|

) <

The University of Osaka
Institutional Knowledge Archive

. Primary decomposition of elements in compactly
Title ; . . ;
generated integral multiplicative lattices

Author(s) |Murata, Kentaro

Citation ??gka Journal of Mathematics. 1970, 7(1), p. 97-

Version Type|VoR

URL https://doi.org/10.18910/4017

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Murata, K.
Osaka J. Math.
7 (1970), 97-115

PRIMARY DECOMPOSITION OF ELEMENTS IN
COMPACTLY GENERATED INTEGRAL
MULTIPLICATIVE LATTICES

Dedicated to Professor Keizo Asano on his 60th birthday

KentaARO MURATA

(Received December 9, 1969)
(Revised February 6, 1970)

1. Introduction

A complete lattice L is said to be compactly generated, when it has a subset
3 which satisfies that (1) if x<sup N for an element x of = and a subset N
of 3, there exists a finite number of elements «,,--, %, of N satisfying x, U-+- U
x,=>x, and (2) every element of L is expressible as a join (supremum) of a subset
of 3. 3 is called a compact generator system of L. The purpose of the
present paper is to investigate primary decompositions of elements in compactly
generated integral multiplicative lattices®.

Throughout this paper, we let L be a compactly generated integral mul-
tiplicative lattice with a compact generator system 3. In Section 2 we define
a p-system as a suitable subset of 3, which is somewhat different from the
one introduced in [13]. By using the u-systems, we define radicals of elements
in L and consider meet decompositions of radicals by prime elements. In
Section 3 right primary elements are defined by using radicals defined in
Section 2. The result in this section is a uniqueness theorem of short deco-
mposition for elements having right primary decompositions. Section 4 deals
with right upper M-components of elements, where M is a y-system. A right
upper M-component is defined by using the concept of M-v-systems, which
are also somewhat different from the one introduced in [13]. It will be shown
in this section that the right upper M-component of an element has two differ-
ent representations (Theorem 3). Section 5 is mainly concerned with minimal
primes of elements and decompositions of upper isolated p-components of
elements. The results in this section are obtained under two conditions. The

1) In[12, §9] 2 is called an aj-system of L. It can be proved that a lattice is compactly
generated in the sense of Dilworth and Crawley ([5], [6]), if and only if it has an aj-system, that
is, it is compactly generated in our sense.

2) Cf.[3, CHAP. XIII].



98 K. MuraTA

one is the ascending chain condition for elements, and the other is the condition
(N), which is concerned with weight and type of product-forms. Under some
modified semi-modularity for L, it can be proved, in Section 6, that every
element of L has right primary decomposition if and only if L has right weak
Artin-Rees property. The proofs of the results obtained in this section are
similar as in [7], [9] and [10]. But in order to make this paper self-contained
we include proofs of the results. Section 7 lays two applications. The ideal
theory in non-associative rings has been developed in [2] and [8]. The results
obtained in the first half of this section are generalizations of the classical primary
decompositions of ideals in commutative rings to ideals in (N)-rings (non-
associative and non-commutative), and which are concerned with [2], [8], [10]
and [15]. In [3] Birkhoff has pointed out that the lattice of normal subgroups of
a group is a commutative integral residuated cm-lattice under the commutator-
product and the set-inclusion. It is easy to see that the set of the normal
subgroups with single generators is a compact generator system of the lattice.
In the latter half of this section, primary decompositions of normal subgroups of
(N)-groups are obtained as an application of the results in the preceding sections,
where (N)-groups are regarded as a generalization of nilpotent groups. Recently
primary decomposition theory has been studied in various algebraic systems ([1],
[17], [18], etc.). In particular, the theory in groupoids is obtained, among
others, in [1]. We shall note here that the results in Sections 2~6 are applicable
to subsystems of some sorts of groupoids, but which is not collected in this
paper.

Elements of L will be denoted, throughout this paper, by a, b, c,:-, and
those of =, in particular, by x, y, 2, --- with or without suffices. The greatest
element of L will be denoted by e, which is not necessarily multiplicative unit
of L ([3, CHAP. XIII]). ab<a and ab<b are assumed for two elements a, b
of L. An element a is said to be less than b if a<<b. The symbols VV and A
will denote the set-theoretic union and the intersection respectively. By
{ac A|a has property P} we mean the set of all elements a in A4, each of which
has property P.

2. Radicals of elements

Let a, b be any two elements of L. The set of the elements x of 3 such
that xb<a is not void. 'The join (supremum) of such elements x will be denoted
by a/b, and called a (right) quotient of a by b. It is easily verified that a/b is
not necessarily the join of the elements ¢ of L such that ch<a. The quotient
has the following properties: (1) a<a/b, (2) (a/b)b<a, (3) b<a implies a/b=e,
(4) b<a implies bjc<alc, (5) ¢<b implies a/b<alc, (6) inf (a/by)=a/(sup b))
and (7) inf (/b)=(inf a)/b. * *
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From now on, the symbols P(a) and X(a) will mean the sets {x&Z|
alx=a} and {xEX|x<a}, respectively. The complements of P(a) and Z(a)
in 3 will be denoted by P’(a) and 3'(a) respectively. It is then easy to see
that P(a) is contained in 3'(a) for every element a=e.

DerFINITION 1. A subset M of 3 is called a u-system, if there exists an
z of M such that z<xy for any two elements x, y of M. The void set is to be
element considered as a p-system.

An element p of L is said to be prime if whenever a product of two elements
of L is less than p, then at least one of the factors is less than p.

Lemma 1. The following conditions are equivalent to one another.
1) p is prime,

. 2) xy<p(x, yE3) implies x<p or y<p,
3) ='(p) is a p-system.

Lemma 2. An element p (e) is prime if and only if P(p)=3"(p).

Proofs. These two lemmas are immediate.
The following lemma is somewhat different from Lemma 1 in [14].

Lemma 3. Let a be an element of L, and let M be a u-system which does
not meet 3(a). Then there exists an element p which is maximal in the set con-
sisting of the elements b such that b>a and 3(b) does not meet M. p is necessarily
a prime element.

Proof. Since L is compactly generated, we can show, by Zorn’s lemma,
the existence of p mentioned in the first part of the lemma. To prove the
last part of the lemma, we suppose that xy<p, x<Kp and y<£p for x, y in =.
Then there exist ¥" and y’ in M such that x'<pUx and y'<pUy. Since
there exists an element u of M such that u<x'y’, we obtain that u<(pUx)
(pUy)<pUxy=p. This is a contradiction.

DrrFINITION 2. Let a be an element of L. A radical of a, denoted by
rad(a), is the join of all elements x of = having the property that every p-system
which contains x meets Z(a).

Theorem 1. For every element a of L, rad(a) is the meet (infimum) of the
primes p such that py>a.

Proof. First we shall show that rad(a)< p, for every prime p, such that
pr>a. If we suppose that there exists p such that p>a and pF>rad(a), we
can take an element x of 3 such that x<<p and x <rad(a). Then there exists
a finite number of elements x,,---, x,, such that x<x, U--- Ux, and each x; has
the property that every p-system which contains x; meets %(a). Now, since
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there exists x; such that x;p, Z'(p) meets 3(a), which is a contradiction.
We have therefore rad (e)<inf p,. Next, let x be any element of 3 such that
A

it is not less than rad(a). Then there exists a y-system M which does not meet
3(a) and contains x. Hence by using Lemma 3 we can take a prime element
p such that p>a and 3(p) does not meet M. Then evidently x is not less
than p. Therefore x is not less than ir)}f pr.  This completes the proof.

DEerFINITION 3. Let a be an element of L. A prime element p of L is said to
be a minimal prime belonging to a, if (1) p>a and (2) there exists no prime
element p’ such that a< p'<p.

Let p be a prime element such that p>a. Then it is proved that the set
of the primes which are in the closed interval [a, p] is inductive for downwards;
that is, for every descending chain C consisting of primes in [a, p], inf C is a
prime in [a, p]. Hence Zorn’s lemma assures the existence of a minimal prime
belonging to a which is less than p. Therefore we obtain the following

Corollary. For every element a of L, rad(a) is the meet of the minimal
primes belonging to a.

For radicals we can prove the following

Lemma 4. (1°) a<rad(a), (2°) a<b implies rad(a)<rad(b), (3°)
rad (rad (a))=rad (a), (4°) rad (aN b)=rad (a) N rad (b)=rad (ad).

3. Elements with right primary decompositions

DEFINITION 4.  An element g of L is said to be (right) primary, if whenever
xy<q and y=<Lrad(q) for x, y in =, then x<gq.

It is easy to see that g is primary if and only if ab<q and b<Crad(q) imply
a<gfora, bin L.

Lemma 5. An element q of L is primary if and only if 3 (rad(q)) contains
P'(g)-

Proof. This is immediate.

Lemma 6. If q,,-,q,1s a finite number of primary elements with the same
radicals, say rad(q;)=c(i=1,---,n), then g=q,N --- N q, is primary and has the
radical c.

Proof. It is eivdent that rad(¢)=c by the property (4°) in Lemma 4. In
order to prove that ¢ is primary, we suppose that xy<q and y<<rad(q)=c.
Then xy<gq; and y<<rad(q;); hence x<gq; for i=1,---,n. We obtain therefore
x<q,N -+ N g,=¢q, completing the proof.

Lemma 7. Let a=q,N - Ngq, be an irredundant decomposition of a into
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a finite number of primary elements q;. If rad(q;)=rad(q,) for some i and k, a
is not primary.

Proof. Put t,=¢,N--N;_,Ng;1,N+-Ng, Then t,q9;<a. Since t;<La,
we have ¢;<rad(a)=N7%_,rad(g;). Hence rad(g;)< N7_,rad(q;) for j=1,---,n
We obtain therefore rad(q,)=---=rad(g,), a contradiction.

DEFINITION 5. An irredudant decomposition

aqun'"nqn (*)

of a into primary elements ¢; is called a short decomposition of a, if none of
the meets of two (or more) of ¢,, -+, ¢, are primary.

Theorem 2. If an element a of L can be decomposed as a meet of a finite
number of primary elements, a has a short decomposition. In any two short de-
compositions of a, the number of primary components as well as their radicals are
necessarily the same.

Proof. By Lemmas 6 and 7, a has a short decomposition. Now, let
(*) and a=g¥N --- N ¢X be any two short decompositions of a. Take a maximal
element in the po-set {rad(q,),-:-,rad(g,), rad(g¥), -, rad(g¥)}. We may
suppose, without loss of generahty, that the max1mal element is rad(q,).
We now show that rad(q,) occurs among rad(g¥), k=1,---, m. Assume that
rad(q,)*rad(¢g¥) for all k. Then we have that ¢, <<rad (¢¥) for all k. Because,
if cotrary, we have a contradiction by using (2°), (3°) in Lemma 4 and the maxi-
mality of rad(g,). On the other hand it is easily verified that g;/q,=g¢; for i1,
and ¢¥/q,= g¥ for k=1,.--,m. Hence we obtain that a=¢¥ N --- N ¢k = (¢¥/q.)
NN (gh/g)= (@/9)N(Z/g.) N - N (gulg) =eNg,N N gu=¢,N ++- N ¢, which
is a contradiction. We can now suppose, without loss of generality, that
rad(¢,)=rad (¢¥), and make

(9:/9) N -+~ N (ga/:) = (g¥F/g) N -+~ N (g%/q.) («).

Then since qlﬁrad(q,) for %1, and ¢,<rad(q¥) for k41, we have ¢;/q,=
(i+1), and ¢¥/g,=q¥ (k+1). Hence by () we have ¢;N - N ¢,=(q¥/g:) N 92
N+ Ng¥ and have

(2/9¥) N - N (ga/g¥) = ((g¥/q)1g¥) N (g¥/gF) N -+~ N (gh/g¥) (B)-

Since it is easily verified that ¢f {rad(g;) for 31, and ¢Ff KL rad(g¥) for k%1,
and since g¢¥/q,>¢¥, we have ¢;/g¥=gq; for i=1; ¢¥/q¥=q¥ for k+1 and
(g¥/q,)/q¥=e. Hence by (8), we have

N Ngu=gqgFN--Ngk (7).
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Continuing an exactly similar argument for (y), we atain after a finite number
of steps that m=n, and rad(g;)=rad (¢¥) for i=1,-.., m=n.

4. Isolated components of elements

DErFINITION 6. A subset N of 3 is called a (right) M-v-system, if (1)
N contains a y-system M and (2) for every element u of N and every element
x of M there exists an element z of NV such that 2<ux. If M is void, the only
M-p-system is, by definition, the void set itself.

Let a be an element of L and M a p-system which does not meet Z(a).
Then it is easily verified that the set-union N* of all M-v-systems, each of
which does not meet 3(a), is the unique maximal M-y-system which does
not meet Z(a). N* is uniquely determined by a and M.

Lemma 8. Let a (e) be an element of L, M a p-system, and N an M-v-
system. If 3.(a) does not meet N, there exists an element q which is maximal in
the set consisting of the elements ¢ such that ¢ >a and 3. (c) does not meet N, and P(q)
contains M.

Proof. Since L is compactly generated, we can prove, by using Zorn’s
lemma, the existence of ¢ mentioned in the first part of the lemma. In order
to prove the last part of the lemma, it is sufficient to show that g/x>¢ implies
xee M. Take an element y of 3 such that y<¢q/x and y<q. Then, since ¢<q
Uy, we can take an element v of N such that v<<q¢Uy. Hence we have that
ox<(qU y)rx=gxU yx<q. If wesuppose that x= M, we can choose an element
z of N such that g<wvx. Hence 2<gq, that is, 3 (g) meets NV, which is a contra-
diction.

Lemma 9. Suppose that M +¢, a+e. Then 3'(a) forms an M-v-system
if and only if P(a) contains M.

Proof. First we suppose that 3’(a) is an M-v-system. If P(a) does
not contain M, we can take an element y such that y= M and ye P’(a). Since
a<aly, there exists an element x of 3 such that x<a/y and x<{a. Then we
have that z<a for every element 2z of X satisfying z<<xy. On the other hand,
since 3'(a) is an M-v-system, there exists an element # of % such that u<xy
and u<a. This is a contradiction. Next, we suppose that ase and P(a)
contains M. Then, since P(a) is contained in %'(a), we have u<Ca=a/x for any
u of 3'(a) and x of M. Hence ux is not less than a. Therefore we can take an
element 2 of 3 such that x<ux and 2<a. This shows that =’(a) is an M-»-
system.

Lemma 10. Let a (¢) be an element of L, let M (+¢) be a u-system such
that it does not meet Z(a), let N* be the unique maximal M-v-system which does
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not meet =(a), and let S(a, M) be the set of the elements s of L having the properties
that s>a and P(s) contains M. Then the join of the complement of N* in =, say
sup (Z\N*), is a minimal element in S(a, M).

Proof. By Lemma 8, there exists a maximal element ¢ such that ¢>a and
3(q) does not meet N*, and P(q) contains M. Since 3’(q) contains P(g), it
forms an M-v-system by the “if part” of Lemma 9. Obviously 3’(¢) contains
N*. Hence 3'(¢9)=N* by the maximality of N*. Hence 3(g)=Z\N*.
Therefore we have that g=sup Z(¢)=sup (E\/N*). It remains to prove that
P(c) does not contain M for every ¢ such that ¢g>c>a. If we suppose that P(c)
contains M, then 5’(c) is an M-v-system by Lemma 9, and meets 3 (a). Hence
we can find an element # of 3 such that u is less than @ and not less than ¢, a
contradiction.

Lemma 11. Suppose that a, M, N* and S(a, M) are the same as in Lemma
10. If q is a minimal element in S(a, M) and q=e then g=sup (S\N*).

Proof. By Lemma 9, %'(¢q) is an M-v-system, and it is evident that
3’(¢q) does not meet Z(a). By using Lemma 10, we have that a <sup(Z*\N)
=¢’, and ¢’ is a minimal element such that 3(¢’) contains M. Then, since
%(q) is contained in N *, we have that g=sup 3/(¢) >sup(S\N *)=¢q’. Therefore
we obtain g=g¢’ by the minimality of g¢.

DerINITION 7. Let a be an element of L, and let M be a y-system which
does not meet 3 (a). A (right) upper M-component of a is the join of all
elements x of 3 such that every M-v-system which contains x meets 3(a). The
upper M-component of a will be denoted by u(a, M).

Theorem 3. Let a be an element of L, M (F¢) a u-system which does not
meet 3(a), and N* the unique maximal M-v-system which does not meet 3(a).
If S(a, M) contains an element =e, then

u(a, M) = inf (S(a, M)) = sup (S\N*).

Proof. For simplisity, we put g=inf(S(a, M)). First, we shall prove that
g=sup(S\N*). Since g/x=inf,cs, am{s/x} = inficse, an{s} =inf(S(a, M))=¢q
for every element x of M, P(q) contains M. Hence, by Lemma 11 we obtain
g=sup (Z\N*). Next we prove that u(a, M)=gq. Evidently every element
of 3(g) is not contained in N*. Since N* is the unique maximal M-v-system
which does not meet = (a), every M-v-system which contains x of 3(g) meets
3(a), that is, x is less than u(a, M). This implies that ¢<u(a, M). Let x be
any element of {x&X|x&N(M-v-system)=>N N=(a) is not void}. Then
evidently x is not contained in N*. Hence x is less than sup(Z\N*)=q.
Therefore we have u(a, M)<gq, completing the proof.



104 K. MURrATA

Corollary 1. Let a, b be two elements of L such that a>b, and let M be
a p-system which does not meet 3(a). Then u(a, M)>u(b, M).

Proof. Since S(b, M) contains S(a, M), this is immediate by Theorem 3.

Corollary 2. Let a be an element of L, and let M,, M, be two u-systems
such that M, contains M,, and M, does not meet %(a). Then u(a, M,)>u(a, M,).

Proof. Let N¥ be the maximal M;-v-systems (i=1, 2), each of which
does not meet (a). Then it is easy to see that N¥ is contained in N¥. There-
fore we obtain that u(a, M,)=sup (S\N¥)>sup (E\N¥)=u(a, M,).

DerFINITION 8. Let p be a prime element such that p>a, and let M=
S'(p). u(a, M)is called a'(right) upper isolated p-component of a, and denoted
by u(a, p).

Suppose that (x) in §3 is a decomposition of « into primary elements g;,
and suppose that each 3'(rad(g;)) contains the unique maximal p-system
M;, i=1,---,n. If p is a prime element such that M,23/(p),:-, M,2='(p),
M, ,23'(p), -, M,RZ'(p), then u(a, p)=q,N ---N¢,. Because, for i=1,---, s,
we have u(a, p)<u(a, M;) by Corollary 2 to Theorem 3. Now by Lemma 5,
we have P(q;)23'(rad (¢;)). Hence P(g;) contains M,;. Hence we have, by
Theorem 3, u(a, M;)<q;. Therefore u(a, p)<q,N--Ng,. If s=n, we obtain
a<u(a, p)<¢,N+Ng,=a, u(a, p)=¢;N N g, If s<n, then, since Z'(p)
is not contained in X’ (rad(q;)), we have rad (¢;)<p, and have ¢; < p for j>s (by
Theorem 1). Hence we can take elements x; such that x;<g; and x,&3'(p),
j=s+1,.--,n. Since Z'(p) is a p-system, there exists a finite number of
elements y; in Z'(p) such that y.,, <o o X0 Vo< Vsir* Xgrar s Vo1 < Vo2 X
Then we have ¥, <(-+((%s11* X5 12)Xs1a) ) %x<¢gs:N >N g,. Let z be an
arbitrary element of X such that 2<¢,N:--N¢,. Then we obtain 2y, <
(¢:N N g)N(gss:N =N gu)=a. Now, take any 3'(p)-v-system N containing
2. 'Then there exists an element v of N such that v<zy, ,. Since v<a, N
meets 3(a). Hence we have z<u(a, p), ¢,N---Ng,<u(a, p). Therefore we
obtain ¢,N --- N g;=u(a, p), completing the proof.

5. Ascending chain condition, Condition (N)

We shall assume, throughout this section, that the ascending chain condition
(a. c. c.) holds for elements of L.

Lemma 12. Every element of L has a finite number of minimal primes
belonging to it.

Proof. Let ¢ be an element of L. If ¢ is prime, the lemma is trivially
evident. Suppose now that ¢ is not prime. If there exists an infinite number
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of minimal primes p, belonging to ¢, then, since a,<¢, b<<c and 4,0, <c for
suitable elements a,, b, of L, g, or b, is less than p, for an infinite number of p,.
Suppose that it is a,, and put c,=cUa,. Then evidently c<<c,and ¢,<px. ¢, is
not prime. Hence ¢, has the same property as that of ¢. Continuing in this
way, we obtain an ascending chain ¢<¢,<¢,<-:-, which is a contradiction.

Lemma 13. Let p,,--, p, be the minimal primes belonging to an element ¢
of L. Then there exists a product P(p;, -, p; ) which is less than c, where %
denote a product-form of some type of weight m, and i,---,1,, is some finite
permutation of 1,---, n with repetitions allowed.

Proof. The lemma is evident if ¢ is prime. Suppose that ¢ is not prime.
Then there exist two elements x and y of % such that x<C¢, y<<¢ and xy<c.
Put a,=cUx and b,=cUy. Then ¢<a, and c<b,. Now, let p,’,---, p,” and
.+, ps" be the minimal primes belonging to a, and b, respectively. If we
suppose that both «, and b, have the same property that we wish to prove of ¢, so
that B'(p},, -+, p5) <a, and P"(p},+, p,) <b,, then, since a,b,=(cUx)-
(cUy)<cUxy=c, we have P'(p}, -, p5) B"(pr), "+, Pr)<c. The interval
[¢, #%,] contains a minimal prime belonging to ¢, p=1,:+, A, and similarly for
[¢, pis)y o=1,+--, u. Hence we have B(p;,-,p; ) <c, where p;,---, p; are
minimal primes belonging to ¢, and P=P'-PB". Hence, if the lemma is false for
¢, it is false for a, or for 4. Continuing in this way, we atain a contradiction
of the a. c. c.

DerFINITION 9. A product-form Q(X,,---, X,,) = (- (X, X,)X,)-+-)X,, is
called that it has a (right) nested type of weight m, where X; are indeterminates
over L. '

We now consider the following condition:

(N) For every product-form 3 of weight n, and for every elements c,, -, c,
(repetitions allowed) of L, there exists a product-form Q. with nested type of weight
m such that

Q(cily E) Cim)SS”B(Cn T C,,) ’

where 1,<--- <i,,.

If L is associative, the condition (N) is satisfied trivially. But there are
important examples which are compactly generated non-associative multiplicative
lattices satisfying the condition (N), which will be shown in the last section of
this paper.

Lemma 14. Suppose that the condition (N) holds for L. Then, for every
element a (+e¢) of L, there exists a minimal prime p of a such that a/p>a.

Proof. If ais prime, the lemma is trivially evident. Suppose that a is not
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prime. Then by Lemma 13 and the condition (N), there exist minimal primes
b1 s Pm (DOt necessarily distinct) belonging to a and a product form £ of
nested type such that Q(p,, -, p,,)<a. It is then easy to see that m>1, and
that there exists p; such that a/p,>>a. This completes the proof.

Behrens showed in [2] that the radicals of primary ideals in non-associative
rings are not necessarily prime. He gave two examples in that paper. Eagh of
those examples is a commutative algebra with some finite base over a field.
It is now easily verified that the ideals in each of the algebras is a compactly
generated multiplicative lattice. Accordingly, those examples assure the ex-
istence of the lattices in which the radicals of primary elements are not prime.
Now we have the following

Theorem 4. Suppose that the condition (N) holds for L. Then the radical
of every primary element is prime.

Proof. Let g be a primary element of L. If g=e, the theorem is evident.
We suppose that g<<e. Then by Lemma 14, we can find a minimal prime p
belonging to g such that x,-2<gq and x,<q for an arbitrary element z of Z(p) and
a suitable element x, of 5. Hence z<rad(g), and hence p<rad(g). On the
other hand, since rad(¢)<p by Theorem 1, we obtain rad(¢)=p, as desired.

ReMARK. Under the condition (N) for L, we can show that if rad(c)=p
is prime for an element ¢(=e), then ¢/p>c. Because, the assertion is trivially
evident if p=c. Hence we can suppose that p>¢. Then by Lemma 13 and
the condition (N), there exists a nested product Q of p such that Q=Q'p<ec.
If we suppose that c/p=c, then Q'=Q"p<c. Continuing in this way, we
obtain p=c, which is a contradiction.

Theorem 5. Suppose that (*) (in §3) is a decomposition of a into primary
elements q; with prime radicals p;. Then the minimal primes belonging to a coincide
with the minimal elements in the po-set {p,, -+, Pu}-

Proof. By Lemma 13, we have that R¥(p;) = BD(p;, -+, p:) <g¢q; for
suitable product-forms B, i=1,---,n. Hence, for any product-form of n-th
weight, we obtain S’B(%(l)(j)l)’ T %cn)(j)n)) < S’B(q” Tty Qn) <¢N - Ng=a.
This implies the existence of p,; such that p, < p for any prime p satisfying p>a.
In particular, any minimal prime belonging to a coincides with some p;, and
there is no p; such that p,<<p,. Conversely, let p; be any minimal element in
the po-set {p;, =+, pny. If p is a prime element contained in [a, p;], we can
show, similarly as above, the existence of a prime element p, such that p,<p.
We obtain therefore p,<p;, pp=p;, completing the proof.

The following theorem have been established by the last part of §4.

Theorem 6. Suppose that (*)is a decomposition of a into primary elements
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q; with prime radicals p;. If p(=Ee) is a prime element such that p,<p,---, p;<p,
Ps+1 $P) tty P,.fEP, then

u(a, p) = q;N - Ngs.

Theorem 7. Suppose that (*) is a short decomposition of a into primary
elements q; with prime radicals p;. If p is any minimal prime element belonging
to a then u(a, p)=q; for some i, and u(a, p) is primary.

Proof. By Theorem 5, we have p=p;, for some 7. Since there exists no j§
such that p; <p (j=7), we obtain u(a, p)=g; by Theorem 6.

ReEMARK. If p=e in Theorem 7, a is primary such as rad(a)=e.

Corollary 1. Suppose that (*) is a short decomposition of a, and let p,,---,
ps be the minimal primes belonging to a (i=1,---,5). Then

a= u(a’ Pl)ﬂ ﬂu(“? ps)nfkﬂn NGy

Corollary 2. Suppose that a has a decomposition into primary elements
with prime radicals. If p,, -, p, are the minimal primes belonging to a, then

u(a, p,), -+, u(a, ps) are primary.

Proof. This is immediate by Theorems 2, 5 and 7.

Now let V' be a compactly generated lattice with compact generator system
S. If 3 is a join-semi-lattice, 3, is said to be join-closed. Let 3 be any
compact generator system of V7. Then it can be proved that the join-semi-lattice
5’ generated by = satisfies the conditions (1) and (2) in §1. Hence =’ is a
join-closed compact generator system of V.

In the rest of this section we suppose that 3 is join-closed. Then it is
easy to see by the a.c.c. that 3 coincides with L. But it is convenient to remain
the symbol =.

Lemma 15. Let p,, -, p, be a finite number of prime elements of a compactly
generated multiplicative lattice with a join-closed compact generator system. If
2(a) is contained in the set-union \_,3(p;), there exists p; such that p;> a.

Proof. If n=1, the lemma is trivially evident. If n=2, then 3(a) is
contained in X(p,)VZ(p,). Suppose that a<lp, and a<p,. Then we can
take 2; of 3 such that 2;<a, 2,<p, (i=1, 2), 5,<£p, and 2,<Lp,. Since 2, Uz,
is less than a, 3(2, Uz,) is contained in 3(p,) or 3(p,). This implies 2, < p,
or 3, < p,, which is a contradiction. If #>3, we can assume, no loss of generality,
that Z(a) is contained in V7.,3(p;) (m<mn), and not contained in VIZ1Z(p;)
V Vg 2(p;) for every k=2, .-, m—1. Then we can take elements 2, of 3
such that z,<a, 2,<p, and z,<Lp, for i*k; i, k=1,---,m. Since 2,,---, 2,,
are contained in a p-system X'(p,), we can find a finite number of elements
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v, 00, U, Of Z'(p,) such that v, <2,2, 0,<9,2,**,0,, ,<V,,_s%,. Lhen we
have v®=v,, ,<((-*((2,°2:)2,)"")2m-1)%m < p; for j=2,---,m, and v®@Lp,.
Similarly, we can find v® of 3'(p;) such that v®<p, (j=7) and v® Lp, for
i1=2,.--,m. Now let v=0v® .- Uv™. Then, since X is closed under finite
join operation, v is contained in 3 (a). Hence we have v<p, for a suitable
prime p;. This implies v <p;, which is a contradiction. This completes
the proof.

Theorem 8. Suppose that (*) is a short decomposition of a with prime
radicals, and let p be a prime element such that a<p=+e. Then p=rad(q;) for

some q;, if and only if u(a, p)[p>u(a, p).

Proof. We have, by Theorem 6, u(a, p)=¢,N --* N ¢, where q,,-+, ¢, are
those whose radicals p; are less than p. This is a short decomposition of u(a, p),
and pisoneof p,, -+, pp. Since an element x of =L is contained in P’(u(a, p))
if and only if x< p, we have u(a, p)/p>u(a, p). Conversely, let u(a, p)[p>u(a, p).
Then the minimal primes of a are the minimal elements in the po-set {p,, -+, p,}.
Hence p;<p for some p,. We let p,, -+, p, be the primes such that p,<p
(i=1,---, k). Then u(a, p)=¢,N ---N g, rad(g;)=p;, and that is a short de-
composition of #(a, p). Now by the assumption Z(p) is contained in P’(u(a, p))
=V i, 2(p;). Hence, we have by Lemma 15 p<p, for a suitable p; (1< <k).
We obtain therefore p=p;.

6. Artin-Rees property

In this section, we let L be a compactly generated integral multiplicative
lattice with the compact generator system =.

DerINITION 10. L js said to have the (right) weak Artin-Rees property, if
for any a in L and any x in 3, there exists a product 8 of x such that aN P <ax.

Theorem 9. Suppose that the a.c.c. holds for elements of L.  If every element
of L may be decomposed into a meet of a finite number of primary elements, then
the weak Artin-Rees property holds for L.

Proof. LetacsL, and x<3, and suppose that ax=g¢,N -+ N g, is a primary
decomposition of ax. If a<g; for every i=1, .-+, n, we have that aN x<a=ax.
Hence we can suppose that a<{q; for i=1,---,m, where 1 <m <n. Then
ax=aN q,N-+Nq,. Since there exists an element # of 3 such that ux<g;
and u<q; (1<i<m), we obtain x<rad(g;) (1<i/<m). Hence we have that
B, =Py(x, -+, x) < ¢; for suitable product-forms PB; (1<i<m). Hence P'=
(- (B B)Bs )P <g,N -~ N g,,. Therefore we obtainaNP’'<aNg,N--NgG,,
=ax, completing the proof.
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Let =* be the multiplicative monoid generated by =.

DEeriniTION 11. L is called a strictly upper semi-modular lattice related to
>* if the relations aNu<<b<<a<<aUwu hold for a, b= L, and u==*, then there
exists an element ¢ of L such that aNu<<c<wu and (c Ub)N a=b.

This is a modification of the semi-modular lattice defined in [19, §45].

Lemma 16. Let L be a strictly upper semi-modular lattice related to =*,
and let q be an irreducible element of L. If qN\u=aNu and q<a for ac L, uc>*,
then u<gq.

Proof. Put b=(qUu)Na. Then ¢<b. If b=gq, then since g=(qUu)Na
and ¢<<a, we have g=q¢Uu, u<q. Next we suppose that g<<b. Now we have
that aNu<g<a<aUu. If a=aUu, thenu<a,u=aNu=qgNu. This implies
u<q. If aNu=gq, then gNu=q, ¢<u. This implies g Uu=u. Hence we
have b=aNu=¢gNu=gq, a contradiction. Now it remains to consider the
case of aNu<g<a<<aUwu. Then there exists an element ¢ of L such that
aNu<c<u and ¢g=(qUc)Na. Since q is irredicible, we have g=qUc. Hence
c<g<a, c<aNu. This contradicts aNu<c.

Lemma 17. A4 non-void p-system M meets Z(P(x, -++, x)) for every element
x& M and every product-form .

Proof. The proof will be given by induction with respect to the weight
mof P. If m=1, the lemma is evident. We suppose that the lemma has been
proved for B’ with any weight m’<<m. Now % is expressible as P=T,-B,.
Of course the weight of $B; is strictly less than that of 3. Hence by the
induction hypothesis M meets %(%;); accordingly there exists u; such that
w,eM and u;<P; (=1, 2). Since there exists an element # of M such that
u<u,u,, M meets Z(%), as desired.

Theorem 10. Let L be a strictly upper semi-modular lattice related to =%,
and suppose that the a.c.c. holds for elements of L. If the weak Artin-Rees
property holds for L, every element of L is decomposed into a meet of a finite
number of primary elements.

Proof. Since L satisfies the a. c. c., it is sufficient to show that every
irreducible element of L is primary. Suppose that ¢ is irreducible, and let
xy<q but x<£q for two elements x, y in . Put a=xUgq. Then a>g¢ and
ay=(xUqQy=xyUqgy<q. Now let L=%(y,::-,y) be a product of y such
that aNP<ay<gq Then we have aNP<gNP. Hence aNP=¢NP.
Since ¢<<a, we have by Lemma 16 3<q. Next, we let M be an arbitrary
u-system containing y. Then by Lemma 17 M AZ(P) is not void. Since
P<q, we have that MAZ(P)=M AZ(q). Therefore M meets Z(g), that
is, y<rad(qg), as desired.
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7. Applications

[1] Let R be a non-associative (not necessarily) ring with or without
unity quantity. The word “ideals”” will mean always ‘“‘two-sided ideals” of R.
Ideals of R will be denoted by 4, B, P, Q,--. For an element x of R, (x) will
denote the principal ideal generated by x. (x) consists of the elements # such
of that u=3%(---, x,---), where B(--+, x,--+) is a product with x as its factor,
and X is a finite sum.

Now it can be proved that the set of all ideals of R forms a compactly gener-
ated integral multiplicative lattice with the compact generator system consisting
of the principal ideals. The results in the preceding sections are accordingly
applicable to the ideals of R.

Throughout [1], there is a complete parallelism between the theory of
right-side and that of left-side. We shall therefore state the results for right-
side only.

For any two ideals 4 and B, the (right) quotient 4 by B, denoted by 4/B,
is the set of the elements « in R such that (¥)B< A4 (Cf. [2], [8]). Then A/Bisan
ideal of R, and it can be proved easily that 4/B coincides with the set-union of
all the principal ideals () such that (1)) BCA. An element x of R is said to be
(right) related an ideal A, if and only if A/(x) contains 4 properly. Otherwise
x is said to be (right) unrelated to A. It is then easily seen that if x is related to
A, every element in (x) is also related to 4.

A family M of principal ideals of R is called a u-system, if there exists () of
M such that (2)S(x)(y) for any two principal ideals (x) and (y) in M. The
void set is also defined to be a u-system. Let P be a prime ideal of R (Cf. [2]).
It is then easily verified that the family of principal ideals Mp={(x)|(x) is not
contained in P} forms a y-system. Conversely, if M, is a yu-system for an ideal
P, then P is prime. Let A be an ideal of R, and let N be a p-system which
does not contain any ideal (x)C 4. Then we can show that the existence of
the (maximal) prime ideal P such that P contains A and every principal ideal
in P does not contained in M (Cf. [16, §14]).

Let M be an M-system in the sense of Behrens [2]. If we make the family
M={(x)|x= M} of principal ideals, it is easily verified that M is a y-system.
But, for any u-system I, it can not be proved in general, that the set {x|(x)= M}
is an M-system in the sense of Behrens. By Definition 2, we define the radical
of an ideal 4, which is denoted by rad(4), is the ideal generated by the set-union
of principal ideals (x) with the property that every p-system which contains
(x) contains a principal ideal in 4. Definition of a minimal prime ideal of an
ideal is the same as in the case of an associative ring (Cf. [11]). Then by
Corollary to Theorem 1, we obtain that the radical of an ideal 4 is the intersection
of all the minimal prime ideals of 4. Therefore we obtain that rad(A4) coin-
cides with the Behrens’ radical t(A4).
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In order that an ideal O of R is (right) primary (Cf. [2]) it is necessary and
sufficient that every element which is (right) related to Q is contained in x(Q).
Irredundant decomposition of an ideal of R is defined as usual. Let

AzgxﬂmﬂQn (*)

be an irredundant decomposition of an ideal 4 into primary components Q;.

The representation (*) of A4 is called a short decomposition of 4, if none
of the meets of two (or more) of Q,,-:+, O, are primary. By Theorem 2, we
obtain the following statement.

1) If an ideal A of R can be decomposed as an intersection of a finite number
of primary ideals, A has a short decomposition. In any two short decompositions
of A, the number of primary components as well as their radicals are necessarily the
same.

Let M be a non-void y-system. A family N of principal ideals of R is
called a (right) M-v-system of R, if N contains M and if for every (x) in N
and every (x) in 9, there exists an ideal (2) in N such that (2) S (u)(x). If M
is void, the M-v-system is also void. Let M be a u-system such that every
ideal in M is not contained in an ideal 4. A (right) upper M-component of
A is defined to be the ideal generated by the set-union of all the principal ideals
(x) having the property that every M-»-system which contains (x) has an ideal
in 4. 'The upper M-component of 4 will be denoted by U(4, M). Let Pbea
prime ideal containing 4. Then the (right) upper isolated P-component of A4,
which is denoted by U(A4, P), means U(A4, M), where M={(x)|(x) is not con-
tained in P}. If Pisa minimal prime of 4, U(4, P) is called an isolated (right)
primary component of 4. Now let M (3¢) be a u-system which does not
contain any ideal in 4, and let :* be the (unique) maximal M-»-system such
that every ideal in :* is not contained in 4. Then by Theorem 3 U(4, IMN) is
the intersection of all the ideals B having the property that (1) B contains A
and (2) {(x)| B/(x)=B} contains M. Moreover U(4, M) is the ideal generated
by the set-union of all the principal ideals, each of which is not in J*.

A product-form Q(X,, -, X,,)=(--((X,X,)X,)::*)X,, is called that it has
a (right) nested type of weight m, where X; are indeterminates over the ideal-m-
lattice of R.

A non-associative ring R is called here an (N)-ring if it satisfies the following
condition:

(N) For every product-form 3 of weight n, and for every ideals A,,---, A,
(repetitions allowed) of R, there exists a product-form Q with nested type of weight
m such that

Q(Ailv Ty A;m)g S15(141) Ty An) )

where i, < -+ <1,
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Any associative ring is evidently an (N)-ring. Any nilpotent Lie ring is also
an (N)-ring. Now we have the following statement.

2) Suppose that the a. c. c. holds for ideals of an (N)-ring R. Then the
radical of every primary ideal of R is prime. (by Theorem 4).

We now suppose that (%) in this section is an irredundant decomposition
of an ideal 4 of a ring R into primary ideals Q; with prime radicals P;. If
the a. c. c. holds for ideals of R, the minimal primes belonging to 4 coincide
with the minimal elements in the po-set {P,---, P,}. This is the immediate
consequence of Theorem 5. In particular, we obtain the following:

3) Assume that the a. c. c. holds for ideals of an (N)-ring R. If (%) is a
decomposition of an ideal A into primary ideals Q;, the minimal primes belonging to
A coincide with the minimal elements in the po-set consisting of the radicals of Q;
(by Theorem 5).

In the rest of this paragraph, we let R be an (N)-ring with the a. c. c. for
ideals of R. 'Then by Theorems 6, 7, 8, 9 and 10 we have the followings 4)~8).

4) Suppose that (x) is a decomposition of an ideal A of R into primary ideals
O; with prime radicals P;. If P(%R) is a prime ideal such that P,C P, ---, P,C P,
P, P, ---, P, kP, then

U, P)=0Q,n-NO,.

5) Suppose that (%) is a short decomposition of A with (prime) radicals
P,=rad(Q;). If P is any minimal prime ideal belonging to A and PR, then
U(A4, P)=0; for some i, and U(A, P)is primary.

6) Suppose that (x) is a short decomposition of A, and let P,, -, P be the
minimal primes belonging to A. Then

A =U(4, P)N-+NUA, PYN Qi N0, .

7) Suppose that (x) is a short decomposition of A, and let P be a prime
ideal such that A P=+R. Then P=rad(Q;) for some Q;, if and only if
U(4, P)|P2(4, P).

R is said to have the (right) weak Artin-Rees property, if for any ideal 4
and any principal ideal (x) of R, there exists a product P of (x) such that ANYP
c A(x). (Cf. [8]). Then we have

8) In order that every ideal of R is decomposed into a meet of a finite number
of primary ideals, it is necessary and sufficient that the weak Artin-Rees property
holds for R.

[2] Let G be a group. The set of all normal subgroups 4, B, N, -+ of G
is a commutative residuated cm-lattice under commutator-product [4, B] and
the set-inclusion relation. The residual of A by B, which is denoted by 4:B,
is defined as the set-union of the elements < G such that [(x), B]< 4, where ()
is the normal subgroup generated by u= G, that is, (u)={Ilx; 'u’x,|x€G, peZ
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(the integers)}. 'Then it can be proved that 4: B is a normal subgroupof G. It
is easily be seen that the cm-lattice has the zero element 1 (the group identity)
(Cf. [3]). Now we can show that the set of the normal subgroups of G is a
compactly generated multiplicative lattice with the compact generator system
consisting of normal subgroups, each of which is generated by a single element.

An element x of G is said to be unrelated to a normal subgroup N, if N:(x)
=N. Otherwise, x is related to N. A family M consisting of normal subgroups
with single generators is called a p-system, if there exists (2) of M such that ()
C[(%), ()] for any two (x) and (y) or M. The void set is also defined to be a
w-system. A normal subgroup P of G is said to be prime, if [4, B]C P implies
ACPor BCP. Then it can be proved that P is prime if and only if [(x), (y)]
C P implies (x)SP or (y)<P. If Pis prime, the family {(x)|xc P} forms a
p-system. Moreover a normal subgroup P(=#G) of G is prime if and only
if {(x)|x is related to P} is a p-system.

Let M be a p-system which does not contain (x) such that (x)cA4." Then
there exists a normal subgroup P which is maximal in the family of normal
subgroups B such that B2 4 and (b) < M for every b= B. P is necessariry prime.

A radical of normal subgroup N of G is the normal subgroup generated by
the set-union of (x) with the property that the every p-system containing (x)
contains a subgroup in N. In symbol: rad(N). Minimal primes of a normal
subgroup is defined in the obvious way. Then by Corollary to Theorem 1 we
obtain that rad (V) is the intersection of all minimal primes of N.

A normal subgroup Q of G is called primary, if [(x), (¥)]<O and (y)<
rad (Q) imply that (x) S Q.

Let

N=0,N-NQ, ()

be an irredundant decomposition of a normal subgroup N into primary normal
subgroups Q;. The representation (x*) of N is called a short decomposition of
N, if none of the meets of two (or more) of Q,,---, O, are primary. By Theorem
2, we obtain the following statement.

1) If a normal subgroup N of G can be decomposed as an intersection of a finite
number of primary normal subgroups, then N has a short decomposition. In any
two short decompositions of N, the number of primary components as well as their
radicals are necessarily the same.

Let M be a non-void p-system. A family NV of principal normal subgroups
of G is called an M-v-system, if N contains M and if for every (x) in N and
every (x) in M there exists (2) in N such that (2)C[(x), (x)]. If Mis void, the
M-y-system is also void. By using M-v-system, the wupper M-component
U(N, M) of N is defined in an obvious way. In particular, upper isolated P-
component U(N, P) of N is defined for any minimal prime of N. Now let M
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be a p-system which does not contain a normal subgroup (of G) in N, and let N*
be the (unique) maximal M-v-system such that every normal subgroup in N*
does not contained in N. Then by Theorem 3 U(N, M) is the intersection
of all the normal subgroups H having the property that (1) H2DN and
(2) {(a)|H:(a)=H}22M. Moreover U(N, M) is the normal subgroup generated
by the set-union of all the normal subgroups such that each of which has a
single generator and is not contained in N*.

A product-form Q(X,, -, X)) = (- ((X,X,)X;))---)X,, is called here that
it has a nested type of weight m, where X, are the indeterminates over the
m-lattice of the normal subgroups of G.

A group G is called an (N)-group if it satisfies the following condition:

(N) For every product-form 3 of weight n, and for every normal subgroup
N,,+++, N, (repetitions allowed) of G, there exists a product-form Q. with nested
type of weight m such that

Q(]Vil) *ty Nz‘m)gS'B(Nn 0y Nn) )

where 1, < -+ <1i,,,.

Nilpotent groups are evidently (N)-groups.

Now we let G' be an (N)-group with the a. c. c. for normal subgroups.
Then by Theorems 4, 5, 6, 7, 8, 9 and 10 we obtain the following statements:

2) The radical of any normal subgroup of G is prime.

3) If (%) is an irredundant decomposition of a normal subgroup N of G into
primary normal subgroups Q;, the minimal primes belonging to N coincide with the
minimal elements in the po-set consisting of the rad(Q;).

4)  Suppose that (xx) is a decomposition of a normal subgroup N of G into
primary normal subgroups Q,; with prime radicals P;. If P(+G) is a prime normal
subgroup such that P.CP,.--, P,.CP, P, &P,--+, P, <P, then

UN, P)=0.n-+NQ,.

5) Suppose that (xx) is a short decomposition of N with (prime) radicals
P,=rad(Q,). If P is any minimal prime belonging to N and P= G, then U(N, P)
=Q,; for some i, and U(N, P) is primary.

6) Suppose that (xx) is a short decompolition of N, and let P, -+, P, be the
minimal primes belonging to N such that P;+G (i=1,---,s). Then

N =U(N, P)N - NUN, PN QysiN -NO,.

7)  Suppose that (xx) is a short decomposition of N, and let P be a prime normal
subgroup such that NCP=+G. Then P=rad(Q;) for some Q,, if and only if
U(N, P):P2U(N, P).

G is said to have the weak Artin-Rees property, if for any normal subgroup
N of G and for any normal subgroup (x) with single generator x, there exists
a commutator-product P of (x) such that N N RBC[N, (x)]. Then we obtain
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8) In order that every normal subgroup of G is decomposed into a finite number

of primary normal subgroups, it is necessary and sufficient that the weak Artin-Rees
property holds for G.
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