equation. Take
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J e U F*A (J C (). Then dividingn =0 term and others in
s1(z: a) = / S S o7, wn(w) g (x) dx,
n=0 |w|=n

we get
(12) sg(z: ) = /U(j,x)g(x)df
+an@)® | Y ou(FUF). 0P a)+ S sl )
beA (bYNFa(T)70

When we consider nevii’s and Fy , there may happem(F4(J), b) differs or by N
F%(J) = 0 or not for new and old ones. However, such things may happen when at
least one of new or old* J() crossesh € A. When we consider

(13)57(z: . F) ~ [ ooalJ x)e(0) o

—mn(@)® | orod FU(T). b)s (2 Fy) = Y {92z a, Fy)
beA (bynFa()#0

using oldo(F*(J), b) etc., we get

(14) A< Y @G o Fy)

1,i
(wi) crossesF“(J)

|z[n(@)* K ||g]|cce €.

IN

We get a renewal equation dividing” (z: o) and ~s§“"'l>(z: a) in (13) using
Lemma 7, and continuing this procedure. So also sf?fz: «, Fy), we approximate
it using old~al,0|d(F7[1”‘](]), b) and (J[1, k]b, J)oq until N, and forn > N we use
new o1 v (F/0¥(J), b) and (J[1, k], 7)y. Then the difference

(15)  s)(zi o Fn) —xp(zi o Fy) — Y @i o, Fy)jjse(z: o, Fy)
beU2 Fr A

is at most

N
(15) < > [z n(T[L kDK ||g]|oce €N
k=0

x (the number of(w}) which intersect withUL,F*A)
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no
K/ Z |z\ke_(5°‘_5)k||g\ |Ooe—(£—s)NeuN
k=0

AN

/ |18]]oo —(—v—£)N
K1z 2le~€a—a°

with some constank’. The singularities Ofsg(z: a, Fy) in |z] < e~ are de-
termined by the zeros of dét ®(z: «a, Fy)), and from the construction they con-
verge to the zeros of ddt(— ®(z: «)). On the other hand, the maximal zero of
det — ®(1: a, Fy)) equalsag y. This shows, iféag > v, by Lemma 10 and the
assumption thaty is the simple zero, lim_ . aoy = ag. Therefore,

dy > lim dH(CN) = lim ZOAO’NZZOéo.
N—oo N—oo

Combining the results, we gelty =@ = do, and complete the proof of Theo-
rem 1.

Remark 5. It is not always possible to construct a Markov transformatign for
which Cy D C. Because(a)y may intersect.
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