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PREFACE

This thesis intends to investigate transformation-invariant func-
tions for applications in pattern recognition. Man does easily recognize
very complicated patterns, even if they are distorted, tilted, rotated,
and enlarged. To machines, it is quite difficult to identify patternms,
which have wide variations in size, style, orientation, and so on, with
one anothér. The functions which are invariant to admissible transforma-
tions, if found, can ease postprocessing for pattern récognition. The
avthor has attacked this field and spent several years to arrive at the
results described in this thesis.

Some transformation-invariant functions are constructed on a multi-
layer series-coupled machine. 'Perceptrons' were first proposed as a
model for neural networks with learning capacity. Random connections
between the first layer and the second may be interesting from the view-
point of modeling neural networks. They, however, suffer from the lower
capabilities because of inefficient use of the coupling. From an engi-
neering standpoint, it is tried to build up the systematic connections.
The processes of composing transformation-invariant functions are appli-
ed to Boolean functions, Walsh-Hadamard power spectrums, and Fourier
spectrums. Subset methods, which can be considered one kind of template
matching méthods, are introduced to achieve economy of computation
timé and required memory. The effectiveness of the theory is confirmed

through computer simulations.
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CHAPTER 1

INTRODUCTION

Character recognition, speech recognition, medical diagnosis, and
remote sensing appear to be one of the most interesting applications in
the field of pattern recognition. Though they have an abundant litera-
ture, there is still a wide gap between human and machine in recognition
of patterns without restriction. We do easily recognize complicated
patterns, even if they are distorted. We can maké out a character, even
if it is tilted and written on any place of a sheet of paper and it is
largé or small. To machinés, a large character and a small one are quite
different. In optical character readérs (OCR) and speech recognition
machines on the market, some restraints are put on an input pattern.
Input patterns had better be allowed +to have wide variations in size,
style, oriéntation, and so on within admissible transformations.

According to Felix Klein's mathematical viewpoint, every interesting
geometrical property is invariant to any element of some transformation
8roup. An input pattern is often normarized through appropriate prepro-
Ccessing. Group~invariant functioné, if found, could ease postprocessing.
This paper aims at a basic research to achieve some transformation group-
invariant system for applications in pattern recognition. Pattern recog-
nition machines are generally designed to tolerate certain transforma-—
tions and noise. According to the interesting indication by Ullmann [1],
[2], a transformation changes the spacial arrangement of points of a

pattern without changing their associated values, as typified by a
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distortion on a rubber sheet. Noise, on the other hand, changes the
values, but does not change the spacial arrangement of the points. There
are a number of techniques to deal with noisy and transformed patterns
[11-[9], one of which is a subset method investigated later. Transforma-
tions are divided into two classes, local ones such as distortions and
global ones such as translations, enlargements, reductions, rotations
and so on.

The theory of computational geometry was first developed by Minsky
and Papert [10], [11], and next extended to 'Analog Perceptrons' with
real-valued inputs and output by Uesaka [12]. They have made theoretical
investigations of what is called perceptrons. Perceptrons were first
suggested by Rosenblat [13] as a model for neural networks with learning
capacity. Since then, various models of perceptrons have been proposed
We have been carried formal and mathematical investigations in a three-
layer series—-coupled machine without feedback loop and lateral coupling
[14]-[25]. One of the most important problems in this fype of machine is
determination of connections between the first layer and the second. The
connections are decisive on the capacity of the machine. Random connec-
tions may be interesting from the viewpoint of modeling neural networks
in a biological system. They, however, suffer from the lower capabili-
ties relative to the number of connections because of inefficient use of
the coupling. From an engineering standpoint, it will be necessary to
build up systematic connections with consideration of applications.

With this in mind, we make theoretical researches on the efficient

construction of this type of machine in Chapter 2. The functions on the
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second layer are called partial functions, which are mainly Boolean
functions in this chapter. First, the necessary and éufficient condition
for a complete system, of which any function can be expressed by a line-
ar threshold fumction, is derived.vAmong complete systems, the system
which has the minimum number of connections between the first layer and
the second is considered, which is called a mintmum complete system. For
parallel computation machines such as perceptrons, it is important what
range each partial function should deal with. We define the locality of
computation by T-order and L-order. A minimum complete system proposed
here is useful for decision of these orders.

Next, we introduce a transformation group & on an input space, and
show how to construct functions which are invariant under . As a method
of realizing such G-imwariant functions, Minsky and Papert [11] have
already presented a method of equating the coefficients of partial func-
tions in the same G-equivalence class. This is summarized in 'Group-
Invariance Theorem', which is one of the most useful méthematical tools.
In contrast to their method, this paper describes a method by which
every partial function itself has G-invariant property. Then any funé—
tion onv the last layer is of course G-invariant, since the function is
expressed by a linear threshold funcétion of partial functions. If a
family F éf partial functions is 1linearly independent and closed under
G, the éoefficients of partial functions depend only §n the G-equivalence
class in a linear expression of a G-invariant function. In other words,
two partial functions have the saﬁe coefficient, if they belong to the

same G-equivalence class. This is the necessary and sufficient condition
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heré. This was the sufficient condition in the systembof Minsky and
Papert, since there was tolerance about expression of functions. The
family of partial functions, which is G-invariant and has a linear ex-
pression of any G-invariant function, is called a G-invariant com-
plete system. Such a system can make distinctions between G-nonequiva-
lent patterns. It is investigated how to realize a G-invariant complete
system.

In Chapter 3 Walsh functions [26]-[31] are used as partial functions.
Walsh-Hadamard transform (WHT) has the advantage of computational sim-
plicity when compared with Fourier transform. The Fourier power spectrum
is dinvariant to translations, but the (WHT) power spectrum is not. The
(WHT) for image processing has been discussed by Andrews and Hunt [32].
The axis-symmetry-histograms developed by Alexandridis and Klinger [33]
are invariant to translations and rotations by multiples of 90°, but
they require normalization of an input pattern through the Fourier trans-
form. The (WHT) power spectrum developed by Ahmed, Rao and Abdussatar
[31], [34] is dinvariant to translations, which dis obtained directly
through the (WHT). But it is not invariant to enlargements, reductions,
and so on.

In this chapter it is described how to develop the (WHT) power spec-
trum to be invariant under all of translations, enlargements, reductions;
rotations by multiples of 90°, and so on [35]. A composing pro-
cess 1is introduced, which is available for obtaining the modified (WHT) -
power spectrum having these transformations—invariant properties. It is

based on the Group-Invariance Theorem developed in Chapter 2. The main
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idea is to make a linear combination of G-equivalent functions. First, a
Gl-invariant (WHT) power spectrum is constructed. Next, a permutation
group on the GI-inwvariant (WHT) power spectrum caused by G2 operating on
an input pattern is found. Thus we arrive at a (WHT) power spectrum
being constant under both GI and (G2, where GI and G2 are some transfor-
mation groups. Repeating this process, a power spectrum can be derived
from the (WHT) power spectrum that is invariant to a more general group
of transformations. The real-valued (WHT) is mainly dealt with, which is
convenient .in treating transformations in the form of Zim. When the
complex-valued (WHT) is adopted for convenience of treating transforma-
tions in the form of kim, the G-invariant (WHT) power spectrum is ob-
tained in the same composing process [36], [37]. Many interesting re-
sults are got through the composing process [35]1-[47].

The G-invariant (WHT) power spectrum developed here may be regarded
as a feature. It is also possible to adopt any other functions besides
power spectrums. There are many other translation-invariant functions
such as R-transform [48], [49] which is computed only through addition
and subtraction, M-transform [50] which is done only through logical
product and sum, BIFORE power spectrum [34], and so on. As pointed out
by Arazi [51], these transformation-invariant functions are constant
under other transformations besides objective transformations. In other
words, they are not G-invariant complete systems. The Fourier transform
is convenient in treating more general transformations.

In Chapter 4 Fourier sinusoids are.used as partial functions. Changes

in  Fourier spectrum of an input pattern are investigated under several
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transformations such as translations, enlargements, reductions, rota-
tions, and so on. Then the Fourier spectrum is developed to be invariant
under these transformations [52]. It is well known that Fourier power
spectrum and auto-correlation functions are translation-invariant [53]
etc.. They preserve only amplitude information and are not a translation-
invariant complete system. On one hand the importance of phase informa-
tion in image pfocessing is pointed out by Oppenheim and others [5h]-
[56]. The spectrum developed here is a transformation-invariant complete
system and any essential information is not lost. We can regenerate (a
representative of the class of) an input pattern through the inverse
Fourier transform. Parameters introduced in this chapter fepresent the
degree of translation, enlargement, reduction, and rotation, so they can
be used for normalization of an input pattern. The normalization is less
affected by local distortion and noise, since the Fourier transform is a
global transform depending on the whole pattern. The efficiency of our
theory is confirmed through computer simulation.

A simple template~matching recognition technique by using an asso-
ciative memory was presented by Yau and Yang [57]. Classical template
matching 1is of limited usefulness in advanced picture analysis systems.
However, a hierachical template matching can be used even in cases where
patterns are subject. to distortions [5]. The process of finding best
matching takes a long time. Tt may save us computation time and required
memory to determine the correspondence between small parts of an input
pattern instead of the whole pattern. The idea of using subsets has been

developed by several people [1], [21, [4], [51, [6], [58]. Chapter 5
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aims at a basic research to achieve automatic design of recognition and
representation systems of highly variable patterns by a subset method.
The design of features usually takes a great deal of human effort. It is
desirable to automate the determination of features. In an example, our
algorithm automatically extracts a few features from several patterns of
the portion where the upper stroke joins the bottom loop in closed-loop
6's written without constraint. Admissible distortions are given a pri-
ori, but it is also a problem how to determine them. The investigation
as to learning algorithm for them was conducted by Ullmann [1], [59].

In general, the set of automatically determined features may include
redundant features. Features could be linearly ordered by a criterion of
the estimatea error or entropy [60]. Elashoff and others [61] showed
that for optimum selection of a subset of features, the features gener-
ally may not be evaluated independently. A counter example was given to
a possible claim that the best subset of features must contain(the best
single feature [62]. After learning of features, some of them are se-
lected to obtain a min-max-cover which covers as many bits of patterns
in the training set as possible. The selection problem is represented by
a table (F-table). The table is an extension of a prime implicant table
which has been used in a classical problem of minimizing a Boolean func~-
tion, that is, selection of the minimum cost subset of prime implicants
of a Boolean function. There are a great number of techniques for mini-
mum or nonminimum irredundant solutions [63]-[{73]. Three well-known
reduction rules, which are based on row dominance, column dominance and

row essentiality [65],[66], allow, in general, large simplification in
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the determination of min-max-covers. Differing from prime implicants,
redundant features in the F-table are not always useless but often use-
ful for increasing the reliability in recognition.

After obtaining a mim-max-cover, a classifier function is construct-
ed in the form of a product-of-sums, whose geometrical interpretation
will be given later, of features in the min-max—cover. Then, we intro-
duce a product which works as a design tool for the sums in the product-
of-sums. All patterns in the training set are correctly classified into
the corresponding classes by the classifier function. Patterns in
the on-set of it can be genérated by possible combinations of features.
A fundémental weakness of product-of-sums is pointed out by Ullmann [1],
[2], [58]. On the contrary to the weakness, it has a good point of
flexibility and economy. The reliability of a classifier function can be
increased by using overlapping covers. Therefore product-of-sums expres-
sion is adopted here. The aspects of constructing a classifier function

are shown in a simple example.
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CHAPTER 2

MULTI-LAYER SERIES-COUPLED MACHINES

2.1 Introduction

In this chapter, theoretical investigations on the construction of
multi-layer (mainly three-layer) series—coupled machines will be con-
ducted. The first layer is an input space (an input pattern) and the
last is an output space (a linear threshold function or a linear combi-
nation of partial functions). Functions on the middle layers are called
partial functions. Our main purpose is to find a family of partial func-
tions which is invariant under some transformation group G and is able
to make distinctions between G-nonequivalent patterns. Such a family is
called a G-invariant complete system. The system is generally required
to have the additional property that any G-invariant function has a
linear expression by it.

First, mathematical terms and definitions will be given in prepara-
tion for the following discussions. Next, the necessary and sufficient
condition for a complete system, by which any function has a linear
expression, will be given. The complete system which has the minimum
number of connections between the first layer and the second is called a
minimum complete system. It will'be considered how to construct such a
system. Lastly, 'Group-Invariance Theorem' and other theorems, which are
useful mathematical tools to construct group-invariant functions, will
be introduced. A composition method of a group—invariant compleﬁe system

will be investigated.
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2.2 Multi-Layer Series-Coupled Machines

The general scheme of a three-layer series-coupled machine is illus-
trated in Fig. 2.1. The first layer V is an input space consisting #»
points. The second F is a family of functions which are called partial
functions. The values of partial functions are computed independently of
one another. This is highly important for parallel computation. The last
layer ¢ 1is represented by a linear threshold function of partial func-
tions or a linear combination of them.

Geometric patterns are often drawn by using black points and white
ones. So we assume that an input pattern X=[x(0),x(1),---,x(n-1)] is

expressed by an n-vector of 1's and 0's which correspond to black points

and white ones. We use «(Z) instead of x. to avoid complicated sub-

scripts. Let B be the set {0,1}, an n-cube B" be the direct product

of N B's, and B(n) be the set of all mappings from B" to B. X is an ele-

ment of B and any function is an element of B(#n). The set of variables

is expressed by V={x(0),x(1),---,x(n-1)} and the set of partial func-

tions by F={f(0), f(1), ---, f(m-1)} or simply by F={f}. Every partial

function is a mapping from B" to B. Let f(7,X) denote the value of the
i-th partial function for X, then an m-vector F(X)=[f(0,X),f(1,X),---,

f(m-1,X)] is called the F-image of X.

Let IS] denote the number of members in a set S and be called the
degree of S. If a subset S of V satisfies the following conditions, we
call it the support of f and express it by S(f). |S(f)| is called the
degree df I

1. f(X)=f(Y) for any X, and it is satisfied that
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Input pattern Partial functions

f(0)
] f(1)
12)

x(0) %/
x(1) %

— e e e A= e

flm-1)

Fig. 2.1. A three-layer series-coupled machine.
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y(i)=(x(i), if y(<) is in S,

{,constant, if y(<) is in V-S. (2.1)
2. We can't choose S' which is a proper subset of S such that f(X)=f(Z)
and

g(i)=(x(Z), if z(<) is in S',

{:constant, if z(71) is in V-S' (2.2)
where ©=0,1,---,n-1. For example, S(x(0)Vx(1))={x(0),2(1)}, |S(x(0)vx(1))]
=2, S((x(0)V(1))Ax(1))={x(1)}, |S((x(0)Vx(1))Ax(1))]|=1, where V and A
denote ordinary Boolean notations.

A function Y(X) on the third layer has an output of 1 or 0 accord-
ing to whether an input pattern X satisfies a proposition P or not. Y
is a member of B(n) and usually expressed by a linear threshold function.
Let'l[P] be defined as
1{P]= (1, if P is true

{o, if P is false. (2.3)
For instance, 1[0<1]=1, 1[0>1]=0. If there exist real numbers al(il)'s
such that

vo=1l § T et pei,x0501 (2.4)
for any X in B" then (2.4) is called a T-expression of w‘by F. We some-
times rewrite this more simply as

p=1[ ZfEF a(f)f>0]. (2.5)
The family of subsets of B(n) which give a T-expression of § is deoted

by 7(y). The T-order of { is defined as

OT(Y)= min max |S(f)]. : (2.6)
FeT(y) feF
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Similarly, if there exist real numbers a(<Z)'s such that
_ v m-1 . .

W(X)=} o ali)fiL,x). (2.7)
for any X in Bn, then (2.7) is called a L-expression of ¢ by F and sim-
Ply rewritten as

V= Ty alfIf. (2.8)
The family of subsets of B(#n) which give a L-expression of } is denoted
by L(y). The L-order of ¥ is defined as

OL(Y)= min max |S(f)
FeL(y) fe€F

. (2.9)

Both OT(y) and OL(y) depend only on y and not on the choice of F. As
seen from the definition, if a family gives a L-expression of y, it also
gives a T-expression of y. The converse to this, however, is not always
true. Conéequently, for any ¢

OT () <OL(y)<|S(y)]. (2.10)
When F is an infinite set, (2.5) and (2.8) are defined by quadratic mean

convergence, that is,

p=1l zin § 7L ati)fei)r01 (2.5")
Mmoo
p=tim 3 T atidf(i). (2.8")
m-ye

The orders OT(y) and OL(y) express an important concept of locality
in parallel computation. If ¥ has small orders, the partial functions
needed are easy to compute in parallel, because each depends only on a
small part of the whole input pattern. To illustrate one simple concept

of locality, we state a fact about convexity. An input pattern X fails
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to be convex if and only if there exist three points such that xz(Z2) is
in the line segment joining x(71) and x(%3), and x(Z1)=x(73)=1, x(12)=0.
Thus we can test for convexity by examining all triplets of points. If
all the triplets pass the test then X is convex. If at least one triplet
meets all the conditions above, then X is not convex, that is, concave.
All the tests can be done independently. Fig 2.2 shows a convex pattern
and a concave one. Then the order of 1{X is convex] is less than or
equal to three. A function ¥ is said to be global, if the order of V¥ is

n. There exist two and only two global functions x(0)@x(1)@---@x(n-1)

and x(0)®x(1)@---0x(n~-1) [14], where "@" denotes 'exclusive or'.

The following three transformations are called Zsomorphisms:(l) ex-
changing the <-th element of X for the j-th, (2) negation of the i-th
element, (3) negation of the function. Let

X=[w(0),x(1), -, 2(1) y == 2(j),~—,x(n-1)]

X1=[x(0),x(1) ==, 2(J)y-—y2(L),—~,x(n-1)]

Xo=[x(0),2(1) ==, (1), ==y ====y ==, (n-1) ]

VI(X)=p(X1), VE(X)=yp(X8), V3(X)=p(X) | (2.11)
then ¥, YI, ¥2, and V3 are also called Zsomorphism functions and

OT(Y)}=0T(Y1)=0T(v2)=0T(Y3)

OL($)=0L (1) =0L($2)=0L(3) . (2.12)
In other words, the order is unchanged by isomorphisms. This is easy to
understand without proof [20], [21]. The set {F(X)} of all F-images is
also unchanged by isomorphisms [15].

Before we prove the theorem which gives the upper limit ofvthe orders,

we state a few propositions.
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[Proposition 2.1] Assume that  has two T-expressions as follows:
v=1[a(0) f(0)+ § f;g al(i) f()>0]
=10b(0)F(0)+ § 112) B(L)£(2)50) (2.13)
where a(0)b(0)<0. Then there exists a T-expression of ¢ by F-{f(0)}:
=1L T T (al)/1a0) |)+(b(4)/[B00) |)) (20501
F={f(0),f(1),~-=, f(m-1)}. (2.14)
(Proof) When y(X)=1, we have |

(@(0)/]al0) |)F(0)+ § 120 (a(2)/]al0)|)f(£)>0

] |
(5(0)/16C0) |J£(0)+ § 122 (b(£)/|b(0)]) (2)>0. (2.15)
Because a(0)b(0)<0, we obtain (a(0)/|a(0)|)+(b(0)/|b(0)|)=0. Therefore
Y 7T ((ali)/|al0) )+(b(L)/1b(0) |))F(2)50, (2.16)
When ¢(X)=0, we conclude in the same way that
L 7T (tat2)/1ac0) [J+(b(2)/[B(0)|))F(£)50. (2.17)
QED.

[Proposition 2. 2] Let $(AND,1)=fIAf2A---Afl= f\iil Fi, W(OR, 1)=FIVFoV

-—=Vfl= \/ iil fi and Y(PARITY, Z)=f1@f2$""@ﬁ=@iij fi, then we have

7

OT(Y(AND, 1)) smin(max(OT(fi),0L(fj)), OL(Y(AND,1))< N i=1 OL(fz)

T J#

/

OT(Y(OR, 1)) smin(mam(0T(fi),0L(fj)), OL(Y(OR,1))< } ._; OL(fi)

1 J#

[/

or(y(Parrry, 1)< § Lo oreri), oncy(parrry, 1)) § L

1= OL(fZ).
(2.18)

When S(fZ) and S(fj) are disjoint for any %< and J (Z#j), we obtain

OT(4(AD, 1) )smaw OT(Fi), OL(p(AND;L))=1 L. oL(fi)

T
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OT(y(OR, 1)) ymaz OT(fi), OL(y(0R, 1))=Y L or(fi)
7
OT(y(PARITY, 1))=Y iiz OT(fi), OL(y(PARITY,1))=§ iiz OL(f1) .
(2.19)
It is same thing with any isomorphism functionm.
(Proof) We br:r'Lefbly prove the assertion for fIAf2(7=2) in the simplest
case. Suppose that
F1=§ "1 aci)pei)=at 1D b pei)so0
fo= 3 Mlelipi=L T L d(9)5(350] (2.20)
then
Y(AND, 2)=fINfo=1] ) ’;?;é b(i)f(i‘)ﬁvz 2 ;’3;; c(d)f(d)>nz]
=10 ] 15 d(i)f(3)4 | Ty ald) £(1)>N1]
=¢ 105 al) () LG e(d)f(5))
= 1 5L, ali)eli) (£(3) () (2.21)
where Hlzms( | e A, 0), vz} "l b()f(4,X)) . Therefore we
conclude that
OT(Y(AND, 2))=0T(fINf2) <min(max(OL(f1),0T(f2) ) ,max(OL(£2),0T(£1)))
OL(Y(AND, 2) )=0L(fINf2)<OL(f1)+OL(£2) . (2.22)
Suppose that S(f1) and S(f2) are disjoint. Since Y(X)=f1(X) for any X
such that f2(X)=1, we obtain
OT(y(AND, 2) ) >0T(f1) . (2.29)
Similarly we have
OT(Y(AND, 2))>0T(f2) . _ (2.24)
Hence

OT (y(AND, 2));max(0T(f1),OT(f2)). : (2.25)
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The equality is not satisfied in general. On the other hand we have
OL(fINf2)= maz \S(F(2)S(F(5))]
T,d(al(t)e(j)#0)

=  max lS(f(i)|+ mazx |S(F(7)]
2(a(Z)#0 Jlel(g)#0)
=0L(f1)+0L(f2) (2.26)
since S(fiJNS(fj) is an empty set from the supposition. The proof about
the orders of fIVfZ2 and fI®f2 is given in the similar way [21]. QED.
There exist partial functions fI and f2 of order 1 such that fIAf2
and fIVf2 become of rather large order, that is, the orders are not of
bounded order as |V| becomes large [11]. If there is not an input pat-
tern X such that e(X1)<e(X)<e(X2) for a function e which is not general~
ly a Boolean function, the pair of two patterns XI and X2 is called a
boundary. Where XI and X2 belong to different classes, that is, [y(XI),
Y(x2)] =[1,0] or [0,1]. Furthermore it is supposed that there is no
pair such that e(X1)=e(X2).
[Theorem 2.1](Upper Limit of T-order) If there are k boundaries, then
OT () kemax|S(f(1)) | (2.27)
where e(X)= ) iﬁ al(i)f(i,X) .
(Proof) Let k boundaries be expressed by (e(X(2j-1)),e(X(24)) and e(X(2F

-1))<b(gl)<e(Xx(24)) (j=1,2,--~,k), then we obtain

VOOSLLT S (e(D)-b(3))50] ox 1L 1 [ (e(u-b())<0).  (2.28)
Therefore we conclude that
OT(v)sk maw |S(£(1))]. - (2.29)
g |

QED.
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[Corollary 2. 1] If there are &k boundaries, then OT(y)z<k, where e(X)=
2 : a(i)x(7). This is the special case of Theorem 2.1 when f(7,X)=x(7).
[Corollary 2.2] If |{X:y(X)=0}|=k or |{X:y(X)=1}|=k, then OT(y)<2k-1.

[Example 2.1] In Corollary 2.1 the number X of boundaries depends on
{a(Z)}. When |V|=n<3, it is seen from testing representatives of isomor-
phism functions that we can choose {a(Z)} such that OT(y)=k except for
one [20]. Fig 2. 3 shows representative functions when n=3 and a black
point means an input pattern point X such that ¢(X)=1. Table 2.1 shows
one egample of a(i)'s which satisfy that OT(y)=k. Y11 is omitted because

there do not exist suitable a(Z)'s.

2.3 Cpmplete Systems

If one can choose a(Z)'s such that they satisfy Z’?;é al(i)f(i)=0
and are not simultaneously zero, F={f(Z)}(i=0,1,---,m-1) is called line-
arly dependent, otherwise Linearly independent. If for any ¢ in B(n)
there exists at least one T-expression of ¢ by F, F is called a T-com-
plete system. A L-complete system is defined in the same way. Later we
know a T-complete system and a L-complete system are the same thing, so
i we will simply call them complete systems. In this section we describe
first the necessary and sufficient condition for a complete system. Next
we do how to construct a minimum complete system which has the minimum
number of connections between the first layer and the second. The system
is useful to decide orders of a’function. The fact that F is a complete
-system implies that F-images of all elements in B" are arbitrarily sepa-

rable and F-images of two or more elements in B do not coincide with
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|
17 2 ¥3 V4 5
‘Y6 vy 78 £9 10
/ x(2)
0 x(1)

Y17 Yo 13 14 x(0)
Fig. 2.3. Representatives of Boolean functions with three‘
variables. (o :on-set).
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Table 2.1. T-order and af{/) 's.
7-order | functions a0} lall) | a(2)

0 vy 0 0 0
1 Yo 1 1 1
1 V3 1 1 0
1 Y6 2 1 1
1 ¥9 1 0 0
1 ¢10 1 1 1
2 V4 2 -1 1
2 5 1 1 1
2 $7 2 2 -1
2 ¢8 1 1 -1
2 w10 2 1 1
2 Y13 1 1 0
3 Y74 1 1 1

- 21 -
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each other.
[Lemma 2.1] The necessary and sufficient condition for N points to be
arbitrarily linearly separable is that those N points span an (N-1)-di-
mensional space, that is, they do not stay on an (N-2)-dimensional space.
(Proof) Cover and others have determined thevnumber of -linear dichoto-
mies of N points [T4]. Using their results, this is easy to prove. QED.
Let F={f(0), f(1), --=,f(m-1)} and B'={X(0),X(1),~--,X(H-1)}(N=2"),
then a F-matix MF is defined as

f£00,x(0)) ,---,f(m-1,X(0))

0, X(0N-1)),--=, f(m-1,X(N-1)) (2.30)

When N=m, the determinant of tbe‘above matrix is denoted by |MF|. In the
above definition the Z~th row vector [f(0,X(Z)),~——,f(m-1,X(7))] repre-
sents the F-image of X(7Z) and the j-th column vector [f(J,X(0)),-—-,f(J,
X(N—Z»]t represents  the partial function vector f(i,Bn). Where the
superscript "t" means a transposed vector.
[Theorem 2.2] (Necessary and Sufficient Condition for a Complete System)
The necessary and sufficient condition for 7 to be a complete system is
that rank(MF)=N. When N=m, this condition can be rewritten as |MF|=0.
(Proof) From Lemma 2.1 the necessary and sufficient condition for F to
be a complete system is that the N row vectors of MF are linearly indep-
endent. Consequently, the condition is rank(MF)=N. QED.

When the number of partial functions in a complete systeﬁ exceeds NN,
it 1s possible to choose N linearly independent partial functions s0

that they constitute a complete system.



CHAPTER 2 - 23 -

[Corollary 2.3] A complete system F gives a L—expression to any ¥ in
B(n). When the number of partial functions is minimum, that is, |F|=W,
the expression is unique.
(Proof) Let £(i,B)=[F(2,X(0)),F(,X(1)), =, F(3,X(H-1))1°. From Theorem
2. 2 rank(MF)=N. Consequently, for any N-dimensional vector w(Bn) there
are certain real numbers a(Z)'s such that w(Bn)= 2 : a(i)f(i,Bn). In
other word, F gives a L-expression to y. When |F|=N, partial functions
in F are linearly independent and a(Z)'s are uniquely determined. QED.
Frém Corollary 2.3 it is seen that a T-complete system and a L-com-
plete system are equivalent. Let for a subset S of V J(S) be the set of
all partial functions any of whose supports is a proper subset of S, and
I(8)={F|FCJ(8)} be the family of all subsets of J(S). If I(S) and L(f)
are disjoint for a partial function f whose support is S, that is, S(f)=
S, then the partial function f is called a mask on S. For example, f=x(0
JV (1) is a mask on {x(0),x(1)}, but f=x(0)+x(1) is not. There are many
masks on 5. A mask is defined here in wider meaning than that of Minsky
and others [11]. They wused a mask only in the meaning of a AND-mask
defined here. The functions f(AND,S), f(OR,S), f(PARITY,S), and f(MASK,
S) are defined as

FamD, $)=w (0N N —--pa(k-1)=\52L weo)=1t 3 KD weidsn

k-1

0 x(7)>1]

FOOR,8) =w(ONw(IN-—~z(k-1)=\/ XL w(i)=11 §
F(PARITY, $)=0(0)8x(1) ---ga(k-1)=() K21 z(2)

=11 § %21 @(i)= an odd numver]
F(MASK,S)=a mask on S

S={x(0),2(1),~--,2(k-1)}. (2.31)
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and they are called AND-, OR-, PARITY-mask, and simply a mask, respec-
tively. If S is an empty set, then they are defined as f(4AND,S)=f(OR,
S)=f(PARITY, S)éf(MASK, S)=1. F(AND), F(OR), F(PARITY), and F(MASK) are
defined by

F(AND)={f(AND,S)|S is a subset of V}

F(OR)={f(0R,58)|8 is a subset of V}

F(PARITY)={f(PARITY,S)|S is a subset of V}

F(MASK)={f(MASK,S)|S is a subset of V} (2.32)
and we have

|\F(AND) |=|F(OR) |=|F(PARITY) |=|F(MASK) |=2". (2.33)
F(AND), F(OR), and F(PARITY) are special cases of F(MASK).
[Proposition 2.3] Let S={x(0),x(1),---,x(k-1)}, and F(AND,1,5), F(OR,L,
S), and F(PARITY,1,S) be defined as

F(AND,1,5)={f(AND,S"')|5'CS, |5'|=L}

F(OR,1,5)={f(0R,5")|5'¢S, |5"|=L}

F(PARITY, 1,8)={f(PARITY,S')|53'C8, |S'|=L} (2.34)
then we have the following relations among AND-, OR-, and PARITY-masks:

feam,5)= 3 % (-n* L percor, 1,50 I

=/2)*Ty K et

1
) fer(PaRTTY, 1,5) 17

B k -1
F(OR,S)= 2 7=1 {(-1) 2 fEF(AND, L,5) f

_ k-1 k
=(1/2) z 1=1 Z fEF(PARITY,1,S) £

F(PARITY,S)=} ziz (-2 g Fercamp,1,s) ¥

k-1 k 1-1
=(-1)7" § 2, {-2) szF(OR,Z,S) il (2.35)
(Proof) Let xz(Z)'s (i=0,1,2) be in B, then we have

2(0Nx(1)=0c(0)+x(1)~(x(0)Nx(1))=(1/2) (x(0)+x(1)-(x(0)@x(1)))
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2(ONx(1)=x(0)+ax(1)-(x(0)Nx(1))=(1/2) (x(0)+x(1)+(x(0)Bx(1)))

2(0)@9x(1)=x(0)+x(1)-2(x(0Nx(1))=(~1) (x(0)+x(1)-2(x(0)Nx(1)))

(x(0)tc(1) Nac(2)=(x(0)Nxc(2) ) £(2x(1)Nx(2))

(x(0) 22 (1) Na(8)=(ax(0N2(2) ) t(x(1)Nx(2))Fx(2)

(2(0)+xc(1))@(2)=(2x(0)@x(2) ) £(x(1)@x(2))Fc(2) (2.36)
where the double signs(#, ¥) are taken in the same order. Using these
relations, (2.35) can be easily proved through mathematical induction
[151, [24]. QED.

Lef F(AND,1,F(Z)), F(OR,L,F(%)), Y(OR-AND,L,F(7)), and v(AND-OR,Z,

F(7)) be defined as

F(AND, 1,F(Z))={f|f=f(L1)NFf(12)N-=-AF (<L)}

F(OR, L, F(2))={f|f=f(LINF(L2)N---VF(il)}

W(OR-AND, 1,F(7))=

V sercanp,1,71)) ¥

W(AND-OR, L,F(1))= /\f%F(OR 15010 T (2.37)

where {f(21),f(i2),---,f(11)}(F(i)CF, 1<l<|F(Z)|, F(AND,1,F(1))=F(OR,1,

F(z))=F(Z). From Proposition 2.3 we have

F(i)
Veer) = zl Yty fereanp,1,7(1)) ©

. IF(£)| 1-1
N perery) =120 CU7T L perpor,1,r000) T (2.38)

[Proposition 2.4] For any F(Z)CF we have

EIF(t)iw(OR—AND 1,F(1))= EIF(i)lw(AND—OR 1,F(2)).(2.39)

L operci) =
(Proof) Let #[P] be the number of elements which satisfy the condition
P. TFor example, #{x=an odd number, 0<x<10]=5. We assume without loss of
generality that #[f(X)=1, f€F(7)]=k for an input pattern X.

(1) If k=0, then each side in (2.39) is equal to zero.

(2) If 1<k<|F(7)|, then the left side in (2. 39) is equal to k. ILf
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1ski<k and |F(%)|-k+1<k2<|F(Z)]|, then we have

Y(OR,k1,F(1),X)=1, Y(AND,k2,F(i),X)=1. (2.40)
If k+1<kl<|F(Z)| and 1<k2<|F(i)|-k, then we obtain

Y(OR, k1,F(1),X)=0, V(AND,k2,F(1),X)=0. (2.41)
These aspects are shown in Fig 2.4. Hence

#Y(OR, k1, F (1), X)=1]=#[Y(AND,K2,F (1) ,X)=1]=k

#[Y(AND, k1,F(<),X)=01=#[Y(OR,k2,F(1),X)=01=|F (1) |-k. (2.42)
Therefore we can conclude that each side in (2.39) is equal to k. QED.
[Theorem 2.3] f(AND,S), f(OR,S), and f(PARITY,S) are masks on S. For any
function ¥ in B(n), the L-expressions of ¥ by F(AND), F(OR), and F(PARI-
TY) exist and are unique. Generally speaking, the L-expression of ¥ by
F(MASK) always uniquely exists.
(Proof) It is well known that any function ¢ in B(#n) can be written
uniquely in the disjunctive mnormal £form. We can rewrite Y using the
arithmetic sum(+) instead of the logical sum(Y). Furthermore any naga-
tion 2(Z) can be replaced by I-x(Z). Applying this repeatedly, all nega-
tions can be removed. When the same terms have been collected together,
we have the L-expression of ¥ by F(AND). From Theorem 2.2 it must be
satisfied that rank(MF(AND))=2". Since |F(AND)|=2", F(4ND) is linearly
independent. This means that F(AND) is a linearly independent éomplete
system. It is easily known that F(OR) and F(PARITY) are also linearly
independent complete systems, wusing Proposition 2.3. It is the same
thing with F(MASK).

Suppose that f(4ND,S) is not a mask, then we could have the L-ex~

pression of f(AND, S) by F' such that S(f) is a proper subset of § for
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any f in F'. From the above proved fact, any f in F' has a L-expression
by - {f(AND, S')|S'C S}. Therefore f(AND,S) has a L-expression by {f(AND,
5')|8'cS} as follows:

f(szD,S)=ZS a(S')f(AND,S') . (2.43)

'S
This contradicts that F(AND) is linearly independent, hence proves that
f(AND,S) is a mask. It is proved in the same way that f(OR,S) and f(PAR-
ITY,S) are masks. QED.
[Theorem 2.4] Assume that 3(f1)=S(f2)=S, f2 is a mask and there is a L-
expression of fI such that

fi=Y Per al(f)f+a-fo (2.44)
where FEI(S). Then the necessary and sufficient condition for fI to be a
mask is that aZ%O.for any L-expresion of fI.
(Proof) Necessity:If a2=0, then it is obvious that fI7 can not be a mask.
Sufficiency:If a2#0, then we obtain

fe=(1/a2) fi+ } fer (~al(f)/a2)f (2.45)
Suppose that f7 is not a mask. Then it is derived from (2.5) that f2 is
not a mask. This contradicts the conditions, and therefore fI is a mask.

QED.

[Corollary 2.4] Let f be a mask, then any function given by isomorphism

is a mask.

[Corollary 2.5] Masks with different supports are linearly independent.

2.4 Minimum Complete Systems
A minimum complete system is defined as a complete system F such

that the number |S(f)| of connections between the first layer and

) FEF
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the second is minimum.

[Theorem 2. 5](A Minimum Complete System) F(MASK) is a minimum complete
system. Conversely, any element of a minimum complete system should be
a mask.

(Proof) It has been proved that F(MASK) is a complete system. Since
there is a mask f such that S(f)=V, there is at least one partial func-
tion should be in a complete system whose éupport is V. As the defini-
tion of a mask is taken into consideration, the partial function must be
a mask. Furthermore there is a mask f such that S(f)=V-{x(Z)}. Since
masks with differnt supports are linearly independent, a complete system
needs at least (ncn+ncn—1) partial functions to have a L-expression of a
mask f such that lS(f?i;n—l. Where ncn and ncn—Z mean combinations. Then

the number of connections requested is at least nCan+nCn_ZX(n—Z). If we

continue this computation, we can conclude that the number of connec-

n

. C.Xi=nx2n—1. On the other hand,
=0 n1

tions 1is more than or equal to z
the number of interconnections in F(MASK) is minimum, since Z fEF(MASK)
IS(f7[=nX2n_z. Hence F(MASK) is a minimum complete system. It is obvious
from linear independence of masks with different supports that any ele-
mént bf a minimum complete system must be a mask. QED.
[Corollary 2.6] For any ¢ there are FI and F2 such that
FICF(MASK), FIET(y), OT(y)= ;;axJIS(f)[
EF

F2(F(MASK), F2EL(y), OL(V)= max ,S(f‘)] (2.46)
FEF2

From Corollary 2.6 it is enough to test only subsets of F(MASK)
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instead of F in (2.6) and (2.9) in order to get OT(y) and OL(Yy). A mini-
mum complete system defined above has the minimum number of interconnec-
tions. When a multi-stage coupled partial functions are used, the number
becomes much less [16]. This is shown in brief here.

[Proposition 2.5] We can construct a complete system by using partial
functions f such that |S(j7[§k(k12) and f's are at most Z-stage coupled.
Where A4 is the smallest integer that is not under Zogkn.

(Proof) We can construct any mask f by using one stage-coupled partial
functions with order k, where ]S(f?]ik. Assume that we have already got
any mask whose order is less than or equal to 7. Adding one more stage
and using only partial functions f's such that |S(f7|ik, we can have any
mask f(MASK) such that 1+1<|S(f(MASK))|<min(kxl,n). These facts lead the
proposition. QED.
[Theorem 2.6](Multi~Stage Coupled Minimum Complete S-stems) When k=2 in
Proposition 2.5, we have a complete system which has the minimum number
of interconnections among multi-stage coupled complete systems. Then the
number of interconnections is 2(2”-1)—n and the number of stages is the
smallest integer % that is not under Zoggn.

(Proof) With partial functions whose degree is 1, we can construct masks
whose degree is 1. But we can not do masks whose degree is greater than
1. Even 1if we add one more stage in the proof of Proposition 2.5 using
partial functions whose degree is 1, we can not obtain any masks f such
that |S(f7|;l+1. If we use (2'-I-n) partial functions whose degree is 2,
any mask can be constructed by multi-stages. Then total number of con-

nections is



CHAPTER 2 - 31 -

Ixntox (8 -1-n)=2(2"-1)-n. (2.47)
QED.
Compared with a minimum complete system defined before, the numbers
of interconnections are in the ratio of
(208"-1)-n) /nd" 24 /n(n>>1), (2.48)
(2.48) decreases in inverse ratio to #n. The system proposed in Theorem
2.6 1is very convenient, since it can be constructed by using uniform
components and moreover the number of components requested is minimum.
[Example 2.2] When n=3, a two-stage coupled minimum complete system FI
is as follows;
Fl={f({)}(i=0,1,---,7)
flo)=1, f(1)=x(0), f(2)=x(1), f(3)=x(2), f(4)=x(0)\x(1)
Fl8)=x(1)Nx(2), f(6)=x(2)\x(0), f(7)=c(IINF(6) (=x(0)\x(I)Nx(2))
z FeF ]'S(f') |=0+Z+1+1+2+2+2+2=11, 2(23—1)—3=11 (2.49)
For comparison, a minimum complete system FZ2 is shown.
F2={f(0),f(1),-—=,f(7)}, F(7)=x(0)Nx(1)Ax(2)
L pep 1809 |=04141414 2020 243=12, 3x2° 1=12. (2.50)
F1 is shown in Fig. 2.5.
Let Hamming distance between F-images of X1 and X2 be expressed by
HD(F(X1)~F(X2)), then we have the next theorem.
[Theorem 2.7} For XI and X2 in Bn(XJ%XZ) we have
min  HD(F(AND,X1)-F(AND,X2))= min  HD(F(OR,X1)-F(OR,X2))=1

X1,X2 X1, X2

max  HD(F(AND,X1)-F(AND,X2))= max  HD(F(OR,X1)-F(OR,X2))=2"-1
X1, X2 X1,X2
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[@5)
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|

£(0)
f(7)
x(0) f(2)
f(3)
f(4)

x(T)

x(2) f(5)
f(6)

1(7)

Fig. 2.5. A two-stage coupled minimum complete

system when n=3.
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min  HD(F(PARITY,X1)~F(PARITY,X2))
X1,Xx2

=  max HD(F(PARIYY,XJ)—EYE%RITY,XZ))=2n_Z(constant). (2.51)
X1,X2
(Proof) First, we consider the case of F(AND)-images. There is no pair
of XI and X2 such that F(AND,X1)=F(AND,X2) and XI1#X2, since F(AND) is a
complete system. On the other hand, F(AND,X) is a o"-dimensional vector.
Hence we have
1<HD(F(AND, X1)-F(AND, x2)) <&"-1. (2.52)
Let XI1=[0,0,---,0], X2=[1,0,0,-—,0] and X3=[1,1,---,1], then we have
HD(F(AND,X1)-F(AND,X2))=1
HD(F(AND,X1)-F(AND,X3))=2"-1. (2.53)
It is the same wih F(OR)-images, since F(AND) and F(OR) are isomorphisms.
Next, we consider the case of F(PARITY)-images. We can assume with-

out loss of generallity that XI=[x(0),x(1),-~,x(k-1),x(k),—-,x(n-1)],

Xo=[x(0),2(1),--,2(k=1) ,2(k),--,2(n-1)] (0gk-I<n-1) for X1 and X2.
HD(F(PARITY,X1)-F(PARITY,X2)})
= 1 K wepparrry, s)||snte(0),2(1), -, 2(k-1) } | =i,

7 is an odd number)
n-k n-k n-k _
=2 k01+2 k03+——-+2 kckl_

where kI=k, if k is an odd number, otherwise kI=k-1 [23]. QED.

Kok 9) =g (2.54)

[Corollary 2.7]

min  HD(F(PARITY,X1)-F(PARITY,X2))> min HD(F(*,X1)-F(*,X2))
X1, X2 X1,X2

*=AND or OR, and n>2. (2.55)
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In linear separation reliability is generally estimated by the mini-
mum distance from points of on-set and off-set to the separation plane.
When reliability of a multi-layer series-coupled machine is estimated by
the minimum Hamming distance between F-images, from Corollary 2.7 F(PAR-
ITY) is the most reliable system compared with F(AND) and F(OR). But the
reliability must be appraised in the total system. The minimum Hamming
distance may be one criterion of it.

The above technique is applicable to construct a complete system on
Hilbert space L2(0,1) {25]. The notations are used in the similar mean-
ing to the foregoing. If any function Y(x) in L2(0,1) can be expressed
by a series expansion as folldws, F is called a complete system:

Y(X)= ), fep @) F(x), 0sn<] (2.56)
where the equality signifies quadratic mean convergence. The family of
Walsh functions [26] is a well-known complete system, which is repre-
sented as {w(Z)}(Z=0,1,---). Where the numbering is based on that of
Palay [27]. Rademacher functions are defined as

r(0,x)= (1, if 0x<1/2

{0, if 1/2<x<1

r(0,x+1)=r(0,z)

r(n,x)=r(0,2nx), n=1,2,—~- (2.57)
where the range is changed from the set {-1,1} to the interval (-<r(n,
x)<e) . Let F(AND), F(OR), and F(PARITY) be defined as

F(AND)={f(AND,%)}, F(OR)={f(0R,i)}, F(PARITY,%)={f(PARITY,%)},

f(AND,0)=f(OR, 0)=f(PARITY, 0)=1

FAND, 2)=r(Z(1))\r(i(2) )N-~-Ar(i(k))
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FlOR, )= (T(1) Nr(i(2) N--Nr(i(k))

FOPARTTY, )=r(3(1) )@ (1 (2) ) @-—r (i (k) (2.58)
where 4=I,2,3,-—-, i=2" 1 pgt (% "R ana i01)<i(141) (1=1,2,---,
k-1). Moreover let Si={4(1),1(2),===,(k)}, 1= L. ccnes 8°0H, 1=
L i (1)e (sivsi-sinsg) © > then we have

FCAND, )NF(AND, j)=f(AND,11)

FIOR, EIVF(OR, §)= £(OR, 1), if -3#0

{ 1, if $e§=0

F(PARITY, £ )of (PARITY, )= (PARTTY, 12)

/ " Famp, <, w5 dn=1/2%

jo' FIOR, 7, @) dw=1-1/2"

fo U p(PARTTY, 1, ) d=1/2 (2.59)

The third equation in (2.59) corresponds to the following equation about

Walsh functions:

wlZ)xwl(d)=w(i®g) (2.60)

where i=2’”1 +27’2+---+27“k, j=2‘7 1+2°7 2+——-+2‘7 k, i@j=2u$‘7 1 +27"269‘7 2+———+2$k$'7 k .

Let F(AND,1), F(OR,1), and F(PARITY,.) be defined as
F(AND, 1)={ )\ feg 1o F(OR1)= \/fes £}, F(PARITY,1)={ @fes i
(2.61)
where SC{r(i(1)),r(i(2)),-—-,»(i(k))} and |S|=l. Using (2.35) it is
known that there is the ensuing relation between the above defined func-

tions and Walsh functions.

w(0)=F(AND, 0)=F(OR, 0)=Ff(PARITY,0)=1

. x 1-1
w(i)=2 § 7, {(-2) ) rercanp,z) 11

=20-1)%7 ] K-t rercor,1) 171
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=2f(PARITY,<)-1 (2.62)
Therefore F(AND), F(OR), and F(PARITY) are complete systems, since any
Walsh function can be expressed into finite series by any of them. Let
k denote the number of Rademacher functions which is requested to com-
pute F(AND,Zi), F(OR,i), and F(PARITY,i), i=0,1,---,25-1. F(AND), F(OR),
and F(PARITY) have the similar property to a minimum complete system.
Let wus take an example by F(AND). Any Walsh function w(Z) for Z;Zk—l
has series expansion by F(AND,0) F(AND,1) --- F(AND,k). Furthermore
the number of interconnections is
041, 0425 C bt € o 27 (2.63)

2
This is minimum among complete systems on L (0,1).

2.5 Group~-Invariant Complete Systems
The set of all one-to-one mappings from B" to Bn forms a group,
where composition of mappings is taken as operation in the group. Let &
be a subgroup of such a group. When
F(X)=f(goXx) (2.64)
holds for any g in ¢ and any X in Bn, f is called a G-imvariant func-
tion. If there is an element g in G such that
FHX)=f(goG) (2.65)
for any X in Bn, it is said that f' and f are G-equivalent. This is re-
written as follows:f’gf. (2.65) is abbreviated to "f'=gof". "X'QX" is
defined in the same way. The relation G forms an equivalence relation

n .
and decomposes F and B into G-equivalence classes:

F=F(1)UF(2)U-==UF(11), F(Z)NF(j)=an empty set, (i#j)
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B"=8"(1)uB" (2)U---UB"(12), B*(¢)NB"(j)=an empty set, (i#j) (2.66)
Where F is closed under G and any IBn(i)[ is an divisor of G. When gof
is in F for any g in G and any f in F, it is said that F is closed under
G. If f’gf, then there is F(Z) such that f' and f are in F(i). Otherwise,
1#j for F(Z) and F(j) such that f' is in F(%Z) and f is in F(j). If X’QX,
then there is B''({) such that X' and X are in B '(%). Otherwise, Z%j for
B"(%) and Bn(j) such that X’ is in B'(Z) and X is in Bn(j). If the fol-
lowing two conditions are satisfied, a family FG is called a G-invariant
complete system.

(1) FG is in T(y) for any G-inariant function ¥, and

(2) any f in FG is G-invariant.

In this section we consider FG which is constructed from a linearly
independent complete system F, where F is closed under G.

Let F be a family of G-invariant partial functions and’{XZ,XZ,———,
X12} be representatives of G-equivalence classes {Bn(l),Bn(Z),———,Bn(Z2)
}, then the G-invariant F~matrix M'F is defined as

£00,%1),-—=, f(m-1,X1)
M'F= - ===y ==

F0,x12),---,f(m-1,Xx12)) . (2.67)
When 7Z2=m, the determinant of the above matrix is denoted by [M’F[.
[Theorem 2.8](Necessary and Sufficient Condition for a G-invariant Com-
plete Systems) The necessary and sufficient condition for a G-invariant
complete system is that rank(M'F)=12. When |F|=12, this condition can be
rewritten as ,M’FI#Of

(Proof) From Lemma 2.1 the necessary and sufficient condition for a G-



CHAPTER 2 - 38 -

invariant complete system is that the 12 row vectors of M'F are linearly
independent. This condition can be written as rank(M'F)=12. When |F|=l2,
it is written as |M'F|#0. QED.
[Corollary 2.8] A G-invariant complete system F gives a L-expression to
any G-invariant function. When the number of G-invariant partial func-
tions is minimum, that is, [F[=ZZ, the L-expression is unique.

(Proof) This is proved in the same way as that of Corollary 2.3. QED.
From Corollary 2. 8 it is seen that "F is in T(y) for any G-invariant
function ¢" and "F is in L(y) for any G-invariant function y" are equiv-
alent.

The composing process of G-invariant functions is shown by the dia-
gram in Fig. 2.6. The diagram shows that one can compose G-invariant
functions in two stages. At the first stage partial functions are com-
puted independently of one another. Next they are combined through 'G-
Invariance Theorem' to obtain G-invariant functions. Now we state G-in-
variance theorem and its corollaries which are imporant and powerful
mathematical tools. The theorem was first proposed by Minsky and others
[11]. Since they wused T-expression, equivalence of coefficients was a
sufficient condition and there was some tolerance. Since we use a L-ex-
pression to compose G-invariant systems, it is a necessary .and suffi-
cient condition. The same may be said of Boolean operations instead of
arithmetic sum in a L-expression.

[Theorem 2. 9](G-Invariance Theorem) Let F={f(7)}(1=0,1,---,m-1) be a
linearly independent complete systm which is closed under ¢ and finite.

Suppose that ¥ is a G-invariant function and expressed as
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Input Partial G-invariant Output

pattern functions functions

/ £(0) F7(0)
f(1) F'e1)
F2) ' £re2) :
S sy Pl o
. f : : I
AN | 0
f(m=-1) frelt-1)
14 : F F' ‘f’
Linear or G-invariant
nonlinear combination
combination

Fig. 2.6. Composing Process of G-invariant functions.
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b= 1 Tl aci)pei)=\ T (b(2)FCaND, )

= N2} cete)pcor,4)), b(3) and o(i) in B (2.68)
Then the coefficients depend only on G-equivalence classes, that is,

if f(i)g%(j), then a(Z)=a(g), b(i)=b(j), c(i)=c(j). (2.69)
The reverse is also right, that is, if (2.69) is satisfied, then ¥ is
G-invariant.
(Proof) The proof about a L—expression is made in the same way with that
of Minsky and others. We will prove only the case when w='\/z;g (b(7)
f(AND, 7)), since we can do similarly the case when Y= f\?;é (c(1)f(OR,
1)) [24], [36].
Necessity: We wuse b(f) instead of b(Z) to avoid complicated subscripts.
Any element g in G defines a one-to-one correspondence fe>gof and F(AND)

is closed under ¢. Therefore, we have

YiX)= \/féF(AND) b(f)f(X)= \/fep(szp) blgof)gof(X) (2.70)
Since for any g in G the inverse g_z is in G and ¢y is G-invariant, we
obtain

. -1 .

e OX);\/feF(AND) b(gof)f(X)=yp(X) (2.71)

If it is supposed that b(gof')=b(f'), then for X in {X|f'(X)=1}n{X|
\/f#, f(X)=0} we have '

w(g Lo x)=b(gaf )P (XN ( \/f#f, b(gof)f(X))=b(gof")
w(X)=b(f')f'(X)V(\y FEf b(f)f(x))=b(f") (2.72)
that is, w(g‘lo X)=p(X), and this contradicts that y is G-invariant.
Hence we can conclude that b(gof')=b(f') for any g in G and any f' in

F(AND) .

Sufficiency: Let us assume that b(gef')=b(f') for any g in G and any f'
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in F(AND). From (2.70) we have

-7 -1
w@m%=vfmeme'oﬂgf@ o X)

= \/feF(szD) b(g_zo FIF(x) (2.73)
From the assumption we obtain
Y(goX)= \/f‘eF(AZVD) b(FIF(X)=p(X). (2.74)
Hence ¥ is G-invariant. QED.

If F is an orthogonal complete system, even if F is an infinite set,
then it 1is easily understood from the process of the proof that the
theoreﬁ is satisfied.

[Corollary 2.9] For any [ in B(n), fI, f2, f3, and f4 written as follows

are G-invariant functions:

f1= z f(:G gof, f2=\/ Q’GG gof

£8= N geg 9°F> $4=D 4 9°1- (2.75)
When f1,f2,---,fk are G-invariant, { defined as follows is G-invariant:
V=(f1,f2,---,fk) (2.76)

where f is an arbitrary function.
If G is a permutation group on V, then V is decomposed into G-equiv-

alence classes.

V=V(1)VV(2)V=-=-UV(13)

V(Z)N\V(j)=an empty set, <#J (2.77)
1f (41)%c(42), then there is V(%) such that x(i1) and x(2) are in V(%)
and |V(k)| is a divisor of |G|. Otherwise, ¢#j for V(Z) and V(j) such
that x(71) is in V(<) and x(Z2) is in V(j). F(AND), F(OR), and F(PARITY)
defined above are closed under any permutation group. If all members of

V are G-equivalent, that is, 13=1 in (2.77), then G is called a global
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group. Translation and rotation are one kind of permutation groups on V.

The . group of all translations is a global group, but that of all rota-

tions dis not. 12 in (2.66) is not always equal to one, even if 13=I. On

the confrary, 13 is always equal to one, if 12=1. In the case when 12=1,

discrimination has no meaning, since all input patterns are G-equivalent.
[Example 2.3](G-Equivalence Decomposition)

(1) Decomposition induced by a cyclic group:Let V={x(0),x(1),x(2)}, gl=
(3:2:5) and GZ={g1,912,g13}, then GI1 is a global group and V and B3 are

decomposed as follows:

V={x(0),2(1),2(2)}=V(1)

3
B = ij(o);x(l)éx(Z) {[e(0),2(1),x(2) ), {x(1),2(2),2(0)],

[x(2),2(0),2(1)]}. (2.78)
(2) Decomposition induced by another group:Let V={x(0),x(1),x2(2)}, ga=
0,1,2
(2’1 0) and G2={g2,g22}, then ¥V and BS are decomposed as follows:
3 2

V={x(0) ,2(3) WHa(1)}=V(1)UV(2)

3
5= Uac(O) <x(2)

Where g]g and 922 are identity operators, and it is shown in Fig 2.7

{{(0),2(1),2(2) ], [a(2),x(1),2(0)]}. (2.79)

that g1 and g2 operating on a pattern X in BS yield another pattern glo°
X and g2°X, respectively, and a subset of 35 is decomposed into GI-equi-
valence classes and Gé~equivalence ones by GI and (2, respectively.
[Theorem 2.10](Support and Degree of G-invariant Functions) We can as-
sume without loss of generality that the following three conditions are
satisfied:

(1) ¢v is a G-invariant function, and

(2) there is x(%Z) such that xz(Z) is in S(YINV(j), §=1,2,---,1, and
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Fig. 2.7. Gl-equivalent decomposition and G2-equivalent

decomposition.
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(3) there can not exist x(Z) such that x(<) is in S(YPIN{V(1+1)VUV(1+2)V
---UV(13)}, where G is a permutation group and 1<l3.
Then S(¢y) is decomposed into G-equivalence classes as follows:

S(Y)=V(I)UV(a)V---UV(L). (2.80)
Since v(1),V(8),---,V(1l) are G-equivalence classes, we have

5w |= § L W) =1 v |+|ve2) [+ V(L) | (2.81)
(Proof) There exists F which is a linearly independeﬁt minimum complete
system and closed under G. Then we have a L-expression of y by 7.

V=1 pep @(F)Fs SO0= U o)y S(E). (2.82)

From Theorem 2.9 and (2.66) this is rewritten as follows:

¢ L1 .. _
V=1 427 @Y pepeg) £ S00)= U (oo (Y pepgs) 5(F)) (2.8

a

where F(Z) is a G-equivalence class. If it is satisfied that x(Z1) is in
S(WNV(j) (§<l), then there are g in G and F(%) such that x(72)=gox(i1)

for any «(<2) in V(j), x(21) in S(f), and f in F(7). Hence

V() C U 509°8)= Upeppg) S(A=SCY pipegy P (2.84)
hence

Ut v U U S(F))=S(y). (2.85)

()40

From the condition (3) we have

fer(Z)

S(PI{V(I+I)IVV(1+2)U—=-UV(L3) }=an empty set

13

SpICV=- U, _75

vii)= UL vii). (2.86)
1=1
From (2.84) and (2.86) we can conclude that
UL e
stp)=U,_, v(i). (2.87)
Since V(%) and V(j) (Z#j) are disjoint, then we obtain
|s(y)|=Y iiz \vii)|. ’ (2.88)

QED.
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If G is a global group, then the support of any G-invariant function
is V except for a constant function. For exmaple, supports of transla=-
tion invariant functions are V¥V, but those of rotation invariant func-
tions are not always V. F(AND), F(OR), and F(PARITY) are all linear-
ly independent minimum complete systems and closed under any permutation
group. Then they are decomposed into G-equivalence classes:

ream)= U L ream, 1), reory= U 1L Feor,<)
F(parrry)= U L1 pearry, i) (2.89)
FI1(AND), F2(AND), F1(OR), and F2(OR) are defined as:

FI1(AND)={fi|fi=§ y I> f' in F(AND,%)}

gea 97’ ) FEF(AND, T
FE(AND)={7% |fi= \/ ge@ 997 '=\) pepamp, ) £ F' in FOAND,E))

F1(OR)={fi|fi= Y f' in F(OR,%)}

geg 9°F'= ) FCF(OR, 1) T2
F2(0R)={fi|fi= /\ get gof'=/\féF(OR’i) £, f' in F(OR,%)}
FI1(PARITY)={fi|fi= ) g6 gof'= 7 FEP(PARITY, 1) i
f' in F(PARITY,i)} (2.90)

where f' is a representative of G-equivalence classes F(AND,Z), F(OR,%),
and F(PARITY,7). It will be shown that all the families in (2.90) are
G-invariant linearly independent complete systems.
[Theorem 2.11](G-Invariant Linearly Independent Complete S-stems)
(1) Let F be a linearly independent complete system which is closed
under &, then FG defined by the following equation is a G-invariant
linearly independent complete system:

Fe={f|f= 1} J€G gof', f' in F(i)} (2.91)

where f’' 1is a representative of a G-equivalence class F(Z). Therefore

F1(AND), FI(OR), and Fi(PABITY) are G-invariant linearly independent
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complete systems.
(2) F2(AND) and F2(OR) are also G-invariant linearly independent comple-
te systems.
(Proof) (1) It dis easy to see that any f in FG is G-invariant. Now we
prove that FG is in L(y) for any G-invariant function y. Since F is a
complete system, Y has a L-expression by F:

V=) pep 2(F (2.92)

Then we have

goy= z Fer al(f)gof

L gec 9°= L 4o L e a(Poof (2.93)
Since ¢ is G-invariant, we obtain
-1
|Gly=Y fer y GG alg o fif=% feF y g¢G algef)f (2.94)

hence
b= 1 pep (V16D T g algof)f= T pep BIOS
b(fi=(1/\c¢|) ¥ GG a(gof) (2.95)
On the other hand, {gof|f is in F}=F and from Theorem 2.9 we have
_ Z.Z ’ H
p=) sog PFI( ¥ geG gof') . (2.96)
where f' is a representative of a G-equivalence class F(7Z). We can re-
write (2.96) as follows:
— — ! - !
p=) FeFG c(f)fs e(f)=b(f'), f= 1} e gof (2.97)
(2.97) means that FG is in L(y). Since F is linearly independent, so is
FG, too.
(2) It 1is also easy to see that any f in F2(AND) is G-invariant. Now it
is shown that rank(M'F2(AND))=12, that is, F2(AND) is linearly independ-

ent. Where 12 is the number of G-equivalence classes of input patterns.
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Assume that F2(AND) is not linearly independent, then there exist non-
zero coefficients such that
_ [
ZféF, a(f)f=0, F'CF2(AND) (2.98)
Let f' be omne of members in F' such that lS(f')[ is minimum, where
1— '
I \/f%EYAND,i) f. From (2.38) and (2.90) f' can be written as

=V FEF(AND, %) f

|F(szp )|

J_
zfeF(AJVD i) I ig) (-1) 2feF(szD,i,j) !

(2.99)

From (2.98) and (2.99) we have

Y fer(ann,i) 17} GF"ff (a(]i‘)/s(f’))f
l )J-Z

23-2 Y percann,i, ) T (2.100)
where F(AND, i, §)={f|f=f(i1)n f(i2In---nf(i5)}, S(W)={Ff(i1),f(12),~-~,
F(15)YCF(AND,Z) . Let |S(f)|=k for f in F(AND,Z), then (2.100) means that
a linear combination of masks with degree k has a L—expreséion by masks
whose degrees are k or more and-whose supports are different from S(f)'s.
This contradicts Corollary 2. 5, that is, the linear independence of
masks with different supports. Cosequently, F2 is linearly independent,
and rank(M'F2(AND))=12. From Theorem 2.8 we can conclude that F2(AND) is
a G-invariant linearly independent complete system. It is the same with
F2(OR). Using Proposition 2.4, these may be proved in a different way
[401. QED.
[Corollary 2.10] Any G-invariant function has unique L-expressions by FG,
FI1(AND), F2(AND), F1(OR), F2(0R), and FI1(PARITY).

By applying Theorem 2.11, a G-invariant complete system can be easi-

ly constructed from the viewpoint of mathematics for any permutation

group G, for instance, translations, enlargements, reductions, rotations,
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and so on.
[Example 2.4] Let V={x(0),x(1),x(2)} and G={any permutation on V}, then
F1(AND), F2(AND), F1(OR), and F2(OR) defined as follows are all G-invari-
ant linearly independent complete systems:

FI1(AND)={f(AND,11),f(AND,12),f(AND,f13),f(AND,14)}

F2(AND)={f(AND,21), f(AND, 22), f(AND, £23), f(AND, 24) }

F1(OR)={f(OR,11), f(OR,12),f(0R,f13),f(OR,14)}

F2(OR)={f(OR,21),f(OR, 22), f(OR,f23),f(OR, 24)} (2.101)
where

F(AND, 11)=f(AND, 21)=f(OR,11)=f(OR, 21)=1

f(AND, 12)=f(0R,12)=x(0)+x(1)+x(2)

FOAND, 13)=x (0N x(1)+ax(I)hac(2)+ax(2)Nx(0)

FIAND, 14)=f (AND, 24)=F(OR, 28) = (0) Nc(1)Az(2)

F(AND, 22)=f(OR, 14)=f(OR, 24)=x(0)Vx(1)Vx(2)

FCAND, 23)=f(0R, 23)=(2c(0)px(1) )N (x(I)A\x(2) )N (x(2)Nx(0))

=(x(0WNax (1) )N (1) (2) )N (2(2)Nx(0))

FOAND, 13)=(x(0)Nx(1))+(x(I1)Nx(2))+(x(2)Vx(0)) . (2.102)
The values of the functions in these systems are shown in Table 2.2,
which shows that the functions are G-invariant. This is also shown in

Fig. 2.8.

2.6 Conclusions
In parallel computing machines such as multi-layer series-coupled
machines investigated here it is important how wide range each partial

function should process. This is the problem of locality of a function.



CHAPTER 2

- 49 -

x(2) F(AND, 24)=f(0R, 22)
re i P6 1
Ps r7 r7
0 P2 PO
0 7’ 0 1F(AND, 23)

Pl =f(OR, 23)

1 ps  FPL, P2, P9 P3,P5,P6

f(AND, 22)=Ff(OR, 24)

Fig. 2.8. F2(AND)-images and F2(OR)-images and

G-equivalence decomposition:BS={P0}IJ{PI,PZ,P4}L/

{P3,P5,P6} U{P7}.

Table 2.2. Values of G-invariant functions.
Patterns | f(AND,12)| f(AND,13)| f(AND,14)| f(AND, 22) | f(AND,23)| f(OR,13)
=f(0R,12) =f(AND, 24)| =f(OR,14)|=f(OR, 23)
=f(0OR,22)| =f(0R, 24)
PO(000) 0 0 0 0 0 0
P1(001) I 0 0 1 0 2
P2(010) 1 0 0 i 0 2
P4(100) 1 0 0 1 0 2
P3(011) 2 7 0 7 b) 3
P5(101) 2 1 0 I 1 3
P6(110) 2 1 0 I 1 3
P7(111) 3 3 1 I I 3




CHAPTER 2 - 50 -

The minimum complete system introduced in 2.4 is useful in the determi-
nation of such ranges. We represented the locality by T-order and I-

order. In practical pattern recognition machines, however, the locality
may be redefined in more suitable meaning for their structures. Moreover
from the viewpéint of the number of partial functions it becomes diffi-
cult to realize a group~invariant complete system by electronic parts.
It will be the next problem how to select the best subset of a group-in-

variant complete system.
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CHAPTER 3
WALSH-HADAMARD POWER SPECTRUMS

INVARIANT TO CERTAIN TRANSFORMATIONS

3.1 Introduction

In Chapter 2 it was considered how to construct G-invariant func-
tions 1in multi-layer series~coupled maéhines which mainly dealt with
Boolean functions. In this chapter Walsh functions are used as partial
functions, and it is investigated how to construct G-invariant functions,
especially G-invariant power spectrums. Walsh functions were introduced
by Walsh in 1923 [26]. They can be generated recursively, are orthonor-
mal, and form a closed set [26]-[31l]. They have been used in several
applications because of the simplicity of square waves. Walsh-Hadamard
transform (WHT) has the advantage of computational simplicity when com-
pared with Fourier transform. It is well known that the Fourier power
spectrum 1is invariant to translations. Let w(k,X) be the k-th (WHT)
coefficient. Then the set {w2(k,X)} is not invariant to translations.
The (WHT) power spectrum developed by Ahmed, Rao and Abdussattar [34] is
invariant to translations, which is obtained through the (WHT). The fast
algorithm for the power spectrum was also presented by them.

Here a composing process is introduced that produces functions which
are invariant to some transformation groups. It will be described how to
develop the (WHT) power spectrum to be invariant to enlargements, reduc-
tions, rotations. by multiples of 90°, and some other transformations.

Then it turns out that 'Group-Invariance Theorem' and other theorems
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developed in Chapter 2 are useful mathematical tools. Using 'Group-In-
variance Theorem', it is known that there are the second degree G-invar-
iant functions besides the power spectrum by Ahmed and others. According
to the process presented here, a G-invariant complete system seems easy
to make mathematically, but in general, difficult to make practically
because of the huge number of functions required. Power spectrums which
we chiefly adopt may be regarded as subsets of a G-invariant complete
system.

Parallel computation is taken into consideration, but locality is
not, because (WHT) itself is a global transform. We mainly treat trans-
formations in the form of Zin. When we treat ones in the form of kin, it
is convenient to adopt complex-valued Walsh-Hadamard transform (CWHT).
Then the (CWHT) power spectrum is developed to be invariant to the above

described transformations, too.

3.2 Walsh-Hadamard Transform
There are three types of orderings for the Walsh functions [75] . One

of them is wused here, that is, natural or Hadamard ordering. Hadamard
matrices can be recursively generated as follows:

H(0)=[1]

Hn)= (H(n-1)! H(n-1)) = £'(1)

- H(n—l);-H(n-;}- (3.1

where H'(1) is the 7 succesive Kronecker product of H(1). Let H(n,k)

7 ,
denote the k-th row vector of H(n), k=0,1,---,2 -1. The Hadamard matri-

ces satisfy the following:
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H(n)=H(n~m)8H(m)

(UV) (H(n-m)QH(m))=(U*H(n-m))®(V+H(m)) (3.2)
where Ogmgn; U and V are a 2" _vector and a 2m—vector, respectively;
and the notation "®'" denotes the Kronecker product. These can be proved
by taking the definitions of the Hadamard matrices and the Kronecker
product into consideration.

Let {x(Z)} denote an WN-periodic sequence z(7)(7=0,1,---,N-1), of
real numbers, and {x(%)} be represented by means of an N-vector X:

X=[x(0),x(1),—==,x(N-1)] ' (3.3)
where N=2n. Walsh-Hadamard transform (WHT) of an input pattern X is
defined as

W(X)=(1/N)X-H(n) (3.4)
where W(X)=[w(0, X),w(1,X),--=-,w(N-1,%X)] and w(k,X) is the k-th (WHT)
coefficient. The inverse transform is defined as

=W(X)*H(n). (3.5)
From (3.4) it follows that

(X)W =1/ X (3.6)
where '"t" denotes the transposed vector. The right side of (3.6)
represents the average power of the input pattern. Although Fourier power
spectrum 1is invariant to translations, the set'{wg(i,X)} is not. A com-
posing process 1is proposed in preparation for the development of the

(WHT) power spectrum.
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3.3 Composing Process
The process to obtain a GI8GEZ-invariant power spectrum in several

stages 1is shown by Fig. 3.1. First, an input pattern is transformed
through the (WHT), and the (WHT) coefficients are squared. Second, the
results are combined according to a certain function to obtain a GI-
invariant power spectrum. Lastly, we find a permutation group on the GI-
invariant power spectrum caused by G2 operating on the input pattern,
and then we combine the GI-invarinant power spectrum to be GZ-invariant
in the same way and arrive at a GI®G2-invariant power spectrum. GI
and (2 are some transformation groups, and the product GI®GFZ is defined
by

G18G2={g|g=glog2, gl and g2 are in GIUG2}. (3.7)

When functions in N-dimensional Hilbert space are used instead of

Boolean functions with &N variables, Theorem 2.9 and Corollary 2.9 are
also satisfied. .Then the corollary is rewritten as follows.
[Corollary 2.9'] For any f in N-dimensional Hilbert space, ¥ written as
follows is G-invariant:

=1 geq 97 (3.8)
When f(1), f(2), ---, f(k) are G-invariant, ¢ defined as follows is
also G-invariant:

v=1.5 atirgci) (3.9)
where a(i)'s(i=1,2,---,k) are arbitrary real numbers. We have a more
general expression:

Y=F(f(1),f(2),---,f(k)) (3.10)

where f is an arbitrary function.
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Input (WHT) power GI-invariant Gl-invariant
pattern spectrum power power
spectrum spectrum
2(0) w(o,x)|wlc0, %) p(0) g(0)
2(1) w(1,%) |wi(1,x) p(1) ] g(1)
2(2) w(2,x) |wiie, 1) p(2) g(2)
' 1 : : i |
| | | I I
| ] ! ! |
| { ! ! i
| ! P ! I |
x(N-1) w(N-1,X)| w (N-1,X) p(n) qg(n)
(WHT) GI-invariant G2-invariant
connection connection

Fig. 3.1. Process to obtain GI @G2-invariant
power spectrum.
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Let functions FL(f(1),f(2),---,f(L))(l=1,2,-~~,L) be defined by
FLOP(2),£(2), =, £(0))=[1 2 £ ti)/a, 15 as0, 1=1
2 }:L;.i’;] FOL)F(itl-1)/4, if A#0, 1=2,3,---,I
0, if A=0, 1=1,8,-—-,L (3.11)
where A= Ziiz f(i),then we have
I 2, FLPR(1), f2) -, £(D))= L0 fe0)
FL(f(1),f(2),---,f(L))>0 (1=1,8,---,L), if f(1)>0 (i=1,2,---,L).
(3.12)
Hence (FL(F(1),£(2),—nyF(5))}(1=1,2,~—-,T) may be regarded as a devel-

oped power spectrum, if {f(Z)}(Z=1,2,~--,L) is a power spectrum.

3.4 Translation(Gl)-Invariant (WHT) Power Spectrums

A translation-invariant power spectrum is illustrated by considering
the case when #=3. Using Corollary 2.9' the second degree terms are
combined to make translation-invariant functions:

(L= ,0, wk)z(kel) | (3.13)
where 1=0,1,---,4, and & is used for modulo eight addition. The f(Z7)(1=0,
1,---,4) can be expressed by the set {w(k,X)}(k=0,1,-—-,N-1):

reo)=s 1.7 w (%, X)

2 2 2 2 2 2

Fl1)=4{2w" (0, X)-2w (1,X)+w (4,X)-w (5, X)+w (6,X)-w (7,X)

=2w(4, X)w(7,X)+2w(5,X)w(6,X)}
2 2 2 2

F2)=8{w (0, X)+w (1,X)=w" (2,X)-w" (3,X)}

2 2 2 2 2 2

F(3)=4{2w" (0,X)=2w" (1, X)-w" (4, X)+w" (5,X)-w" (6, X)+w (7,X)

+ow( 4, X)w(7,X)-2w(5,X)w(6,X)}
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£a)=atw? (0, 0w (1, )47 (2, %) 1% (3, 1) 0% (4, 1) =0% (5, 0) w2 (6, %)
(7,03, (3.14)
Suppose that a function f has a linear expression by the second degree
terms of x(72)'s(i=0,1,---~,7). From Theorem 2.9 f has a linear expres-—
sién by {f(Z)}(l=0,1,---,4), if it is translation—invariant. Inverse-
ly f cannot be translation-invarint, if it cannot have a linear expres-
sion by {f(7)}(1=0,1,---,4).

The adequate linear combination of the f(1)'s(l=0,1,--,4) leads to a
translation-invariant power spectrum. Adding f(I) to f(3) removes the
cross terms w(4,X)w(7,X) and w(5,X),w(6,X):

FOL+£(8)=1610"(0, X)o7 (1,%)} . (3.15)
Then {w’(k,X)} is grouped as {w”(0,X) Yulw” (1, X) Wiw® (2, %) 0% (3, 1) W0t (4,
X), w2(5, X, w2(6,X7,w2(7,X)}. Thé wZ(R,X)'s in the same group have the
same coefficients in the expressions of f(0), f(2), f(4), and f(1)+f(3).
Thus we obtain

p(0)=(1/8%) (F0)+2F(1)+8F(2)+8F(3)+2(4) )=° (0, X)

p(1)=(1/82)(f(O)—2f(1)+2f(2)-2f(3)+2f(4))=w2(1,X)

p(2)=(2/6%) (£(0)-2f(2)+2F(4))=0" (2, X)4° (3, %)

p(3)=(4/8%) (£(0)=2F(4) ) =" (4, X) 4% (5, X) 40" (6, X) 1% (7, X) (3.16)
The remainder may be expressed‘by

p(4)=(8/8%) (F(1)-F(3))=0" (4,20 -0° (5, 1)40° (6, X) 0" (7, %)

-2w(4, X)w(7,X)+2w(5,X)w(6,X) . (3.17)

{p(<)}(i=0,1,2,3,#4) turns out to be the very same power spectrum as

that developed by Ahmed and others [34].
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From the first-degree terms we obtain only one translation-invariant
function which is linearly independent:
p(5)=(1/8) zkio 2 (k)=0(0,X) . (3.18)
As pointed out in ([51], {p(Z)1}(<=0,1,2,3) is not a translation-invariant
complete system; that is, there are other shiftings under which {p(i)}(i
=0,1,2,3) is invériant. This is the same even if {p(<)}(i=0,1,~---,6) 1is
used istead of {p(4)}(i=0,1,2,3). In order to obtain a complete system
we must usually use the higher-degree terms besides the first and the
second-degree terms.
The generalization of the power spectrum mentioned above is straight-

forward as seen in [31], [34]:

p(0)=0(0, %)
S
p(e)=73 % '11 w2(3,%), e=1,2,-—,n. (3.19)
1=2°"

The generalization in the two-dimensional case is as follows:

t

p(0,0)=0°(0,0,%), pio,8)=3 2 1 wio,4,x)
-1
J=2
f_1 2 25_1 of7 . 2
p(s,0)=} Sl (1,0,X), plsyt)= ] S y Sl (Z,d,%),
(3.20)

where sg=1,2,---,n and t=1,2,~--,m. The developed (WHT) power spectrums
are expressed as:
P(n)=[p(0),p(1),---,p(n)]

P(nym)=({p(0,0),p(0,1),===,p(0,m)

p(n,0),p(n,1),~-=,p(n,ml}. (3.21)
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When we want to take notice of the input pattern, we write as follows:
P(n,X)=[p(0,X),p(1,X)y~-—=,p(n,X) ]}

Pnym,X)=(p(0,0,X),p(0,1,X)y~==,p(0,m, X)

p(n, 0,X),p(n,1,X),~—-,p(n,mX) j. (3.22)

This can be extended to any number of dimensions [31], [34].

3.5 Enlargement and Reduction(F2)-~Invariant (WHT) Power Spectrums
The changing aspects of the (WHT) coefficients uﬁder enlargements
and reductions of an input pattern are investigated. An input pattern X
is called a 2°-time enlargeable pattern, if
X=[U,U,---,U] (3.23)
S~
7
2
and U=[x(0),x(l),—-—,x(Zn-i—l)]. Similarly an input pattern Y is called
a 1/8%-time reducible pattern, if Y=[y(0) l,y(27’)1, -——,y(2n—2’b)l] and
1=[{1,1,-—-,1]. (3.24)
\""_'—Y:w
P

The 2°-time enlarged pattern of X and the 1/ 2¥_time reduced pattern of

Y are defined as [%(0)1,%(1)1,~==,c(2" “~1)11=U81 and

', u',-——-,0"3=1eu’, (3.25)
\-'“rf“”’/
27/

respectively, where
I=[1,1,——,1] (3.26)
\"‘\r”"/

Z’L

and U'=[y(0),y(21),———,y(Zn—21)]. For example, the 2-time enlarged pat-
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tern of X=[01230123] is [00112233], the 1/2-time reduced pattern of Y=[0
0112233] is [01230123], and so on.
From (3.1) the k-th row vector H(n,k) of H(n) is expressed as

Hin, k)= %[H(n—],k), Hin-1,%)1, k=0,1,---, 2" 11

[H(n-1,%),-H(n-1,k)1, k=" 1, " 141, =, 2" 1. (3.27)
The wupper half row vectors of H(n) are 2-time enlargeable patterns. The
fact of (3.27) induces recursively the following expression:
(H(O,k),-—-,H(0,k)]1=[1,1,-——,1], k=0, ' time enlargeable,
[B(1,k),~-=,B(1,k) 1=[1,-1,-——,1,-11, k=1, 2" T-time
enlargeable,
[H(2,k)y~--,H(2,k)], k=2,3, 2n_2-time enlargeable,
H(n,k)=+ [H(Z,k),~~~,H(3, k)], k=,5,6,7, Zn—s—time enlargeable,

N-2 N-2 1
3

(H(n-1,k),H(n-1,k) 1, k=%, 2" %41, ~n, 2" -1,

2-time enlargeable,

\[H(n-1,k),~H(n-1,%)1, k=21 g, o (3.28)

On the other hand from (3.2) H(n) is also expressed as
H(n)=H(n-1)QH(1)=H(i)&H(n-1) . (3.29)
Taking account of that
H(?:,O)-':[l,l,—"—,l], (3.30)
\_—-W
7
2
we obtain that for a multiple k of 2¥ H(n,k) is a 1/2%-time reducible
pattern. For an even number k¥ the k-th row vector H(n,k) of H(n) is a

1/2-time reducible pattern. From (3.29) the 2£—time enlarged pattern of

H(n,1) is H(n,2$'Z), where Z=0,1,—-—,2n_1—1. The 2-time enlarged pattern
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of H(n,1) is H(n,21). These facts are well illustrated by considering
the case when n=3:

lt-time enlargement (1 1 1 1 1 1 1 1) H(3,0) 5=

%

1-1 1-1 1-1 1-1]|H(3,1)<—
: %1

—————>11 1-1-1 1 1-1-1}H(3,2) 5=

A(3)=11-1-~-1 1 1-1-1 1|H(3,3) <«

>11 1 1 1-1-1-1-1|H(3,4) <—

*2
1-1 1-1-1 1-1 1}H(3,5)

ff____—? 1 1-1-1-1-1 1 1) H(3,6)<<—

2-time enlargement \} -1-1 1-1 1 1-1) H(3,7) (3.31)

(*1:2-time enlargeable patterns, *2:1/2-time reducible patterns)
A 2-time enlargeable pattern X and the 2% ~time enlarged pattern Y
of it are expressed as

X={U, Uy ==, Ul=[1,1,-——,1]QU=1%U
— S~
7 1
2 2
Y=[(0)1, 2(1) 1, ——, (2" 5 =1)11=[2(0) (1), ——,x( 2" *-1) J61=U61
U=[(0),2(1), (1)

1=[1,1,-——,1]. (3.32)
—
7
2
The (WHT)'s of X and Y are as follows:

W(X)=(1/N)X+H(n)=(1/N) U, Uy ~==,U]+ (H(Z)OH(n-1))

=(1/N) [U, Uy ===, U1+ (H(n-2), H(n-i)!, )

|
| !
H(n-i),-H(n-i)1+ ! H(n-1)

______ : '

e

 H(n-1) -B(n-1)
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=(1/N)(1‘H(i))®(U'H(n—i))=f1/2n—i)[l,0,0,-——,O]@(U'H(n—i))
—

27,

W(Y)=(1/N)Y-H(n)=(1/N)(UBL) (H(n-i)&GH(Z))

=(1/0) [2(0) L, 2(1)1, ~, (2" = 1) 11~ (H(1), B0,
g{z{izggsz:{ H(n-1)
R R
. H(n-1) ;-H(n—l)
=(1/N) (U~H(n~i) )@(1-H(i))
=1/ ) (U-H(n-1))8[1,0,0,-—=,0]. (3.33)
‘“—“§;f“’

From (3.33) we conclude that
value of the k-th element of (Z/Zn—i)U'H(n—i),
w(k,X)= 0<k<d 1
0, 2n‘i§k;2"-1
value of the k-th element of (l/Zn_i)U-H(n—i),
Wik ¥)=4  k=1+2%(1=0,1,=-, 8" "1
0, k is not a multiple of Zi (3.34)
and furthermore
w(k,X)=w(2i-k,Y), 0<k<2™ "1, C(3.35)
These aspects are well summarized on a nXZn—Z—matrix C(X)=[{c(i,d,
X)3}] defined recursively by

(1,7, %) =002 Lei-1, %)

0, otherwise , (3.36)
1

c(i,j,XJ=i{w(k/2,X), if e(i-1,4,X)=w(k,X), k is an even number

where 1=2,3,---,n and j=1,2,———,2n_ . 25 -time enlargement and 1/2$—time
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reduction of an input pattern cause upward shift by 7 rows and downward
shift by < rows, respectively. w(0,X) is invariant under any shuffling
of the elements of an input pattern. In the case when 7n=3, the matrix
is as follows:

w(d,X) ,w(5,X) ,w(6,X),w(7,X) enlargement

o= |w(2,%), 0 w50, o | | l

w(l,xe), 0 s 0 s 0 reduction (3.37)
Let Y be a 2-time enlarged pattern of a 2-time enlargeable pattern X,

and then

w(4,Y),0,w(6,Y),0 w(2,X),0,w(3,X),0
c(Y)=|w(2,Y),0, 0 ,0 |=|w(l,X),0, 0 ,0
o ,0, 0 ,0 o ,0, 0 ,0 (3.38)

As seen in (3.38), 2-time enlargement of an input pattern causes upward
shift of the elements of C(X). Then an enlargement and reduction-invari-
ant power spectrum {q(%Z)}(i=0,1,---,7) can be obtained by the method
introduced in 3.3:
2 2 2
q(0)=w"(0,X), q(3)=F1(w"(3,X),w (6,X))

2 2 2 2 2
q(1)=F1(w"(1,X),w (2,X),w" (4,X)), q(6)=F2(w (3,X),w (6,X))
G(2)=F2(0°(1,%),0°(2,X) 0 (4,%)), q(5)=s>(5,%)
G4)=F3(w°(1,%),0°(8,%) ,wo(4,%)), q(7)=s°(7,%). (3.39)

The average power of {x(k)} is
w7 w7 2 _ 72
Pav= 27;___0 q(i)= Ek=0 wi(k,X)=(1/8) 2k=0 x (k). (3.40)
There are many other functions which are enlargement and reduction in-
variant and have linear expressions by the second-degree terms of the

w(k, X)(k=0,1,---,7). Taking the following into consideration in this
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case
p(0)=02(0,%), p(2)=a"(2,X) 40" (3, X)
p(1)=%(1,%), p(3)=0"(,X)w° (5, )’ (6, X) 0 (7, %), (3.41)
we have
P(X)=[p(0,X),p(1,X),p(2,%),0]=[p(0,¥),p(2,%),p(5,%),0]
P(Y)=[p(0,Y),0,p(2,Y),p(3,Y)1=[p(0,X),0,p(1,X),p(2,X)]
P=[p(0),p(1),p(2),p(3)] (3.42)
-——-> enlargement

&—— reduction.

This means that 2-time enlargement of an input pattern X causes shift of
P(X) toward the right by one element except p(0,X). p(0,X) is always
invariant to any permutation of an input pattern. This has been proved
in another way [41]. Therefore we arrive at a power spectrum {q(Z)}(Z=0,
1,2,3) which is invariant to translations, enlargements, and reductions:
q(0)=p(0), q(1)=F1(p(1),p(2),p(3)), q(2)=F2(p(1),p(2),p(3)),
q(3)=F3(p(1),p(2),p(3))
rav=) 5 qeir= 1.2 pa=3 0 wPam=1/8) 3,7 2P0
(3.43)
Generally the statements following(3.42) are also valid for any natural
number #. This is known from (3.19) and (3.35) in the same way as used
in the case when n=38. Then a translation, enlargement, and reduction-
invariant power spectrum can be obtained:
q(0)=p(0), q(1)=Fl(p(1),p(2),---,p(n)), 1=1,2,~--,n. (3.44)
In the case when an input pattern X is a 2nX2m-matrix, these results

are developed as follows. Let G2 denote the group of horizontal
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enlargements and reductions and vertical ones, and let G22, the subgroup
of G2, denote any member of which is enlargement or reduction formed on
the same scale horizontally and vertically. Examples of GZ2-equivalent
and GZ28-equivalent patterns are shown in Fig. 3.2, The values in Fig. 3.
2 are the p(Z,J) multiplied by 64 for simplicity. 1's and -1's are blac-
ked and blanked, respectively. In the same manner, the variation of P
caused by G22 and G2 are illustrated in Fig. 3.3 for the case when n=m=3.
We cite changes of P(X) in Fig. 3.2 for more detailed explanation:

/p(0,0,Xl){p(O,2,X1)é—p(0,3,X1)<—0\
piza)-| 302,000 0,11 5,51 0
p(3,0,X1)| p(3,2,X1) _p(3,5,X1) 0

1
. 0 : 0 R\\ 0 Fk\‘& . (3.45)

{p(Z,4)} is classified into G22-equivalence classes:{p(0,0)}U{p(0,1),p(0,

2),p(0,3) YHp(1,0),0(8,0),p(3,0) YH{p(1,1),p(8,8),p(3,3)Y{p(1,2),p(2,3) IV
{p(2,1),p(3,2) YU{p(1,3)YU{p(3,1)}. The second-degree terms of p(<,J) in
the same GZZ—equivalence classes are also classified into G22-equivalence
classes, for example, {p(0,1),p(0,2),p(0,3)1=>{p°(0,1),p°(0,2),p2(0,5)}U
{p(0, 1)p(0,2),p(0,2)p(0,3)U{p(0,1)+p(0,3)}. From Corollary 2.9' the
q(0,1)(1=1,2,3) defined by the following expression are G22-invariant:
q(0,1)=(p"(0, 1)+p" (0, 2)4p%(0,3)) /(p(0, 1)4p (0, 2)4p(0, 3) )
q(0,2)=2(p(0,1)p(0,2)+p(0,2)+p(0,3))/(p(0,1)+p(0,2)+p(0,3))
q(0,3)=2p(0,1) p(0,3)/(p(0,1)+p(0,2)+p(0,3)) . (3.46)
Let F(1822)={q(%,4)}(1=0,1,2,3, 4=0,1,2,3) be defined by
q(0,0)=p(0,0), q(0,3)=Fi(p(0,1),p(0,2),p(0,83)),

q(i,0)=Fi(p(1,0),p(2,0),p(3,0))
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q(3,3)7F (D(i=31,G=G1),p(i-G1#1, G=G1#1) = p(3,3) ==

1+1
p(i+j2,J+52)) (3.47)
where I1<i-jl, 1<j-gl, i+§2<3, j+j2<3, 1i=1,2,3, g§=1,2,3. F(1882) 1is a
GI8G22-invariant power spectrum. For any numbers 7 and m we obtain
q(0,0)=p(0,0), q(0,5)=Fj(p(0,1),p(0,2),-~=,p(0,m)),
q(1,0)=Fi(p(1,0),p(2,0),~--,p(n,0)),
q(, j)=Fi1+1(p(i—j1,j—jl),p(i-j1+l,j—jl+1),——,p(i,j),——,p(i+j2,i+j2)
(3.48)
where 1<i-jl, 1<j-jl, i+72<n, §+ilsm, i=1,2,---,n, j=1,8,---,m. 1In the
same way we obtain a GI®G2-invariant power spectrum. Let F(I82)={q(<Z,
g)} (i=0,1,---5, j=0,1,---,5) be defined by
q(0,0)=p(0,0), q(0,3)=Fj(p(0,1),p(0,2),p(0,3)),
q(Z,0)=Fi(p(1,0),p(2,0),p(3,0)),
a(,1)= 7 2 1,2 PP/, q(1,2)=p00,1)/a,
q(1,3)=D(0,2)/4, q(2,1)=D(1,0)/4, q(2,2)=D(1,1)/A,
q(2,8)=D(1,2)/4, q(2,4)=D(1,-2)/4, q(3,1)=D(2,0)/4,
q(3,2)=D(2,1)/4, q(3,3)=D(2,2)/4, q(4,2)=D(2,-1)/A,
q(4,4)= D(1,-1)/4, q(5,5)=D(2,-2)/A (3.49)
where 7;=i, 2,3, j=1,2,3, A= ) kil y Ziz p(k,1)=0, the q(i,7) undefined
in (3.49) are equal to zero, and D(k,7l)'s are given by
D(k,1)=2) » 23 p(r,s)p(rik,e+l), I<r,s,r+k,s+l<3. (3.50)
The q(Z,J)(i=1,2,~=~,5, §=1,2,---,5) are equal to =zero, 1if A=0. Then
F(122) is a (GI®GS-invariant power spectrum. Let the F'(Z,j)(<=1,2,---,L1,

j=1,2,---,L2) be the G2-equivalence classes of the second-degree terms

of p(i,4)(i=1,2,-~-,n, §=1,2,~--,m), where some of them may be equal to
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the empty set and the F'(%,J)'s are symmetric with the p(Z,j) if n=m and
L1=L2. Exceptionally, we define that F'(1,1)={(1/2)p>(i,5)}(i=1,8,=-,7,
Jg=1,2,---,m). For any numbers » and m we have

q(0,0)=p(0,0), q(0,3)=Fj(p(0,1),p(0,2)y=~=,p(0,m))

q(i,0)=Fi(p(1,0),p(2,0),-—=,p(n,0)), q(i,5)=2 § FEFI(E, ) f/A

(3.51)
where 2=1,2,~~-~-,L1, g=1,2,~--,L2, and
n m
4= ) o7, Lo, p(k,1)=0. (3.52)
The qg(Z,4)(<=1,2,---,L1, J=1,2,~---,L2) are equal to zero, if A=0.
n m ..
Pav= ) ger(1m02) 94 = zqu(ISZ) 9= 1 ;op L jop D530 (3.53)

These aspects are shown ih Fig. 3.4. The values in Fig. 3.4(b) and (c)
are the g(Z,J) multiplied by 64. Each element x(k,7)(k=0,1,---,7, 1=0,1,
--=, 7) of Xi(i=1,2,---,8) is located at the intersection of row k and
column Z. 1's and -1's are blacked and blanked, respectively. The re-
sults in a 2-dimensional case can be easily extended to any number of

dimensions.

3.6 Rotation by Multiples of 90°, Symmetry Transformation, and Exchang-
ing 1 for -1(G3)-Invariant (WHT) Power Spectrums

Let a horizontal symmetry transformation operator on an input pat-
tern X be denoted by gh, Gh={gh,gh®}, a vertical one be denoted by gv,
Gv={gv,gv?}, and a diagonal one be denoted by gd, Gd={gd,gd?}. Then
ghg, gv2, and gd2 are identity operators. Symmetry transformation of

an input pattern yields only sign change of some (WHT) coefficients, and

does not have any other changes because of the symmetry of row vectors
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H(n,k). Hence, squares of the coefficents are invariant to symmetry
transformation. Therefore the set {w2(i,j,X)} is Gh®Gv-invariant. Let
90° rotation operator be denoted by gr and Gr={gr,gr2,gr3,gr4}, then gr4
is an identity operator. We notice that gd and gr operate only on a NxN
square matrix x(n=2").
It is seen in Fig. 3.5 that gr is equivalent to gvegd and gdegh,
that is,
groX=gqvogdoX=gdoghoX. (3.54)
Therefére we have
Wi, g, X1)=w(i, j, X2)=w(j,7,X3)
= (w(g,2,X), if } Z;é 2(k) is an even number
{-w(j,i,X?, otherwise (3.55)
nl ks, it=0 or 1, i=0,1,

-——,2”—1, j=0,1,———,2n-1. Let G3=Gh®Gu®Gd, then it is known from (3.54)

where XI=groX, X2=gdoX3, X3=ghoX, i= )

that Gr dis included in G3. From (3.48), (3.51), and (3.55) we obtain a
G18G1®G3~invariant power spectrum F(I18183)={s(<,7)} defined by
Fi(q(i,3),q(d,2)), if i>j
s(i,j)=1q(i,3), if i=j
Fa2(q(i,5),q(g,1)), if i<j_ (3.56)
and |

_ _ _ n n .
Pav=) sep(1e1es) O L ger(1e1) 9= L 4op L jog P(%5d) (3.57)
where the ¢g(<,j) are in F(I®L) and 1=2,22.

Geometric patterns are often drawn by using 1's and -1's which cor-

respond to black and white points, respectively. Let ge be an exchanging

operator 1 for -1 and G4${ge,gez}, then
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geoX=-X, W(X1)=-W(X) (3.58)
where XI=gecX. From (3.58) it follows that the wg(i,j,X)'s are invariant
to exchanging the sign of an input pattern.

The aspects of group~invariant power spectrums described above are
shown in Table '3.1. The marks o andk@ are used to show whether or not
the families of some group-invariant functions have eqﬁal values with
respeét to input patterns XI,X2,---,XI2 in the same column. To take GI-
invariant power spectrum P(X), for example, P(X1)=P(X2)=P(X4)=P(X5)=P(X6)
and P(X1)#P(X3)#P(X7) in general. It is observed from Table 3.1 that
the GI®G2®G3-invariant power spectrum F(I®2®3) is a developed power
spectrum to be dinvariant to translations, enlargements, reductions,
symmetry transformations, rotations by multiples of 90°, and exchanging

the sign of an input pattern.

3.7 Enlargement and Reduction{(G2')-Invariant (WHT) Power Spectrums
Enlargement and reduction have been already defined in the foregoing
section. For instance, reduction of X7 yields X2 in Fig. 3.6. Such a
definition makes mathematical analysis easy, but does not make natural
sense for man. Therefore the definition is newly introduced in this
section as shown in Fig. 3.6. An input pattern X is called a Zi—time
enlargeable pattern, if X=[U, 0], U=[x(0),x(1),---,x(Zn_i—l)] and

0=[0,0,---,0]. (3.59)

27’2_ 27’L-$

" For example, X=[12000000] is a 22—time enlargeable pattern, but X=

{01200000] is not. A 1/21—time reducible pattern is defined in the same
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Aspects of group-invariant power spectrums and other

group-invariant families.
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X,
X3
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Xi % X, Xs
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Fig. 3.6. Explanation of G2' and G22': (a) Two different

definitions of enlargements and reductions, (b) ¢27-
equivalent patterns and G22'-equivalent patterns.
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manner as that of the foregoing section, that is, an input pattern Y is
a 1/2$-time reducible pattern, if
7 n L
Y=[y(0)1,y(27)1,-~-,y(2°-2")1], I=[1,1,---,1]. (3.60)
\~____\/.-»v
7
2
A 2"-time enlarged pattern of X and 1/2$—time reduced pattern of Y are
defined as {x(O)Z,x(])l,———,x(Zn-t—Zﬂ] and [U',0], respectively, where
U'=[y(0),y(2"), —==,y(2"-2%)1, 1=[1,1,~—,1]
‘\_——Y——\/

7

0=[0,0,---,0]. 2 (3.61)
——

2n_2n—i
For instance, the 2-time exlarged pattern of X=[12000000] is [11220001},
and the 22—time enlarged pattern of it is [11112222]. Reversely the
1/2-time reduced pattern of ¥Y=[11223300] is [12300000] and so on. Under
the definitions there is obviously no enlargement and reduction~-invari-
ant power spectrum, because the average power of an input pattern itself
is changed by the transformations. Therefore we give up to obtain an
enlargement and reduction-invariant power spectrum and try to get en-
largement and reduction-invariant functions from the second-degree terms.
Let the Zi—time enlarged pattern of Zi—time enlargeable pattern X be
Y, then Y is a J/Zi—time reducible pattern and J/Zi—time reduced pattern
of Y is X. X and Y can be expressed as X=[U,0], Y=U®1, where
U=[c(0),2(1), —-, (2" *1)1, 0=[0,0,-—,0]
e

1=[1,1,---,11. A (3.62)

\_,_,\(_*-—“J
7
b
The (WHT) of X is as follows:

W(X)=(1/N)X-H(n)=(1/N)[U,0]-(H(i)®H(n-1))
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=(1/0) (0,01 ( H(n-7), H(n-i)h| A
'
g@fgiﬁthL{Hm%w
R
l
H(n-1) "em(n-1)
N |
=(1/N) U H(n-2) ,U*H(n-1) ===, U*H(n-7) ]
=(1/N)18(U*H(n-7)) (3.63)
where _
1=[1,1,-—-,1] (3.64)
—
27/

From (3.63) we have
W(k,X)=( value of the k-th element of (I/W)U*H(n-i), 0<k<&" ‘-1
w(l,%), 2" <k<g"-1 (3.65)
where 7 is k modulo P Regarding Y, from (3.33) we have
W(Y)=(2"/N) (U-H(n~i))®[1,0,-—-,0]. ‘ (3.33")
\'—\/T—V/
7
2
(3.63) and (3.33'") lead that
7 . 7
wlk, X)={ 2 «w(l,X), 1if k=2"-1
0, otherwise ‘ (3.66)
where 1=0,1,---,2" *-1.

These aspects are well-illustrated by wutilizing the matrix C(X)
defined already in the case when n=3. Let X be a 2-time enlargeable
pattern, and let Y the 2-time enlarged pattern of it. Then we have

w(4,Y),0,w(6,Y),0 w(2,X),0,2w(3,X),0

C(Y)=|w(8,¥),0, 0 ,0]|=|2w(1,X),0, 0 ,0



CHAPTER 3 - 77 -

w(0,Y)=w(0,X), w(0,X)=w(4,X), w(l,X)=w(5,X),
7 2 7 2
w(8,X)=w(6,X), w(3,X)=w(7,X), ¥ g ¥ (R, Y)=2 Y e WO (kX)L (3.67)
Let X be a 2%-time enlargeable pattern, and let Z the 22-time enlarged

pattern of it. Then we have

w(4,%),0,0,0 4w(1,X),0,0,0
c(z)=| 0 ,0,0,0]= 0 ,0,0,0
0 ,0,0,0 0 ,0,0,0

w(0,2)=4w(0,X), w(0,X)=w(2,X)=w(4,X)=w(6,X),

7
k=0

(3.67) and (3.68) are obtained from (3.65) and (3.66).

vl L7

w1, K)=o(5, X)=o(5, X)=a(7,X), L , 0 (k). (3.68)
Furthermore, it follows that
p(s,X)=} ;;é p(d, %) (3.69)
where X 1is a 2i—time enlargeable pattern, and n—i+1§s§n. The following
formulas are asymptotically led from (3.69):
pn-itl, X)= § g;g (7, %)
p(n-i+2,00= | 107 p(4, 1)=2p(n=i+1,)
pln, X)=2% p(n-it1, X). (3.70)
From (3.65) we have
p(0,7)=2%% 500,30, p(s,v)= (2% ple-2,%), if i+1cocn
0, if Igs<i
L oo pls,7)=2" Tery p(s,X). (3.71)
when Y 1is the 2i—time enlarged pattern of X. In the case when n=3 and
i=1, we obtain

P(X)=[p(0,X),p(1,X),p(2,X),p(3,X)]
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=[p(0,X),p(1,X),p(2,X),p(0,X)+p(1,X)+p(2,X) ]
P(Y)=[p(0,Y),0,p(2,Y),p(3,Y)]
=[4p(0,X),0,4p(1,X),4p(2,X)]. (3.72)
These aspects are illustrated in Fig. 3.6 in the 2-dimensional case when
n=m=3. The values in Fig. 3.6 are the p(%,j) multiplied by 642 for sim-
plicity. 1's and O's are blacked and blanked, respectively, and we
should notice that 0's are used in Fig. 3.6 instead of -1's.
Let P'=[p'(0),p'(1),-~-,p'(n)] be defined by
1 (0)=p(0)2/42, pi(s)=p(s) (p(s)- § jigzp(j))/ﬁ (3.73)
where s=1,2,---,n, and 4= ) ;=0 p(J). Then Zi—time enlargement and 1/2i_
time reduction of an input pattern cause shifts on P’ by 7 elements
toward the right and the 1left, respectively, except P'(0). P'(0) is
invariant to the transformations. Therefore translation, enlargement,
and reduction~invariant functions are obtained as
q'(0)=p'(0), q'(j)=Fi(p'(1),p'(2),~==,p"(n)), 1j<n. (3.74)
We note that {q'(4§)}(j=0,1,---,n) is not a power spectrum. If we treat
an dinput pattern whose elements have only the values of 1 and -1 and
redefine enlargement and reduction by changing 0 for -1, then we can get
a translation, enlargement, and reduction-invariant power spectrum. In
the 2-dimensional case P’ is defined by
P(s, t)=p°(s,t) (pe,t)= . p(i,8))(p(s,t)- ) et pls,3))/a%
(3.75)
where 8=0,1,---,n; t=0,1,---,m; and
4=} L 1 Ly pliad). (3.76)

Let G'2 and G'22 be defined in the similar method to those of the fore-
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going section. Then the {q'(%,4)}, defined by replacing p(Z,J) in(3.48)
and (3.51) with the p'(%,j), are GI®G'22-invariant and GI®G'2-invariant,
respectively. GI8G'22QG3-invariant functions and GI®G'2®G3-invariant
functions can be also obtained in the same way as those of the foregoing
section. The aspects of these group~invariant functions are shown in
Table 3.1. The above discussion has been restricted to real-valued input
patterns and functions, but they can be easily extended to complex-val-

ued ones [36], [37].

3.8 Complex-Valued Walsh-Hadamard Transform
(WHT) whose elements are 1 has been discussed above, but in this

section complex—valued (WHT) is introduced. In the former case one can
easily define the transformations in the form of Zin, but in the latter
case the transformations in the form of ktn. Now we can also get the
(WHT) power spectrum invariant to translations, enlargements, and reduc-
tions in the form of kin. Then the above discussions can be considered
as the special case when k=2. Let 2 and R be defined as:

a=cos (21/k)+jrsin(2n/k), o=-1

R=H(1,1)=(1, z,zg,-——, zk'lg. (3.77)
Complex-~valued Hadamard matrices can be recursively generated as fol-
lows:

H(0)=[1]
H(n-1), H(n-1),—=-, H(n-1)

k

Hin)=| Hin-1), a-H(n-1),-—, 2 LeB(n-1) | =2"(1).

3 3 R

H(n—]),zk~1-H(n—1),—--, z*H(n-1) (3.78)
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where Hn(j) is the #n succesive Kroneker product of H(1). Let H(n,Z)
denote the <-th row vector of H(n). H(n) is an orthonormal and symmetric
matrix, that is, H(n)‘ﬁ7%7t=N'E(n), and H(n)t=H(n), where N=kn, E(n) is
an JxN-unit matrix, and "' means a conjugate matrix or vector. H(I) is

expressed as follows:

[ J— 1Y) (R

R Rl

2

H(1)= | R*R =|R
RARA___ 4R Rk_l (3.79)

. z
where "#*'" means the product of corresponding elements and X means that

each element is raised to the Z-th power. Complex-valued Walsh-Hadamard

transform (CWHT) of an input pattern X is defined as:

W(X)=(1/N)X+H(n) : (3.80)
where W(X)={w(0,X),w(1,X),---,w(N-1,X)] and =Kk". The inverse transform
is defined as:

X=W(X) -H(n) . (3.81)
From (3.80) it follows that

W(x) %) =(1/mx X" (3.82)
Fast algorithm for (CWHT) is nearly equal to that for (WHT) [44]. The
some properties of complex-valued Walsh functions and Hadamard matrices

are related in [36]. These aspects are shown in Fig. 3.7 in a simple

example when n=2, k=3.
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[x(0) x1(0) x2(0) 1/9 w(0,X)
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Fig. 3.7. Fast algorithm for (CWHT), when k=3, n=2.
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3.9 Translation(GI)~Invariant (CWHT) Power Spectrums

In the complex-~valued case we can also obtain the corresponding
power spectrum to that developed by Ahmed and others [34]. Let g(l) be a
translation by { elements, then g(7)°X is the translated X by Il elements.

NxN-matrices T(n) and M(n) are defined as:

010---0) 00___0\
001--=0 00-==0
T(n)= — , M(n)= _—
| 000---1 00~==0
\100---0 (11---1 (3.83)

where N=k”'. It is plan to see that T(n)=T(n) and M(n)=M(n).

g(1)ox=x-T(n)" |

W(g(1)oX)=(1/M)XT(n) B (n)=(1/0%) X-E(n) Hn] -T(n) " -H(n)

H(X) (1/W BT T () B(n) . (3.84)

Let A(n)=(1/N)H(n)+T(n)+H(n). Now let us consider the matrix A(n). The
product "*'" of an N-vector and an NxN-matrix is defined by the product
"%#" of the vector and the each row vector, which is defined already.
Then we have

T(1)<H(1)=R*H(1) (3.85)
hence

T(n) «H(n)=T(n)(H(1)8H(n-1))

= (T(n-1)-H(n-1), T(N-1) +H(n-1) ,-—-, T(n-1) +H(n-1))
T(n-1)H(n-1), z-T(N—J)-H(n—]),——-,zk_J-T(n-Z)-H(n—l)
x

T(n-1)-H(n-1),2 _Z-T(N—l)-H(n-l),———, z+T(n-1)+H(n-1)
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ROQM(n-J) RZ®M(n—1)
- | Rlamin-1) | +| RPu(n-1)

Bk_1®M(n—1) RO®M(n—])

1——-,Rk—1]t®M(n-1)

~H(1)8(T(n-1) -B(n-1) ) +(-E’) * 7’| R
=H(1)8(T(n=1) H(n-1) ) +( (R-R’) *8(1) ) &M (n-1)
=H(1)®(T(n-1) +H(n-1) )+(T(1) -H(1)-H(1))8M(n-1)
=H(1)®(T(n=1) +H(n~1)-M(n=1))+(T(1) -H(1))8M(n~1) . (3.86)
Here one should notice that the last row vector of T(n-1)-H(n-1) is H(n-
1,0)=[1,1,-~-,1], since the first row vector of H(n-1) is H(n-1,0).
Let A=[{a(%,7)}] and B=[{b(i,5)}] are NIxNI-matrices and C and D are
N2xN2-matrices, then we obtain
a(1,1)Cy==, a(1,N1)CY ( b(1,1)D,---,b(1,H1)D
(A-B)®(C+D)= | === ==, === cem ey -
a(N1,1)C,--,a(N1,N1)C b(Nz,J)D,--;,b(Nz,Nz)D
=(AQC) (BeD) . (3.87)
From (3.86) and (3.87) we have
A(n)=(1/N)H(n) +T(n) H(n)
=(1/N) (H(1)®H(n-1)) (H(1)@(T(n-1) -H(n-1)-M(n-1) )+(T(1) +H(1))@M(n-1))

=(1/N)(KE(1)®(H(n-1) +T(n-1) *H(n-1)-H(n-1) -M(n-1))

-Z: 0: 0: ] 0; 0 h
+ k|0,2,0,--,0,0 ® (H(n-1) -M(n-1))).
0,0,0,——,0,zk—%) (3.88)

Let D(n-1,7) be defined as
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D(n-1,7)=(1/K" 1) (B(n-1) +T(n-1) “H(n-1)-H(n-1) -M(n-1)
485 H(n=1) M(n-1)) (3.89)

where 2=0,1,---,k-1. Then we have

D(n-1,0), 0 s==30 b
Aln)= 0 ,D(n-1,1),--,0 s
0 3 0 y==,D(n-1,k-1) (3.90)

N\

that is, A(n) is expressed by the direct sum of D(n-1,0),D(n-1,1),~—-,

D(n-1,k-1). On one hand we obtain

D(n=1,1) Din-1.1) b= 1/ ) 20 tneT) (T(n=1) -B(n-1)+(z°-1)M(n-1) ) -

(Hn=1) -T(n=T) (35 -DM(n-1)%) sH(n-1).  (3.91)
Since T(n)-T(n)t=E(n) and the row vectors of H(n-1) are orthogonal, we

have

T(n-1) H(n-1) H(n-1) -T(n-1) =" 1B (n-1)

(25-1)T(n-1) B(n-1) M(n-1)%

- - _ . N
K e n-1) (0,-—,0,1Y X" 1(z*-1) {0,-~-,0,0
0,-=-,0,0 0,===,0,0
0,-==30,0 0,-==,0,1

(zi—l)M(n—Z)-H(n—i)-T(n—l)t

K Legt 1) (0,-==,0,0) T(n-1)F " L(*-1) (0,---,0,0

0y ===y 0,0 0, ===y 0,0

-Z"""_: 090 0: T 0:1
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. . . . N
(55-1) (2~ = 1)M(n-1) Mn-1) =KL o-57%_5%) [ 0,-—=, 0,0

0:"""50:1 (3-92)

Hence

L T K B (n-1) s H(n-1)=E(n-1) . (3.93)

D(n-1,) -Dln-1,%) “=(1/k
(3.92) is satisfied for any <(¢=0,1,---,k-1), and in the special case
when =0 we have

D(n-1,00=(1/K* ) H(n-1) - T(n-1) H(n-1)=A(n-1) . (3.94)
In other words, A(n) 1is decomposed into the direct sum of k pieces of
D(n-1,7), furthermore D(n-1,0)=A(n-1) is also decomposed into direct sum
of k pieces of D(n-2,7). Thus D(m,0)(m=n-1,n-2,---,2,1) can be decom-
posed into the direct sum of smaller matrices. From (3.84), (3.90), and
(3.94), we have

W(g(1)eX)=W(X)-A(n), W(j,g(1)eX)=W(j,X)D(n-1,7)

W(iy,dsg(1)oX)=W(i,45,X)D(i-1,5) (3.95)
where

"L g1, e KT 1)1,

W0, X)=[1w(i1,0)}] (s1=K""1.4, &
=0, 1, ==y k=1)

WL, G, 0= (12,001] (20K Lo (o) k5T (G1) 2, oo ke,
J=1,2,---,k-1). (3.96)

Taking (3.93) into consideration, we have

p(i,3)= 7§ ., |w(i2,x)|2

(5,3, X) WE 5. X) (4, 5, g(1)0X) W(%, 5,g(1IoXI ¥ . (3.97)

Since we have
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plo)+ " zé?;; pli,d)= 3 1 luri, 0 |2= 3 Tl a2, (3.98)
the set {p(0)}u{p(i,j)}(i=1,2,---,n, g=1,2,~---,k-1) is a translation-
invariant power spectrum. Where N=kn. From the properties of complex—
valued Walsh functions we get the expressions corresponding to (3.34)
and (3.35) for a ki—time enlargeable pattern X and a 1/ki—time reducible
pattern Y:

w(l,00=0, if 15K*"

w(Z,Y)=0, if 7 is not a multiple of ki. (3.99)
When Y is a ki—time enlarged pattern of X, we have

W(L, X)=o(KE 1, 7) (3.100)
where 1=0, Z,——,kn_i—l. Therefore ki—time enlargements and Z/Ri-time
reductions on X cause parallel translations by 7 elements toward the
upper parts and the lower on P defines as follows, respectively:

p(0)|p(ﬁ,]),p(n,2),-—-,p(n,k—1) en%ﬁrgements

|

l 3 3 3
| 1
!p(l,1),p(1,2),--—,p(1,k—1) reductions (3.101)
The case when n=k=3 is shown in the following:
P=( p(0)ip(3,1),p(3,28)
|
|p(2,1),p(2,2)
I
L\ |p(1,1),p(1,2)

="b\9 10 11 12 13 14 15 16 17:18 19 20 21 22 23 24 25 26

13 4 5 | 6 7 8
A N R A
17 : 2 (3.102)

where p(0) and p(<,j)'se(i=1,2,3, j=1,2) are the square sums of the cor-

responding groups, for example, p(0)=|w(0)|?, p(2,1)=|w(3)|%+|w(4)|%+
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|w(5) |2, and so on. Then we can get a GI8G2-invariant power spectrum

{go)YWq(l,r)}(1=1,2,-~-,n, r=1,2,~-~,k=1) as follows:

q(0)=p(0)
q(lyr)=Fl(p(1,r),p(2,2),~-~,p(n,2r)) (3.103)
k-1 k-1 .o N-1 .
where q(0)+ ) Z:L_J ) peg 4(L7)= Z'LZZ Y =1 p(i,g)= 1Y i1 lc()|?. The

development of the power spectrum to 2-dimensional case is easily led in

a similar manner to 3.4 and 3.5.

3.10 Conclusions

A composing process of some transformation group-invariant functions
and the application to the (WHT) power spectrum have been presented. The
main idea 1is to find a permutation group on a family of some functions
caused by the transformation operating on an input pattern . Using the
process, the (WHT) power spectrum are developed to be unchangeable by
translations, enlargements, reductions, rotations by multiples of 90°,
and symmetry transformations. Using polar coordinates (r,0) instead of
orthogonal ones, we can define any rotations besides rotations by multi-
ples of 90°. Then every rotation may be regarded as translation toward
f~-direction and enlargement and reduction as exponential shifting toward
r-direction. With of this convenience the new problem arises, that is,
how to define translations of the elements of an input pattern. We have
the alternative of orthogonal or polarcoordinates, complying with needs.

Since the power spectrums may be regarded as a proper subset of a
group—invariant complete system, it cannot perfectly make distinctions

between the group-nonequivalent patterns. For example, P is translation-
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invariant and also sign exchanging—invariant at the same time. But gen-
erally it seems almost impossible to make up a group-invariant complete
system of hardware when the number of functions in the system is taken
into account. Therefore it becomes very important to select appropriate-
ly a subset of the system. We mainly adopted power spectrums, but it is
also possible to adopt any other functions besides power spectrums. As
seen 1in 3.7 there is no group-invariant power spectrum in some cases.
This depends on the tramsformation group. Although this chapter is lim-
ited to the applications to the (WHT) power spectrums on a discrete
input space, the discussions will enhance the further research of group-

invariant functions.



CHAPTER 4 - 89 -

CHAPTER 4

FOURIER SPECTRUMS INVARIANT TO CERTAIN TRANSFORMATIONS

4.1 Introduction

Fourier sinusoids are wused as partial functions in this chapter.
Fourier spectrums (not power spectrums) are developed to be unchangeable
under several transformations such as translations, enlargements, reduc-
tions, and so on. Although the Fourier transform takes more computation
time than the Walsh~Hadamard transform, it is more convenient in treat-
ing general transformations. Fourier power spectrum, auto~correlation
function, and the (WHT) power spectrum developed in Chapter 3 are trans-
lation—-invariant. But they are not translation-invariant complete sys-
tems. The spectrums proposed here are transformation~invariant complete
systems, and preserve any essential information without any loss. There-
fore (a representative of the class of) an input pattern can be regener-
ated through the inverse Fourier transform. Parameters introduced here
represent the degree of transformations, so they can be used for normal-
ization of an input pattern. The normalization is less affected by local
distortion and low energy noise, since the Fourier transform is a global
transform. Through computer simulation these aspects are shown and the

efficiency of our theory is confirmed.

4.2 Input Patterns and the Fourier Transform
Let f(x)(-»<x<e) be an input pattern, and an N-vector X=[f(x(0)),

flx(1)), ---, f(x(N-1))] be the sampled input pattern, where x(Z)=z/N.
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We suppose the following two cases:

(1) f(x) is a periodic function with a period 1,

(2) flz) is an aperiodic function, and f(x)=0 for any x (x<0, xzl).

In both cases transformation-invariant functions are obtained in the
similar way. Fourier spectrum F(k)(k:integer) means the former case and
F(z)(z:real) does the latter. TFourier spectrum can be computed in a
short time by the fast Fourier transform (FFT).

Here one problem rises when we treat such transformations as en-
largeménts and reductions. It is illustrated in a simple example. In Fig.
4.1 fa(x) is the 2-time enlarged pattern of fI(x). XI and X2 are the
corresponding vectors, respectively. Almost all computer simulations on
picture processing deal with sampled patterns on a mesh space. Then it
is more natural to consider X3 as the 2-time enlarged pattern of XI. For
another example, the 2-time enlarged pattern of X4 is X5. Therefore in
this chapter we deal only with step functions whose values does not
change within sampling intervals. The FFT can not be applied to this
case as it is. But with a little contrivance it becomes applicable and
saves us very much computation time. Let f(x)<»F(k) be the Fourier
transform pair:

flor=1 7 F()ed o™

\ x(1+1)
F(k)= [ flz)e T8 %= §

N-1 . Zibomkx
=(1/52nk) § WL Aftatirn))-piaci)) s d 2T

(kt0, x(W)=x(0), F°=-1)

N-1

F(O)=(1/N) | %,

flx(i)). (4.1)

(4.1) means that F(k)(k#0) is the coefficients divided by j2nk which is
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f 1 ( X) fli(x)
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0

1 '
223233 %700

0% 05
1

X~=(0 %

Fig. 4.1. Input patterns and their vector expressions.



CHAPTER 4 -~ 92 -

obtained from the discrete Fourier transform of difference between adja—

cent sampled components. That is, the FFT becomes applicable when n=2".

4.3 Translation-Invariant Spectrums

In this section a translation—invariant spectrum is obtained. For
simplicity, the discussion is restricted to a l-dimensional case, but it
is easily extensible into higher-dimensional cases. It is well known
that auto-correlation functions ¢ff(T) and the Fourier power spectrum
|F(k)|? are translation-invariant. When f=f(x)f(x+t) and arithmetic
summation E: is exchanged for integral‘f in Corollary 2.9, fI and ¢ff(T)
are  the same. ¢ff(T) and IF(k)IZ are a Fourier transform pair and both
of them reserve only amplitude information and no phase one. In other
words, they are translation-invariant, but not translation-invariant
complete systems.

To construct a translation-invariant complete system, we eXamine
changes of the phase angles caused translations of an input pattern. Let
Fa(k) be the Fourier transform of f(x-a) which is a translated pat-
tern of f(x) by a.

KE eI 2T0K ) (4.2)

Fal)= | fla-a)ed2m
(4.2) means that amplitude components are the same and phase components
change by -2mak. As a calculative result of a phase angle, [arg(F(k))-
2ﬂak]2TT is obtained. Where arg( ) means an argument and [ ]2Tr does mod
2n. Since the interval (0O<x<I) is an object of our discussion as the

domain of an input pattern f(x), the phase angle of Fa(l) can be consid-

ered a parameter of location of an input pattern. Using this fact, a
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translation~invariant spectrum is constructed as follows:

|Fs(k)|=|F(k) |

an(FS(k))z[afg(F(k))—k(afg(F(l))-ﬂ)]ZW (k#0)

Fs(0)=F(0), AS=[QP9(F(1))]2ﬂ/2ﬂ (4.3)
Fs(k) 1is the Fourier specturm which is translated so that arg(Fs(1))=m.
This has close relations to translating the input pattern f(x) so that
the center of gravity may be 0.5. As can be regarded as a parameter of
location of an input pattern and 0gAs<Il. For example, for X=[11000000],
F(1)=0.00507ej7ﬂ/4, arg(F(1))-n=31/4, therefore As=1/8(=the center of
gravity) and the pattern is translated toward the right by 3 elements(=
3n/4x1/2n1x8). Through the inverse Fourier transform of Fs(k) the input
pattern [00011000] is obtained, and the center of gravity is 0.5.

It is proved as follows that Fs(k) is a translation-invarinat com~
plete system:
(Proof) Invariance:Let f(k)¢>Fs(k). For amplitude we have

|Fs (k) |=|Fa(k) |=|F(k)]. (4.4)
For argument we have

arg(Fs(k))=larg(Fa(k))-k(arg(Fa(1))-m)],

=[al/'g(F(k))-k(al"g(F(J))—17)]2Tr (k#0)

Fs(0)=Fa(0)=F(0). (4.5)
Completeness: Suppose that Fs](k)=F62(k), and Fsl(k) and Fs2(k) are Fs(k
)'s obtained from G-nonequivalent functions f7 and f2 (fYé%?), respec-
tively. Let fl(x)«>F1(k), f2(x)&>F2(k).

|F1(k)|=|Fs1(k)|=|Fs2(k)|=|Fe(k) |

[arg(F](k))—k(FZ(Z)—ﬂ)]2ﬂ=arg(F31(k))
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=arg(Fs2(k))=[arg(F2(k))-k(FZ(l)-k)]2ﬁ. (4.6)
Hence
Ffl(x-(F1(1)-7)/2n)«Fsi(k)
Fo(x-(F2(1)-1)/2n)&>Fs2(k) . 4.7)
Since Fs1(k)=Fs2(k) from the supposition, we obtain
Fl(x=-(F2(1)-n)/2n)=f2(x-(F2(1)~-n)/2n). (4.8)
(4.8) means that fYQfZ. This is inconsistent with the supposition. QED.
Deciding the phase angle of F(1), the input pattern is reproduced
through the inverse Foﬁrier transform. Though the phase angle of the
frequency 1 is picked out as the standard on the above, that of another
frequency Kk can be adopted, too. For instance, we cannot but do so when
|F(1)l=0. Note that the decision of the phase angle has the freedom of
k. To wutilize the phase angles for normalization of an input pattern,
the freedom is got rid of by adopting several phase angles of the stand-
ard patterns at one time. The example of a translation-invariant spec-
trum is shown in Table 4.1. The parameter As expresses the location of
an input pattern. The normalized patterns f(x-0.5+As) by using As are
the same for the three input patterns, and so are the translation-invar-

iant spectrum Fs(z)'s(71=0,1,2,3).

4.4 Enlargement and Reduction-Invariant Spectrums

In this section two kinds of enlargements and reductions are intro-
duced, and we obtain the spectrums invariant to them. First, we consider
periodic functions with a period 1. When f(x+1/b)=f(x) for an natural

number b and an arbitrary real number x, we say that f(x) is b-time



Table 4.1. An example of translation-invariant spectrum.

Input patterns F(1) As Fs(0) Fs(1) Fs(2) Fs(3)
(12300000 0 g15590-767x2n|  0.235 | 0.75 | 0.615"" 0.51867997 | 0.1619190
, . L gn 76.07 71.90
01250000) 0 613090+ 648%2 0.5581 0.75 | 0.613¢ 0.318e 0.161¢
=0. 233+
5
(00123000] 0.613¢70+o17xAm| 0.468 . 5. o 100
%0.285+7| 0.75 | 0.613¢77 | 0.318¢7"" 0.161¢7
flx-0.5+As)
flx)
3
0] Fjﬂj-] .
0.267 7
=0, 6-As

% 9ILAVHD

_.g6._



CHAPTER 4 - 96 -

enlargeable and f(x/b) is the b-time enlarged pattern of f(x). It is
conversely said that f(x) is the 1/b-time reduced pattern of f(x/b). For
instance, [01230123] is 2-time enlargeable, and the 2-time enlarged
pattern is [00112233]. Let f(a)&>F(k), f(x/b)é>Fb(k), then we obtain

F(k)=43fyx)e-j2nkx -3 p:é -fgﬁzl)/ () o= TR 5

0 =

=(1/b) folf(x/b)e_jZTTkx/b y bt e IEk B, (4.9)
Since
2 g;g g~ 2mkt/b_ b, if k is a multiple of b
{0, otherwise, (4.10)
we have
F(k)= (Fb(k/b), if k is‘a multiple of b
.{0, otherwise. (4.11)

Saying in other words, a b-time enlargement of an input pattern causes a
translation of frequency components F(k)'s into F(k/b)'s. This is shown
in a simple example of Table 4.2.

Let the abscissa be Zog k and the ordinate be F(k), then a b-time
enlargement becomes a translation by -log b. We can construct enlarge-
ment and reduction-invariant fucntions, when translation-invariant func-
tions are composed on such an axis of co-ordinates. For example, let us
construct enlargement and reduction~invariant functions by‘the method of
Theorem 2.9:

Fr={F(0), § 7 Pk, FO(0), § 7 FRCR), T2 FOLRIF(mk) =)
(1=1,2,~-=, m=l+1,1+2,-=-). (4.12)

According to the above definition, the 1/2-time reduced pattern of
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Table 4.2. 2-time enlargement and change of

Fourier spectrum.

Input patterns F(0) F(1) F(2) F(3) F(4)
[12301230] 1.5 0 -0.637 0 -0.3187
[11223300] 1.5 -0.637 -0.3184 0.212 0

2 |—

Xi X2 X3

NN

Fig. 4.2. Two kinds of reduced patterns.
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X1 dis - X2 as shown in Fig. 4.2. Such a definition makes mathematical
analysis easy, but it is unnatural for human feeling. It is more natural
and moreover has wider practial application areas in pattern recogni-
tion and picture processing that we define the 1/2-time reduced pattern
of XI as X3. Let f(a)=0(x<0, 1sx), the Fourier transform of f(x) be F(z),
and the central frequency ¢ be defined as folllows:

c:Q(c)=P/8, Qlc-e)<P/2 (e>0)

act)=[ F|riz) |2z (£50)

P=Q(oo)=[01 | f(z)|2de. (4.13)
An input pattern f(x) is always 1/b-time reducible (b>1). f(bx) is call-
ed the 1/b-time reduced pattern of f(x). If there exists a real number
a such that

f((x-a)/b)=0 (x<0, 1z, |a|<1) (4.14)
we say that [f(x) 1is b-time enlargeable and f((x-a)/b) is the b-time
enlarged pattern of f(x). For instance, [01230000] is 2-time enlargeable,
and the 2-time enlarged pattern of it is [00112233]. For simplicity,
suppose that a=0, and let us investigate the change brought about b-time
enlargement. Let f(x)<>F(3), flx/b)¢>Fb(z), then we have

P (a)=[ fla/b)e™I B by R (a) (4.15)

Let the central frequencies of f(x) and f(x/b) be ¢l and c¢2, respec-

tively.

cl :f_cclli F(z)|?da=P/2

c2: f_0022| Fb(z) | 2dz=b| %) P(2) | 2de=Pb/ 2=b- /2

Pb= ["|Fb(z) |2da=b [ | F(z)|%dz=b-P. (4.16)

Hence, it follows that ¢I=b.c2. In the same way as the parameter As of
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the pattern location is obtained from the phase angle of frequency 1,
the parameter Ae of the pattern size is done from the central frequency.
Let the central frequency of the standard pattern be ¢0, then the enlar-
gement and reduction-invariant spectrum is got in the following equa-
tion:

Ae=c0/c

Fe(z)=F(zc/c0)/P

P= f01|f(z) |2dz=_£w|F(z) |2dz. (4.17)
Where f(x) and K-f(x) are included in the same equivalence class. For
example, [12300000]=[24600000]. This means that the pictures of photo-
graph and TV are in the same equivalence class, even if the brightness
is changed.

It is proved as follows that Fe(z) is an enlargement and reduction-

invariant complete system:
(proof) Invariance: Let f(x)é&F(3), f(x/b)«Fb(z), and Pb, P, c¢l, and
c2 be defined in (4.16) and (4.17), then

Fe(z)=Fb(z.c2/c0)/Pb=F(z-cl/c0)/P. (4.18)
Completeness: The proof is done by a reduction to absurdity. Let Fel(z)
and Fe2(z) be Fe(z)'s obtained from G-nonequivalent pair fI1, f2 (flgf2),
and ¢l and c¢2 be the central frequency of fI(x) and f2(x), respectively.
Suppose that Fel(z)=Fe2(z), fl(x)«dF1(z), fe(x)eF2(z), [f3(x)eFel(z)=
Fe2(z).

fS(x)é;Fel(z)=F1(z.01/00)/P169f1(x/bl)/(bZoPZ) (bl=c1/c0)

f3lx)e>Fel(z)=F2(z-c2/c0)/Po>f2(x/b2)/(b2+P2) (b2=c5/c0). (4.19)

This means that f3(x) is the bI-time enlarged pattern of fI(x)/(b1+P1),
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that 1is, fBg}Y. In the same way it is obtained that ngF?. Since we
have ng}Z, this contradicts to the supposition. QED.
An example of an enlargement and vreduction-invariant spectrum is
shown in Table 4.3. The changes of the Fourier spectrum and the central
frequency caused by an enlargement are seen in the table. Fe(z) 's(z=0,1,
—--, 4) are the same for the two input patterns. f(x) becomes f(x/b-a),
after b-time enlargement and translating by a. Let f(x)ééF(z),kthen flx/

b-a)<>b- e-—jZ'nab

F(bz). First, the enlargement and reduction-invariant
spectrum Fe(z)=F(z:c/c0)/P is obtained. Next, the translation-invariant
spectrums are got by using the phase angle of Fe(1). Thus we arrive at

a translation, enlargement, and reduction-invarinant spectrum. The

above discussion is easily extended to a 2-dimensional case.

4.5 Rotation and Other Transformation-Invariant Spectrums
Rotation caﬁ be considered translation of the angle(6), when a

2-dimensional pattern is expressed by polar coordinates (r,6). For an
input pattern f(»,6), F(kr,k6) is defined as follows, and such a pair is
written f(r, e)é;F(kr,ke):

Flle,ke)= [ [ ftr,0)e 07T I8 Re nimge, (4.20)
Let us note that (4.20) is different from the Fourier spectrum expressed
by polar coordinates. In this a phase angle is treated as if it is one
axis of orthogonal coordinates. Therefore the same technique as used to
obtain a translation-invariant spectrum is applicable for obtaining a
rotation-invariant spectrum. Let f(r,e—d)%;Fd(kP,ke), then we have

Fd(ke, ko) = jo / f ' tr, 0-d) oI ETRrT I 2K O 50 ,m T 2RO p (1 e

(4.21)



Table 4.3. An example of enlargement and reduction-invariant spectrum.

Fe(2) Fe(3) Fe(4) 1

Input F(0) F(1) F(2) F(3) F(4) ¢  |Fe(0) Fe(1)
patterns
(123000001 0.75 0.066 -0.318 0.128 ~0.1597| 0.854=c0}0.429 0.038 -0.182 0.073 -0.0914
~-0.617 +0.17 +0.3487 +0.8557
X2 X2 <o 1/2
.
[11225500] 1.80 -0.637 -0.318] 0.212 0 0.428 0.429 0.038 -0.182 0.078 -0.0917
+0.3485 +0.8557

Y dHILdVHD

- T0T -
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In the similar way to 4.3, the phase angle éf F(0,1)(kr=0,k6=1) can be
regarded as the parameter of inclination. It is expressed as Ar=arg(F(0,
1)). Let Ar0 be the parameter of a reference pattern and Ar be one of an
input pattern, then the input pattern can be normalized by rotating by
80(=Ar0-Ar). Rotation of an input pattern by 60 causes rotation of the
Fourier spectrum by 60. Hence Fr(kr,k8) defined in the following is a
rotation—-invariant spectrum:

Fr(kr,ko)=F(kx+cos(60)+ky- sin(60),-kx-sin(00)+ky-cos(60)) (4.22)
where, f(x,y)«>F(kx,ky). It is easily proved that Fr(kx,ky) is a rota-
tion-invariant complete system in the same manner as that of a transla-
tion-invariant spectrum. For an input pattern f(x)(0<f(x)<1), the nega-
tive-positive reversed pattern is defined as f'(x)=I-f(x). Then Fn(k)
defined din the following is a negative-positive reversion-invariant
spectrum:

F(k), if Re(F(1))>0
Fn(k)=< -F(k), if Re(F(1))<0, k#0
1-F(0), if Re(F(1))<0, k=0 (4.23)
where Re( ) means the real part.

Axis-symmetry transformation is defined as f''(x)=f(1-x)=f(-2),
where f(x) is a periodic function with period 1. The following Fa(k) is
an axis-symmetry transformation-invariant spectrum:

Fa(k)=Re(F(k))+j-Im((F(k))sgn(Im(F(1))) (4.24)
where Im( ) and sgn( ) mean the imaginary part and the sign, respective-
ly. When Re(F(1))=0 and Im(F(1))=0 in (4.23) and (4.24), respectively,

the transformation-invariant spectrums must be redefined by using higher
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order nonzero components. It is also easily proved that Fn(k) and Fa(k)

are transformation-invariant complete systems.

4,6 Computer Simulation

In this section we have a try of computer simulation of the modified
Fourier spectrum invariant to tramslations, enlargements, reductions,
and rotations. Using the spectrum, some cartoons are classified into two
classes. Since the Fourier transform is a global transform, it is less
affected by local distortion and noise. We take an example of segmenta-
tion in Fig. 4.3. From a maximum flame method Segmentation 1 is obtained.
On the other hand, if the energy of noise is low, Segmentation 2 becomes
possible by the method proposed here. |

The aspects of obtaining the invariant spectrum to various transfor-
mations are shown through computer simulation. Ten patterns in Fig. 4.4
are wused as original data. X2,X3,---,X8 are got through adding noise,
translating, and tilting after making equal or reduced size copies from
X1, X9 and X10 beloﬁging to ‘another class are used for comparison with
them. XI1,X2,---,X10 are expressed by binary patterns sampled on a 512x
512 mesh. First, we obtain the parameter Ar of tilting. For restriction
of memory size and computation time, Ar is got by using 128x128 patterns
whose components are arithmetic summation of 4x4 points, where the ori-
gin is the gravity center. Let the parameter of XI be Ar0, then Ar(0-Ar
is shown in Table 4.4. Because of summing 4x4 points, the precision of
them is bad, but the error angles are within the scope of j10°. The

rotation of an dinput pattern can be roughly estimated. Rotating the
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/////;7&5; Segmentation 1
\ Segmentation 2

Input pattern

Fig. 4.3. Segmentations of an input pattern.
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Table 4.4 Parameters of transformations and Euclid distance between transformation-

invariant Fourier spectrums.

Input Ar0-br| real [Aex, Aey real |Asxz, Asy Distance Distance | Classification
patterns angle ratio from X1 from X9
X1 0° 0° {(1.00,1.00 1.0 (10.46,0.86 0 0.230 X1
X2 -6.4° 0° [1.08,1.10 1.0 10.456,0.30 0.089 0.220 X1
| X3 3.5° 0° (1.22,1.22 1.0 |0.41,0.381 0.264 0.202 X1
| X4 -2.8° 0° 11.00,0.94 1.0 (0.46,0.389 0.026 0.226 X1
X5 -9.8° 0° 10.70,0.71 0.7 10.48,0.60 0.086 0.182 X1
X6 -3.9° 0° 10.50,0.50 0.5 (0.47,0.51 0.164 0.211 X1
X7 19.5° 25° 10.90,1.14 1.0 |(10.26,0.48 0.048 0.214 X1
X8 -38.0° -30° (0.72,0.78 0.7 10.68,0.34 0.086 0.189 X1
X9 29.6° 0.72,0.78 0.50,0.48 | 0.230 0 X9
) 25° - )0.7
X10 62.8 0.64,0.566 0.27,0.69 0.366 0.164 X9

%7 JdLdVHD

- 90T -
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Fourier spectrum of a 2-dimensional pattern by Ar0-Ar, the rotation-inv-
ariant spectrum can be got. For simplicity, we normalize beforehand an
input pattern by rotating. To save memory size and computation time, we
compute only the Fourier spectrums of two 1l-dimensional patterms which
are obtained as follows:

Xk=[{x(<,g)}1(2, j=1,2,---,5612)

S w(5,4), i=1,2,--,5612)

X=[{x(2)}1(x(i)=}
Y=[{y (i)} 1(y(5)="} fif 2(i,7), §=1,82,-—-,512). (4.25)
Through the method mensioned in 3.2, Asx, Asy, Aex, and Aey are
computed from the Fourier spectrums of X and Y. Where the origin (0,0)
is the upper left corner and the subscripts x and y mean parameters of
x-direction and y-direction, respectively. The Fourier transform is
done after a (4096-512)-vector [0,0,---,0] is added to X and Y to be
4096-~vectors. After that, the Fourier spectrums are obtained by trape-
zoidal approximation from the FFT, so Aex and Aey can be computed. The
results are shown in Table 4.4. Ae's of X2 and X3 are 107-207 larger
than the real pattern size. Since we can consider that input patterns
are expanded by adding noise, this tendency is acceptable to some extent.
Ae's of the patterns which are transformed only through rotations and
reductions are fairly accurate, that is, nearly equal to the ratio of
the real pattern size. Some of patterns which are rotated are influenced
by the bad precision of normarization. As's are nearly equal to pattern
locations. After the enlargement and reduction-invariant spectrum is
obtained by using Ae, the translation-invariant spectrum is obtained by

using the phase angle of frequency 1. We cannot reverse the order, be-
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cause translations do not change the size, but enlargements and reduc-
tions change the location. Euclidean distances between above obtained
transformation-invariant spectrums are shwon in Table 4.4. In this table
we see that ten patterns in Fig. 4.4 are classified correctly into two

classes by the nearest neighborhood method.

4.7 Conclusions

Invariant spectrums to translations, enlargements, reductions, and
rotations were developed through the Fourier spectrum. Changes of the
Fourier spectrum caused by the transformations of an input pattern were
investigated, and a transformation-invariant complete system was con-
structed. Transformations of an input pattern bring about changes of the
parameters introduced here. Since these parameters are computed through
the Fourier transform of a global operation, they are steady under local
distortions and noise. As seen in computer simulation, the parameters of
location, size, and inclination were extracted approximatly correctly.
Using these parameters, it becomes possible to do normalization of input
patterns which is stable under the above transformations and noise. When
a step function 1is transformed through Fourier transform, the fast
Fourier transform (FFT) becomes applicable by using the difference f(x(7
+1))-f(x(1)) of values of neiboring sampling points. This accomplishes a
considerable economy of computation time. In computer simulation all the
2-dimensional patterns were distinguished. Although we used only Fg(zx,
0) and Fg(0,zy) instead of all members Fg(zx,zy)'s of the transforma-
tion-invariant complete system, ten patterns under several transforma-

tions are all classified correctly.
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CHAPTER 5

SUBSET METHODS

5.1 Introdunction

In the foregoing chapters global transformations are mainly treated.
In this chapter local transformations, which are usually called distor-
tions, are treated. Distortions may include global transformations. Sub-
set methods, which can be regarded as one kind of modified template
matching methods, are introduced to construct systems unaffected by
certain distortions. Any kind of distortions should not be tolerated,
but only a particular class of distortions, which we call admissible
distortions, should be.

According to a template matching technique, an unknown pattern is
recognized by deciding whether the unknown pattern matches one of tem~
plates for differently shaped specimens of each pattern class within an
admissible distortion. The process of optimizing the match may take a
long time. The pattern should be subjected in turn to each of a large
number of distortions. It may save computation time and required memory
to determine which points can correspond to which by a method that uses
a set of small parts of the pattern and the template. Besides that any
part of a pattern will be less affected by a distortion than the whole.
For this reason, it is easier for machines to recognize features which
are local properties of patterns than to recognize whole distorted pat-
terns. The design of features usually takes a great deal of human ef-

forts. It 1is desirable to automate the determination of features.
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Therefore this chapter starts with discussion of subset methods and
learning algorithm for automatic feature extraction. Feature extraction
may be the optimum selection of common subpatterns to many patterns. The
results of computer simulation in a simple example will be shown to
illustrate how the algorithm works.

In general, the set of automatically determined features may include
redundant features. The features generally may not be evaluated inde-
pendently. After 1learning of features, some of them are selected to
obtain a min-max-cover which covers as many bits of patterns in the
trainig set as possible. The selection problem is represented by a F-
table. After obtaining a min-max-cover, a classifier function is con-
structed in the form of a product-of-sums of features in the min-max-

cover,

5.2 Subset Methods

In this section some definitions are given, and a subset method is
introduced. For simplicity, let us consider a problem where an input
pattern 1is expressed in a binary form of a n-vector X=[x(0),x(1),---,
x(n-1)] of O0's and 1's. It is desired to determine automatically a set
of features by a subset method. Here admissible distortions are given a
priori. In practice the number of admissible distortions is so large
that we can not store them explicitly. One way to overcome this diffi-
culty is work with subset methods. Every admissible distortion is
expressed by a partition which was introduced by Ullmann [1]. A parti-

tion BZ on T is a set of non-overlapping subsets of 7T whose union is T,
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where T is the set of variables of two patterns. A partition BZ is said
to be applicable to a pair of patterns, if the labelled bit locations
with the same letter have the same value. For example, Bl is a partition
on T which has 20 subsets as shown in Fig. 5.1(b). In the figure bit
locations which are labelled with the same letter belong to the same
subset of T, and ones which are not labelled with any letter have no
restriction from BI1. BI is applicable to 220 pairs of patterns. A pair
of patterns XI and YI of patterns is one of such pairs of patterns in Fig.
5.1(c). Another example is shown in Fig. 5.1(d), (e). A partition can be
regarded as a many-to-many mapping of individual bits of pattermns. If
Bi1 is applicable to a pair of patterns X and Y, then we can think of Bz

as an operator which changes X dinto Y and we write Y=B1°X and X=Bi—%3Y,

where Bi_l is the inverse of BZ. For instance, YI=BloXI, XZ=BZ_%>X1, and
Y2=B20X2 in Fig. 5.1.

To work with a subset method, let us suppose that a partition can be
constructed by a possible combination of subpartitions which are smaller
sets than partitions. We say that a partition BZ is one of possible
combinatioﬁs of subpartitions 4j's(j=1,2,---,k), if every labelled sub-
set of Aj(j=1,2,---,k) is included in one of labelled subsets of BZ and
every labelled bit location of B7 is included in at least one Aj's. For
instance, a partition BZ in Fig. 5.1(d) is constructed by a possible
combination of subpartitions 41, A2, and 43 as shown in Fig. 5.2. It
often occurs that there is not only one but also many possible combina-

tions which construct the same partition. Note that a subpartition is

nonpositional and a partition is positional. A partition takes the place
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of an admissible distortion. Economy is gained by using possible combi-
nations of subpartitions instead of partitions. Unreliability is caused
by some kind of misrecognition as investigated by Ullmann [2], [58], in
exchange for economy, as long as rather large subpartitions are not used.
Possible combination of small subpartitions may not hold topological
equivalence.

Let 4 be the set of admissible subpartitions which are a priort
given and B be the set of partitions which are constructed by possible
combinations of subpartitions in 4. It is natural to assume that 4 in-
cludes an identity operator A0 and for any subpartition A7 in 4 the
inverse Ai—z is also in 4. This is the same with B. Let us naturally
suppose that a shifted version BZ' of a partition BZ in B is also in B.
For example, BI1' is in B, if Bl is in B in Fig. 5.1(b). It is not usual-
ly satisfied that there exists a partition B3 in B such that X3=B39XI1,
where X2=BIloX1, X3=B2°X2, and Bl and B2 are in B. But it is always sati-
sfied 1in the case where at least one of BZ and BZ is an identity opera-
tor or a translation. Accordingly B does not make a group. The problem
deciding whether two patterns XI and X2 are within an admissible distor-
tion becomes equivalent to the problem deciding whether there is a par-~
tition BZ 1in B such that X2=Bi¢XI. In other words, it is whether there
is a possible combination constructing a partition which is the set of
subsets of X1 and X2.

It is convenient to say that the set of 1's and 0's which are the
same 1in two patterns is the common subpattern to the two patterns with-

out any distortions. For instance, the common subpattern to [10110001]
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and [10011001] is [10-1-001], where "-" means an unspecified bit. The
common subpattern to [10-1-001] and [10110011] is [10-1-0-1]. We say
that for two patterns XI and X2 and for two partitions Bl and B2 the set
of 1's and 0's which are the same in two distorted patterns BIoX1 and B2¢
X2 1is 'a common subpattern to those two patterns XI and X2 within an
admissible distortion. There are usually many common subpatterns to two
patterns within admissible distortions. For instance, the common subpat-
tern to [10110001] and [10011001] are [10-1-001], [-01100--], [--1-0---1,
and so on, where admissible distortions are only translations. Since the
shifted versions of every partition in B are included in B, it is suffi-
cient that the shifted versions of a common subpattern are represented
by an appropriate subpattern. This subpattern may be a candidate for a
feature on some conditions.

#[x|P] is defined already in Chapter 2. For example, #Hx|2<x<5, x is
an integer]=2. To allow for noise we use a threshold 6(N). A subpattern
F is contained in a pattern X, if there is partitions Bl and B2 in B
such that n(F)<6(N). Where n(F)=f#lx|x is a bit in the subpattern F which
is mnot '"-", & corresponds to the bit in the distorted subpattern BI°F
which is not the same as the corresponding bit in the distorted péttern
B2 ©X]. For example, [01100---] is contained in [10110001] and not con-
tained in [10001101], if admissible distortions are only translations
and 6(N)=0. [01100-~~]}, however, is contained in [10001101]}, if admissi-
ble distortions are only transaltions and 06(N)=I. Adding the subparti-
tions indicated in Fig. 5.3(a), [01100---] is contained in [1001100],

even if 0(N)=0. These aspects are showm in Fig. 5.3(b).
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Fig. 5.4. Patterns covered by subpatterns.
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A bit x(Z) din a pattern X is covered by a subpattern F, if it is
satisfied that the corresponding bit in the distorted pattern BIoX to
x(7) is the same as the corresponding bit in the distorted subpattern B2°
F. Covering by a pattern is similarly defined. For instance, encircled
bits 1in TFig. 5.3(b) are covered by a subpattern or a pattern. We say
that a pattern is covered by the set of features, if almost every bit in
the pattern is covered by more than or equal to 8(C) of features in the
set and less than or equal to 6(M) of bits in the pattern are not. For
example, [10110100] is covered by {[10l---—- 1, [100=——— 1}, if 6(C)=1,
9(M)=0. [10110100] is covered by {[101-—--- 1,[100———- 1,{0110----1}, if
6(C)=2, 6(M)=3. These aspects are shown in Fig. 5.4, where admissible
distortions are translations and encircled bits indicate covered bits.
Let 7(P)=#lx|x is a bit in a pattern which is not "-"], m(P)=#[x|x is a
covered bit in a pattern which is not "-"], n(P)=#[x| x is an uncovered
bit in a pattern which is not "-"], then Z(P)=m(P)+n(P). L(F), m(F), and
n(F) are defined similarly to Z(P), m(P), and n(P), respectively, by
exchanging a pattern for a subpattern, then L(F)=m(F)+n(F). L(P) and
I(F) depend only on a pattern and on a subpattern, respectively, but
m(P), wn(P), m(F), and n(F) depend on partitions, too. The examples of

these notations are shown in Fig. 5.3(b).

5.3 Automatic Feature Extraction
Learning algorithm for automatic feature extraction is investigated
in this section. Feature extraction may be to select some of common

subpatterns to many patterns. It 1is not necessary that a feature is
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contained din all patterns 1in the class. Let us attach the following
hypothetical conditions to features:

(F.1) the feature size Z(F) should be greater than or equal to 6(F),
that is, L(F)>6(F); |

(F.2) if a feature is contained in a pattern, then m(P);e(P), n(P)ie(U);
(F.3) more than or equal to 9(4A) of shifted versions of the feature

should be contained in the pattern within the neiborﬁood T of the posi-
tion where the feature is located;

(F.4) a feature should be contained in many patterns,

where 6(F), 06(P), 6(U), and 6(4) are predetermined thresholds. If we
want all bits in a pattern to be covered by a feature, then we set them
as follows:8(P)=L(P)=n, 6(U)=0.

A common subpattern F to two patterns XI and X2 is a candidate
common subpattern for a feature, 1if it satisfies the following condi-
tions:

(C.1) the number Z(F) of the specified bits in F is greater than or

equal to 6(F), that is, L(F)>8(F);

(C.2) the number m(PI1) of the covered bits in X7 and the number m(P2) of

the covered bits in X2 are greater then or equal to 6(P), and the number

n(P1) of the uncovered bits in XI and the number n(P2) of the uncovered

bits in X2 are less than or equal to 6(U), that is, m(P1), m(P2)>8(P),
and n(P1), n(P2)<6(U);

(C.3) there are more than 6(4) of common subpatterns to XI and X2 which

satisfy the above two conditions (C.1) and (C.2) within the neiborhood

1 of the position where F is located;
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(C.4) F is contained in at least two patterns.

These four conditions (C.1)-(C.4) correspond to the conditions (F.1)-(F.
4), respectively. Generally, however, (C.3) and (C.4) are looser condi-
tions than (F.3) and (F.4), respectively, and (C.4) is always satisfied
apparently. (C.3) and (F.3) are the same, if only the shifted versions
of the subpattern F are checked within the neiborhood ¥. It might be
better to impose this restriction on a candidate common subpattern, but
we do not do so for saving computation time.

There are usually some candidate common subpattern within the nei-
borhoocd. From the condition (C.3) they may be regarded as the distorted
versions of the same features, and it is sufficient to select the opti-
mum one among them. Here occurs a problem about the decision of the
neiborhood f. Different features in T may be gathered to make one fea-
ture, if it is too large. On the contrary, some distorted versions of
the same feature may be redundantly selected as different features, if
it is too small. So we should decide the range of neiborhood adequate to
select one candidate common subpattern for one feature. We employ five
criteria for selection one of the candidate common subpatterns within
the neiborhood. We choose one such that
(P.1) the minimum of m(PI) and m(P2) is greatest;

(P.2) (m(P1)+m(P2)) is the greatest;

(P.3) the maximum of n(PI1) and n(P2) is the least;

(P.4) the partition are constructed by the greatest number of subparti-
tions which are identity operators;

(P.5) the amount of the translations is smallest,



CHAPTER 5 - 119 -

where (P.1l) has the first priority, and (P.1) has priority over (P.2),
and (P.2) over (P.3), and so on. Accoxrding to the priority ordering, the
extracted features may differ to some extent, but not so large.

Learning algorithm for feature extraction is introduced by using the
above defined notations and conditions. Let {X1,X2,---,Xt} be the train-
ing set and {FI1,F2,--~,F2} be the set of features which have been ex~
tracted by the <-th step. Fig. 5.5 is a flow diagram for the learning
algorithm. This algorithm differs from that of Sterns [1] in the point
that it allows for distortions and noise within certain limits. To ex-
tract effectively features by this algorithm, the size and orientation
of patterns must be normalized in advance, and thickness in character

it
-~

recognition must be too. The product which is used in our learning
algorithm is defined by Table 5.1. The table shows the value of the Zi-th
bit of X*Y, where X=[x(0),x(1),~--,x(n-1)1, Y=[y(0),y(1),---,y(n-1)1,
and Id and 0d mean that the bit has been distorted by at least one par-
tition in B except for an identity operator and translations. In compu-
tation of common subpatterns, for simplicity, we do not distort further
the bit with subscript d by any partition except for an identity opera-
tor and translations. We may disport by a partition in £ the bits which
have no subscript. Therefore a common subpattern to a subpattern F and a
pattern XI dis also common to patterns X2 and X3, where F is a common
subpattern to X2 and X3.

Let wus take a very simple example in Fig. 5.6 to see how our learn-

ing algorithm works. In the example admissible distortions are only

horizontal translations and the trainig set is {X1,X2,X3}, where the
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Block A(Y): Is there any candidate
common subapttern to Xi and ¥?
Check the conditioms (C.1)~(C.4).

Block B{Y): Select omne candidate
common subpattern F to Xi and Y
which is the best according to the
priority (P.1)-(P.5).

Block C : If the candidate common
subpattern F is contained in all
the patterns which coantain F., then

Fj is eliminated from the feature
set and F is added into it.
Otherwise, I is eliminated.

Block C' : Add F into the feature set

Block D(Xi): Is almost every bit in

Xi covered by the feature set?

Flow diagram for feature extraction.
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Table 5.1. Definition of x(Z)*y(<).

ym’“i) 0 0, 1 1, -
0 0 0, - - -
0, |0y, 0, - - -
1 - - 11, -
L, |- - 1, 01, -

Table 5.2. Definition of f(2)®f’(7).

d d
0 0 Od x X 0
0, 0, 0, x x 0,
1 x x 1 ld 1
ld x x ld ld 1d
- 0 Od 1 ld -
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(d) Possible combinations of Fj3 and Fy.

Fig. 5.6. Examples of feature extraction.
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hatched bits are 1's and the white bite are 0's. The thresholds are as

follows:0(N)=0, 6(C)=1, 6(M)=16, 0(P)=6(F)=19, 0(U)=16, 6(4A)=1 and 9=
{#0 bit}. Fig. 5.6(b) shows the values of m(PI1)=m(P2) and the candidate
common subpatterns to XI and X2, where g(<) means tanslating operator
by © bits. There is no candidate common subpatterns to X3 and FI1. Fig. 5.
6(c) shows the values of m(P3)(=m(F2)) and the candidate common subpat—
tern to X3 and FI. Thus we obtain two features F3 and F4 which are com—

mon to and contained in X1, X2, X3. Then all patterns in the training
set can be generated by possible combinations of F3 and F4. The gener-
ation is carried out by the product "®" defined by Table 5.2. In the
table "x" means prohibited combination, and the value is that of the -
th bit of F®F', where F=[f(0j,f(1),-——,f(n-1)] and F'=[f'(0),f'(1),-—-,

f'(n-1)]. The patterns which contain F3 and F4 are obtained by filling
each bit location labelled by "-" with a black bit or a white bit in Fig.
5.6(d4).

Next a more complicated example is considered. Fig. 5.7(a) shows
copies of the numeral '6' written without constraint by different people
[1]. Fig. 5.7 shows a few example of portion where the upper stroke
joins the bottom loop in closed-loop 6's. {XI,X2,---,X16} is used as the
training set after normalization of thickness. Every subpartition is
obtained by 90° rotations and combinations of basic subpartitions 40 and
Al as shown in Fig. 5.8(a), (b). In this example we direct our attention
only to black bits and 1(P), m(P), n(P), L(F), m(F), and n(F) are newly
defined as the number of covered or uncovered black bits. The thresholds

are set as follows:0(N)=0, 06(C)=1, 0(M)=06(U)=30, 6(P)=40, 06(F)=25,
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(a) Basic subpartitions.
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(b) Examples of subpartitions.
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Fig. 5.8. Subpatterns and extracted features.
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6(A)=5, and T={#3 bits}..The extracted features are shown in Fig. 5.8(c).
The patterns which are covered by these features are indicated under the
features.

The process of thickness normalization is explained in more detail.
First, patterns in Fig. 5.7(b) are thinned to be patterns in Fig. 5.9(b).
The thinning process as follows:

(Step 1) If there is a portion which matches one of windows in Fig. 5.
9(a) and the 90° rotated versions of them, then the central 1 is changed

to 2..

(Step 2) After (Step 1) is applied to as many portions as possible, all

2's are changed to 0. Repeat (Step 1) and (Step 2) until these can not

be applicable to any portion.

Thus we obtain the thinned patterns which are shown in Fig. 5.9(b). Next,
those patterns are thickened to be patterns in Fig. 5.10(b). The thick-

ening process is as follows:

(Step 1) If there is a portion which matches the window in Fig. 5.10(a),
then the central 0 is changed to 2.

(Step 2) After (Step 1) is applied to as many portions as possible, all

2's are changed to 1. (Step 2) is applied only once.

The thickened patterns of patterns in Fig. 5.9(b) may be considered as

the thickness normalized patterns of patterns in Fig. 5.7(b). The set of

those patterns is used as the training set. According to the feature

extraction algorithm, we obtain the features FI, F2, F3, and F4. FI is

contained in X1, X2, X4, X6, and X10, F2 in X5 and XI13, F3 in X7 and

X16, and F4 in X3 and XI14. Covered and uncovered black bits of patterns
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by those features are shown in Fig. 5.11.

It depends on the values of the thresholds as well as the range of
the mneighborhood what features are extracted and which patterns are
covered by the features. It is one problem how to decide appropriately
them in advance. One solution is to iterate the learning process as we
change them increasingly or decreasingly toward the looser condition for
feature extraction. In spite of the desirable results this method takes
a long time. After determination of features the next problem rises,

that is, how to construct a classifier function by using them.

5.4 Selection of Features and Construction of Classifier Functions

In this section we consider a method to select some features out of
the extracted features and construct a classifier function. The selec-
tion and the construction have a close relation to each other and they
should not be done separately. The same training set as that employed in
extracting features is wused din the process for them. As seen in the
paper [62], it is not always right that the best subset of features must
contain the <Z-th best features (Z=I1,2,---,k), where k is the number of
features 1in the subset. The selection problem is approached by means of
a table called a F-table, which is an extension of a prime implicant
table wused in minimizing a Boolean function. A technique for F-table
reduction is very similar to that for selection of a minimum cost subset
of prime implicants of a Boolean function. A F-table has a row Fi for
every selected feature FZ, and a column mj for every bit of patterns in

the training set: 1(0) 1is placed at the intersection a(%,j) of Fi and
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mj, if F7 can cover (can not cover) mj. FZ and mj in a F-table work as a
prime implicant and as a minterm in a classical prime implicant table,
respectively. A column mj is said to be covered by a subset of features,
if it has 1's in more than 6(C) of Fi's(i=1,2,---k). A max-cover is the
subset of features Fi's which covers as many columns as possible. A min-
max-cover 1s the max-cover the number of features in which is minimum.
Finding a min-max-cover must be a kind of quasi-optimum feature selec-

tion.

Reduction of a F-table can be obtaioned by a technique, which is
based on generalized rules of row dominance, column dominance, and row
essentiality [65], [67]. These rules also allow, in general, large sim-
plification in reducing a F-table without any modification if 6(CJ)=1,
and with some modification if 6(CJ)z22. For example, the same reducing
technique as that in [67] can be applicable to a F-table with the modi-
fication such that the constant terms s(7) in a P-table are set to be
0(C) instead of 1.

(Rule 1) Eliminate from the F-table each column which has no 1 in every
row. A row Fi is an essential row, if there is at least one column mj
for which

L, ali,d)<8(C). ' (5.1)

Every essential row must be a member of any min-max-cover. For simplici-
ty we mainly deal with the case when 6(()=1,

(Rule 2) Delete every essential row FZ from the table and take it as a
member of a min-max-cover. Eliminate from the table each column mj such

that FZ covers mj, that is, a(Z,J)=I1. A row Fi dominates a row Fh, if in
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every column the entry of FZ is greater than or equal to the one of Fh,
that is, af(<,j)>alh,g).
(Rule 3) Eliminate from the table each row Fh which is dominated by at
least one row Fi. A set of rows {FPL}(i=(1,12,--~,7k) dominates a set of
rows {Fh}(h=hl, h2,---,hl), if in every column it is satisfied that
Tk hl

Yosopg et iz Y,y alhg) (ksl). (5.2)
(Rule 4) Eliminate from the table each column which is in Fh's(h=hI, h2,
—~—-,hl) and not in Fi's(i=t1,72,---,1k), that is, {FR}-{Fi}. A column mj
dominates a column mh, if in every row the entry of mj is greater than
or equal to the one of mh, that is, a(%,g)>a(<,h).
(Rule 5) Eliminate from the table each column mj which dominates at
least one column.

After these rules have been applied as many times as possible, a
reduced F-table is obtained. Several methods [63]1-173], which have been
used to make a minimum_cover for prime implicant tables can be employed
to determine a min-max-cover for any F-table. We express a classifier
function in the form of a product-of-sums whose geometrical meaning and
weakness are expressed in the similar example to that shown by Ullmann
[1], [2]. Let ‘us suppose that four 2's in a training set are divided
into features as shown in Fig. 5.12. Every member in the class "2"
should contain one of FI, F2, and F3, one of F4, F5, and F6, and one of
F7, F8, F9, and FI10. Then a classifier functions ¢1 for the class "2"
might be expressed by a product-of~sums as follows:

61=(FINF2VF3)\ (FANFNF6)N (FNFENFINF10) (5.3)

where
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Fig. 5.12.Explanatory examples of a product-of-sums,



CHAPTER 5 - 134 -

Fi(X)= (1, if a pattern X contains a feature F7
{0, otherwise (5.4)
for 4=1,2,---,10. As shown in [1], [2], [58], a fundamental weakness of
product-of-sums expression arises from the fact that a pattern which
satisfies the product-of-sums is not necessarily a member of the class.
The weakness is illustrated in Fig. 5.12(b). The character 'l' in Fig. 5
12(b) satisfies (5. 3) and it is misrecognized as "2". The use of the
absence of features and the use of N-tuples of features may lessen this

weakness. For instance, ¢2 expressed as follows does not make such a

misrecognition:
08=¢IN(F2N\F9) (5.5)
where "—" is the negation. ¢3 using 2-tuples of features does not make

such a misrecognition, too:

b3=((FINF4)V(FANF5)N(F3NF6) )N ((FANF7 )\ (FSNF8)N (FANFIIN(F6AF10) ) .

(5.6)

The closest approximation to the training set is obtained by ¢4 defined
as

¢4=(F1AF4AF7)V(F2AF5AF8)V(51AF4AF9)V(F&AF6AF10). (5.7)
¢4 also avoids such a misrecognition. We could use the logical sum
of all features like

$5=FIVF2V -~V F10. (5.8)
However, the approximation by ¢5 seems too rough. Let O(¢Z) be called
the on-set of a function ¢Z and defined by 0(¢i)={X|¢Z(X)=1}, then the
aspect of the relations among 0(¢1),0($2),-——,0($5) is shown in Fig. 5.

13. 0(¢z2)'s(i=1, 2,---,5) contain every pattern in the training set. On
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the training set

{XHXZ?XBJXL}
o(,)
0(4,)

O(q)z)
0 (®,)

0 ($s)

Fig. 5.13. Relation among the training set and 0(¢i)'3'
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the contrary to the weakness, product-of-sums expression has a good
point of flexibility and economy. The reliability of a classifier func-
tion can be increased by using overlapping covers. Therefore we adopt
product~of-sums expression.

Let wus introduce the product "®" which works as a design tool for
sums in the product-of-sums. The product WISWZ of two families WI and
W2 is defined as

WIeWo={{ti,sj}} (i=1,2,--,1, J=1,2,---,m) (5.9)
where WI and W2 are two families of sets of features and are expressed
as Wi={t1l,t2,---,tl} and W2={gl,s82,~-~,sm}. Let W' be the maximum subset
of W such that every member of W' does not include any other member of
W, and "WI=W2" means that "W2=W2'". For example,

{{F1},{F2},{F3,F4}}8{{F1},{F3}}

={{F1},{F1,r2},{F1,F3},{F2,F3},{F3,F4},{F1,F3,F4}}

=2{{F1},{F2,F3},{F3,F4}}. (5.10)
Now we can introduce the procedure to determine a classifier function.
The sum of features in every member of W' obtained as follows is a can-
didate for a sum in a product-of-sums:

=W(X1)®W(X2)®——=-8W (Xt)ZW' (5.11)
where {XI,X2,---,Xt} 1is the training set and W(XZ)(i=1,2,~---,%) is the
set of features in a min-max-cover which are contained in XZ. The sum of
features in every member of W' is always one for X<(Z=1,2,---,t). Then
we can obtain a classifier function by a product-of-sums such that as
many features din the min-max-cover as possible appear in at least one

sum., The on-set of the product-of-sums constructed in this way always
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includes the training set {X1,X2,---,Xt}.

Let us take an example and see how a product-of-sums is constructed
by the procedure introduced here. Table 5.3 shows a F-table. {XI1,X2,---,
X5} is the training set and Fi's(i=1,2,---,14) are extracted features
which are contained in N patterns, where admissible distortions are only
translations and 6(N)=0, 6(C)=1, 6(M)=0(U)=4, 6(P)=08(F)=4, 6(A)=1 and
1={#0 bit}. = After PRule 5 1is applied to the F-table in Table 5.3(a),
there 1is no reduction rule applicable to the reduced table. We select
F1 which is contained in all patterns in the training set, and eliminate
from the table the row FI and all the column mj's covered by FI. Then
the reduction rules are applied again and we obtain the further reduced
table which is shown in Table 5.3(b). Repeating these process we obtain
two min-max-covers {F1,F3,F4,F13} and {F1,F3,F5,F13}. Every bit of pat-
terns in the training set is covered by these min-max-covers. In Table 5.
3(c) 1's are put to show that the corresponding pattern contains the
corresponding feature in a min-max-cover. Let us construct a classi-
fier function by using the former min-max-cover:

W(X1)=W(X2)=W(X3)={{F1},{F3},{F4}}

W(X4)=W(X5)={{F1},{F13}}

W=W(X1)®W(X2)®-~-OW(X5)={{F1},{F3,F13},{F4,F13}}. (5.12)
Then we can obtain a classifier function as follows:

¢=FIN(F3VF13)A(F4VF13) . (5.13)
Patterns in the on-~set O(¢) are generated by possible combinations of

features which satisfy (5.13). For example, we have



Table 5.3. A F-table and min-max-covers.

F::;\\\\\ngji;rns X, X, X4 X, X5
(10110001)[(10011001){(10001101){(1L0101001)[(L00L1010T1)
¥ Features| Fx0g | 12345678 | 9101121514151 | U BODARBA | 25HTBBN3IR | 3UBHTBHO
10--=--- 01 1 11 1 | 11 11 | 11 11 | 11 11 | 11 11
4 | 10-01 2 11 11 11 11 11 11 11 11
0110 3 1111 1111 1111
100-1 4 111 1 | 111 1 111 1
3 11-001 5 1 111 1 111 ] 1 111
1001 6 1111 1111 | 1111
1111
10001 7 11111 11111
101-0 8 111 1 111 1
0-101 9 1 111 1 111
1-0-01 |10 1 1 11 1 1 11
2110-0-1 |11 11 1 1 11 1 1
10101 12 11111 11111
01010 13 11111 11111
| 10--01 14 11 11 11 11
dominated column 1 63 6 9 N1z 15 |18 666 2 s 7 1 % 8 55 |

{(a) A F-table.
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FIG | 3 611122227 29 30 35 36 38
3 1 111

4 11

5 1 1

6 11 111 1
8 1 11

9 1 11
10 1 1 1 1
11 11 1

13 111111

(b) A reduced F-table after selecting F,.

Xy X X3 Xy X5
F, |1 1111
F; |1 11
Fy 1 11
Fi3 11
X, X, X3 Xy X5
F, 1 1111
F3 |1 11
Fs |1 11
Fi3 11

(c) Features in min-max-covers and

patterns in training set.
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F1:{10----01] - [10110-01] — [10110001]1=XZ
bl edbh
F1:[10----01] — [10011001] — [10011001]=X2
FS:Okgé F4:{éé—i
FI1:[10----01] — [10-01101] — [100011011=X3
FS:OL%& F4:{éé—{
Fzz[l?ITTIOII - [101010011=Xx4

F13:01010

FZ:[lOTTTT?l] — [10010101]=Xx5
F13:01010 (5.14)

In this case the trainig set is equal to the on-set 0(¢). Generally the
former set is included in the latter set. For simplicity we set 6(C)=1,
but the higher reliability can be got by the use of the greater 6(C).
It is not always necessary to find a min-max-cover first. After obtain-
ing the sums of features we could select the sums so that as many bits
of patterns in the training set as possible can be covered by the mini-

mum number of the sums.

5.5 Conclusions

We have introduced subset methods for distorted pattern recognition,
a. technique for automatic determination of features, and for automatic
construction of a classifier function. Patterns in the on-set of the
classifier function can be generated by using possible combinations of
features. The reliability of a classifier function may be rendered high-

er by the use of an overlapping cover, the use of the absence of fea-
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tures, and the use of N-tuples of features. Furthermore we can use posi-
tional features and accordingly some more information, if we store the
locations of features in learning and allow features to move within the
neighborhood of the locations in covering. Generally the higher reliabi-
lity can be achieved at the cost of greater storage requirements. To
attain a big reduction in storage requirements, the idea of random
superimposed coding (known as zatocoding) has been adapted by Ullmann
[76], [7T7]. This is an excellent technique worth reseaching.

As shown 1in the computer simulation in 5.3, the feature extraction
algorithm may be applicable to unsupervised learning of a classifier
function. In other words, patterns ére classified into the same class,
if they include the same candidate common subpatterns. The technique
using subset methods is particularly efficient in handwritten chardcter
recognition. So binary patterns have been mainly dealt with, but pat-
terns with gray level must be dealt with in speech recognition and in
medical diagnosis such as vectorcardiograms, X-ray pictures, blood cells,
blood-pressure wave recognition, and so on. It is possible to adapt the

technique to patterns with gray level after some modification.
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CHAPTER 6

CONCLUSIONS

Some transformation-invariant functions afe presented in this thesis.
It is said +that every interesting geometrical property 1is invariant to
any element of some transformation group. Since transformation-invariant
functions can be considered one kind of féatures of an input pattern,
the methods developed above are applicable to feature extraction. This
paper 1s at the stage of preprocessing or normarization of patterns in
pattern recognition. It is the next problem how to realize pattern rec-
ognition systems by using information obtained here.

Although immense progress has been made in regard to computer's
ability of pattern recognition, there is still a wide gap between human
and machine. It appears almest impossible to bridge over the gap without
basic research. In this paper +the problem of composing transformation-
invariant functions for recognizing noisy distorted patterns is discuss-
ed. DPartial functions are limited to Boolean functions, Walsh-Hadamard
power spectrums, and Fouriér spectrums on a discrete input space. The
author, however, hopes the discussions will enhance the further’research
of transformation-invariant functions. Evidently people use more infor-
mation, such as topology and context, rather than spectrums and so on,
in recognizing an object. Under what transformations do they regard
that the objective pattern class ~ is invariant? This is not well-known
yet. The transformations could help to design efficient pattern recog-

nition systems. This is left for future work.
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Von Neumann type of general purpose computers on the market seems
inherently weak in picture processing from a viewpoint of computation
time. Researches on special purpose computers for picture processing,
such as the massively parallel processor being designed by NASA, are
producing fruit., The development of software and hardware will facili-
tate +the great progress of advanced pattern recognition systems. The
author will be happy 4if the present paper will make some contributions

to the study of pattern recognition.
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