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                               PREFACE

                '
    This thesis intends to investig6te transformation-invariant func-
       '                  '                                                                    'tions for applications in pattern recognition. ]han does easily recognize

                         'very compXicated patterns,. even if they are distorted, tilted, rotated,
              '                   '
and enlarged. To machines, it is quite difficult to identify patterns,
       'which have wide variations in size, style, orÅ}entation, and so on, with
         '                                    'one another. The functions whieh are invariant to admissible transforma-

                       tt                                                         t.tions, if found, ean ease postprrocessing for pattern reeognition. The

                   '                                                                 'author  has at Yacked this field and spent several years Åéo arrive at the

results deseribed in this thesis.
                                                                '                                                      '                                                          ' ' Some transformation-invariant functions are constructed on a multi-
                               '                                      'layer series-coupled machine. 'Perceptrons' were first proposed as a

model for neural networks with learning capacity. Random connections
                                                            '
between the first layer and the second rnay be interesting from the view•-

point of modeling neural networks. They, however, suffer from the lower

capabilities because of inefficient use of the aoupling. From an engi-

neering standpoint, it is tried to build up the systematic connections.

                          '   '
[Vhe proeesses of composing transformation-invariant funetions are ap. p.li-

 ed to Boo;ean functions, Walsh-Hadarnard power spectrums, and,Fourier
                                        'spectrums. Subset rnethods, which can be considered one kind of ternplate

           '                                  t ttmatehing- met.hods, are introdueed to aehieve economy of eomputation

    tt                                                       '                                                                        'time anct required rnemory. The effectiveness of the theory is conflrmed

               'through eomputer simulations.
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                                               '                                      '                                                                '                                                               '                                                  '                                   '                                                                  '                                        '                             '                             CHAPTER .1

                           INTRODUCTION

                           '                                       tt                                            '                '    Character reeognition, speeeh recognition, medieal diagnosis, and

              'ranote sensing appear to be one of the most interesting applications in
                              '                                                                     '                  'the field of pattern reeognition. [Vhough they have an abundant litera-
                                   '                                '                                    'ture, there is still a wide gap between human and machine in recognition

                                                   'of patterns without restriction.. We do easily reeognize eompZicated
                  '          '            '                                                 'patterns, even if they are distorted. We can make out a character, even
             '
if it is tilted and wrritten on any plaee of a sheet of paper and it is

                          '    '                                            'large or small. To machines, a 1arge character and a small one are q-uite

                                       'different. In optical character readers (OCR)'and speech recognition
                                                       '                                                                   'machines on the market, somerestraints are put on an input pattern.
                  '                                                     'rnput patterns had better be aUowed to have wide variations in size,
          'style, orientation, and so on within adrnissible transformations.

                                                                '                                                           '    According to Felix Klein's mathematical vtewpoint, every interesting

                                                 'geometrical property is invariant to any element of some transformation
                                  '                                                                    'group. An input pattern is often normarized ' through appropriate prepro--
                                   tt
cessing. Group-invariant functions, if found, could ease postprocessing.

This paper aims at a basic research to achieve some transformation group-

                                     '                   'invariant system for applications in pattern recognition. Pattern recog--

                                                 'nitioR maehines are generally designed to tolerate certain transforma-

tions and noise. According to the interesting indication by Ullmann [1],

[2], a traRsformation changes the spacial arrangement of points of a

pattern without changing their associated values, as typified by a
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                                           '
distortion on a rubber sheet. Noise, on theother hand, changes the
                                                                   '                                                         'values, but does not change the spacial arrangement of the points. There

are a number of techniques to deal with noisy and transformed patterns

[1]-[9], one of which is a subset method investigated later. Transforrna-

tions are divided into two classes, local ones such as distortions and

                        tt tt                             '                                                  'global ones such as translations, enlargements, reductions, rotations
                                                     '                            '                       '                                                    'and so on. .
                      '
    The theory of computational geornetry was first developed by Minsky

and Papert [10], [11], and next extended to 'Analog Perceptrons' with

real-valued inputs and output by Uesaka [12]. They have made theoretÅ}cal

investÅ}gations of what is called perceptrons. Perceptrons were first

suggested by Rosenblat [13] as a model for neural networks with learning
                                               '                                                                     'capacity. Since then, various models of perceptrons have been proposed.

                                     'We have been carried formal and mathematical investigations in a three-
                    '
layer series-coup!ed machine without feedback loop and lateral coupling
                                                      '
U4]-[25]. One of the most important problems in this type of machÅ}ne is

determination of connections between the first layer and the second. The
                                    '
connections are decisive on the capacity of the machine. Random connec--
                                 '            '
tions may be interesting from the viewpoint of modeling neural networks

in a biological system. They, however, suffer from the lower capabili-
                                                '           '                                                                    'ties relative to the number of connections because of inefficient use of
                                                                      '
the coupling. From an engineering staRdpoint, it will be necessary to
                                                                 '
build up systematic connections with consideration of applications. '

    With this in mind, we make theoretical researches on the efficient
                        '                                                                      '                                             'construction of this type of machine in Chapter 2. The functions on the
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                                       '                                          '                                                         '                                                     '                                  '

                                       'second layer are called pa?tiaZ funetions, which are mainly Boolean
                    '
functions in this chapter. First, the necessary and sufficient condition

for a eompZete system, of which any function can be expressed by a line-

                                           '                                     'ar threshold function, is derived. Arnong complete systems, the system

             'which has the minimum number of connections between the first layer and

the second is considered, which is calied a minimum eompZete system. For

parallel computation machines such as perceptrons, it is important what
                                     '
range each partial funetÅ}on should deal with. We define the locality of
                  '
computation by T-order and L-order. A minimum complete system pToposed

here is useful for decision of these orders.'
                                                                '
    Next, we introduce a transformatÅ}on group G on an input space, and

show how to construct functions which are invariant under G. As a method
                                   '                                                         'of realizing such G-invavaant funetions, Minsky and Papert [11] have

already presented a method of ,equating the coefficients of partial func-
                                                              '
.tions in the samie G--equivalenee ela$s. This is su]mrnarized in 'GrOUP-

Invariance Theorem', which is one of the most useful mathematical tools.
            '                                      '                                                        'In contrast to their rpethod, this paper describes a method by which
                       '              tt                                    'every partial function itself has G-invariant property. Then any func-

tion on the last layer is of course G-invariant, since the function is

expressed by a, linear threshold function of partial functions. If a
          '
family l7 of partial functions is linearly independent and closed under

   '
G, the eoefficients of partial functions depend only. on the G-equivalenee

 elass in a linear expression of a G-invariant funetion. rn other woTds,

                                           'two partial functions have the same coefficient, if they belong to the

                                                                      'same G-equivalence class, This is the necessary and sufficient condition
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                                                            '                                              '                                                   '                                                        '                                                                       '                                                        '
   '
here. This was the sufficient condition in the system of Minsky and

Papert, since there was tolerance about expression of functions. The
                                                           '                                      '
family of partial functions, which is G-invariant and has a 1Å}near ex-
                        '
pression of any G-invariant function, is called a G-invar}iant eom-
                                                                  '                                            'plete system. Such a system can make distinctions between G-nonequiva--

lent patterns. It is investigated how to rea!ize a G-invariant complete

                                                                     '    In Chapter 3 Walsh functions [26]-[31] are used as partial functions.
                                                     '                                     'Walsh-Hadamard transform (WHT) has the advantage of computational sim-
       '                                                      '
plicity when compared with Fourier transform. The Fourier power spectrum

is invariant to translations, but the (WHT) power spectrum is not. The
                                                                         '
(WHT) for image processing has been discussed by Andrews and Hunt [32].
                                       '           ' 'The axis-symmetry--histograms developed by Alexandridis and Klinger [33]

are invariant to translations and rotations by multiples of 900, but

they reguire normalization of an input pattern through the Fourier trans-

form. The (WHT) power spectrum developed Py Ahmed, Rao and Abdussatar

[31], [34] is invariant to translations, which is obtained directly
                '                             'through '  the (WHT). But it is not invariant to enlargements, reductions,

                                   '                                                                     '               '                                      '                                                               'and so on.'
                                       '                                                                    '                                    '                   '    In this chapter it is deserÅ}bed how to develop the (WHT) power spec-
    ' '                    '
trum to be invariant under all of translations, enlargements, reductions,

                                   'rotations by multiples of 900, and so on [35]. A composing pro-

cess is introduced, which is available for obtaining the modified (WHT)'
           '                              '
power spectrum having these transformations-invariant properties. It is
                                '                                                                 'based on' the Group-Tnvarianoe I]heorem developed in Chapter 2.. The rnain
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     '                                                   '                  'idea is to make a !inear combination of G--equivalent functions. First, a

                     'Gl-invariant (WHT) power spectrum is constructed. Next, a permutation

group on the Gl-invariant (W}IT) power spectrum eaused by G2 operating on

                                                          '                 'an input pattern is found. Thus we arrive at a (WHT) power spectrum
                         '                                                               'being constant under both Gl and G2, where Gl and G2 are some transfor-
                                           'mation groups. Repeating this process, a power spectrum can be derived

from the (WHT) power spectrum that is invariant to a more general group

of transformations. The real-valued (WHT) Å}s mainly dealt with, which is

convenient in treating transformations in the foum of 2+Lin2. when the

complex-valued (WHT) is adopted for convenience of treating transforma-

                      im •tions in the form of k                        , the G-invariant (WHT) power spectrum is ob-
     '
tained in the same composing process [36], [37]. Many interesting re-

sults are got through the composing process [35]-[47]•

    The G-invariant (IifHT) power spectrum developed here may be regarded
     '                                                         '                                                                   '
as a feature. It is also possible to adopt any other functions besides

power spectrums. There are many other translation-invariant functions

such as R-transform [48], [49] which is computed only through additÅ}on

and subtraction, M-transform [50] which is done only through logical

product and sum, BrFORE power spectrum [34], and so on. As pointed out
                       'by Arazi [51], these transformation•-invariant functions are constant
                                '                           '                                                            '
under other transformations besides objective transformations. In other

words, they are not G-invariant complete systems. The Fourier transform

is convenient in treating more general transforrnations. .

                                     . ' In Chapter 4 Fourier sinusolds are used as partial functions. Changes

in Fourier spectrum of an input pattern are investigated under several
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                                                  '
                                       '

                                            '             '
transformations such as translations, enlargements, reductions, rota--
                                                    '
                                                              --tions, and so on. Then the Fourier spectrum is developed to be mvanant

under these transformations [52]. It is well known that Fourier power
                       '                                                             'spectrum and auto-correlation functions are translation-invariant [53]
                       tt                                    'etc.. They preserve only amplitude information and are not a translation-

invariant complete system. On one hand the importance of phase informa-

                   '                        'tion in image pfoeessing is pointed out by o]ppenheim and others r5Nl--

             '
[56]. The spectrum developed here is a transformatÅ}on-invariant eomplete

                                          'system and any essential information is not lost. We can regenerate (a

representative of the class of) an input pattern through the inverse
                                                          '       '
Fourier transform. Parameters introduced in this chapter represent the

degree of translation, enlargement, reduction, and rotation, so they can
                                                                   '
be used for normalization of an input pattern. The normalization is less

                                      'affected by local distortion and noise, since the Fourier transform is a

global transform depending on the whole pattern. The efficiency of our

theory is confirmed through eomputer simulation.
                           tt                                                                '                      '   '    A simple template-matching recognition technique by using an asso-

ciative memory was presented by Yau and Yang [57]. Classica! template
                                                '
matching is of limited usefulness in advanced picture analysis systems.

However, a hierachical template matching can be used even in cases where

                                                                      '                 'patterns are subject to distortions [5]. The process of finding best
                                                            'matching takes a long time. rt may save us computation time and required

memory to determine the correspondence between small parts of an input

pattern instead of the who!e pattern. The idea of using subsets has been

developed by several people [1], [2], [4], [5], [6], [58]. Chapter 5
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aims at a basic research to achieve automatic design pf recognition and

representation systems of highly variable patterns by a szthset method.
                                                            '                                                    'The design of features usually takes a great deal of human effgrt. It is

desirable to autornate the determination of features. In an example, our

algorithm automatically extracts a few features from several patterns of

the portion where the upper stroke joins the bottom loop in closed-loop
                                                                   '6's written wÅ}thout constraint. AdnassabZe di$to?tions are given a pya--
                        '                   '        'o?a, but it is also a problem how to determine them. The investigation
                     '
as to learning algorithm for them was eonducted by Ullmann [i], [59].

    Zn general, the set of automaticaUy determined features may include

redundant feaPures. Featu]res eouZd be linearly ordered by a criterlon ot

                  'the estimated error or entropy [60]. Elashoff and others [61] showed
                       '                                                          '
that for optimum selection of a subset of features, the features gener-
                                                 '                                                              '
ally may not be evaluated Å}ndependently. A counter example was given to

a possible claim that the best subset of features must contain {the best

                   '
single feature [62]. After learning of features, some of them are se-

lected to obtain a min-max--eove? which covers as many bits of patterns

in the training set as possible. The selection problem is represented by

a table (i7--table). The table is an extension of a prime implicant table

                                                                       'whieh has been used in a classica! problem of minimizing a Boolean func-

tion, that is, selection of the minimum cost subset of prime implicants

of a Boolean function. There are a great number of techniques for mini-
 'mum or nonminimum irredundant solutions [63]-[73]. Three well-known
                                                                         'reduction rules, which are based on yow (fominanee, eoZztmn clomihanee and

yow essentiaZity [65],[66], allow, in general, large simplÅ}fication in
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                                              '                                                '
                                                          '                   tt                                                  '
the determination of min-max-covers. Differing from prime implicants,

redundant features in the F-table are not always useless but often use-
                                                          '                                                               'ful for increasing the reliability in recognition. '

    After obtaining a mim•-max-cover, a classÅ}fier function is construct-

ed in the form of a p?oduet-of-sums, whose geometrical interpretation

will be given later, of features in the min-max-cover. Mien, we intro-

duce a product which works as a destgn tool for the sums in the product-

of-sums. All patterns in the training set are correctly classified into

the eorresponding classes by the cZassifier function. Patterns in

the on-set of it ean be genetrated by possible combinations of features.

A fundamental weakness of product-of-sums is pointed out by Vllmann [1],

[2], [58]. On the contrary to the weakness, it has a good point of

flexibility and economy. The reliability of a classifier function can be

increased by using overlapping covers. Therefore product-of-sums expres-

sion is adopted here. The aspects of constructing a classifier function

are shown inasimple example. ' • '
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                                      '                                 '

                              CHAPTER2 '
                                                             '              MULTI-LAYER SERIES-COUPLED MACHINES

2.I Intxoduction .                                                                     '                            '
   .In this chapter, theoretical investigations on the construction of
                           '                                                            'multirlayer (mainly three-layer) series-coupled machines wUl be con-
                              '
ducted. The first layer is an input space (an input pattern) and the
                    ttlast is an output space (a linear threshold functÅ}on or a linear combi-
                             '                                                                 '                                                   'nation of partial functions). Functions on the middle layers are called
                                                 '
partiaZ JÅíunetions. Our main purpose is to find a family of partial func--

tions which is invariant under some transformation group G and is able

to make distinctions between G-nonequivalent patterns. Such a family is
                                          'called a G-invariant eompZete $ystem. The system is generally required
                                                      '                                                            'to have the additional property that any G-invariant function has a

linear expression by it. '
                                                                    '                                                               '    First, mathematica! terms and definitions will be given in prepara-
  '
tion for the following diseussions. Next, the necessary and sufficient

condition for a eompZete system, by which any function has a linear
                                 '                                                                        'expression, will be given. The eomplete system which has the minimum
                            'number of connections between the first layer and the second is called a

minimum eompZete system. It will'•,be considered how to construct such a

                                              'system. Lastly, 'Group-Invariance Theorem" and other theorerns, which are

                                                                 '
useful mathematical tools to construct group-invariant functions, will

                                    tt                               'be introduced. A composition method of a group--invariant complete system

will be investigated. , - ' '
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2.2 Multi-Layer Series--Coupled Machines

    The general scheme of a three-layer series-coupled machine is illus-

trated in Fig. 2.1. The first layer V is an input space consisting n

points. The seeond Zi' is a family of functions which are called pax)tiaZ

funetaons. The values of partial functions are computed independently of

one another. This is highly important for parallel computation. The last

layer " is represented by a linear threshold function of partial func-

tions or a linear combination of them.

    Geometric patterns are often drawn by using black points and white

              'ones. .So we assume that an input pattern X=[x(0],x(1),•-----,x(n-1)] is

expressed by an n-vector of 1's and O's whieh correspond to black points

and white ones. We use x(i) instead of xi to avoid complicated sub-

scripts. Let B be the set {O,1}? an n-eube Bn be the direct product

of ZV B's, and B(n) be the set of all mappings from Bn to B. X is an ele-

ment of Bn and any function is an element of B(n). The set of variables

is expressed by V--{x(0),x(O,---,xrn-0} and the set of partial func--

tions by F=={f(0], frl?, ---s f(m-1)} or sÅ}mply by F={f}. Every partial

funetion is a mapping from Bn to B. Let f(a.X) denote the value of the

i-th partial function for X, then an m-vector FrX)--[f(0,X),f(1,X],---,

f(m-1,X)] is called the F-image of X. .

    Let ISI denote the number of members in a set S and be called the

degr'ee of S. If a subset S of V satisfies the following conditions, we

2eaglr,leeigf ;?e SUPPO?t Of f a"d gxpress it by S(f)• lsrf)l is caned.the

                               '
l. frXJ--f(Y] for any X, and it is satisfied that
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                                                   '                                          '                                             '                                                                  '                                                                      '              tt
      Y('i)=l:gkg',.iiYil)yl:'fl• .Sl•. v-si ' . ' (2.i)

2. We can't choose S' which is a proper subset of S such that frX)=frZ)

                                               '
                '                                             '                                                 '
      gri?={:gk'l,•Li[,gi.i'.l:.,`i.SIS,-,) ' .(2.2)

        'where i :0,1,---,n-1. For example, S(x(01Vx(1]2={x(02,x(1?},.IS(x(0]vx(1]?l

=2, sg(x(o)VoorO)Ax(1))={x(1)}, ISr(x(o)Vxrl)?A`n(1))l=1, where v and A

denote ordinary Boolean notations.
                                                         '             '     A function thCX) on the third layer has an output of 1 or O accord-

ing to whether an input pattern X satisfies a propositiop P or not. ip

is a member of BrnJ and usually expressed by a 1Å}near threshold function.

Let l[P] be defined as ,

      i[P]".[,il l.I.; il.S t,ii:.. ' ' (2'3)

                                                             '
For instance, 1[O<1]=1, 1[O>1]=O. If there exist real numbers aCi)'s
                   =
                                  '                                                                         '
                                                                      '                             tt                                                ' . pt x) -i[2 T• :-3 a. (a• )fa, x) >o] . . ' • .(2.4)
                                    '     'for any X in Bn then (2.4) is called a T-eopceessaon of Q by F. We some-

times rewrite this more simply as
                         ' '.th"1[2fEF a(flf>O]•' .' . •- ' (2.s)
            '
bThye

T-

(j?iliiX. io:b."Se.tSf :fi,BrZgfll.h.igh.give a T'-ex?resgion of p is deo.ted

                                                 '      OT(W-- min mcuv lS(f)I. • (2.6)            FeTrW fEF . . .                                                          '
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                                         '
                                                                       '                                                                      '
                                                         '
Simila thrl(i:;..zf2 m:.l-e3r&ze.ifi7!.,;:?a.l numbers arZ)'s suc? that ' (2.7)

pfOii reawnYn. (itei': Bans' then (2 7) iS Caiied a L-expression of e by F and sim-

                    /.:h,e,,s,ii.tl(-i't;'/(.lii'j',[geg,va.:g'//g]v6aL-exp"gssio"gi"isdiii:tid

                         '
                             '       '

Both O!Z'(W and 0LCW depend only on V and not on the choice of l7. As

seen from the definttion, if a family gives a L-expression of ip, it also

gives a T-expression of P. The converse to this, however, is not always

true. Consequently, for any V . .
                                                             '      oTrwsoL(wsls(wl. . (2.lo)           " ---
Illtl::e:gie':cean, lhnafinlste, Set' (2'5) and (2'8) are defined by quadratic mean

      th-i v im Z T. :-3 aa? fa]>o] • ' ' ' . (2.s,)

          .m-co . . ...
                                                   '
                                                            tt      ip-- zin2T:-S aa?fa). •, (2..s,)
         m)co ... ..
    The orders OTfuJ and OL(tp) express an important concept of locality

in parallel computation. If ip has small orders, the partial functions

needed are easy to compute in parallel, because each depends only on a

small part of the whole input pattern. To illustrate one simple concept

of locality, we state a fact about convexity. An input pattern X fails
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                                                           '
                                                                    '                                          '
                         tt
to be eonvex if and only if there exist three points such that xE2) is

in the line segment joining x(al) and x(a3?, and x(il)=co(a3)--1, x(i2)=0.

                               '
Thus we can test for convexity by examining all triplets of points. If

all the triplets pass the test then X is convex. If at least one triplet
                                               '
meets all the conditions above, then X is not convex, that is, eoneave.

All the tests can be done independently. Fig 2.2 shows a convex pattern

and a concave one. Then the order of 1[X is convex] is less than or
                                                                      '
equal to three. A function th is said to be gZohaZ, if the order of th is

                                                           ttn. There exist two and only two global functions ec(0)eix(1)e---ex(n-1)

and xrO)ex(1)(b----eec(n-IJ [14], where "e" denotes 'exclusive or'.

    The following three transformations are caUed isomouphism$:(1) ex-

changing the t-th element of X for the gLtth, (2) negation of the i-th

                                                    'element, (3) negation of the function. Let
                         '                                                            '
      X= [x(0),x(1), -•-,xri), -- --,x(g'), --, xrn-1) ]
                        X•
      Xl =[oorO],x(1),--,xrg'?, •--,x(z),--,x(n-1) ]

      X2=[ca (0),x(1), ---, sc ri), --, -----, --, ec rn--V ]

                                                                     '
      Ql rX) =Q (Xl ), "2 (X) -pt;, (X2), ip3 (X) =Q rX] ' ' (2.11)

then  ip' oT!il-;e'(G;iDT"12i2o;I:o3)caiied asomouphism funetions ..d

                                                            '      0L(th)==OLrth1)=OLre2) =OL (Q3J... .. ' (2.12)
                                            '                      'In other words, the order is unchanged by isomorphisms. This is easy to

understand without proof [20], [21]. The set {F(X)} of all F-images is

                                                            '                                        '                                                                'also unchanged by isomorphisms [15]. . . ,
                                             ' • Before we prove the theorem which gives the upper limit of the orders,'

                                                         'we state a few propositions. .
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                                      '
[Proposition 2.1] Assume that ip has two T-expressions as foUows:

      tp-i[a(o)f(o)+ 2 T,Z-S ari?fri)>o] . .

       -1[b(o)f(o]+ZT:-S b(i)f(i)>o] ' (2.13)
where (x(0?b(0)<O. Then there extsts a T-expression of tp by F-{f(0)}:

      ip-i[ 2 T•:.-i ((a(i)/Ia(o) I)+(h(i)/Ibro] P)fa)>o]

     F--{f(0].f(0,-----,frm-1)}. (2.l4)
                                   '(Proof) When tp(X> =1, we have ' • '
                                            '      (a ro) /la (o) P fco)+ E•T• :-i (a ra?/Ia (o) Pf(a) >o .

      (b (o]/lb (o) Pf(o)+ 2 T:-i rb (a)/ lb (o) V ca) >o. ' (2.ls)

Because aCO)brO)<O, we obtain (a(0]/ia(0?P+(b(0)/IZ)(0)P=O. Therefore

                          '      Z T:-l r(aa)/Iaco) [?+rba]/lb(o) I))fa)>o. (2.16)
                                                    '
When ptX)=O, we conclude in the same way that

      Z T•:i (cara)/la(o) V+(h a)/lh(o2 1)?fa)<-.-o. ' (2.17)

                                                    '                     '                                                              QED.
                                                      '                                       '[Proposi tion 2. 2] Let ptAND, Z) ==flA f2A--- AfZ= A i--Zl fi. ut 0R, 'Z) =fl Vf2V

---
 VfZ == V a.Z.1 fl and pt PA RXTY. Z? --fl ef2(D---ejCZ= (iD i--Zl fi , th en we have

     olz7(QrAlyD,v)Emg.in(ge.,E,:ixr;(oTrfa?,oLrfg'". oL(iprAlmp,z]): 2 a=Zl oL(fa)

                 '                            '              '        '                             '              tt                         '     oT(proRl Z)]sme.n(zl.:zij(oTrfv,oL(fg'", oLo(oR.z))E z i-neZ1 oL(fa)

                                   tt                                      '                  '                                     '                                            '     OTiv(PARfTY. Z])g Z a.Z,1 0TCfl). 0L(th(PARXTY, Z?)<. 2 a,Z.2 0L(fi)•

                                                              '                                                              (2.18)

When S(fi) and S(fg') are disjoint for any i and g' MSg'), we obtain

        '      OT("(AIVD,Z))lmcy OT(ft), OL("(AIVDsZ))--•. 2 i.Z,1 OL(fi)

                   z'
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     0Tr"(0R, Z?)lmclx 0T(fi), 0L(ut0R, l))= 2 i.Z.1 0L(fl?

                 z

     0TrthCPARXI?Y,Z))= Z a--Zl 0T(fl), OL(Q(PARfTY,Z?)== Z i=Zl 0L(fl).

                                                            (2.19)

It is same thing wtth any isomorphism Åíunction.

(Proof) We briefly prove the assertion for flAf2(Z=2) in the simplest
                                 '
case. Suppose that

     fi- 2 T:-Z aa)fa)--i[ 2 T:-S bra)fri?>oj

     f2-- 2 g.M=-olc(g')frj)==i[ 2 1I.l:-3 d(g')frgv>o] (2.2o)

then

                       t/     ip (24AzD. 2)=fiAf2-i[ 2 T.:-3 b(a)fE2+Ai2 E I;:-Z e(g'?f(g')>AT2] .

             -i[ Z Y:-3 d(gvfrgv +rvz 2 T:-3 aa)fa)>ua

             -r- 2 T:-3 aa)fa"r2 Y•z..3 ergvfrJv)

             =2 iTg:!-o a(a)erg')rfa)•f(g'" (2.2o
where Aiizmssrer 2 Zl:-3 drg') frg',x)), "21mxcvar( 2 T•Z-3 b(i)f(i,x)). [rherefore we

conclude that

    OI7(ptA ATD. 2))--OTrf7A f2) Emin (mac (0L rfl), 0T(f2] ), ma cr0L (f2).0T(pa)))

    OL iv (AAID, 2))=OL rflA f2) sOL (fl)+0L (f2) . (2.22)

Suppose that Srfl) and S(f2) are disjoint. Since "rX)--fl(X) for any X

                                              'such that f2rX)==1, we obtain
                                                           '                                                     '     0T(ip (AAID. 2))>OT(fl). (2.23)
SimUarly we have
                                             '
     OT(ptAAID, 2)))OT(f`2). . (2.24)                 -
      'Hence

     0T rQ (AATD, 2) ) )max(OT (fl J, OTrf2]) . (2.25)
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                                            '                             '                                                            '
The equality is not satisfied in general. On the other hand we have

      0L (flA f2) = i, g• (M.arij•). (g.]so]S(f(i) )U S rf(g')]I .

                                   '
               = i (:`iapt)solS(f(Z) l" ,• :`i}lo9]so) IS(f(g') l

                   '

                                           '               -DL(pa)+OL(f2) . . ' . (2.26)
since S(fa)nSCfg'? is an empty set from the supposition. The proof about

the orders of flVf2 and flef2 is given in the simÅ}lar way [21]. QED.

    There exist partial functions fl and f2 of order 1 such that j71Af2

and flVf2 become of rather large order, that is, the orders are not of

bounded order as IVI becomes large [11]. If there is not an input pat-

tern X such that e(Xl)<e(X)<e(X2] for a function e which is not general-

ly a Boolean function, the pair of two patterns Xl and X2 is calied a

boundarly. wtiere Xl and X2 belong to different classes, that is, [ptXl).

e(x2)] =[1,O] or [O,1]. Furthermore it is supposed that there is no

pair such that e(XV=eCX2).

[Theorem 2.1](Upper Limit of IZ'-order) If there are k boundaries, then

     '0T(W:k•n7az ISrfM))1 . ' • (2.27)
               .
where e(X)=2a aE)f(i,X)• .
(Proof) Let k boundaries be expressed by (e(X(2J'--1)].e(X(2g')) and e(X(2g'

-i))<b tl'l;s-li(,2g' 2.i-,rl'Ei,Si,-7,;lri,',tg:",Ye,09./Y:i7.,.,-,e,,2,,. (2.2s)'

Therefore we conclude that , '                                                  '
      oTO)sk mc?uc ls(J'(i))l. • . (2.2g)
               z.•                                                                      '                                                                QED.
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                                            '                                              '
                                       '               '
                                                        '
 [CoroZlary 2. 1] If there are k boundaries, then OTiv)sk, where e(X)--
                                                         -
2 i a(a)c(i). This is the special case of Theorem 2.1 when fE,X)-rec(i).

 [Corollary 2 .2] If 1 {JY: w(X) =0 } 1 ==k or l {X: pt X) --1 } l =k , then OTrW #2k--1.

 [Example 2.1] In Corollary 2.1 the number k of boundaries depends on

{a(i)}. When IVI-rnE3, it is seen from testing representatives of isomor-

phism functions that we can choose {a(i)} such that 0Tiv]--k except for

.one [20]. Fig 2. 3 shows representative functions when n=3 and a black

point .means an input pattern point X such that ptX)=1. Table 2.1 shows

one example of a(i)'s which satisfy that 0Tiv)==k. "11 is omitted because

there do not exist suitable ara)'s.

                             '

2.3 Complete Systems .
    if one can choose a(i]'s such that they satisfy 2' T.;3 a(i)f(a)=o

and are not simultaneously zero, F--{f(i)}(a--0,1,---.m-1) is called Zine-

a?Zy dependent, otherwise Zinea?Zy independent. If for any th in B(n)

there exists at least one T-expression of ip by F, F is called a T-eom-

pZete $ystem. A L--eompZete system is defined in the same way. Later we

know a T-complete system and a L--complete system are the same thing, so

we will simply call them eomplete systems. In this section we describe

first the necessary and sufficÅ}ent condition for a complete system. Next

we dd how to construct a manimz"n eompZete system which has the minimurn

number of connections between the first layer and the second. The system

is useful to decide orders of a function. The fact that 17 is a complete
                                                                    'system iTnplies that F--images of all e!ements in Bn are arbitrarily sepa-

rable and F-images of two or more elements in Bn do not coincide with
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Table 2.1. T- order and art7 is.

T-order functions a(02 a(1? ar2? k

o Yl o o o o

1 92 1 1 1 1

1 Y3 1 1 o 1

1 Y6 2 1 1 1

1 9g 1 o o 1

1 91o 1 1 l 1

2 94 2 -- 1 1 2

'

2 9s 1 1 1 2

2 97 2 2 -1 2

2 98 1 1 -- 1 2

2 912 2 1, 1 2

2 913 1 1 o 2

3 914 1 1 1 3

-2!-
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                                         '                                 '                                               '                                          '                                   '
                                   '                                                            '                                                           '

[Lemma 2.1] The necessary and sufficient condition for AT points to be

arbitrarily linearly separable is that those N points span an (N-IJ-di-

mensional space, that is, they do not stay on an (N-2)-dimensional space,

(Proof) Cover and others have determined the.number of linear dichoto--

mies of ZV points [741. Using their results, this is easy to prove. QED.

    Let F--{f(0), f(1), --,f(m-1)} and Bn={X(0),X(1),---.XrAT-1)}(Al==2n),

then a F-matix ue is defined as
                                  '                            '
          f(o,xro?] .---,frm-1.x(o])

      MZiT. --" )---J --ny.. .
                                                            '                           '                                  '          f(0, X(Al-0). ---, f(m-• 1, X(M- 1)) ' • (2.30)
                                          tt                               'When Al=m, the determinant of the above matrix is denoted by IMFI. In the

                                              'above definition the a-th row vector [frO,X(a)),---,frm-1,Xri])] repre--

sents the F-image of X(i) and the g'-th column vector [f(g',X(0)),----.f(g'.

                 'XrAl-1))]t represents the partial function vector fri,Bn) .. WThere the

         '                'superscript "t" means' a transposed vector. , •
                                             tt                                                                    '
[Theorem 2.2] (Necessary and Sufficient Condition for a Complete System)

           'The necessary and sufficient condition for F to be a complete system is

that wank(MF)=N. When N-rm, this condition can be rewritten as IMFI=O.

     tt
(Proof) From Lemma 2.1 the necessary and sufficient condition for l7 to
                                                                   '                                    ttbe a complete system is that the rv row vectors of MF are linearly indep-

endent. Consequently, the condition is ?ank(MF)-nvAl. ' • . QED•

    When the number of partial funetions in a complete system exceeds pm,

it is possible to choose N linearly independent partial functions so

that they constituteacomplete system. .
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[Corollary 2.3] A complete system F gives a L-expression to any th in

Brn]. When the number of partial functions is minimum, that is, IFI=AI,

the expression is unique.
                             '(proof) Let fa,Bn)=[f(a,x(o".fra.xa]).---,fri,x(AI-o)]t. From Theorem

2• 2 pank(MFj=N. Consequently, for any ru-dimensional vector VrBn) there

are certain real numbers aE)'s such that ip(Bn)== Eaa(i)f(a,Bn). In

other word, F gtves a L-expression to ip. when IFI=Al, partial functions

in F are linearly Å}ndependent and ari)'s are uniquely determined. QED.

                                                               '      '
    From Corollary 2.3 it is seen that a T-complete system and a L-com-

plete system are equivalent. Let for a subset S of IZ tTrS) be the set of

all partial functions any of whose supports is a proper subset of S, and

f(S)={FIFCeTrS)} be the family of all subsets of eT(S). If lrS) and L(fl

are disjoint for a partial function f whose support is S, that is, S(f)--

S, then the partial function f is called a mask on S. For example, f--xrO

)Vx(1) is a mask on {xrO),xrl)}, but f=x(0)+x(1) is not. There are many
      '
masks on S. A mask is defined here in wider meaning than that of Minsky
      '
and others [11]. They used a mask only in the meaning of a AND-mask

defined here. The functions frArvD,S), frOR,S], f(PARfTY,S), and f(uaSK,

S) are defined as
      f(AlvD,s)-` (o)Ax(oA ----Ax(k-1) =A 5:-3 ca(v=1[ 2 ly:-S ` (i)>k]

      f(oR,s)--c(o)vx(ov---vx(k-v==v5:-io xa]-i[ 2 5:-3 xa)>i]

      f(pARfTy,s)=x(o)exa)e---exrk-v=(Z) 5.:-3 x(i]

                 =1[ 2 ly•:-S x(i)= an odd number]

                                       '
      f(uaSK,S)=a mask on S

      S={x(0),x(1).--,x(k-1)}. (2.31)
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and they are called AND-, OR--, PARITY-rnask, and simply a mask, respec-

tively. If S is an empty set, then they are defined as f(AiVD,S)--f(0R,
                                                '                                                 'S)--f(PARrTy, s)==f(uasK, s)=1. FrAND?, FrOR), FrPARITY], and F(usK) are

defined by

     F(AZVD]={fCAATD,S)IS is a subset of V}

     FrOR? =' ={ f(0R, S) IS is a sub set of V}

     F(PA.RfTY)={f(PARITY,S)ES is a subset of V}

     FruaSK) --{f(uaSK, S) IS is a sub set of V} (2.32)

and we have

     1FCAND) 1-IF(oR) 1-l]7(i?A-fe.zTTy] l-1F(uasw 1-2". (2.33)

F(ANP), 17(OR?, and F(PmafTY) are special cases of F(uaSK).

[Proposition 2.3] Let S--{xrO),xrl).---,x(k-1)}, and FrAATD,Z,S), FrOR,Z,

S), and F(PARfTY, Z,S) be defined as

     z'rAAzD,Z,s?={fCAAID,sr)lsrcs, Isrrl=z}

     l7 (oR, z, s) ----{f(oR, s t) ls r( s, lst1=z}

     F(PARLZ"TY,Z,S)={f'rPAR-ZITY,S,]ISrCS, IS,l=Z} (2.34)

then we have the following relations among AND-, OR-, and PARITY-masks:
     f(AAiD,s)- 2 z.k.i {r-oZ-i 2 feF(oR, z,s) f} -

           =a/2)kb'1 2 z-kdi {(-01-i Z fez7(pARxTy,z.s) f}

                k                       Z-1     f(oR,s)= 2 z.i {Cdii) 2 fEFrAAiD,z,s) f}

           m-a/2]k-i 2 zk-i Z feF(pARiTy,Z,S? f}

                   k                          Z-1     f(pAHR-z'tzy.S)-- 2 z.1 {(-2) 2 fEzT(AzvD,z.s] f'}

           =(-ok-i 2 zk-i {r-2)Z'i 2 f6RroR. i,s) f} , (2•35)

(Proof) Let xE]'s (i--0.1,2) be in B, then we have

     x(o]Ax(o i ro)+x(o-- (x(o)vx(v)=a/2](c(o]+x(o-rx('o)ecro"
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      x(0)V` (1]=ec(0)+xr1)-(xr0)Ax(1))=(1/2) (xr0?+co(1)+(x(0)Ellc(1)))

      x(o) ex (o --x (o) +x (v -2 rx ro )A x(o)=r-o (x (o) +x a)-2 (x (o)vxa) "

                                                       '                                                                 '      (x (0] +Ltx (1) )A ec (2)=:(x (0)A` (2) M rx (1)Ax(2)) .

          '                                      '      rx(o) +Ltnc a) ]vxc2) -- (x(o?vxr2? )Å}rx rovx r2) ) nxr2)

                       '         tt      rx(0)+Lt:(1]]Clim(2)=(x(0)Elinr2])Å}(xrl){bnr2)) x(2) ' , (2.36)

where the double signs(Å}. 4) are taken in the same order. Using these

relations, (2.35) can be easily proved through mathematical induction
                                                                       '

                                                       '      '
    Let F (A AID, Z, R(i)), R(OR, Z, F(i) ), th (0R-A AID, Z, Z7 (a)) , and ip (A AID -• 0R, Z,

                                                                'F(a)) be defined as . '•
      Z7 (AAID, Z, F(i)]={fl f--f(iOA fri2)A ---Af(aZ? }

      l7(oR, z, Fa" ={fl f--f(aovfa2)v ---vfaz) }

      pt0R-AAID, Z,F(i))-- VfeF(ArvD, Z,FCi)) f

      th (AMD'- 0R, Z,F(i])=AfeFroR, z,Fa]) f '' (2'37)
where ' {fMl),f(a2),---,f(iZ)}(F(a)cF, lsZslF(a)l, F(AAID,1,F(i)]=F(oR,1,
                                       --                                   '                                                      'F(a))=Fri). From Proposition 2.3 we have
     Vfa ri) f== Z I II=(3) l-i) Z-1 2 f" rA AiD, Z, F( Z" f

     Af6F(a) f= Zlg--(3)lr-oZ-i 2 feF(oR, z.Frw) f• (2•3s)

[Proposition 2.4] For any F(i)CF we have .
                                       '     2 fe i, a) f-- 2 I ll,(.3) l ut oR-- AlvD, z, z7 a) )- 2 I g=r 3! 1 wfAAiD- oR, z, Fa" . (2 . 3g )

(Proof) Let #[P] be the number of elements which satisfy the condition
                                                      '               '                                                                       '
P. For example, fS[x=an odd number, O<x<10]=5. We assume without loss of
         '                                                                    'generality that #[f(X) =1, f6FE)]=k for an input pattern X. •

(1) If k--0, then each side in (2.39) is equal to zero.

                      '(2) If IEkslF(i)I, then the 'ieft side i'n (2. 39) is equal to k. !f
        - ---                                   '
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                                                               '
                                                               t.

IEkllk and IF(i)I-k+lsk2s]F(i)I, theln we •have .
                     --
      ip (0R. kl.F(a), X) =1, ip (A AID, k2, FE), X) =1.' (2,40)
                                                        '                                                                        '                                                                   'If k+l skZ <- IF (a] 1 and l sk2EIF (i) I-k, then w e ob tain '
      --                      --- -                                                           '                                                     '                                                                         '                                                '      ip(0R, kl. F(a], X) =0, ip (AAID. k2, F(i], X) =0. • . (2.41)
                                                      '     '                                       '                                                         'These aspects are shown in Fig 2.4, Hence ' '
                                                           '      IS [Q (0R. kl, F (a?, X) --1]= VS [Q (AAID, k2. F ri), X) --1]=k

      lt [ip (AIVD, kl. F ri). X? --0] -lt [ ip (0R, k2, F (i), X) xO]- IF (a) 1-- k. • ' (2.42)

Therefore we can conclude that each side in (2.39) is equal to lt. QED.

[Theorem 2.3] f(AND,S), f(OR.S), and f(PARITY,S) are masks on S. For any

function th in B(n), the L-expressions of e by l7CAIVD), Z7(0R), and Z7(PARf-

IrY) exÅ}st and are unique. Generally speaking, the L-expression of th by

F(A64SK) always uniquely exists. ' '
(Proof) It is well known that any function ip in BCn) can be written

uniquely in the disjunctive normal form. We can rewrite ip using the

arithmetic sum(+) instead of the logical sum(V). Furthermore any naga-

tion IE77t7 can be replaced by 1-x(a). Applying this repeatedly, all nega-

tions can be removed. When the same terms have been collected together,

we have the L-expression of " by IP(AAID). From Theorem 2.2 it must be

satisfied that ?ankrMF(AND)]=2n. since li7(AATD)l=2n. FrAAID? is linearly

                                                                    'independgnt. .This means that Z7(AitD) is a linearly independent eomplete

system. It is easily known that l7(0R) and i7(PARfTY) are also linearly

lt' hndi:Pgei):.ethntz7()mutlMIIIe.te SYSteMS, Uslng Proposltlon 2.3. It ls the same

                                            '                                   '                                         tt    Suppose that frAND,S) is not a mask, then we could have the L-ex-

pression of f(AIVD. S) by F' such that S(f) is a proper subset of S for
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                                ' '                                                                       '

any f in F'. From the above proved fact, any f in Fr has a L-expression

gl)Il;ic(AsiiDj..Slil:Ig.C,iJ} Therefore f(AAiD.s) has a L-expres.... by {f(AAiD.

      JC'(AAID,S)--2s,csa(Sr)f(AA7D,Sr?. . . (2.43)
This contradicts that F(AATD? is linearly independent, hence proves that

f(AruD,S) is a mask. It is proved in the same way that fCOR,S) and f(PAR--'

fTY,S) are masks. .' ' QED•
gih,l.gl::2-i,gl,il.Si?i)lll?lil;ir"'=S('2'=S' '2 is a mask a"d thfre is :,fz,,

where F6XrS). Then the necessary and sufficient condition for fl to be a

mask is that a210 for any L-expresion of fl. .
gP.rfOfOi[l..N.e.yCeiSf:Y2t:orf, ifi=.l'.ghgbntii..is ob"io"s that fi can not be a mask.

 ' f2=(1/a2]fl+2fcF (-arfl/a2)j' ' (2.45)
Suppose that fl is not a mask. Then it is derived from (2.5) that f2 is

not  a  mask.  This  fontrgdicts the condÅ}tiofis, and therefOre fl. iS aQillg?k.

                           '
[Corollary 2.4] Let f be a mask, then any funct!on given by isomorphism

[Corollary 2 5] Masks mth different supports are lmearly independent•

2.4 Minimum Complete Systems . .
    A minimzm7 eompZeee system is defined as a complete system F such

that the number Z feF iS(f)I of connections between the first layer and
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           '                                   '          '                 '
                                                                      'the second is minimum. - .
[Theorem 2. 5](A Minimum Complete System) F(uaSK) is a minimum complete

system.. Conversely, any element of a minimum complete system should be

(Proof) It has been proved that F(M4SK) is a complete system. Since

there is a mask f such that S(f)=V, there is at least one partial func-

tion should be in a complete system whose support is V. As the defini-

tion of a mask is taken into consideration, the partial function must be

a mask. FurtherTnore ehere is a mask f such that Srf)=V-{x(a)}. Since

masks with differnt supports are linearly independent, a complete system

needs at least (nCn+nCn-? partÅ}al functions to have a L-expression of a

mask f such that ISrf)Iln-1. wriere nCn and nan-1 mean combÅ}nations. Then

the number of conneetions requested is at least nCnXn+nah..1Å~(n't 1). If we

continue this computation, we can conclude that the number of connec-
tions is rnore than or equal to E al-eo ncixa-r=nx2n-1. on the other hand,

the number of interconnections in F(msK) is minimum, sinCe Z fcF(uasK)

ls(f)l-mx2n"1. Hence Frpa4sK) is aminimum complete system. It is obvious

                                                            that any ele-ii;m,gl"2a:,::.:.pe2g:;i2,zf,:z2k.zx'tgh,g.ifle::g[.s"pports ,,,.

                                                                     tt[Corollary 2.6] For any ip there are Fl and F2 such that

                                                                    ' . •Fl(F(usK), Fl(T(W) 0TrW= MffilFFIIS(f)i . • '

                                            '      Zi'2(FruaSK), li'2EL(W, OL(W= ma:lS(f] '. (2•46)
                                   fff2
            '                                                   '                                          '
    From Corollary 2.6 it is enough to test only subsets of F(M4SK)
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                                                                      '                                                                    '       '                                                 tt
instead of F in (2.6) and (2.9) in order to get OT(W and 0L(ip). A mini--

mum complete system defined above has the minimum number of interconnec-

tions. When a multi-stage coupled partial functions are used, the number

becomes much less [16]. This is shown in brief here. •

[Proposition 2.5] We can construct a complete system by using partial

functions f such that IS(f] kk(kz2) and f's are at most h-stage coupled.

Where h is the smallest integer that is not under Zogkn.

(Proof) We can construct any mask f by using one stage-coupled partial

functions with order k, where IS(f)l<.k. Assume that we have already got

any mask whose order is less than or equal to Z. Adding one more stage

and using only partial functions f's such that IS(f?lsk, we can have any

mask f(uaSK) such that Z+lglSrfruaSK))lsrnin(kxZ,n?. These facts lead the

      --

[Theorern 2.6](Multi-Stage Coupled Minimum Complete S-stems) When k=2 in

Proposition 2.5, we have a complete system which has the minimum number

of interconnections among multi-stage coupled complete systems. Then the

number of interconnections is 2(2n-1)-n and the number of stages is the

smallest integer h that is not under Zog2n. '  • . . .
(Proof) With partial functions whose degree is 1, we can construct masks

whose degree is 1. But we can not do masks whose degree is greater than

1. Even if we add one more stage in the proof of Proposition 2.5 using

partial functions whose degree is 1, we can not obtain any masks f' such

that IS(f)I)l+1. !f we use (2n-1-n] partial functions whose degree is 2,

any mask can be constructed by multi-stages. .Then total number of eon-

nections ts '
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                                   '

      1xn+2Å~(2n-1-n)=2(2n-V-n. (2.47)
                                                              '
                                                              '              '' '• QED.                                                              '                                               '                                      '
    Compared with a minimum complete system defined before, the numbers

of interconnections are in the ratio of .
      (2(2n- v -n) /n2nr i=-4/n rn>>o, • (2 •48)
                                        '     '(2.48) decreases in inverse ratio to n. The system proposed in Theorem
                                          '
2.6 is very convenient, since it can be constructed by using uniform

components and moreover the number of components requested is minimum.

[Example 2.2] When n=3, a two-stage coupled minimum complete system Fl

                                         tt                                  '

                                                                     '
L' i . Fl='r{f("}(a= 0, 1,---, 2) • '
                                                                 '    tt
      fro)=1, fco--x(o). fr2) =`ca), f(3)-rzn(2), fr4)--x(o)Aooro

                                                     '      f( 5] =oo r2 )A xC2) , f( 6) -. c(2 )A xrO) , fr 2) --x (1 )A f( 6) (--x (0 )Axrl )A xr2) )

      2 f6FIS(f? 1=0+1+1+1+2+2+2+2=11, 2r23-0.-3=11 ' (2.4g)

For comparison, a minimum eomplete system F2 is shown.

      F2--{f(0),f(1),----,f(7)}, f(7]-Tn(0)Aec(1)Ax(2)

      2 fcF IS(f)l=o+i+i+i+2+2+2+3==i2, 3Å~23"-1=i2. ' , (2.so)

Z71 is shown in Fig. 2.5.. ., .
                                                             '
    Let Hamming distance between l7-images of Xl and X2 be expressed by

HD(FrXV-l7rX2)), then we have the next theorem. ,, '
                                                    '                                        '[Theorem 2.7] For Xl and X2 in BnCXISX2) we have '

                                                             '                 '     xT,i lllb llD (E' (A AID, Xl ? -F (AiVD. X2) )- xye l?2 llD CF(0R. Xl ) -li r9R, x2J ) --1

                       '                     '
      max llD(l7(AAID.Xl)--F(AAID,X2])== max EID(F(0R,Xl)-F(OR,x2))--2n-1

     Xl, X2 Xl, X2 -
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     man EIDCFrPARrTY,Xl)-PCPARfTY,X2))
    Xl, X2

        '
                                          n-1    = nuar EID(PrPARfTY,Xl]-Z7(PARfTY,X2))--2                                             (constant). (2.51)
      Xl, X2

(Proof) First, we consider the case of F(AAID)-images. There is no pair

of Xl and X2 such that FCAIVD.Xl)--F(AATD,X2] and X14X2, since F(AAID) is a

complete system. On the other hand, FrAIVD.X) is a 2n-dimensional vector.

      1<HD (Z7 (AND, Xl)-F (AND, X2))<2"-1. (2.52)

Let Xl=[O,O,---,O], X2=[1,O,O,---,O] and X3=[1,1,---,1], then we have

     HD rF (AZVD, Xl)-F (AAZD, X2))--1

     EID (F (AAID, Xl)-F CAruD, X3)) =2n-1. (2.53)
                                                 '
It is the same wih l7(0R)-images, since F(AAID) and I7(0R) are isomorphisms

    Next, we consider the case of Z7(PARfTYJ-images. I"e can assume with-

out loss of generallity that Xl--[x(0),xrl),---,x(k-O,x(k),--.xrn-1)]
                     'X2=[x(0),x(1).--,x(k-0,xCk],--,x(n--1)] (0Ek-lsn-1) for Xl and X2.
                                           -
     llD rR(PARfTY, Xl)-F CPARrTY, X2))

     = Z ik-i ff (f(pA.RxTy, s]II sA{x (o), x(i ), -- --, x(k-o } l -r i,

     i is an odd number)

     ==2n"kkcl+2n-kkc3+---+2n'kkckl--2,n-k(2k/2)=2n-1 (2.s4)

where kl=k, Å}f k is an odd number, otherwise kl=k-1 [23]. Q,ED•

[Corollary 2.7]
                  '
        min HD(F(PARXTY,Xl)-F(PARrTY.X2)]> min EID(F(k,Xl)-RrX,X2))

       Xl, X2 , Xl.X2
      t=AAID or OR, and nl2. (2.55)

.

'
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                                                           '                                                    '
                              '
    In linear separation reliability is genera!ly estimated by the mini-

mum distance from points of on-set and off-set to the separation plane.
             '
When reliabUity of a multi-layer series-coupled machine is estimated by

the minimum Hamming distance between F-images, from Corollary 2.7 F(PAR-

fTY) is the most reliab!e systera cornpared with F(AAZD) and F(0R). BuF the

reliability must be appraised in the total system. The mini;num Hamning

distanee may be one eriterion of it.
                                                 '                                   '    The above technique is applicable to con$truct a complete system on
                                                       'nilbert space L2(0,1) [2s]. The notations are used in the similar mean-

ing to the foregoing. if any function Q(x] in L2(o,o can be expressed

                                            'by a series expansion as follows, P is called a complete system: '  .
      ptX)--2feFa(f)f(x?, 0Ex<1 ' (2.s6)
where the equality signifies quadratÅ}c mean convergence. The family of
                                                          '
Walsh functions [26] is a well-known complete system, which is repre-

Sented as {oo(a ?}(a=0,1,---). Where the numbering is based on that of

Palay [27]. Rademacher functions are defined as

•r(o•x'= [lll.igSZIi(: '

     ?(0. x+1)-ror'(0, x) .                                                                  '                                                  '                                                                     '     ?rn. x) -7T} rO, 2nx). n=1, 2, ---- . (2 .5 7)
:?:Z:. I2: ;1 .gS,l.S.72,a:ie:.gr;7,E,h:digt,g-gti,l.go, g:e mter"a!. (-co<"cn•

                                                                         '     'ill'X'j':'l.If:..ffR,l,lol'i){F:.41illi•ii•1,e-i•:1,';,F`pARfTy'z'=={frpAi?iTw},-.
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     f(oR, a) -rtt? a(o ]v?a(2"v---vwa(k"

     f(PARITY. a) =? ri (1))th" (i C2))e- --Sr} ri (k)) (2.58)
where i=i. 2, 3. -- .., a=2i ri) +2a C2) +---- +2i (k) and i(z] <a (z+o rz--i, 2. --• •-.

k-IJ. Moreover let Si={i(1).ir2?,----,i(k)}. Zl= Zi(z]6sivsg• 2i(Z). Z2=

                   2i(Z), then we have 'z  i (z)E rsiuso'-siAsg')

     j'(AAID, i)Af(AAID, g•) --f rAATD, Z1)

     froR, i?vfroR, g'?='{ fil R'i iii.'. g..lof i'g'$0

     fCPARfTY, i)efCPARZTY, g')=f(PARXTY, Z2)
     Yl.i f(AzvD,i,x]dkxr=i/2k

     J.' froR, a, x) dx=i-i/2k

     Jl.i f(PARXTY, a, x)cZa =1/2 (2.sg)
The third equatÅ}on in (2.59) corresponds to the following equation about

Walsh functions:

      oo (i)Å~co (g')=co (ieg') (2.60)
where i=2ai+2a2+---+2ik,g•=2g'i+2g'2---+2g'k, icEv•=2iiog'i+2i2eg'2+..--+2ikeg'k.

   Let F(AAID,Z). F(OR,Z), and F(PAI?fTY,Z) be defined as

     F(AND. Z)={ A fes f}, F(OR, l)={ V fcs f}. F(PARfTY. Z)={ (Z) fes f}

                                                            (2.61)

where SC{?rirl)),M(a(2)),--,r(i(k))} and ISI=Z. using (2.35) it is
                                                            '
known that there is the ensuing relation between the above defined func-

tions and Walsh functions.

     co (0) =f (AND, 0] ==f(0R, 0) =frPARfTY, 0) =1

     turaJ=2 2 i.k.i {r-2)Z""i 2 feprAivD,z] f}-i

         --2("ok'-i E zl-li{r-2)inyi 2 f6F(oR,z) f}'i
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                                                      '
          --2f(PARITY,i)--1 • ' .• (2.62)
Therefore F(AAID), F(0R), and F(PA-l?.TTY) are complete systems, since any

                         'Walsh function can be expressed into finite series by any of thern. Let
                         '        '
k denote the number of Rademacher functions which is requested to com-
pute f(AATD.a), f(oR,i], and z7(pARify,a), i=o.1.--s2k-1. RrAAJD), FCoR),

                             'and FrPARfTY) •have the similar property to a minimum eomplete system.
   '                                                                'Let us take an example by FrAAID). Any walsh function co(Z) for Z<2k-1

          'has series ' expansion by F(AND,0] F(AArD,1] --- F(AAID.k).                                                             Furthermore
             '
the number of interconnections is

      0+iXkCi+2xkC2+---+kxkak==k.2k-i. .                                                                   (2.63)
      'This is minÅ}mum among compiete systems on L2(o,o.

                                              '                                               '
                                        '
2.5 Group-Invariant Complete Systems
                                   '                                                              '                   tt    The set of all one-to-one mappings from Bn to Bn forms a group,

where composition of mappings is taken as operation in the group. Let G
   '
                                          'be asubgroup of such a group. Vthen ' .
                                      '                      '                            '      f(X)=f(goX) (2.64)                                                '    'holds for any g in G and any X in Bn , f is called a G-invavaant fane-

                             '                                                ' .tzon. If there is an element g in G such that

                      '                                                         '                                '                                                 '      f'(X) =f rgoG) ' .(2.65)  ' '              n                , it is said that f' and f are G-e(7uivaZent. This is re-for any X in B

written as follows:f'-G-f. (2.6s) is abbreviated to "ftm-gofrr. 'rxr--Gx" is

                                                      'defined in the same way. The relation G' formg an equivalence relation

and decomposes il and Bn into (]-equivalence classes: '

                                           '      F--R(1)UZ7r2)U---UI7(Zl),.F(i)AFrg')--an empty set, (aSg']
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                                                             '                                                       '                                     '                                                        '                                        '                               tt                                         '                                                 '
                                                        '                         '      Bn=Bn(ouBn(2)u-T-uB"rz2),.Bna)A.Bnrg')=an empty set, atj) (2.66)

Where F is closed under G and any iBn(i)l is an divisor of G. When gof

                               'is in l7 for any g in G and any f in F, it is said that F is eZosed undeor7

G. If f'=af, then there is F(a) such that f' and jR are in Fra). Otherwise,

                            '     '                      'iSg' for F(i) and i7(g') such that j" is in F(i? and f is in Frg'). If x'=Gx,

                    '                                                                   'then there is Bn(i) such that X' and X are in Bn(a). Otherwise, iaFj for

                                             'Bn(il and Bn(g'] such that X' is in Bn(i] and X is in Bn(g'). If the fgl-

                  'lowing two conditions are satisfied, a family FG is ealled a CI-invaraant

                        t tteompZete system. .                                                                        '              '
(1) FG is in Tiv) for any CI-inariant function th, and

(2) any f in FC is GL-invariant. .'' .

In this section we consider FG which is constructed from a linearly

independent complete system F, where F is closed under G.
                                                             '                                     '                                    '    Let F be a family of G-invariant partial functions and {Xl,X2,---,

XZ2} be representatives of GLequivalence classes {Bn(1),Bn(2),-.--,Bn(Z2)

}, then the G-invariant F-matrÅ}x M'F is defÅ}ned as

 ' . f(0,Xl),---.f(m-1.Xl) . .
                                                  '                                        '      MrF: --- .----•J -.--

            frO,Xl2),---,fCm-1,XZ2) . . (2.67)
          '                             '
When l2-Tm, the determinant of the above matrix is denoted by IM'17I. .

               '                                                    '[[lheorem 2.8](Necessary and Sufficient Condition for a G-invariant Com-

                      'plete Systems) The necessary and sufficient condition for a G-invariant
                                                           'complete system is thaF ?ankrM'F)--Z2. when IFI--l2, this condition can be

rewritten as iM'FllO. ' '' '
                                             '                             '                                                                  '(Proof) From Lemma 2.1 the necessary and sufficient condition for a G-
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                                                    '
                              '
                                        '                                                           '                               '                                                       '                                                t.
invariant complete system is that the l2 row vectors of M'F are linearly

independent. This condition can be written as vankrM'F)--l2. Ighen IFI=l2,

it is written as lM'FlveO. • • ' QED.
[Corollary 2.8] A G-invariant complete system F gives a L-expression to
              '
any G-invariant function. When the number of G-invariant partial func-

tions is minimum, that is, IF[=Z2, the L-expression is unique.

(Proof) This is proved in the same way as that of Corollary 2.3. QED.

From Corollary 2. 8 it is seen that "F is in IZ7(W for any G-invariant

function V" and "F is in L(ip) for any G-invariant function th" are equiv-

                                                      '                                               '
               '               '                             '
    The composing process of G-invariant functions is shown by the dia-

gram in Fig. 2.6. The diagram shows that one can compose G-invariant
                                             '
functions in two stages. At the first stage partial functions are com-
    '
puted independently of one another. Next they are cornbined through 'G-

Invariance Theorem" to obtain G-invariant functÅ}ons. Now we state G-in-

variance theorem and Å}ts corollaries which are imporant and powerful

mathematical tools. The theorem was first proposed by Minsky and others

[11]. Since they used T-expression, equivalence of coefficients was a

sufficient condition and there was some tolerance. Since we use a L-ex-

pression to compose GLinvariant systems, it is a necessary ,and suffi--

cient condition. The same may be said of Boolean operations instead of

arithmetic sum in a L-expression. •
                                                             '
[Theorem 2. 9](G-Invariance Theorem) Let Z7={fCi)}E=0,1,--,m--1) be a

linearly independent complete systm which is closed under G and finite.

                          t ttSuppose that ip is a G-invariant function and expressed as
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Fig. 2.6. ComposingProcess of G-invariant functions.
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                       '         '
      th- 2 T.=""S aa)fri)==V T:-3 (ha)f(AivD,w .

      '=AT.-:ol'(ea)froR,a)), b(i) and e(i) inB (2•68)

Then the coefficients depend only on G-equivalence classes, that is,

 . if f(a)--Gf(g'?, then a(a)=crCg'), h(i)-nvh(g'), e(a)==e(J')• . (2•69)

The reverse is also right, that is, if (2.69) is satisfied, then ip is

(Proof)'The proof about a L-expression is made in the same way with that

of Mins ky and others. we wiu pro ve only the case when Q= V T• :-3 (h Ca)

f(AND, i)), 'since we can do simuarly the case when Q= A Z.i;3 (e(Of(oR,

i)) [24], [36]. •
Necessity: We use hrf) instead of b(i) to avoid complicated subscripts.

Any element g in G defines a one-to-one correspondence fegof and FrAATD)

is closed under G. Therefore, we have '
      utX]=VfcF(AAID) h(f)frX)=' VfcF(AAID) h(gof)gof(X) ' (2.7o)

                                    -1Since for any g in G the inverse g is in G and th is G-invariant, we

            '         '
      thlg-iox)-•V fcF(AAiD) brgof)f(x]-.thrx) . (2.7i)

If it is supposed that h(gof')=h(f'), then for X in {Xlf'rX)=1}n{Xl

Vflf, f(X]--0} we have ' ,
. t(,Zihi2Z=,?sc,'{VXX,`,V,{wt,`l=Oii",[X,)'=b(90f" ,,.)',,

that is, Q(9dlox)="rx), and this contradicts that th is G-invariant•

Hence we can conclude that b(gofV=h(f'V for any g in G and any f'  ln

Sufficiency: Let us assume that h(gof')--b(f') for any g in G and any f'
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                                                                '                                '

                                            '
in l7(AND). From (2.70) we have ' ''                                                       tt                                                           '      "r90X)-- VfEz7(,4AID) hCgMlo f)g f(g-1. x). .. • •

Ftom the .'..=
um)\(til.i.e.Zir(:21Dibbt.(1.IiO f)f(X) ' . (2.73)

      V(90X?= VfeF(AlvD) h(f)f(X]-"P(X)• . , .'. .(2.74)

Hence"is G-invariant. • ' QED•
    If F is an orthogonal complete system, even if F is an infinite set,

then it is easily understood from the process of the proof that the

theorem is satisfied.

[Corollary 2.9] For any f' in B(n), fl, f2, f3, and j74 written as follows

are (Finvariant functions: '

      fi `=Zf6G gort f2=V g,G 9of• ' '
      f3=AgeG 90L f4==(Z) geG gof' ' . (2•75)
When fl,f2,----,j'k are G`invariant, " defined as follows is GLinvariant:

      ip-frfl,f2,---,fl) . - • • (2.76)
                                               tt                                                      '                                                  ttwherefis an arbitrary function. • ' .
'aieni cef  k::s2sYerMUtatiOn grOUP On V' then v is decomposed mto G-equiv-

      V=V(1)VV(2)V---VVCI3) . .
      V(a)AIZ(g')=an empty set, tg' , •(2•77)
If ee(il)-.Gec(i2), then there is Vri) such that x(il) and x(a2) are in V(i?

and IV(k)l is a divisor of IGI. otherwise, iSj for V(i] and V(g') such

that `xr(al) is in VCi) and x(i2) is in V(g'). F(AAID), FrOR), and FrPAR-TTY)

defined above are closed under any permutatlon group. If all members of

V are CFequivalent, that is, Z3=1 in (2•77), then G is called a global
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                                                               tt                                                        '                                                                      'group. Translation and rotation are one kind of permutation groups on li.

The group of all translations is a global group, but that of all rota-
                '      '                  'tions is not. Z2 in. (2.66) is not always equal to one, even if Z3=1. 0n

                                      'the contrary, Z3 is always equal to one, if Z2--1. In the case when Z2=1,
                                                   '                                                        tt                            'discrimination has no meaning, since all input patterns are G-equivalent.

[Example 2.3](G-Equivalence Deeomposition)

(1) Decomposition induced by a cyc!ic group:Let V=={x(0),x(1),x(2)}. gl=
 (S: S; o2) and Gi ={ gl, gi 2, g13}, then Gi .is a giobai grg up 'and v and B3 are

                                                   '                                                                         '                           'decomposed as follows:

               '      V={x(0),x(O,x(2)}=V(0 . , .
      B3-- U,, (o) .. (o ,. c2) { [x (0), ec (1), xr8) ] , [x(1), x(2) .x(o) ] ,

                --                --        [x(2),x(0J,x(1)]}. '' . (2.78)
                                  '                                         '(2) Deeomposition induced by another group:Let V={crO).xrl),x(2)}, g2=
(20;;,'o2) and G2--{g2,g22}, then v and B3 are decomposed as follows:

                                                               '      V={x(0). x(3) }U{oo (1) }=V(1)UV(2) '
                          '      B3='U.(o)..(2)'{[x(0),ec(1),xr2)],[oo(2),xCl),x(0J]}. .(2.79)

where g13 and g22 are identity operators, and it is shown in Fig 2.7

that gl and g2 operating on a pattern X in B3 yield another pattern glo

                                 tt                                            3X and g20X, respectively, and a subset of B is decomposed into Gl-equi-
  'valence classes and G2-equÅ}valence ones by Gl and G2, respectively.

                                                    '[Theorem 2.10](Support and Degree of G-invarlant Functions) We can as-

sume without loss of generality that the following three conditions are

satisfied:

(1) P is a G--invariant function, and
 '
(2) there is xCa) such that x(a) is in S(th)AV(g'), g'=1,2,---,Z, and



CHAPTER 2 -43-

91

P5

P4

x(2?

PO

1

Pl

P6

P7

l

   92
---t"-----NS' )i'

tteq2x
       XC5

o

    1-cr1

 x(0]

    P2

P3

P7

x(1)

P6

P4

/
l

P2•

 /((lr

/P3

Pl

PO /
!

!

P5

Pl

gl

P3

Pl

P2

PO

 lP5
l

N

N
Å~

P3
N

P4

,P7

lo

P7

/
l

/
/

x

P6

P4

PO

xK

P6

P2

Gl-equivalent decomposition:

{PO} U{Pl. P2, P4 } V{P3, P5, P6}V

{P7}

               'G2-equivalent decomposition:
      '{PO} V {Pl, P4 } V{P2} V{P3, P6}V

{P5}V{P7}

Fig. 2.7. Gl-equivalent

decomposition.

decomposition and G2-equivalent



                               CHAPTER2 - -44-

      '                                                        '(3) there can not exist x(i) such that xE? is in S(WA{V(Z+1)VV(Z+2)L/
     '
---- VVrl3)}, where G is a permutation group and ZEZ3.
                                                -                     ttT?en S;%).ISv(Se)uCovi}2gils-d-lnv,i;][l-equivalence classes as follows: (2.so)

                                   '                                              '            '                                                   'Since v(O,V(2),----,V(Z) aTe G-equivalence classes, we have

      ls(e)I-- Z i,Z,,1 lv(a)I--]vro l+[v(2)l+---+lv(z)1. .(2.sl)

                                                      '                           '                                                                  '(Proof) There exists F whieh is a linearly independent minimum complete
                                         '
system and closed under G. Then we have a L-expression of Q by F.
                                                                        '      th=2f(ka(f)f, S(W= V.(fvo S(f)• ' (2•82)
                     ttFrom Theorem 2.9 and (2.66) this is rewritten as follows: '
                     '      ipm- 2 i--Zi a(i)( Z feFa) f), Siv]-- U.(i),eo r Uf6F(a) S'Cf)) (2•83)

where FM) is a (]-equivalence elass. :f it is satisfied that xCal) is in
                                         '
S(WA V(g') (gLEI], then there are g in G and F(i) such that xM2)--goxEl)

                                                    '                        'for any x(i2) in V(g'J, x(aV in S(f?, and f in F(a). Hence

      V(i?( Ug6c S(gOf)= UfeFa) S(f)--S(ZfcFa) fl (2•84)
                                                           'hence
                    tt      U ;Hi V(a]C U.(a)7`or L7f6Fa) s(f))-srwf. (2.ss)
             'From the condition (3) we have ' '
             tt t                            '      S(WA{Vrl+1)UVrZ+2)U---UV(Z3)}=an empty set .
      S(V)CV-- Ui=Zl91 V(a)- Ui.Z.l v(a). ' (2.s6)

From (2.84) and (2.86) we can conclude that

      s(w- Ua=ii v(a). .' (2•s7)
                                          '
Since V(a) and V(j) rait5j) are disjoint, then we obtain
                                                             '       is(Wl==2;-, lv(i)I• ' . . . (2•ss)
                                                            '                                                  '
                                                                   QED.



                               CKAPTER2 -45-
                                                               '
                                                        '

    rf G is a global group, then the support of any G-invariant function

is V except for a constant function. For exrnaple, supports of transla-

tion invariant functions are V, but those of rotation invariant func-

tions are not always V. F(AIVD), F(0R), and P(PARIIVY) are all linear-

ly independent minimum comp!ete systems and elosed under any permutation

group. Then they are decomposed into C7-equivalence classes:

      F(AAzD?= Ui.Z.i FrAruD,i), F(0RJ-- LJi.Z,i F(0R.a] '

      RrPARITY?= Ua--Zi R(PARfTY. a]. (2.89)
                '
Fl(AAID), F2(AIVD), l71(OR), and F2(0R) are defined as:

                         '     i7irAAiD)={fllfa-- 2 gQG gof'= 2 fEz](AzvD.v L f' in FCAATD,a)}

     F2 (A AID) ={ fa l pa= V geG goj' L- V f,F(AAzD, i] f, f' in I7 rA ATD, i) }

     Fi(OR)='{fl1pt== 2 geG gof'= E f(i7coR,i] L f' in F(OR,i)}

     F2 (0R]={ fi l fi- A geG gof '= A fe(oR, a] f, f' in F(OR, i) }

     Fl(pARfTy)=={ptlfi-- Z gcG gof'`= 2 fEF(pARfTy.a) L

                fr in F(PAE?rTY,a)} (2.90)
                                       '
where f' is a representative of GLequivalence classes F(AAID,i), FrOR,a?,

and ZPrPARITY,i). It will be shown that all the families in (2.90) are

G-invariant linearly independent complete systems. '

[Theorem 2.11](G-Invariant Linearly Independent Complete S-stems)

(1) Let F be a linearly independent complete system which is closed

                                                      ttunder G, then FG defined by the following equation is a G-invariant
          'linearly independent complete system: '

    . FG--{flf= E gE(] gof',' f' in F(i)} . ' , •(2.91)

where Je' is a representative of a GL-equivalence class F(i?. Therefore

Z71rAAID), Fl(OR), and Fl(PA-l?-rTY] are G-invariant linearly independent
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t tt                                        'cornplete systems. '                                     tt                                   '
(2) i72(AAID] and F2(0R) are also G-invariant linearly independent comple-

                                                                        '                                                        '
                                                                         '                                          tt
(Proof) (1) It is easy to see that any f in FG is G-invariant. Now we
                                  '              ttprove that FG is in L(th) for any G-invariant function th. Since f7 is a

complete system, ip has aL-expression by F: .
                                              '                                          '     •ip--2f(F a(f)f• • . (2.g2)
                                                                 'Then we have

      go"=2feF a(f?gof .
      Zgc(] gOip--2gGGZfezi7 (ZCf)gPf (2•93)
                  '
Sinde ip is G-invariant, we obtain

      IGIQ= 2 feF 2 g,G a(g-io j')f= Z f6F Z g,G aCgof)f (2•94)

       tt
      th= 2 fEF (i/IGI) 2 gcG a(gof) f= 2 fcF h(f)f .
                                                                '      h(f)-(1/IG[]2gEG a(90f) •                                                                   (2.95)

                            ttOn the other hand, {goflf is in F}--l7 and from Theorem 2.9 we have

                                                        '                                                       '                            '      g-- 2 S•--ii hrfVC Z b,G gofV •' . ' •                                                                   (2.96)

where f' is a representative of a G-equivalence class F(i). We can re-

                                                              '                                            '                                                      'write (2.96) as follows:
                                                           '                                                         '                    '      th= 2 fc Fa e(f) f, e(f) -h rf ')) f-- 2 g,G go f' .' (2 •97)

(2.97) means that Z7G is in L(V). Since F is linearly independent, so is

               '

                                         '                                                        '
(2) It is also easy to see that any f in Z72(AAID) is G-invariant. Now it

                                                  'is shown that ?ank(M'rv2(AND))--Z2, that is, F2CAND) is linearly independ-

ent. Where Z2 is the number of G-equivalence classes of input patterns.
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                                                                         '                                                      '                                             '
                                                                   '                                                         '                                                     '                                      '                                                     tt  '
Assume that IP2(AND) is not linearly independent, then there exist non-

                  '                                                 'zero coefficients such that • '' '
              '         2feFta(f) f=0, P'CF2(AAJD) ' ' . .(2.98)
Let f' be one of members in F' such that IS(fVl is minimum, where
                                                           'f'=. V f6F(AlvD,i) f• From (2•38) and (2•90) f' can be written as '.. •

                                                                     '                                                 ' . fLin Vfcz7(AAiD,a)f ' '
       -- 2f,.(,,,,,i) f+zlF,.r--",AZD'a)l (-o "`-i 2f,.r,fu,i,i,,•? f

                              '                                                              '
                                                               '        '

            '                         '
From (2.98) and (2.99) we have

 . 2f6F(AAiD,z) fl- Zff.]ce,,i,7,',,,f.if['([S(itlS2rfllll(1,,,,,.,,) f (2 ioo)

where F(AAID, a, g')-{flf=f(il)Af(i2]A---Af(ig')}, Srp)--{f(al),f(i2),--,

frig')}(F(AAfD,i). Let IS(f)l=k for f in F(AAfD,a), then (2.100) means that

a linear combination of masks with degree k has a L-expression by masks

whose degrees are k or more and whose supports are different from Srf) 's.

                                                                         'This contradiets Corollary 2. 5, that is, the linear independence of

masks with different supports. Cosequently, F2 is linearly independent,

and rank(M'172(AZVD))=Z2. From Theorem 2.8 we ean conclude that F2(AAID) is

a G-invariant linearly independent complete system. It is the same with

Ji28(ili)r Using Proposition 2.4, these may be proved in a differegEDiray

                                                                        '                                                       ' '

[Corollary 2.10] Any G-invariant function has unique L--expressions by FG,

Z71(AAZD), F2(AAID), M(oR), F2(oR). and Z72rPARf{IY).
                                                   '                                                                 '    '
    By applying Theorem 2.11, a G-invariant complete system can be easi-
                                                                        '       'ly constructed from the viewpoint of mathematics for any permutation

group G, for instance, translations, enlargements, reductions, rotations,
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and so on.

[Example 2.4] Let V={ec(0),x(1],x(2)} and G={any permutation on V}, then

Fl(AAID), Z72(AAID]. I71rOR], and F2rOR) defined as follows are all GL-invari-

ant linearly independent complete systems:

      Fl rAAID) --{f(AAID, 1O, f(AAID, 12),f(AAID, fl 3P .frAAID, 14) }

      F2 (AATD) ={f(AAXD, 21 ) , frAATD, 22) , fr,4AID, f23) . f(AAID, 24) }

      Fl (0R]= {f(0R, 1O,f(OR, 12),f(OR, fl 3),f(0R, 14)}

      F2(OR)--{f(0R, 21), f(0R, 22], f(0R, f23), frOR, 24) } (2.IOI)

where

      f(AATD. 11) =f rAiVD, 21) ==f(OR, 11) =f(OR, 21)=1

      f(AND, 12) =f(0R, 12) --x (0) +x rO +`c r2)

      f(,4AID, 13) =` (0)A xr1) +x(1)A ecC2) +x (2)A xr0)

      f(AATD, 14) =f (AAID, 24) =f(OR, 22? =x (0)Ax(1 )AxC2)

      frAAID, 22) =fCOR, 14) --fr0R, 24) -=x (0) Vx (1)Vx (2]

      f(AIVD, 23) =f(0R, 23)=(x rO)A x(1) )V (x(1 )Ax(2.) )V(x(2)Ax(0) )

               -- (x (0)Vx (1))A Cgc rl)Vx (2))A (x C2?Vx (0))

      f (A AID, 1 3) = (x (0] Vx (1)) +( c(1)Vx (2) )+ (x (2) Vx (0)). (2.102)

The values of the functÅ}ons in these systems are shown in Tab!e 2.2,

                                                       '                                                                'which shows that the functions are G-invariant. This is also shown in
                                                     '
Fig. 2.8.

2.6 Conclusions

    In parallel computing

machines investigated here

function should process. This

machines such -as

it is important

 is the problem

 multi-layer series-coupled

how wide range each partial

of locality of a function.
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    x (2) frA tVD, 24) =frOR, 22)

     0 1 0 lf(A AID, 23) Pll p3 pl, p2, p3 1 p3, ps;-pJC'gOR, 23)

                    f' (A TJD, 22) --frOR, 24)

 Fig. 2.8. F2rAZJD)-images and F2(OR)-images and
 G-equivalence decomposition:B3--{po} U{pl,p2, p4}Ll

{P3. P5, P6} U{P7}.

Table 2.2. Values of G-invariant functions.

Patterns f(AAZD,12J

=: fCOR,12)
f'(AAID,13J f(AAID,14]

=f'rAIVD,24]

-- fr0R,22)

f(AAZD,22)

=f(OR,14)
=frOR,24)

f(AND,23]
=f(0R,23)

frOR,13]

PO(000) 0 0 0 0 0 0

PlrOOI)
P2(010)
P4r100)

111 000 000 111 000 222

P3r011)
P5(101)
P6(210)

222 111 000 111 111 333

P7rlll) 3 3 1 1 1 3
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                                        '                                                '                                                                  '                                          '
                            'The minimum complete system introduced in 2.4 is useful in the determi-

     'nati6n of such ranges. We represented the locality by T--order and L-

                                                     '          'order. In practical pattern recognition machines, however, the locality

          'may be redeftned in more suitable meaning for their structures. Moreover

from the viewpoint of the number of partial functions it becomes diffi-
                                                                 '  '                                                   ' '

cult to realize a group-invarÅ}ant complete system by electronic parts.

                            'It will be the next problem how to select the best subset of a group-in-

                 'variant complete system.
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                               CHAPTER 3

                 WALSH-HADAMARD POWER SPECTRUMS

              INVARIANT TO CERTAIN TRANSFORMATIONS

3.1 Introduction
                                     '                        '                                 '    In Chapter 2 it was considered how to construct G-invariant func--
                                           '
tions in multi-layer series-coupled machines which mainly dealt with
                                                           '
Boolean functions. In this chapter Walsh functions are used as partial

functions, and it is investigated how to construct (]-invariant functions,

especially G-invariant power spectrums. Walsh functions were introduced

by Walsh in 1923 [26]. They can be generated recursively, are orthonor-

mal, and form a closed set [26]-[31]. They have been used in several

applications because of the simplicity of square waves. Walsh--Hadamard

transform (WHT) has the advantage of computational simplicity when com-

pared with Fourier transform. It is well known that the Fourier power

spectrum is invariant to translations. Let w(k,X? be the k--th (WHT)
coefficient. Then the set {zo2rk.x)} is not invariant to translations.

The (WHT) power spectrum developed by Ahmed, Rao and Abdussattar [34] is

                                         'invariant to translations, which is obtained through the (WHT). The fast

algorithm for the power spectrum was also presented by thern.
                                                                '                          '
    Here a composing process is introduced that produces functions which

are invariant to some transformation groups. It will be descrÅ}bed how to
                                               '
develop the (WHT) power spectrum to be invariant to enlargements, reduc--

tions, rotations by multiples of 900, and some other transformations.

Then it turns out that 'Group-Invariance Theorem' and other theorems
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                                        tt                                                   '
developed in Chapter 2 are useful mathematical tools. Using 'Group--In-

variance Theorem', it is known that there are the seeond degree G-invar-

iant functions besides the power spectrum by Ahmed and others. According
                                    '
to the process presented here, a (]Linvariant complete system seems easy

to make mathematieally, but in general, difficult to make practically

because of the huge number of functions required. Power spectrums which
                                                                      '
we chiefly adopt may be regarded as subsets of a G-invariant complete

system.
                                                         '                '
. Parallel computation is taken into consideration, but locality is

not, because (WHT) itself is a global transform. We mainly treat trans-

formations in the form of 2Å}n. When we treat ones in the form of kÅ}n, it

is convenient to adopt eomplex-valued Walsh-Hadamard transform (CWHT).

Then the (CWHT) power spectrum is developed to be invariant to the above

descrtbed transformations, too. .
     '

3.2 Walsh-Hadamard Transform

    [I]here are three types of orderings for the Walsh functions [75] T One

of them is used here, that is, natural or Hadamard ordering. Hadamard

matrices can be recursively generated as follows: •

      HCO)=[1] • i        t tt    .ff(?'= [g. h".Iti\i -gl --x == r"' . '' .. • '.,,.,,

                                                             '                                                          '                                                   '              'where i7n(1) is the n succesive Kronecker product of Hrl). Let 17rn,k)

denote the k-th row vector of ll(n), k--0,1,---l2n-1. The Hadamard matri-

                                                  '                                              '                                                            'ces satisfy the following: ,
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      H (n) ==ll (n-m) xH (m)

                                            '      (Uop VMH rn--m) QEI (m) )=(U'ff (n-m) ]X(V'El (m)) (3.2)

where 0gm<.ns U and V are a 2n'M-vector and a 2M-vector, respectively;

and the notation "op" denotes the Kronecker produet. These can be pToved

by taking the definitions of the Hadamard matrices and the Kronecker

product into consideration. . .
    Let {x(i]} denote an iV-periodic sequence cri]E=0,1.•-----.ZV-17, of

real ngmbers, and {x(i)} be represented by means of an N--veator X:

      X:,: [x (0),x rl), -- --,x(N- 1)] ' (3.3)
                              '          n           . Walsh-Hadamard transform (WHT) of an input pattern X iswhere N=2

            '
                                          '                                                      '               '
      N (X) --(1/AI) X•17 (n) (3.4)
                                   '
wh ere WrX) -- [w (0, X].w(1, X),--,w rZV- 1, X)] and wrk, X) is the k-- th (WHT)

coefficient. The inverse transform is defined as . •
                                                       '
      X--va(X) 'U (n) . •.                                                                 (3.5)

From (3.4) it follows that ' ' •
                                                   '                                                       '    ' JV(X)•N(X)t--rl/Al)X•Xt .                                                                 (3.6)
                                      '                                             '
where "tJ" denotes the transposed vector. The right side of                                                                 (3.6)
          '
represents the average power of the input pattern. Although Fourier power

J'

spectrum is invariant to transiations, the set {w2(a,x)} is not. A com-

II]titTi' ?gpojl]IOrCg;ictl[Iih.PrOPOSed in preparation for the deveiopment of the
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                                        '
                                                                   '
                     '3.3 Composing Process

    The process to obtain a GleG2-invariant power spectrum in several
              '                               'stages ts shown by Fig. 3.l. First, an input pattern Å}s transformed

through the (WHT), and the (wrIT) coefficients are squared. Second, the

results are.combined according to a certain function to obtain a Gl-
                                                'invariant power spectrum. Lastly, we find a permutation group on the Gl-

invariant power .spectrum caused by G2 operating on the input pattern,

and then we combine the Gl-invaTinant power spectrum to be G2-invariant

in the same way and arrive at a Glec2-invariant power spectrum. Gl
                                              '
and G2 are some transformation groups, and the product GIEbG2 is defined
                                                                       '                                                 '

                                         '                                                  '   • GIXG2=={glg==glog2, gl and g2 are in GIUG2}. (3.7)

    When functions Å}n N-dimensional Hilbert space are used instead of

Boolean functions with Al variables, Theorem 2.9 and Corollary 2.9 are
                                                                  '
also satisfied.•Then the corollary is rewritten as follows.
     '
[Corollary 2.9'] For any f in AT-dimensional Hilbert space, th written as

follows is GL-invariant:
                                      '                        '                                               '                                                         '               '                   '      ip=:EgeG 90JE" .' ' ' (3•8)
When frO, f(2?. ---, f(k) are G--invariant, Q defined as follows is
                              '                                                                '                                       '                                                                  'also C)-invariant: '
                                                                      '         '      ip- Zak-i aa)f(a) ' ' . ' (3.g)
where' a(i]ts(i=1,2.----,k) are arbitrary real numbers. VJe have a more

general expression: . '  .

      th--f(f(1), f(2),---, fCk?) ' (3.10)
                                                                 'wherefis an arbitrary function. '
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                             CHAPTER3 -56-                                                  '
                                                     '                                                                    '                                                                      '                          ttt
    Let functions FZrf(1),f(2),-- ,f(V)(Z=1,2.----.L) be defined by

    Fz(f(o,f(2),--,fcL"-- 2 ifmll l,2(i?/A, if A4o. z=1 •. '

               . 2 2L;.--Zli fa)fri+z-o/A, if Aso. z-2,3,---,L

"here
g--,z-k,f;z;f')7:,yrlifa)•e:,i--0i. lil---'L •. •.(3'ii.'

      FZ rf(1), f(2), ---, f(L) ) lO (Z--1. 2, ---, L), if f(i? 40 (i--1, 2, ---. L) .

                             .. • (3.12)
                                               '
Hence {FZ(f'rl),f(2),---,f(L))}(Z=1,2,---,L) may be regarded as a devel-

oped power spectrum, Å}f {f(a)}(i=1,2,---,L) is a power spectrum.

                                                    '                                                      '                          tt                '

3.4 Translation(Gl)-Invariant (WHT) Power Spectrums
                                                             '
    A translation-invariant power spectrum is illustrated by considering

the case when n=3. Using Corollary 2.9' the second degree terms are

cgmbin lwt.2 e:-kz2 gkan)zl:slgn--invariant function,s: . ,'. (3.13)

            '
where Z=0,1,---,4, and $ is used for modulo eight addition. The f(Z)(Z--0,

i' ---' f)(o)C : b! eki, Po r: S, Sr :,d .?Y the Set {W (kr X) }(k=0, i.,--- --, Ai- ?: . ..

      f(i ) =-4 i3jtiili,( iill .X)( "2' ,2Wxiii2: ilii] Wx2) ,ll'6X, l;z; 2 (s, x? +w2 ( 6, x) -w2 ( 7, x)

      f(2] --s{w2(o, x) +w2 a, x) -w2r2. x) --w2(3, x) } ' ' .

      f(3) --+4 Silll,(S.X)(-7,2wx)2-( i2: i i;wx2) ,:f6:rl z:2(sj x) -w2(6, x) +w2(7. x)
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                                                              '                       '
      fr4) =4{w2(o, x) +w2a, x) +w2(2, x? +w2(3, x) -w2(4. x) -w2(s, x) -w2(6, x)

           -W r2,X).}. • ' (3.14)
        '            '                         'Suppose that a function f has a linear expression by the second degree

terms of x(Z)'s(a=0,1,----,7]. From Theorem 2.9 f has a linear expres-

sion by {fM)}(Z--0,1,--,4),'if it is translation-invariant. Inverse-
                '                                                          '     '
ly f cannot be translation-invarint, if it cannot have a linear expres--

             'sion by {f(Z) }(l--0, 1, ---, 4] .

                                                        '
    The adequate linear combination of the frZ)'srZ=0,1,--.4) leads to a
      '   '
translation-invariant power spectrum. Adding f(O to f(3) removes the

                                                    'cross terms w(4.X)w(2,X) and w(5,X),w(6,X): •
      frv +f(3) --i 6{w2ro, x) -tu2 a, x) }. • (3.is)
  '                   'Th en {w2(k, x) } is gro uped as {w2ro, x) }u{w2 a, x) }u {w2 (2, x) ,w2r3, x) }u{w2 r4,

                                 'x?, w2(s, Jki). w2(6,x),w2(7,x)}. The zo2(k,x)'s in the same group have the

same coefficients in the expressions of f(0), fr2), f(4), and f(1?+fC3).

Thus we obtain
      p(o) --(i/s2) (f(o) +2fa>+2f(2) +2f(3) +2f(4"-v2ro, x)

                        '      p(o= ri/s2) (f(o)-2fa)+2fc2)-2f(3) +2f(4)) -.w2a, x)

                        '      p(2)=r 2/s2) (fro)-2fr2) +2f(4))-r=w2(2, x) +w2r3, x)

                                                  '      p r3) = (4/s2) (fro) -• 2f(4))-,=w2r4, x) +w2(s, x) +w2r6, x) +w2r7, x) (3.i6)

The remainder may be expressed by

    ' p(4)=(s/s2?(f(v-f(3?)-.w2r4,x)-w2rs,x)+tu2r6,x)-w2(2,x]

               '                             tt           -2w (4, X)zar7. X)+2wr5, X)w(6, X). . (3.17)
                                                          '                                                 '
{p(i]}E--0,1,2,3,S4) turns out to be the very same power spectrum as
                               '                                                              '                                                      'that developed by Ahmed and others [34]. . '
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                    '                                                             '                                            '
    From the first-degree terms we obtain only one translation-invariant
      '                                                              '                                                                'function which is linearly independent: ' '  '                                                          '                                                       '       prs)=(1/s) 2k=7ox(k?-.zo(o.x]. • •' ' (3.ls)
                                                   '                                                                '                'As pointed out in [51], {p(t)}(i=O,Z,2,3) is not a translation-invariant

complete system; that is, there are other shiftings under which {pra)}ri

                '=0, 1, 2. 3? is invariant. This is the same even if {p (i?}(a--0, 1, ----, 5) .is

used istead of {p(a)}(i=0,1. 2.3). In order to obtain a complete system

                                 'we must usually use the higher-degree terms besides the first and the
                                                      '                                               'second-degree terms.
                          '
   The generalization of the power spectrum mentioned above is straight--
                            '                                       '                                    'forward as seen in [31], [34]: '

       pro? -w2(o, x) .
                                                                      '       p(s)-- 2i.2.Z-.li w2a,x). s--'i,2,----,n. • . . (3.ig)

            '                                        '                                                                '                                                         '                       tt                                                              '                          '
                                                              'The generalization Å}n the two-dimensional case is as follows: •
      P(o, o) -rw2ro, o, x), p(o, t)= 2 2t-l w2(o, g', x? '' '

      . . .. t-1 •                                        g=2 .
                                                    '                                  '                                              st      prs. o)'-- 2 'anv-2Si.gl w2a, o, x). pcs, t)-- Z a--22gZi 2 g.-l2't--il' w2(i, g',x),•

                               '       .' . • • .(3.20)                                             '            '                                   '        '
where s=1,2,---.n and t--1.2.----,m, The developed (V"IT) power spectrurns

             '                                                        'are expressed as:. ' ' '•                         '                                                           '                                 '  ' P(n]=[prO).p(1),---,prn)] • ' .
                                                          '                                             '                                       '                                               '      P(n, m) -- p(0, 0].p(0, 1), -- -- -,p(0, m] ' . • .
                                                          '                                         '                '                                                      '                                             '                                                 tt                 --- sM--- )-----s ---- • • •                                                tt          '                 '                             '                                            '    '       '. p (n, 0?.p (n, 1). --. p rn. m) . ' ' - • (3.21)
                                                         '
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                                '
                                           '

wrien we want to take notice of the input pattern, we write as follows:

      P(n, X)=[p(0, X),p(1, X),---,prn. X) ]

      P(n. m, X)= p(0, 0, X),p(0, 1, X), ----,pr0, m, X)

                       tt
                   ---- ) .-- )-----J .--
                                                 '                 p(n, 0, X),p(n, 1, X),---.prn, m, X] . (3.22)

This can be extended to any number of dimensions [31],.[34].
                    tt
                '                                                       '          '                                    '                                                  '3.5 Enlargement and Reduction(G2)-Invariant (WHT) Power Spectrums

   , The changing aspects of the (WHT) coefficients under enlargements

and reductÅ}ons of an input pattern are investigated. An input pattern X
is called a 2i-time enZctygecthZe patte?n, if

      X--[U. U,----.U] . . • (3.23)         V----•.,tT----'

                                    '                           .and U--[x(0),x(1],---,x(2n'Z--O]. Similarly an input pattern Y is called

a 1/2Z-ti'me xedueibZe .pattei7rn, if Y=[yrO)1,yr2Z)1,----,yr2n-2Z)1] and

      1=[l,1,---,1]. . (3.24)         VY.--V ' .             2i .
                                       '                                                                 '                         'The 2Z-tame enZa?ged patteTn of X and the 1/2Z-tame redueed pattei7n of

                                      .Y are defined as [ecCO)1,x(Ol,-----,x(2n-Z-1)1]=Uwt and

      [U', U', ---, Ur] =LZ XU', (3.25)       KLMV.-J7 . ..
                                '
                       '                                                                   'respectively, where '                                           '                                         '                                 '      1--[1,1,----,1] ' ' (3.26)                                                            '
              -•              z•
                 --and U'---[yrO),yr2Z),---,y(2n-2ZJ]. For example, the 2-time enlarged pat-
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tern of X--[O1230123] is [OOI12233], the 1!2-time reduced pattern of Y=[O

OI12233] is [O1230123], and so on.

    Frorn (3.1) the k--th row vector H(n, k) of ff(n) is expressed as

                                                n-1      H`n' k' =[[Z[Z: i,: ij: -.Z[::II ijll i/TOklli].-ti2.,.:i--, ,n-i. (3i27)

The upper half row vectors of fl(n) are 2-time enlargeable patterns. The

fact of (3.27) Å}nduces recursively the following expression:

              [H(o,k),-...-,ll(o,k]]=[1,1,- -,1], k=0. 2n-time enlargeable,

               [H(1,k),---,fla,k)]=[1,-1,---,l,-1], k=1, 2n-1-ti..

                                                             enlargeable,
                                                 '              [H(2,k),--in,ll(2,k)], k=2,3, 2n-2-time enlargeable,

            '                                              n-3     ll(n, k)= [H(3. k),----,llr3, k)], k=, 5, 6, 7, 2                                                  --time enlargeable,
                 '
                --- --- -------
                                      n-2 n-2                                                       n-1              [ll(n-1,k),e(n-1.k)], k=2 ,2                                              +1,---,2 -1,

                        '                                                     2-time enlargeable,

              [H(n-1,k),-ll(n..1,k)], k=2n-1,2n-1+1,--..,2n-1. (3.2s)

On the other hand from (3.2) ll(n] is also expressed as

      17 (n) --ll rn- i) QH a)=ff ra) gg7 rn-i]. (3.2g)

Taking account of that
                                               '                                                                 '                '

      ll(a,0]--[1,1,-- ,1], (3.30)               V-vT.-V '         ' 2Z . tt                                  '                               '                                       tewe obtain that for a multiple k of 2Z Hrn,k) is a 1/2Z-time reducible

pattern. For an even number k the k-th row vector ffrn.k] of Ll(n) is a

112-time reducible pattern. From (3.29) the 2i-time enlarged pattern of

                --H(n,Z) is El(n, 2Z. Z), where Z=0,1,---,2n-Z-1. The 2-tirne enlarged pattern



of Hrn,Z? is Hrn,2z]

the case when n=3:
                  '
4-time enlargement
       ,

ll(3]=

           i
 2-time enlargement

      (Vcl:2-time enlargeable

    A 2i--time enlargeable
 '

of it are expressed

      X--[U, U, ---. U]=
         V-.r.---
            2Z

                '           '                           n-z      Y=[xr0) 1, oo(1] 1, ----.x(2                              -1)1]

      U= [x(0?, x(1), ----. x(2

        '
      1==[1,1,--•--,1].
         Y•
             2Z

The (WHT)'s of X and

      W(X) =(1/N)X•H(n]

          --(1/N) [U, U, ---, U]•
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                                     '                          '                   tt                                              '                                              ' . These facts are well illustrated by considering

            tt                                              '                '                                             '                                                '                   '
 1 1 1 1 1 1 1 1 H(3, 0)
     '
 1 ml 1 --1 1 -1 l -bl ll(3) 1)
                                      *1
 1 1 -1 --1 1 1 -1 -1 fl(3, 2J

        ' 1 -1 -1 1 1 -l -1 1 H(3, 3)
              '
 1 1 1 1 -1 -1 --1 -1 ffr3, 4)

 1 --1 1 -1 -1 1 -1 l H(3, 5)

 1 1 -1 -1 -1 --1 1 1 er3, 6)

                                    ' 1 -1 -1 l -1 1 1 -1 llr3, 7] . (3.31)
                                            '
        patterns, *2:112-time reducible patterns)

                          .       pattern X and the 2Z-time enlarged pattern Y

                                          '                                              '
                                        '                                    '                  '                     '
[1,1,---,1]QU--1xU
 '-•"p'---hi"N'
    2i

          --               = [x (0),x(1), ----. x(2n- Z--1) ] &1 --U&1

                                      '     n-z-.o] '' . .                                   '
                                             (3.32)

 Y, are as follows:

  ==(1/AI) [U, U. ---, U] • (H(i) 8H(n--a))

        Hcn-a), ll(n-a)l:l

                      I,        llCn-i),.H(n-i)Itl H(n-1)
         -=;=-rt-i •
         -- -T ---M-T-----
          Hrn-1] ' !--ff(n-1)

'

*2
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                                      '                               '
                                                 '                                        .         --Cl/N?(1•H(i))g(U•H(n-a))=(1/2n'Z][ltttO, O]ge(U•ff(n-i))

                                                z.•                          •2              '
     WrY] =(1/N)Y •H rn] -- (1/N) (UXI ) (ll (n--a) QEI (i) )

      . .=tt/ru)[.(on,.roi,---,xr2n-'i-i]il' Z-((:.jl.--llt//tjil li H(.-.o

                       '             • .• ..--•"--l                 ' ' --H---L---h                      'l         . • • Hrn-1) l-H(n-1)                              '
         '=(1/AT) (U •H rn-i)) X rl •H Ci) )
                                              '         -- rl/2"- a) (u •H rn-- a)) x[1,o,o ,---,o]. (3•33)
                             VyT.-V
                        ' 2Z. . .
      tt
From (3.33) we conclude that
                                                 '                                       '                                                .               value of the k-th element of (1/2n-Z)u-ffrn-i],

                                        '                         .     w(k,X)= ' 0sk22"-Z..1 .' •.
                                             '                     .               o, 2n-z<k<2n.ml •
                                                .     .,k,,,=- VaiX-2,?X22,i:h--i,i2m.2",i,gf(i/2n-Z)u•llfn-iJ,

                      '               0, kis notamultiple of 2a (3.34)
                                                               'and furthermore

     w(k.X]-rtil(2Z•k,Y?,' 0Ek#2n-Z-1. . • .• . ' (,3.35)
    These aspects are well summarized on a nx2n"'1-matrix c(x)==[{e(i.g',

X)}] defined recursively by .' . ' .
                                                '                                                          '                                            '      c a, g•, x) -rw (2n-1 +g'-i, x) • '- ' . . .
                                          '                       ' . e.a,g'tx)== {.:glkizti//i;g c(e-1.g',X)-•w(k,X), k is an eyen ?umb:r3.361

where i=2,3.-----,n and JL-1.2,---,2n-1.'  2i-time enlargement and 1/2i--time



x
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                                        '              '       '                             '                 '
reduction of an input pattern cause upward shift by i rows and downward

shift by a rows, respectively. w(0,X) is invariant under any shuffling

of the elements of an input pattern. In the case when n=3, the matrix

                   'is as follows:. .' . .
' ,,.,=' :IZIIjlWC2'X'::`,g:ij:wrZ?l'.e"ifrgiement ..

             w(i.x?. O , 0 , 0• ' reduction (3.37)
Let Y . be a 2-time enlarged pattern of a 2-time enlargeable pattern X,

             tu (4. yj, o,wr6. y?,o w(2, x?, o,w(3, x),o

      c(y) == w(2, y), o, o •,o = wrl, x),o, o ,o .

       ' 0. ,0, 0 ,0 0 ,0, 0 ,0 (3.38)
As seen in (3.38), 2-time enlargement of an input pattern causes upward

shift of the elements of CrX). Then an enlargement and reduction-invari-

ant power spectrum {q(a)}(i=0,1,----,2) ean be obtained by the method

                                                       'introduced in 3.3: '                  '          '      q(o) -v2(o. x), q(3) =Fi (w2r3, x),w2r6, x"
                                  '      g(o=Fi (w2a. x),w2(2, x).w2(4, x)), q(6)=F2(w2r3, x).w2(6. x))

      q(2) =F2(tuZr1, X),wZr2, X),wZ(4.X)), qr5)-.w:(5. X)

      qr4)--Z73(w (1,X],w (2,X),w (4,X)), qr2)-.zo (2,X). (3.39)

The a"  .r .a ,g.e  P20ilLIoerq7i.).{.X(Z.)oii]2(k,x)=(1/s) 2k-zo .2rk).- ' ''(3•40)

There are many other functions which are enlargement and reduction in-

variant and have linear expressions by the second-degree terms of the

w(k, X2rk=0,1.----,2J. Taking the following into consideration in this
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                                               '                                                              '                                            '

case
                      '      p(o)-v2(o, x), p(2) -rtD2(2, x) +w2(3, x) .

                                                                      '      prv -.w2(i, x?, p(3] -v2(. x] +w2(s, x) +w2r6, x) +w2<7, x), (3..4;)

                                                                  '
we have . ' '                                    '                                                             '                                                  '                                                 '                                                                    '      P(X)=[prO, X),p(1. X),pC2, X),0]=[p(0, Y),p(2, Y).p(3, Y),0] •

      P(Y)=[p(0, Y), 0,p(2, Y],pr3, Y] ]= [p (0, X), 0,pr1. X),p(2, X) ]

      P--[p(0).p(1?,p(2),p(3)] .                                                                   (3.4/e)
                                                         '                                                                      '                                                                 '              l ---) enlargement
              T
              I <G'-M reduction.

                                             '
This means that 2-time enlargement of an input pattern X causes shift of

                                  ttP(X) toward the right by one element exceptprO.X).p(0,X) is always

invariant to any perTnutation of an input pattern. This has been proved
           '                 'in another way [41]. Therefore we arrive at a power spectrum {qE)}(i==0.

1,2,3) which is invariant to translations, enlargements, and reductions:

 '   . q(0)-rp(0], g(1)=FICp(1),p(2),p(3)), q(2)--F2(p(V,p(2],pr3)].
                                                      '                                                       '      q(3]=F3(p(O,p(2),pC3)) • •                                                     '                   '      pav= 2 i=3o qa)-- Ea.3,o ipra)=Z k=7o w2(k,x)=(i/s) 2 k--7o x2rk).

                                                 '                                                       '                             '                                                              - (3.43)
                                                                 '                                                        'Generally the statements following(3.42) are also valid for any natural.

                                              'number n. This is known from (3.19) and (3.35) in the sarne way as used
     '                                                               '                                                    'in the case when n=3. Then a translation, enlargement, and reduction-

                               '                 'invariant power spectrum can be obtained:
                     '                              '
    ' q(0) -Tzp ro), g(0 =FZ (p (O ,p r2),---,prn) ). z=1, 2t. •--.. n. (3.44)

    In the case when an input pattern X is a 2nx2M-matrix, these results

                                                        '                                                '                                                      'are developed as follows. Let G2 denote the group of horizontal
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                                                                  '                'enlargements and reductions and vertical ones, and let G22, the subgroup
             '                                'of G2, denote any rnember of which is enlargement or reduction formed on
                                                                  '
the same scale horizontally and vertically. Examples of G2-equivalent

                                                                '                                         'and G22-equivalent patterns are shown in Fig. 3.2. The values in Fig. 3.

                                               '2 are the p(i,g') multiplied by 64 for simplicity. 1's and -1's are blac-
      '
ked and blanked, respeetively. In the same manner, the variation of P

caused by G22 and G2 are illustrated in Fig. 3.3 for the case when n-rm=3.

We citg changes of P(X) in Fig. 3.2 for more detailed explanation:

       ', p(0, 0, Xl)lp(0, 2. Xl)-p (0, 3, Xl)<eO
             -- - - -lm - ny bu - ---- --nt- ---
      P(X2) -- p(2, 0, Xl)lpr2, 2, XV p(2, 3, Xl) 0

                  4l X x. .
             pr3, Too. Ki) f, pr3, :. xi?if<xellil. g' Xi<l . (3'.4s)

{pri,g')} is classtfied into G22-equivalence classes:{p(0,0)}U{p(0,17,prO,

                         '
22.p (0, 3? }U{p (1, 0?,p(2, 01, p(3, 02}U{p (1, 1), pr2, 2?, p(3, 3) }U{p (1, 2], p(2, 3?}V

{p(2. 1], p(3, 2) }U{p (1, 3) }U{p(3, 1) }. The seeond- degree terms of p (i, g') in

                                                          '                                              'the same G22-equivalence classes are also classiEied into G22-equivalence

ciasses,'  for exampie, {pro, o,prb, 2J,pro,3J}->{p2(o.1],p2(o, 2],p2(o, 3]}u

                   '
{p rO, 1) .p rO, 2), p rO, 2) .p rO, 3) }U {p (0, 1) .p (0, 3) }. From corollary 2.9' the

qCO,a)(a=1,2,3) defined by the following expression are G22-invariant:

                                            tt      qro, 1)=(p2(o, o+p2(o, 2) +p2(o. 3))/(p (o, 1) +p (0, 2) +p (0, 3)) '

      qrO, 2) --2 (p rO. V •pr0. 2) +p r0, 2] •p(0. 3))/ rp r0. 1) +pr0. 2) +p r0. 3))

      qrO, 3) --2p(0, O •p(0. 3)/(pCO. 1) +prO. 2) +p (0, 3)). ' (3.46)
                                                 '                                                                  '                                                           'Let F(1di 22) ={q E. g')}(i=0, 1, 2, 3, g' --0. 1. 2, 3? be de fined by '' ''

                                          '      q(0, 07-rp(0. 0], q(0, g'?=Fg' (p (0. 27,p(0, 2?,p(0, 3??.

      q(i, 0)=Fi (p (1, 0],pr2, 0),p(3, 0)] ' .
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                         '
      qra. g')`=Fg•1+1 (p (i-g'1. o'--jl),pE-g'1+1, g'-g'1+1), -- ,p(i, g'), ---, .

                     '                                                                  '             p (i +g' 2, g' +g' 2) ) (3.4 7)
        '                 ttwhere lsi-g'1, IEgLg'1, i+g'2s3, o'+g'2s3. a--1,2,3, g'=1,2,3. F(IQ22) is a

       - -- - --  '                                                                       '                   '                               tt t                                          ttGlgG22-invariant power spectrum. For any numbers n and m we obtain '

  •q(0, 0)-p(0. 0), q(0, g')=Fg' (p (0, 1).p(0, 2),•---,p(0, m)), '

   qE. 0) =Fi Cp(1, 0),p(2. 0),----,pCn, 0) ),

   q(a, gV=Fil+1(pri-o'1,g'-g'V,p(i-g'1+1,g'--jl+1),--,p(i,gV,-7,pE+g'2,i+o'2)

     '                                         • (3.48)
                                     '                                'where 1<-i-g'1, 1<Lg'-jl, i+g'2sn, g'+g'lsm, i--1,2,---,n, g'--1,2,---,m. In the

                                                          'sarne way we obtain a GIQG2-invariant power spectrum. Let F(IX2)={qCi,

g')} (i=0,1.---5, g'=0,1,----,5) be defined by

      q(0,0]-Ti)(0, 0), q(0, g']=Fg'(p(0.1),prO, 2).p(0, 3)),

      q (i, 0) --Fi (p (1, 0), p (2, 0J,p (3, 0) ), .

      gri,o-- 2 k=3i Z z--3i p2(k.v/A, ga,2)=Dro,o/A,

      qrl,3)= D(0.2)/A, q(2,1)=Drl.0)/A, q(2,2)--D(1,1)/A,

      qr2. 3) -- D (1, 2) /A, gr2. 4? --D (1. - 2) /A, qr3, 1) =D (2, 0) /A,

                                         '      q(3, 2) -- D(2, 1)/A, q(3. 3] --D (2, 2) /A, q (4. 2) =Dr2. -1)/A,

      q(4,4)= DCI,-1)/A. q(5, 5) =D(2, --2)/A ' . (3.49)
                               '          'where a=1, ' 2,3,. g'=1,-2,3, A== 2 k--31 2 z,3.1 p(k,Z)==0, the q(a,g') undefined

                       '                                      'in (3.49) are equal to zero, and D(k.Z)'s are given by ' ., ''
                                                                     '                                                    '                                                       '      D(k, Z) --2•2 ,, 2. pCr7, s?p (?+k, s+Z), ly, s, T+k, s+l g3 .' ' (3•50)

   '
The q(i. g') (i =1, 2, -----, 5, gL-1. 2, -- --, 5) are equal to zero, if A--0. Then

                                            '                                               'F(10 2) is a GIXG2- invari ant power spectrum . Le t the F ' (a, g' ) E--1, 2. -- -•, Ll,

                                      'g'=1,2,--,L2) be the G2-equivalence classes of the second-degree terms

                          'of p(a. g') (a--1, 2, ---. n, g' ---1. 2, -- -- --, m) , where some of them may be equal to
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   '                                                '             '                                                '
the empty set and the F'ri,g')'s are symmetric with the p(a,g') if n-.m and

Ll--L2. Exceptionally,'  we define that F'Cl.V={(1/2?p2(i,g')}(a=1.2.----,n,

g'=1, 2,---.m). For any numbers nandmwe have '
                                                                    '                               '                                    '  . q (0, 0? -T[) (0, 0), q (0, g') =Fg' (p (0. 1), p (0. 2), ---, p (0, m)) ' •

                                                                    '                                       '      q a, o] =Fa (p ri, o) ,pr2, o), -- -, p rn, 0) ), qri, g') --2 2 f6F t(i, g•) Åí/A

                                    '                                            '                                     ' (3.51)
           '          'where a--1, 2, --;. Ll, o` --1, 2, --- --, L2, and .

      A--2kl.li-Zzl-lii p(kJi)==o• ''. (3.s2)
      'The qra,g')(i=1,2,---.Ll. g'=1,2,---,L2) are equal to zero, if A--0. .

      PaV= 2 qGFax22) q= 2qc,Friop2) q= 2 i-n-o 2 g•M--o p(i, g']• (3.s3)

          'These aspeets are shown ih Fig. 3.4. The values in Fig. 3.4(b) and (c)
   '
are the gM,g') multiplied by 64. Each element x(k, Z)(k==0,1,---, 2, l--0,1.

                                                            tt                       '
--- . 2) of Xira=1,2,--,6] is located at the intersection of row k and

column Z. 1's and -1's are blacked and blanked, respectively. The re-

sults in a 2-dimensional case can be easily extended to any number of

                               'dimensions. .                                                           '
                                    '                                          '               '                      '                             '                                                              '                '
    '                                     '
3.6 Rotation by Multiples of 900, Symmetry Transformation, and Exchang-
                                              '
ing 1 for -1(G3)-Invariant (WHT) Power Spectrums
                                                      '                                 '         tt    Let a horizontal symmetry transformation operator on an input pat-

tern X be denoted by gh, Gh={gh,gh2}, a vertical one be denoted by gv.
                            'Gv={gv,gv2}, and a diagonal one be denoted by gd, Gd=={gd,gd2}• Then
            '                                                       'gh2. gv2, and gd2' are identity operators. symmetry transformation of

an input pattern yields only sign change of some (WHT) coefficients, and

                                                 'does not have any other changes because of the symmetry of row vectors
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power spectrum.
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                                                               '                                                   '                                                        '
                                     '                                 '                                                     '
                                '                                                              'H(n.k?. Hence, squares of the coefficents are invariant to symrnetry

transformation. Therefore the set {w2(i.if',xJ} is GlzxGv-invariant. Let

goO rotation operator be denoted by g? and G?={g?,ev2 .g?3 ,g"4}, then g?4

is an Å}dentity operator. We notice that gd and gve operate only on a NxN

square matrix x(lv==2n]. •. , •'  •
    Zt is seen in FÅ}g. 3.5 that gi7 is equivalent to gvogcZ and gdogh,
                  '                                              'that is,
                                                             '                                                                      '
      g?oX=gvogdoX==gdoghDX.                                                                   (3.54)
                                                                  '      '                     '                                      'Therefore we have

      wra, g', xo -nt (a, g', x2) -nt (g', a, x3) •

                                                                        '               -m I W(g',iJX), if• 2 Z.-3 i(k) is an even number

           . t-w (g•. a, X), othe rwise .                                                                   (3.55)

                                                                 'where xl=gceDx, x2=gdox3, x3--ghox, i= 2 Z;3 2k irk), i(k)=o or 1, i=o,1,

"--
,2n-.1, g'=o,1,- -,2n-1. Let G3=GhopGvptGd,. then it is known from (3.54)

that Gr is included in G3. From (3.48), (3.51), and (3.55) we obtain a

GlaGZQG3-invariant power spectrum F(1ooZop3)--{sCa,g')} defined by

 ' ' ' Fl (q Ci, g'). qrg', a) ). if i>g'
                                             '      '      s(i.g')= qCi,g`), if i=g' . . •
   '
               F2(q(i.g').g(g',i)). if a<g' . .. (3.56)
                       '                            '                                          'and
                    '                 '
        '' '  PaV= 2 sEF(iQz&3) s`= 2 gGz]axz) q- Z a."-o 2 g•-"-o pra,g') ..' (3..s7)

where the g(i.J'? are in F(IQZ) and Z--2,22. . •'
                                                            '                       '                          '
    Geometric patterns are often drawn by using 1's and -1's which cor-

respond to blaek and white points, respectively. Let ge be an exchanging

operator l for -l and a4--{ge,ge2}, then ' . ' ' •
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                              CHAPTER3 • -72-                                         tt                                  tt                                    '                                 '                                                  '                                                         '                                        '                                  '                                   '                                                    '                              '
                                                      '                                       '      geOX--X. PilrXl)----NrX) . • . ,' (3.58)
                      'where Xl--geoX. From (3.58) it follows that the w2ri,g',X)'s are invariant

to exchanging the sign of an input pattern. . ,
    The aspectg of group--invariant pov}er spectrurns described above are

shown in Table 3.1. The marks o and@ are used to show whether or not

the famUÅ}es of sorne group--invariant functions have equal values with

respect to input patterns Xl,X2,---,X12 in the same column. To take Gl-

invariant power spectrum PrX), for example, P(Xl)=PrX2)=P(X4)--P(X5]=P(X6)

and PrXl)7P(X3)7eP(X2) in general. It is observed from Table 3.1 that
                                                          '
the GIQG2QG3-invariant power spectrum F(IX2Q3) is a developed power

spectrum to be invariant to translations, enlargements, reductions,
                 '
symmetry transformations, rotations by multiples of 900, and exchanging

the sign of an input pattern. ' ' ' .
                              '                                                                       '                        '

3.7 Enlargement and Reduetion(G2')-Invariant (WHT) Power Spectrums

  ' Enlargement and reduction have been already defined in the foregoing
                                 'section. For instance, reduction of Xl yields X2 in Fig. 3.6. Such a

                       '
definition makes mathematical analysis easy, but does not make natural

sense for man. Therefore the definition is newly introduced in this
         '                '                                                                   .            'section as shown in Fig. 3.6. An input pattern X is called a 2Z-time

                                                                       '                                                        .enlargeable pattern, [i.f X--[U,p], u=[x(o).xrO.---.xr2n T2'-1)] and . '

      0= [O,O,-- -• -- ', O]. • • (3 .59)                      '                               '

    For example, x=[12oooooo] is a 22-time enlargeable pattern, but x==

                                                                    '[O1200000] is not. A 1/2i-time reducible pattern ls defined in the same
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    Table 3.1Aspects of group-invariant power spectrums and other

   group-invariant families.
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                                                      '
                               '                                                      '                                              '                                       '                                                                         'manner as that of the foregoing section, that is, an input pattern Y is
      .al/2Z-time reducible pattern, if •
                                     '                   --      Y--[y(0)1.yC2Z]1,----,y(2"-2Z)l].,1==[lttt.1]. (3.60)

                     ' 2Z..
                                                                        '                                                                        '
A 2Z-time enlarged pattern of X and 1/2Z-time reduced• pattern of Y are

                                  'defined as [x(0)1,x(Ol,---,xr2n-Z-1?1] and [U'.P], respectively, where

      u,--[yro),yr2a),---,y(2n-24], 1--[z,1,--.-,1] . • •
                                        L-M.V
      0=[O,O,----,O]. . 2Z • (3.61)
          N---V" '                  .                                             '
                   '        '
For instance, the 2-time exlarged pattern of X==[l2000000] is [1122000],

           2and the 2-tÅ}me enlarged pattern of it is [lll12222].                                                            Reversely the

1!2--time reduced pattern of Y=[11223300] is [12300000] and so on. Under

the definitions there is obviously no enlargement and reduction-invari-

ant power spectrum, because the average power of an input pattern itself

is changed by the transformations. Therefore we give up to obtain an

enlargement and reduction--Å}nvariant power spectrum and try to get en-
                                                                'largement and reduction-invariant functions from the second-degree terms,

              --    Let the 2Z-time enlarged pattern of 2Z-tlme enlargesble pattern X be

                   --Y, then Y is a 1/2Z-time reducible pattern and 1/2Z-time reduced pattern

of Y is X. X and Y can be expressed as X=[U,e], Y=Uop1, where ' •• . .
     '                                                                        '                             -•                          n-z      U--[x(0),x(1),-----,x(2 -1)], e=[o,O,-- ,O] •

    ' 1=[1, 1,---,1]. . 2n- 2n-Z (3.62)
          V--rr--v . .               '

                                     '                                                     '                                   '                                                                    '     'The (WHT) of X is as follows: . • . . - .
                                                        '                                                                   '                                                             '                                                                    '      PV(X] --(1/Al] X•i7 (n) -- (1/Al) [ U, 0 ] • rH ri) Xll rn-i) )
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                                                    '
            '
          =(1/N] [ U, 0] ff (n-a), ff (n- i)l [
                                    lll
                  ' -H(-n:iL,=HIIn:UPI H(n-i)

                        ---- '- --- 1
                      ---'---T---
               • ll (n-O i-ll rn-V
                                     t
            --rl/Al) [U. ff(n-a), U-ff(n-i),---, U.H(n-i?] . .

            =(Z/N)ZQ(U,ff(n-i)) • (3.63)
                                      '                                                                'where
                                              '                                                       '       1--[1,1,----,1] (3.64)          L----yl'-V
              2Z

From (3.63) we have .     W(k'X)=l,u:SlxU?,OS..t-hi:-klr-'2ÅíLelemgnt of rl/Al)U'El(n-a?, 0gkl2"-1-31.6s)

                         --                                                    '                       .                     n-zwhere Z is k rnoaulo 2 . Regarding Y, from (3.33) we have
                                                                     '             .      N(Y) ==(2Z/N) (U•H(n-a))X[1,O,--,O]. ' (3.33r)
                            v.r7v' '                   ' 2Z .
                                       '                                        '                                             '(3.63) and (3.33').lead that '                                 '                                                              '                t-    '  ' w(k, x) =[ 2,Z 'Z [k'.Xli[l: .if k=2Z 'Z . ' ' •.• (3.66)

                                           '                   .                                                                   '                 n-zwhere Z==0,1,---,2 -1. '' •                   '                                                                     )
   .These aspects are well-illustrated by uttlizing the matrix C(X)

defined already in the case when n--3. Let X be a 2-time enlargeable

pattern, and let Y the 2-tirne enlarged pattern of it. Then we have

             w(4, Y), 0,w(6, Y],0 2w(2. X).0, 2wr3. X),0 '
                                 '
      cry) --• w(2, y), o. o '.o -- 2w rl. x), o, o ,o

                  '               o .o. o ,o x 0 '0' 0 '0
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      wC0, Y) --2zu(0, X), wrO, X? -Ro(4, X). wr1, X? -v(5. X),

                       '      w(2.x]-rw(6,x). wr3,x]-fzu(2, x), 2 k--2o w2(k,y)---2 2 k=7o w2(k,x) . (3.67)

Let X be a 22-time enlargeable pattern, and let Z the 22-time enlarged

pattern oÅí it. Then we have '
                                                 '
          . r4, Z], 0, 0.0 4w (1, X), 0, 0,0
                          '
      erz)= o ,o,o,o = o ,o,o,o
               o ,o, o.o o ,o, o,o
      wro, z)=4w(o, x), w(o, x) -v(2, x) -T :zor4, x? -Tzu(6, x),

      wa,x)--,(3, x)-.w(s. x]-:-=w(7,x), 2 k.7o tu2(k. z)=4 2 k=2o w2(k, x). (3.6s)

(3.67) and (3.68) are obtained from (3.65) and (3.66).

    Furthermore, it follows that
                                                                '                                 '     p(s, X?=2gS•:-3 p(g', X) (3.6g)
where X is a 2i-time enlargeable pattern, and n-a+IEssn. The following

formulas are asymptotically led from (3.69):

                      .' p(n-a+i, x)- 2 ,".:-S p(g', X)

      p(n-a+2,x?-- 2 g".;S+1 pcg',x)=2pcn-a+1,x)

          "-- ---t-
              .      p rn, X)= 2Z .p (n-i+1, X) . (3.70)
From (3.65) we have '
      p(o, yJ=221•pro, x), p(s,y)= {o2,2i;.:r:/.-zg/texi). if a+issin

                    .      2 .-n-o p (s, y) m-2z 2. e-o p rs, x) . (3.7o
                  .when Y is the 2Z-time enlarged pattern of X•. In the case when n=3 and

i--1, we obtain ' '
      P(X)=[p(0, X],p(1, X).pr2, X),pr3. X) ]
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          =[p (0, X).p(1, X),p(2, X) ,p r0, X) +p C1, X) +p (2, X) ]

      P(Y] -- [p(0, Y], 0,p(2, W,pr3, Y) ]

                                                          '
          --[4p (0, X), 0. 4p (1, X), 4p (2, X) ]. . • (3.72)
                              'These aspects are Ulustrated in Fig. 3.6 in the 2-dimensional case when

n=m=3. The values in Fig. 3.6 are the p(i,g') multiplied by 642 for sim-
 '                   '                       'plicity. 1's and O's are blacked and blanked, respectively,                                                                  and we

should notice that O's are used in Fig. 3.6 instead of -1's.

    Let P'=[zp'(0),p'Cl).----,p'rn)] be defined by
      '      p'(o) -.p (o) 2/A 2, p 'rs) -r) rs) (p (s)- 2 g. -S-do lp rg' " /A2 (3. 73)

                                             --where s=1,2,----,n, and A= 2 gn.=o p(g'). Then 2Z-time enlargement and 1/2Z-

                                             '
time reduction of an input pattern cause shifts on P' by i elements

toward the right and the left, respectiveiy, except P'(0). P'(0) is

invariant to the transformations. Therefore translation, enlargement,
                                    '               '  '
and reduction-invariant functions are obtained as

      q'ro)-.p'(o), g'(g')--Fg'(p'(1),p'C2),---,pg(n)), IEgL<n. (3.74)

We note that {q'(g')}(g'=O,1,----,n) is not a power spectrum. If we treat

an input pattern whose elements have only the values of 1 and -1 and

redefine enlargement and reduction by changing O for -1, then we can get

a translation, enlargement, and reduction-invariant power spectrum. In

the 2-dimensional case P' is defined by '
                    '      p'(s, t] -=-p 2. (s, t) <p (s, tJ- E i.. pri, t" (p rs. t)- 2 g..t prs, g'))/A4

                                     '                                                                   (3.7S)

                                                                       '                                                                        'where s= 0, 1, --- -, ns t= 0, 1, ---, m; and ' •
                                                                    '                                                                  '      A=2a-n-oEg.M=o p(i,J'). ' ' ... • (3.76)
                                           '                                                                'Let G'2 and G'22 be defined in the similar method to those of the fore-
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going section. Then the {q'(i,g')}, defined by replacing l)(i,g') in(3.48)

and (3.51) with the p'(a,g'), are GIXG'22-invariant and GlgG'2--invariant,
                                               '                           '                                                              'respectively. GlosG'22gG3-invariant functions and GlopG'2paG3-invariant

functions can be also obtained in the same way as those of the foregoing

section. The aspects of these group-invariant functions are shown in

Table 3.1. The above diseussion has been restrÅ}cted to real-valued input

patterns and functions, but they can be easily extended to eomplex-val-

ued ones [36], [37].

3.8 Complex-Valued Walsh-Hadamard Transforrn

    (WHT) whose elements are Å}1 has been discussed above, but in this

section complex--valued (WHT) is introduced. In the former ease one can

                                                    Å}neasily define the transformations in the form of 2 , but in the latter

                                             Å}ncase the transformations in the form of k . Now we can also get the-
                               '
(WHT) power spectrum invariant to translations, enlargements, and reduc-

tions in the form of kÅ}n. Then the above discussions ean be considered

as the special case when k=2. Let g and R be defined as:

      z---eosC2rr/k)+g'.stn(2rr/k), g'2--1

      R=H a. o= cl, g, g2, ---, gk-1). • (3.77)
                                        '                                                   '
Complex-valued Hadamard matrices can be recursively generated as fol-

lows:

      flro)=[1]

             H(n-1), Hrn-1),---, fl(n-1)
      Hrn) -- H(n-v, g.ll rn-o, -- .•, gk-i •Hrn-v .z7" ro .

               --- ---- ---- d--                   ) )o
                     k-1                         •U rn- O,---, g•ll (n-V (3. 78)             H(n-17,g
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where 17nrl) is the n succesive Kroneker product of a(1). Let H(n,a)

denote the a-th row vector of HCn). ll(n) is an orthonormal and symmetric

matrix, that is, U(n)'H(n)t=N'E(n), and Hrn)t=H(n), where N--kn , E(n) is

.a".pCll2ilggXli.Ml.t:X. ,.7."d "L-:' means a conJugate matnx or vect... g(v i.

            .1. 1, ------,1 RO .

             RR                                                  '          '                  •2      Hrl)= RkR --R •                                           '      '
                 -----                               --               '       '
                           '                                 k-1 •             RXR ab---- abR R •                                              . (3.79)
                                                             .where "*" means the product of corresponding elements and RZ means that

each element is raised to the a-th power. Complex-valued Walsh-Hadamard

transform (CWHT) of an input pattern X is defined as:

      "rX)=(1/ru)X•H(n) . (3.80)                                     '                                                     '                                                   'where W(X)=(wrO,X),w(1,X),---,w(N-1,X?] and Al=kn. The inverse transform

                                                           '
                                '
                     '                                            '                      '      X=W(X? •ll(n). • (3.81)
From (3.80) it follows that
                              '
      ptX)•N(X]t=(1/N)X•-Xt. • • (3.82)
                                 '
Fast algorithm for (CWHT) is nearly equal to that for (WHT) [44]. The

some properties of compiex-valued Walsh functions and Hadamard matrices

are related in [36]. These aspects are shown in Fig. 3.7 in a simple

example when n--2. k--3.
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3.9 Translation(Gl)--Invariant (CWHT) Power Spectrums

    In the complex --valued case we can also obtain the eorresponding

power spectrum to that developed by Ahmed and others [34]. Let g(Z) be a

translation by Z elements, then gCZ)OX is the translated X by Z elements

          'ruxN-matrices Trn) and Mrn) are defined as:

         '             010----0 00----0

             002---0 00---0
      T(n)= --- , M(n)= ---

             000---1 00- -- -•0
                                          '                                                           '
             100---0                                                                 (3.83)                              11----1

         n          . It is plan to see that Trn)=T(n) and MCn)==M(n).where AT=k

                   z      g(Z) OX=X.T (n)

      W(g (Z)OX) =(1/N) X•T (n) Z•H (n)= r1/IV2) X•H rn) •H (n) •T (n) Z•El (n)

               =rW(X) (1/AZ) fl (n) •T (n)Z•ll rn). '                                                                 (3.84)
                                         '
Let A(n]=(1/Al)H(n).Trn).H(n). Now !et us consider the matrÅ}x A(n). The

product ''*" of an ZV-vector and an NxAl-matrix is defined by the product

"*" of the vector and the each row vector, which is defined already.

                                             'Then we have

      T(1) •U (1)=R abH (1) (3.85)                                                                 '               '                  'henee

      T(n) •fl (n) -r={? Cn) • rH (1? &H (n-1))

     = IZ' Cn- 1) •El rn- 1]. IZ' (DJ- 1) •Hrn-- 1), ---, T(n-O .El rn-V

         T(n- 1) .ll (n-- 1), g•T(Al-o .H(n-o, ----, gk-1 •Tcn-o •ff rn-1)

              --- ---- -- --- -- --t                      J )J
                        k-1                           •T(N-1]•HCn-1),---, g•Trn-1).H(n-1)         T(n-1) •ff rn-1), g

.
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        ROptM(n-o Rlau(n-o

     - Ri&lfrn-v + R2swr(n-o

         '

        Rk-lxM(n.-v ROaurn-1?

    =H (1]Q(Iz'(n-1) •Hrn-v ) +(R-RO) x [RO, Rl ---, Rk-1 ] topM(.-v

    --H (1 )e (T rn-1) •fl rn- 1J )+( rR--RO) XH (1) ? gpt4 rn-1)

    --H (1]x (T rn-1] • ff rn- 1] ]- rT (1) • ll rl ] -ff (1] ] XM rn-1]

    =llrl)e(T(n-1) •H(n-1)-Mrn-1))+(TrO •H(1))eM(n-1). (3.86)

Here one should notice that the last row vector of Trn-1).H(n-1) is El(n--

1,0)=[1,1,---,1], since the first row veetor of H(n-1) is fl(n-1,0).

   Let A==[{a(i,u')}] and B=[{b(i,g')}] are AllxAll-matrices and C and D are

N2xN2-matrices, then we obtain

                  a(1, 1) C, --, a(1. ATVC brl. VD, ---,b(1, All)D

    rA.B)x(C.D)-- --•- ,--, --- --- ,---, --..
                 a(Nl,OC,--,a(Nl,rv1)C hrNl,1]D,---,h(All,IVI]D

              --- (AeC] rBXD) . (3.87)
From (3.86) and (3.87) we have

  A rn) =(1/AT) fl (n] •Trn) •fl (n)

      =(1/N) (fl(1)Xll(n-V) rff(1]e(T(n--1) •Hrn--1)-Mrn-1)]+(T(1) •Hrl))aM(n-1))

      --(1/N) rkEr1)Q(ll (n-•1) •T(n-O •Hrn-1) -ff rn-1) •M(n-O)

            1. 0. 0. --, 0, 0

       + k 0. g, 0, --, 0,0 8 rH(n-1) .M(nLl))).

                       k-1                                                          (3.88)            0. 0, 0, --, 0, g

Let D(n-1.i) be defined as
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                 n-1     D (n- 1, a) =(1/k                    ) (H Cn--1) •T(n-1) •fl (n-V -Hrn-1) •M(n--V

               '     , +gZ•ll(n-1),M(n-1)] . (3.89)
                                   'where i--0,1,---. k-1. Then we have
      '
    . ' D(n-1.0), 0 ,-,0
     A(n)= 0 ,D(n-1,1),--,0 ,
                                       '
                                    '              ---- ) --.- o--)--

               0 , 0 ,--,D(n--1,k-1] (3.90)
that is, A(n) is expressed by the direct sum of D(n-1,0),DCn-1,1],---.
      '
D(n--1.k-1). On one hand we obtain

     D(n- i, i) •D(n-i, i) t--(i/kn-i) 2H (n-o (Trn-o •H(n-o+(2-oM(n-i)) •

                      (fl (n--1) •T(n-1) t+ (-gi-- 1)M(n-- V t) •H(n--1). (3.91)

Since T(n).Trn)t=E(n) and the row vectors of fl(n-1) are orthogonal, we

                                                               '

     Trn-1? •ll rn-V •Hrn-V •iz7rn-1) t=kn-IErn-o

     (gi-0T(n-1) •H(n-1) •M(n-1)t

    --kn-i(g-'i-vT(n-o o,---,o,i =kn-i(gi-v o,---,o,o

                       0, ---, 0.0 0, •- •--. 0,0

                        ---- ---
                       0, ----, 0,0 0,----. 0,1
     rgi-1)M(n-1) •H(n--1) •T(n-Ot

    =kn-i(gZ.-o o.---.o.o Trn-ot =kn-i(gZ-w                                              0, ----, 0. 0

                  ---                                                ---
                0, -- -. 0. 0                                              0, --• -•. 0, 0

                Z,'--. 0,0 0, '--J O,Z
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      (zZ-o(g-i-vMin-o.Mrn-.ot,=kn"lr2-g-Z-gZ) o,---.o,o .

                     '

                                               0, ..- --'J 0' 0

                                               0, •---, 0,1 (3.92)

Hence
                       '
     D(n-i.i]•Drn-i,i)t--a/kn-i?2firn-okn-iErn-o•Eirn-o=E(n--o. (3.g3)

(3.92) is satisfied for any iri=0,1.---,k-1), and in the special case

when i=0 we have
                                            '
                 n-1    D(n--1, 0) --(1/k                    ) ll (n-1) •T rn-1) •H rn-1) --A rn-1] . (3.94)

In other words, A(n) is decomposed into the direet sum of k pieces of

D(n-1,a), furthermore D(n-1,0)=A(n-1) is also decomposed into direct sum

of k pieces of D(n-2,i). Thus D(m,0]Cm-r=n-1,n-2,---,2,1) can be decom-

posed into the direct sum of smaller matrices. From (3.84), (3.90), and

(3.94), we have
                  '
      of(g(1)oX)--pm(X)•A(n), it(J',g(1)oX)=N(g',X)•Drn-1,g')

      V7(i, g'.grl)oX) =N Ci, j, X) •D (i-1, s') (3.95)

                                                n-1                                    n-1                            n-1                                       •g' +1. ---, k •(g' +1 .' -- 1.      WCg', X) == [ {w (il. X) } ] Ol =k                               •o', k

      g'=0. 1, -- ---, k-O

                                                     '                                                        i-1                                        i-1                              i-1                                           . (g'-1) +1, ---, k .                                                            'e'-1,      "(i, u', X] --[{w ri 2, X) }] (a 2=k                                 • (g'-1). k

      g'=1. 2, ---, k•- O. - (3. 96)
Taking (3.93) into consideration, we have ' -
      p (i. g') -- Z i 2 lw (a 2, x] l2 .
           --W(a, g', X) •W(i. g', XJ t--W(i, g'. g(1)oX) •N(a. g', g (1)oX] t. .(3.97)

         '
                                 'Since we have
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      proJ+ 2i=ni 2 i'-.ii p(i,g')- 2 .iV.=dS lw(i.x)I2- 2 I.l=-S Ixa)g2, (3.gs)

the set {prO)}U{p(a,g')}(i=1,2,---,n, g'=1,2,----,k-1) is a translation-

                                  '                                     ninvariant power spectrum. Where IV==k . From the properties of complex-
        '
valued Walsh functions we get the expressions corresponding to (3.34)
and (3.35) for a ki-time enlargeable pattern X and a 1/ki-time redueible

pattern Y:

                       n-i      wrz, xJ =o, if z>k

                                             .      w(Z, Y) =0, if l is not a rnultiple of kZ. ' (3.99)
       'When Y is a ki-time enlarged pattern of X, we have

      w (Z. X) -.w (ki •Z, Y) (3.100)
where Z=0, 1,---,kn"i--1. Therefore ki-time enlargements and 1/ki--time

reductions on X cause parallel translations by i elements toward the

upper parts and the lower on P defines as follows, respectively:

          prO)1 pCn, 1),p rn, 2),---, prn, k-1)                                              enlargements              i !IN      P= '!,pllii)Ipl'i'i2)I---III'prlll-i)'retduc[ions (3•i6i)

                                                         '
The case when n=k--3 is shown in the following:

      P-'-- p(0)lp(3, Z),p(3, 2)
               l
               tp(2, 1],pr2, 2)
               {
               l p(IZ. Z,).pC1. 2,)

       "'01ig-iO-i!!,2-13--i4-iHgihe6!tlit8,hi9-2eal-22-23m2-4,-2s-2g

            tt -"--h` ---m-ts -L ---------•
                                                                   (3.102)

where prO2 and p(i,J']'s(i=1,2,3, J'--1.2? are the square sums of the cor-

responding groups, for example, p(0)=Iw(0)l2, p(2,1)=lw(3)12+lzo(4)12+
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lzur5)l2, and so on. Then we can get a av8G2-invariant power spectrum

{q(0)}V{q(Z,ve)}(Z=1,2,-- ,n, "=1,2,---.k--1) as follows:

      q(0J -'=P (0)

      q(Z, y? =FZ rprl, r),p(2, x), ----,prn, p)) (3.lo3)
where q(o)+2 zl-li 2 l::.-i qrz,r)- Zi:-ii 2 S•:-i pa,gv-2 {l•Z-l lxra)i2• The

development of the power spectrum to 2-dimensional case is easily led in

a similar manner to 3.4 and 3.5.

3.10 Conclusions
                                                                    '
    A composing process of sorne transformation group-invariant functions

and the application to the (WHT) power spectrum have been presented. The

main idea is to find a permutation group on a family of some functions
                 'caused by the transformation operatÅ}ng on an input pattern . Using the

process, the (WHT) power spectrum are developed to be unchangeable by

translations,' enlargements, reductions, rotations by multiples of 900,

and symmetry transforrnations. Using polar coordinates (ce,e) instead of
          '
orthogonal ones, we can define any rotations besides rotations by multi--

ples of 900. Then every rotation may be regarded as translation toward
            '
e-direction and enlargement and reduction as exponential shifting toward

r;-direction. With of this convenience the new problem arises, that is,

how to define translatÅ}ons of the elements of an input pattern. We have

the alternative of orthogonal or polarcoordinates, complying with needs.

    Since the power spectrums may be regarded as aproper subset of a

group-invariant complete system, it cannot perfectly make distinctions
                                                                 '
between the group-nonequivalent patterns. For example, JP is translation-
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invariant and also sign exchanging-invariant at the same time. But gen-

                                  '                                                 'erally it seems almost impossible to make up a group--invariant complete

system of hardware when the number of functions in the system is taken

into account. Therefore it becomes very important to select appropriate-

ly a subset of the system. We mainly adopted power speetrums, but it is

                'also possible to adopt any other functions besides power spectrums. As

seen in 3.7 there is no group-invariant power spectrum in some cases.

This depends on the transformation group. Although this chapter is lim-

ited to the applications to the (WHT) power spectrums on a discrete
                                      '
input space, the discussions will enhance the further research of group-

                                                             '                              '                                                                   'invariant' functions.
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                            CHAPTER 4

FOURIER SPECTRUMS INVARIANT TO CERTAIN TRANSFORMATIONS

4.1 Introduction

    Fourier stnusoids are used as partÅ}al functions in this chapter.

Fourier spectrums (not power spectrums) are developed to be unchangeable

under several transformations such as translations, enlargements, reduc--

tions, and so on. Although the Fourier transform takes more computation

time than the Walsh-Hadamard transform, it is more convenient in treat-

ing general transformations. Fourier power spectrum, auto-correlation

function, and the (WHT) power spectrum developed in Chapter 3 are trans-

lation-invariant. But they are not translation-invariant complete sys-

tems. The spectrums proposed here are transformation-•invariant complete

systems, and preserve any essential Å}nformation without any loss. There-
                         '
fore (a representative of the class of) an input pattern can be regener-

ated through the inverse Fourier transform. Parameters introduced here

represent the degree of transformations, so they can be used for normal-

ization of an input pattern. The normalization is less affected by local

distortion and low energy noise, since the Fourier transform is a global

transform. Through computer $imulation these aspects are shown and the

efficiency of our theory is confirmed.

4.2 Input Patterns and the Fourier Transform

    Let f(x)(-co<x<co) be an input pattern, and an AI-vector X=[f(x(0?),

f(xrl?), ---. frxrN--1))] be the sampled input pattern, where x(i)-r=i/N.
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                                                         '                                '                                                                 '                     '                                                       '
We suppose the following two cases: • '
                                                                 '(1) fCx) is a periodic function with a period 1,

(2) frx) is an aperiodic function, and fCx)==0 for any x (x<0, x.>1).

In both cases'transformation-invariant functions are obtained in the

similar way. Fourier spectrum Frk)(k:integer) means the former case and

Frg)rg:reaV does the latter. Fourier spectrum can be computed in a

short time by the fast Fourier transform (FFT). '

  ' HeFe one problem rises when we treat such transformations as en-

largements and reductÅ}ons. It is Ulustrated in a simple example. In Fig.

4.1 f2(c] is the 2-time enlarged pattern of fi(x). Xl and X2 are the

corresponding vectors, respectively. Almost all computer simulations on

picture processing deal with sampled patterns on a mesh space. Then it

is more natural to consider X3 as the 2-time enlarged pattern of Xl. For

another examplee the 2-time enlarged pattern of X4 is X5. Therefore in

this chapter we deal only with step functions whose values does not

change within sampling intervals. The FFT can not be applied to this

case as it is. But with a little contrivance it becomes appiicable and

saves us very much eomputation time. Let Jf(x)eF(k) be the Fourier

                                            '      ;1:j-Im SiinfS;eklljl'li.k,1 , {s.;s ,,.,,,,f::z;.;gij2'Tkx,k,

          =(i/g'2Tk] Z Y:-io' {tsx(a+o)-frxa))}e-g'2Tkx(i)

           rkso. xrN)-ncro),g=-v .
      F(0)==rl/ru]2ij:-Z f(x(a)]. . . (4.1)
 (4.1) means that l7(k)rklO) is the eoefficients divided by J'2Tk which is
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obtained from the discrete FourÅ}er transform of difference between adja-

cent sampled components. That is, the FFT becomes applicable when IV=2n.

    '                                         '                                       '       '                  '                     '
                             '
4.3 Translation-Invariant Spectrums

    Zn this section a translation-Å}nvariant spectrum is obtained. For

simplicity, the discussion is restricted to a 1-dimensional case, but it

is easily extensible into higher-dimensional cases. It is well known

that auto-correlation functions Off(T) and the Fourier power spectrum

IF(k)l2 are translation-invariant. When f--f(x]f(cc+T) and arithmetic

  'sumnation Z is exchanged fox integral f in Corollary 2.9, fl and Åëff(T)

are,the same. ÅëffCV and IF(k)i2 are a Fourier transform pair and both
                                  '                                         ,of them reserve only amplitude information and no phase Qne. In other

words, they are translation-invariant, but not translation-invariant

complete systems. '
                                           '                                                           '
    To construct a translation--invariant complete system, we examine
                                                                '                                                     'changes of the phase angles caused translations of an input pattern. Let

Fa(k) be the Fourier transform of f(x-a) which is a translated pat-

tern of f(x) by a.
      Fa(k)= f. tf(co-a)e-g'2ffiC`nczx==e-0'2TakFrk) ' (4.2)

                                                       '(4.2) means that amplitude components are the same and phase components

change by --2Tcxk. As a calculative resu!t of a phase angle, [ai;grZ7rk))-

2Tak]2T is obtained, VJh.ere czT)gr) means an argument and [ ]2rr does mod

2T. Since the interval (0<--x<1) is an object of our discussion as the

domain of an input pattern f(x?,the phase angle of Farl) can be consid-

ered a parameter of location of an input pattern. Using this fact, a
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translation-invariant spectrum is constructed as follows:

      IF$ (k] l-1F (k) l

      at7g(z7s(k))=[aveg(F(k)?-k(avgrF(1))-T)]2. (kSO)

      Fs(0)--FrO), As--[apmg(Frl))]2/2T (4.3)
Fs(k) is the Fourier specturm which is translated so that a?g(Fs(1])--T.

This has close relations to translating the input pattern f(x) so that

the center of gravity may be O.5. As can be regarded as a parameter of

location of an input pattern and 0;!As<1. For example, for X=[11000000],

z7(O=o.ooso7eJ'7T/4, a?g(z]rl))-T--3T/4, therefore As--1/8(=the center of

gravity) and the pattern is translated toward the right by 3 elements(=

3T/4Å~1/2Tx8). Through the inverse Fourier transform of Fsrk) the input

pattern [OOOIIOOO] is obtained, and the center of gravity is O.5.

    It is proved as follows that Ps(k) is a translation-invarinat com-

plete system:

(Proof) Invariance:Let f(k)eFs (k]. For amplitude we have

      IF$ (k) l-IFa (k] l-IF Ck) l. (4 .4)
                                                           '
For argument we have

      a?g rFs (k) )=[aor7g (Fa (k))-kra?g rZ7a (O )-T) ] 2.

                --[aor7g(R(k))-k(aor'g(F(1)]-T)]2. (k7eO)

      Fs (0) =i7a (0) =F (0) . ' (4.5)
Completeness: Suppose that Fsl(k)=Fs2(k), and Fsl(k) and Fs2rk) are Fs(k
                                                           G
)'s obtained from G-nonequivalent functions f'1 and f2 (flSf2),                                                                  respec-

                                                              'tively. Let fl(x)eZ71(k), f2rec)eF2(k).

       IFI (k) l--lFs 1 (lc) I-IFs 2 (k) I-lF2(k) i

       [ar?g (Fl rk) )-k (F1 r1) -- T? ]2.= apg (l7s1 (k) )
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                                                   '
     =ewg(Fs2rk))--[aoog(F2rk))-k(Z72rl)-k)]2.. . (4.6)
                                             '                                                    'Hence
                 '          '
      fl (`c- (Fl (1)-T)/27T)eZPslrk) .

      f2 (x- (F2(O-T]/2T)e.ETs2(k). .' (4.7)
Since Fsl(k]--i7s2(k) from the supposition, we obtain
                                                               '   ' fl(x-rF2(1)-T)/2ar)=f2(x-(,E'2(lj-T)/2T).. (4.8)
(4.8) means that fl-G'f2. [Ehis Å}s inconsistent with the supposition. QED.

    Deciding the phase angle of F(1), the input pattern is reproduced

                '      'through the inverse Fourier transforrn. Though the phase angle of the
                                             'frequency 1 is picked out as the standard on the above, that of another

frequency k can be adopted, too. For instance, we cannot but do so when

IFrl)l=0. Note that the decision of the phase angle has the freedom of

k.. To utilize the phase angles for normalÅ}zation of an input pattern,

the freedom is got rid of by adopting several phase angles of the stand-
                                                  '
ard patterns at one time. The example of a translation-invariant spec-
                                                                       '
trum is shown in Table 4.1. The parameter As expresses the location of

an input pattern. The normalized patterns f(x--0.5+As) by using As are

the same for the three input patterns, and so are the translation-invar-

iant spectr um Fs (i) 's (a--0, 1. 2, 3) ,

                     '
  '

                                                '4.4 Enlargement and Reduction-!nvariant Spectrums

    In this section two kinds of enlargements and reductions are intro-

duced, and we obtain the spectrums invariant to them. First, we consider

periodic functions with a period 1. When f(x+1/b)=f(x) for an natural
                                         '                        'number h and an arbitrary real number c, we say that f(:) is h-time



Tab1e 4.1. An examp1eof translation-invariant spectrum.
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0.613eg'0•262Å~2T

0•613eg'0•642Å~2"

0.233

0.358

0.25

0.75

0.75

g'6.070.318eg'6.020.318eo.3iseg'6•07

3

0

 f(x-- 0 . 5-l-As )

f(x)

0.262

-- 0 . 5•-- As

IX

all;
NV

I2

)

l

eu
t
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                                                     '                                                                    '                                               '                               '            '
           '                                  '                                                                   'enlargeable and f(x/h) is the b-time enlarged pattern of f(x). It is

conversely said that f(x) is the 1/h-time reduced pattern of f(:/b). For

instance, [Ol230123] is 2-time enlargeable, and the 2-time enlarged

pattern is [OOI12233]. Let f(x)eF(k]. f(x/h)eFbrk], then we obtain
      e`k:-lol,fiX,i.e]l'i;Y.;!;=,l.,-S•:-loin,,rZ'l.%/.9(co)e-j2"kxdu..

          --a/b) foif(x/b)e-g'2"ke/b z //:-io e-g•2Tki/bdu. (4.g)

                                                               '

    . 2 bi:-lo. e-2"ki/h=.[i;; i[hi.[:l.,g,M"itiPi9 0f b . (4.io)

               'we have
                           '                              '
 . F(k)----{Zl,ICig hh).;.l.,f.lr is amultiple ofh .. (a.n)

                                                '
SayÅ}ng in other words, a h-time enlargement of an input pattern causes a

translation of frequency components F(k?'s into F(k/h)'s. This is shown

in a simple example of Table 4.2. .
- Let the abscissa be Zog k and the ordinate be F(k), then a h-time

enlargement becomes a translation by -Zog h. We can construct enlarge-

ment and reduction-invariant fucntions, when translation-invariant func-

tions are composed on such an axis of co-ordinates. For example, let us
                                                        '
i::ZiiXC;.g?largement and reduction--mvar!ant functions by the method of

                '
     F'=={F(0), 2 k--co1 F(k), F2(oJ, 2 k,co.1 F2(k)? 2 k.co.1 F(Z•k)F(m•k),---}

     (Z=1,2,---, m==Z+1,l+2,--•-).• . (4.12)
    Aceording to the above definition, the 1/2-time reduced pattern of
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Table 4

Fourier

.2. 2-time

spectrum.

enlargement and change of

Inputpatterns F(0)F(OF(2)Fr3]Fr4)
[12301230]

[11223300]

1.50-0.6370--0.318g'v/1.5-0.632-0.318g'0.2120

2

    Xl

Fig. 4.2.

      22
M' 22
       X2

Two kinds of

      2

      X3

reduced patterns.
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    1                                                             '                                                         '
Xl is X2 as shown in Fig. 4.2. Such a definition makes mathematical
                                                      '
analysis easy, but it is unnatural for human feeling. It is more natural
                                                                       '
and moreover has wider practial application areas in pattern recogni-

tion and picture processing that we define the 112-time reduced pattern

                                                                 'of Xl as X3. Let f(x)--0(x<0, ls-x), the Fourier transform of f(x) be Z7(g),

and the eentral frequency c be defined as foUlows:

                .      e:Q(e)=P/2. ere-e)<P/2 (e>02

      ert)-f-ttlp(g)12dg (t>o)

                                             tt      '   . P=Q(co)==f,ilf(oo)12dn' ' (4'13)
An input pattern f(ec) is always 1/b-time reducible (h>1). f(hxJ is call-

ed the 2/h-time reduced pattern of f(x?.'If there exists a real number

                                                             'asuch that '
      f((x-a)/h)=0 (x<0, 1<.x, lal<1) (4.14)
                                                                '                                                                  'we say that frx) is h-time eniargeable and fr(c-a)/h) is the fo-tÅ}me

enlarged pattern of f(x). For instance, [O1230000] is 2--time enlargeable,

                                '
and the 2-time enlarged pattern of it is [OOI12233]. For simplicity,

suppose that a--0, and let us investigate the change brought about b-time
                     '                                                                   tt                                                             'enlargement. Let f(x)eFrg), frx/b)eFb(g), then we have .

      Eb (g) --foco f(ec/hJe"j2TgXdu=b •Frhg). (4.is)
                                                             '    Let the central frequencies of f(x) and f(x/b) be el and e2, respec-
                                                          '                                   '          'tively. .
      el :f..e.11I F (g)12dg=p/2

      e2:f-e.221 ph (z) l2dg--bf.bbe.25 F(gJl2d2=pb/2 :h•p/2 .

      Ph= f- ggIPh (g)I2dg-h f-ggIF(g)I2dg =b-P. '. (4.16)
                                                          '
Hence, it follows that el=b.e2. In the same way as the parameter As of
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                                                     '
             '               '                                                                        '                                                        '
the pattern location is obtained from the phase angle of frequency 1,

the parameter Ae of the pattern size is done from the central frequency.

Let the central frequency of the standard pattern be eO, then the enlar-

gement and reduction-invariant spectrum is got in the following equa-

 .t-on:

      Ae =eO/e

      Re(g)--F(g•e/c0]/P

      p= f,i lf(g)i2dg-- f- ggIF(g) l2dg. (4 .l7)

Where f(x) and K'f(x) are included in the same equivalence class. For

example, [12300000]=[24600000]. This means that the pictures of photo-

graph and TV are in the same equivalence class, even if the brightness

                                     'is changed.
                                                                        '
    It is proved as follows that Fe(g) is an enlargement and reduction-

invarlant complete system:
                                                                        '
(proof) Invariance: Let f(x)eF(g), f(x/h)eRh(g), and Ph, P, el, and

e2 be defi.ned in (4.16) and (4.17), then '
      Fe (g) =Fblg• e 2/eO) /Ph --F (g- el/e O) /P. (4.18)

Completeness: The proof is done by a reduction to absurdity. Let Fel(g)

and Fe2Cg) be Fe(g)'s obtained from G-nonequivalent pair fl. f2 (flSlf2].

                                                   'and cl and e2 be the central frequency of fl(ec) and f2(x), respectively.

Suppose that Fel(a)--Fe2(g), fl(x)eFl(z), f2rx)eF2(g), f3(x)eFel(g]--
                                                             '                                          '
                                                                   '              '    '            '
      f3(x)eZ7e1(g)--Rl(g•e1/e0)/Plofl(x/h1)/Ch1,P2) (h1--e1/e0)

                           '      f3r`c)oZ7e2rg)=F2rg•e2/e0)/p2of2rx/b2)/rh2•P2) rh2=c2/e0). (4.Ig)

This means that f3(x) is the bl-time enlarged pattern of flCsc)/(bl'Pl),
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                                                 '                                                                  '                  '                '
that is, f3:G=f2. zn the same way it is obtained that f3:G=f2. since we

have flSf2, this contradicts to the supposition. . QED.
                                                                        '
    An example of an enlargement and reduction-invariant spectrum is

shown in Table 4.3. The changes of the Fourier spectrum and the central

frequency caused by an enlargement are seen in the table. FeCg) 's(g=0,1,

                                     '
--- , 4) are the same for the two input patterns. f(x) becomes f(x/h--a),

after b-time enlargement and translating by a. Let f(x)oRrg), then f(x/

h-a)ob•e-j2rrCthFrbg). First, the enlargement and reduction-invariant

spectrum Fe(g)=F(g.e/eO)/P is obtained. Next, the translation-invariant

spectrums are got by using the phase angle of Z7e(IJ. Thus we arrive at

a translation, enlargement, and reduction-invarinant spectrum. The
        '
above discussion is easily extended to a 2-dimensional case.

                               '                                                       '    '

4.5 Rotation and Other Transformation-Invariant Spectrums

    Rotation can be considered translation of the angle(e),' when a

2-dimensional pattern is expressed by polar coordinates (?,e). For an

input pattern fr".e), F(kT),ke) is defined as fo!lows, and such a pair is

                             'written f(p, e)4R(kor},ke): ' •
                                                             '                                                                 '      F(k?. ke)= yl,(foifror7, e)e-g'2"kbT'e"j2"keer)dr7de. (4.2o)

               tt
Let us note that (4.20) is different from the Fourier spectrum expressed

                                         'by polar coordinates. rn this' a phase angle is treated as if it is one
             '                                                         'axis of orthogonal coordinates. Therefore the same technique as used to

                                                  'obtain a translation--invariant spectrum is applicable for obtaining a

rotation-invariant spectrum. Let f(T,e-dJ<53,Fdrkz7.ke], then we have

      Fd(kr). ke) = .lol/ Jol if(i7, e-d)e-g'2"kror'e-g'2Tke e,,d.de--.-g'2TdkeF(ke,ke) .

                                                       '                                   '                             ' ' <4.21)



Table 4.3. An example of eniargement and reduction-invariant spectrum.

Input FrO)F(1)Fr2)F(3)F(4) c Z7e(0)Fe(OFer2)Fe(3)Fe(4)
patterns

[12500000] 0 .750.066-0.3180.128--0.159g' 0.854=eO o.42g0-e5B-o.1820.073-0.091g'
-0.61g'+0.lg' +0.348g'+0.855g'

XbO

x2Å~2 1/2

[11223.700]
1 .50-0.637-0.318g'0.2120 0.428 0.4290.038-0.1820.073-0.091g'

+0.348g'+0.855g'

a=>v
F--Ei

mpa

p

'

HoH
i
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                                                      '
                                                             '                                              '     '
In the similar way to 4.3, the phase angle of F(0,1)(kor?=0,ke--1) can be

regarded as the parameter of inclination. It is expressed as A?=ace9rF(0,

O). Let Ar?0 be the parameter of a reference pattern and Ar) be one of an

                                        '               'input pattern, ' then the input pattern can be normalized by rotating by
          '
eO(=Ar70-Aor)). Rotation of an input pattern by eO causes rotation of the

               '
Fourier spectrum by eO. Hence F?(kor;,ke) defined in the following ts a

rotation-invariant spectrum: '
                                                                      '
      FT(ki?.ke)=F(lex•eosreo)+ky•san(eo),-k`x7•san(eo)+ky.eosre0)) (4,22)

where, fCx,y)oF(kx.ky). It is easily proved that F?(k:.ky) is arota-

                     'tion--invariant complete system in the same rnanner as that of a transla-

tion-invariant spectrum. For an input pattern f(:)(05frx)E.1])' the nega-

tive--positive reversed pattern is defined as f'Cx)=1-f(x). Then Fn(k]
                                            '
defined in the following is a negative-positive reversion-invariant
     '      '
spectrum:
                             '
              li'(kJ, if Re(F(1))>0

      Fn(k)-- -F(k), if Re(R(1))<0, kSO

              1--F(0), if RerF(1))<0, k--0 (4.23)
where Re( ] means the real part.
                                    '
    Axis-symmetry transformation is defined as f''(x)--f(1-ec)=f(-x),

where f(c) is a periodic function with period 1. The foZlowing Fa(k? is

an axis-symmetry transformation-invariant spectrum:
                                                                   '                                                               '                                                       '  ' Fa (k) =Re (Z] (k?) +g'• lm(rF(k] )sgn (lm (F (1))) (4.24)
                                                              '                                                 'where Jmr ) and sgn( ) mean the imaginary part and the sign, respective-

                                                                         'ly. ShJhen Re(F(V)--0 and fmrF(O)=0 in (4.23) and (4.24), respectively,

the transformation-invariant spectrums must be redefined by using higher
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                                '

order nonzero components. It is also easily proved that Pn(k) and Fark]

are transformation-invariant complete systems.

4.6 Computer Simulation
                                                   '                                         '    In this section we have a try of computer simulation of the modified
                                           '                                                        'Fourier spectrum invariant to tran$lations. enlargeinents, reductions,

and rotations. Using the spectrum, some cartoons are classified into two
                  '                                               'classes. Since the Fourier transform is a global transform, it is less

affected by local distortion and noÅ}se. We take an example of segrnenta--

tion in Fig. 4.3. From a maximum flame method Segmentataon 1 is obtained.

On the other hand, if the energy of noise is low, Segmentation 2 becomes

                          'possible by the method proposed here.

    The aspects of obtaining the tnvariant speetrum to various transfor-

mations are shown through computer simulation. Ten patterns in Fig. 4.4

are used as original data. X2,X3,---,X8 are got through adding noise,
                            '                                                         '
translating, and tilting after making equal or reduced size copies from
                          '                      'Xl.. X9 and XIO be!onging to another class are used for comparison with

them. /Xl.X2,---.XlO are expressed by binary patterns sampled on a 512Å~

512 mesh. First, we obtain the parameter Ay of tilting. For restriction

                                                                         'of memory size and computation time, A? is got by using 128Å~128 patterns

whose components are arithrnetie sumation of 4Å~4 points, where the ori-•

gin is the gravity center. Let the parameter of Xl be Aor'0, then ATO-Ay

is shown in Table 4.4. Because of suming 4Å~4 points, the precisi gn of

them is bad, but the error angles are within the scope of Å}100. The

rotation of an input pattern can be roughly estimated. Rotating the
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Fig. 4.

//y. /Q6gl segmentation !

;lt)tt)lli)Å~>si[zS segmentation 2

3. Segmentations of an input pattern.



CHAPTER 4

    o),

-eJ

Xl: Reference pattern 1 Xs: 1f2-time reduction

 '   t'-iS-
   .,

 -' t t

    ;  l
- -t
   .-- - N 'k .s

 -rN

 : :--.- -- --- -t   -. s .:

   ; t-N--
i+

- 105 -

  s s

--

..ts-'ei}i-

--

     . .U    --
     e---' N-

.

  . .' N.Ii
 Vt    't
 1
 ,
-- .
.:.
  ---- t
-t

--

 -.
   ,

X2: lot TK)ise .

eto

x
,

v

X7 : 2SO retatt(m
:(1 :.;[r/r.;J.-}il.-:;s.- :.: ' .' i-. •:- . . };.-t' r.. . i'I,),iL. ' L.;

.{.ii.[:: ...',ti-il--l'•:;f"..'sr

.:-

i,;`i.k--{. .AX .:l-l;l-M;

 -- t -. --.t .- }- •. - it' -.' . .. '- sr ...'     -- .. .' -S : i` 'TiL:t.I 'X.:';g".',r.' :.'.i. ;(

   - - -- -  - l.. --- . --X3: Zex noise

s gi
  '

Xi: 71!O-times reduction, -- 5se rotatiom

@eoaj

s.--.-

a' ,
 -"

X4: shift only

t

o
L-r

X5: 111P-times reduction x.:

X9: Reference pattern 2

7/10 t1mes redvction, ZS' rotatlon

Fig. 4.4. Input patterns .



Table 4.4
mvarlant

Parameters of transformations and Euclid
Fourier spectrums.

distance between transformation-

Input A?0-Ar real Aex,Aey real Asx,Asy Distance Distance Classification
patterns artgle .ratlo fromXl fromX9

Xl oo oo 1.00,1.00 1.0 0.45,0.35 0 0.230 Xl

X2 -6.4O oo 1.08,1.10 1.0 0.45.0.30 0.089 0.220 Xl

3.sO oo 1.22,1.22 1.0 0.41,0.31 0.164 0.202 Xl

1X4 -.9.80 oo 1.00,0.94 1.0 0.45,0.59 0.026 0.226 Xl

X5 -9.so oo 0.20,0.21 0.7 0.48,0.50 0.085 0.182 Xl

X6 -3.gO oo 0.50,0.50 0.5 0.47,0.51 0.164 0.211 Xl

X7 19.sO 2so 0.90,1.14 1.0 0.26,0.48 0.048 0.214 Xl

X8 -38.oo -- 3oo 0.72,0.28 0.7 0e68,0•34 0.085 0.189 Xl

X9 29.6O 0.72,0.28 0.50.0.48 0.230 0 X9
25o

' 0.7
Xl0 52.3 0.54,0.55 0.27,0.59 0.366 0.164 X9

a=
]:-

wHru
pa

p

l

Hoa
l
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                                                   '                                                             '
                          '   '                                         '
Fourier spectrum of a 2-dimensÅ}onal pattern by Ar)0•-AT, the rotation-inv-

ariant spectrum can be got. For simplicity, we normalize beforehand an
                                                 'input pattern by rotating. To save memory size and computation time, we

compute only the Fourier spectrums of two 1-dimensional patterns which

                                                ttare obtained as follows: •
            '                       '                                                                     '                                         '                                     '      Xk=[{x M. g')}] (i. if'--1, 2. ---, 51 2) ' '

                        512      X= [{x ra) }] (x ri) -- 2 g. --1 x (a, g'), a=1, 2, - -- -, 51 2)

      y=[{y a)}] (y (g')- 2 .5.=1 12 xci, g'), g'=1, 2, -.-. s12). (4•2s)

    Through the method mensioned in 3.2, Asx, Asy. Aex, and Aey are

computed from the Fourier spectrums of X and Y. Where the origin (O,O)

is the upper left corner and the subscripts x and y mean parameters of
                                                              '
ec-direction and y-direction, respectively. The Fourier transform is

done after a (4096-512)-vector [O,O,---,O] is added to X and Y to be
            '
4096-vectors. After that, the Fourier spectrurns are obtained by trape-

zoidal approximation from the FFT, so Aex and Aey can be computed. The

results are shown in Table 4.4. Ae's of X2 and X3 are 10%-20% larger
                                  'than the real pattern size. Since we can consider that input patterns

are expanded by adding noise, thÅ}s tendency is acceptable to some extent.

                                                  'Ae's of the patterns which are transformed only through rotations and
    '                               'reductions are fairly accurate, that is, nearly equal to the ratio of
                                                          'the real pattern size. Some of patterns which are rotated are influenced

by the bad precision of normarization. As's are nearly equal to pattern

locations. After the enlargement and reduction-invariant spectrum is
                                       'obtained by using Ae, the translation-invariant spectrum is obtained by

using the phase angle of frequency 1. We cannot reverse the order, be-
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                                '
cause translations do not change the size, but enlargements and reduc-

tions change the location. Euclidean distances between above obtained

transformation--invariant spectrums are shwon in Table 4.4. In this table

we see that ten patterns in Fig. 4.4 are classified correctly into two

                   '             'classes by the nearest neighborhood method.

  '                                      tt                       '                      '

4.7 Conclusions
                                                                '                                                        '    Invariant spectrums to trans!ations, enlargements, reductions, and
      '
rotations were developed through the Fourier spectrum. Changes of the
   '
Fourier spectrum caused by the transformations of an input pattern were
                                    'investigated, and a transformation-invariant complete system was con-
                                                              '                                      'structed. Transformations of an input pattern bring about changes of the

parameters introduced here. SÅ}nce these parameters are computed through

the Fourier transform of a global operation, they are steady under local

distortions and noise. As seen in eomputer simulation, the parameters of
             '
locatÅ}on, size, and inelination were extracted approximatly correctly.

Using these pararneters, it becomes possible to do normalization of input

patterns which is stable under the above transformations and noise. When

a step function is transformed through Fourier transform, the fast

Fourier transform (FFT) becomes applicable by using the difference f(xE
                 '             '+0]-frx(i)) of values of neiboring sampling points. This accomplishes a

                                                                         'considerable eeonomy of computation time. In computer simulation all the

2-dimensional patterns were distinguished. Although we used only Fg(gx.
                                                    '                  '0) and l7g(0.gy) instead of all members Fgrgx.gy)'s of the transforma-

tion-invariant complete system, ten patterns under several transforma-

tions are all classified correctly.
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                             CHAPTER 5

                         SUBSET METHODS

5.1 Introdunction

    In the foregoing chapters global transformations are mainly treated.

rn this chapter local transformations, which are usually called distor-

tions, are treated. Distortions may include global transformations. Sub-

set methods, which can be regarded as one kind of modified template

matching methods, are introduced to construct systems unaffected by

certain distortions. Any kind of distortions should not be tolerated,

but only a particular class of distortions, which we call ctcZmissibZe

distortions, should be.

    According to a template matching technique, an unknown pattern is

recognized by deciding whether the unknown pattern matches one of tem-
                                                        'plates for differently shaped specimens of each pattern class within an

admissible distortion. The process of optimizing the match may take a

long time. [Irhe pattern should be subjected in turn to each of a large

number of distortions. Zt may save computation time and required memory

to determine which points can correspond to which by a method that uses

a set of srnall parts of the pattern and the template. Besides that any

part of a pattern will be less affected by a distortion than the whole.

For this reason, it is easier for machines to recognize features which

are local properties of patterns than to recognize whole distorted pat-

terns. The design of features usually takes a great deal of human ef-

forts. rt is desirable to automate the determination of features.
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                                   '
                                            '

Therefore this .chapter starts with discussion of subset methods and
                              'learning algorithm for automatic feature extraction. Feature extraction

                          'may be the optimum selection of common subpatterns to many patterns. The

results of computer simulation in a simple example will be shown to

illustrate how the algorithm works.
           '                                                    '             '                    '                            '    In general, the set of automatically determined features may include
                         '                                                          '                                                   'redundant features. The features generally may not be evaluated inde--
    '                                                 '
pendently. After learning of features, sorne of them are selected to
                                                     '
obtain a man•-max-eove? which covers as ma!ybits of patterns in the

trainig set as possible. The selection problem is represented by aF'"
                               '
table. After obtainÅ}ng a min-max-cover, a elassifier function is con--

structed in the form of a pveoduet-of-szrms of features in the min-max-

                                                             '                                                        '                                                                       '
                            '                                              '                       '                                                   '                                                                     '                                                       '

5.2 Subset Methods
                                  '     '    In this section some definitions are given, and a subset method is
                      '                                         'introduced. For simplicity, let us consider a problem where an input
                 'pattern is expressed in a binary form of a n--vector X=[x(0),x(1),---,
                  '         '                                      '                                                              '                                                               'x(n-1)] of O's and 1's. It is desired to determine automatically a set
                                                      '                    '                                                   '                      'of features by a subset method. Here admÅ}ssible distortions are given a

                                                       '  --p?zo?z. In practice the number of admissible distortions Å}s so large
                          '                'that we can not store them explicitly. One way to overcome this diffi-

                                         '       'culty is work with subset methods. Every admissible distortion is
                                                   '
expressed by a pai?tition which was introduced by Ullmann [1]. A parti--

tion Ba on IZi is a set of non-overlapping subsets of T whose union is T,
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where T is the set of variables of two patterns. A partition Bi is said

to be appZaecthZe to a pair of patterns, if the labelled bit locations

with the same letter have the same value, For exarnple, Bl is a partition

on T which has 20 subsets as shown in Fig. 5.1(b). In the figure bit

locations which are labelled with the same letter belong to the same

subset of T, and ones which are not labelled with any letter have no

restriction from Bl. Bl is applicable to 220 pairs of patterns. A pair

of patterns Xl and Yl of patterns is one of such pairs ofpatterns in Fig.

5.1(c). Another example is shown in Fig. 5.1(d), (e). A partition can be

regarded as a many-to-many mapping of Å}ndividual bits of patterns. If

Ba is applicable to a pair of patterns X and Y, then we can think of Bi

as an operator which changes x into y and we write y=Baox and x=Bi-loy,

        .-1 .                                                                -1where Bz is the inverse of Bz, For instance, Y2=BloXl, Xl=Bl olYl, and

Y2--B20X2 in Fig. 5.1.

    To work with a subset method, let us suppose that a partition can be

constructed by a possibZe eombanataon of suhpaytations which are smaller

sets than partitions. We say that apartition Bi is one of possible
          '
combinations of subpartitions Aif•'sCoL-1,2.--",k), if every labelled sub-

set of Ag'rJ'=1,2,---,k) is included in one of labelled subsets of Ba and

every labelled bit location of Bi is included in at least one 246i's. For

instance, a partition B2 in Fig. 5.1(d) is constructed by a possible

combination of subpartitions Al, A2, and A3 as shown in Fig. 5.2. rt

often occurs that there is not only one but also many possible combina-

tions which construet the same partition. Note that a subpartition is
                                                         'nonpositional and a partition is positional. A partition takes the place
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                                                  '                                                                       '
                                                                        '  '
of an admissible distortÅ}on. Economy is gained by using possible combi--

                                                      '            'nations of subpartitions instead of partitions. Unreliability is caused

by some ktnd of misrecognition as investigated by Ullmann [2], [58], in

exchange for economy, as long as rather large subpartitions are not used.

Possible combination of small subpartitions may not hold topological

                                                           'equivalence. ' •
               '                                    '
    Let A be the set of admissible subpartitions which are a pntor}i

given and B be the set of partitions which are constructed by possible

combinations of subpartitions in A. It is natural to assume that A in--
    '
cludes an identity operatorAO and for any subpartition Ai inA the
inverse Ai-1 is also inA. This is the same with B. Let us naturally

suppose that a shÅ}fted version Ba' of a partition Bi in B is also in B.

For example, Bl' is in B, if Bl is in B in Fig. 5.1(b). It is not usual-

                                                         'ly satisfied that there exists a partition B3 in B such that X3--B30Xl,

where X2--BloXl, X3=B20X2, and Bl and B2 are in B. But it is always sati-

sfied in the case where at least one of Bl and B2 is an identity opera-

                                                     'tor or a translation. Accordingly B does not make a gToup. The problem

deciding whether two patterns Xl and X2 are within an admissible distor-

tion becomes equivalent to the problem deciding whether there is a par--

tition Bi in B such that X2=BieXl. In other words, it is whether there

is a possible combination constructing a partition which is the set of

subsets of Xl and X2.' '                                   '
    It'is convenient to say that the set of 1's and O's which are the

same in two patterns is the eommon subpatter7n to the two patterns with--

out any distortions. For instance, the common subpattern to [.10110001]
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                                                         'and [IOOIIOOI] is [10-l-OOI], where "--" means an unspecified bit. The

                                                                       'common subpattern to [10--1-OOI] and [10110011] is [10--l-O-1]. We say
                       '          '
that for two patterns Xl and X2 and for two partitions Bl and B2 the set

                                           'of l's and O's which are the same in two distorted patterns BIOXI and B2o
               '                     '
X2 is a common subpattern to those two patterns Xl and X2 within an

admissible distortion. There are usuaUy many common subpatterns to two

patterns within admissible distortions. For instance, the common subpat-

                                                              'tern to [10110001] and [10011001] are [10-1-OOI], [-OllOO--], [- 1-O-- ],
   '                   'and so on, where admissible distortions are only translations. Since the

shifted versÅ}ons of every partition in B are included in B, it is suffts
                                            '
cient that the shifted versions of a comnon subpattern are represented

by an appropriate subpattern. This subpattern may be a candidate for a
                              '                                   'feature on some conditions. ' •                                                               '
    #[nlP] is defined already in Chapter 2. For examp!e, VS[x12<ec<5, c is

                                              '                                           'an integer]=2. To allow for noise we use a threshold e(AZ). A subpattern

                                               '                                  'F is eontained in apattern. X, if there is partitions Bl and B2 inB

such that n(Z7]seav). Where n(li)=ff[xlx is a bit in the subpattern F which
              ---                                           '                          'is not "-'', x corresponds to the bit in the distorted subpattern BIOZ7
                                     '          tt                   'which is not the same as the corresponding bit in the distorted phttern

                                   '                                       'B2 OX]. For example, [OllOO---] is contained in [IOIIOOOI] and not con-

tained in [10001101], if admissible distortions are only translations
                                                                       '                                                 'and erAl)==0. [OllOO ---], however, is contained in [10001101], if admissi-
                                                              '
ble distortions are only transaltions and e(Al)=1. Adding the subparti-

tions indicated in Fig. 5.3(a), [OllOO--- ] is contained in [1001100],'

                       'even if erAl?=0. These aspects are showm in Fig. 5.3(b).
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    A bit x(a) in apattern X is eoveTed by asubpattern l7, if it is

satisfied that the corresponding bit in the distorted pattern BloX to

x(a) is the same as the corresponding bit in the distorted subpattern B20

F. Covering by a pattern is similar2y defined. For instance, encircled
     'bits in Fig. 5.3(b) are covered by asubpattern or apattern. We say

that a pattern is eoveor)ed by the set of features, if almost every bit in

the pattern is covered by more than or equal to e(C] of features in the

set and less than or equal to e(M) of bits in the pattern are not. For
      '
example, [10110100] is covered by {[101-- ], [100--- -]}, if e(0)-"'1,

                                                                    'e(M)=0. [10110100] is covered by {[101- --],[100-----],[OllO----]}, if

erC)--2. e(M)=3. These aspects are shown in Fig. 5.4, where admissible

distortions are translations- and encircled bits indicate covered bits.

Let Z(P) =ff [xlx is a bit in a pattern which is not "--"], m(P) =ff [xlx is a

covered bit in a pattern which is not 'L"], n(P)=:ff[xl oc is an uncovered

bit in a pattern which is not "-"], then ZCP)=m(P]+n(P). Z(F), mrF), and

                                  'n(F) are defined similarly to Z(P), mCP), and nCP), respectively, by
                                                                   'exchanging a pattern for a subpattern, then Z(F]-r=rn(F]+n(F).• ZrP] and

lrF) depend only on a pattern and on a subpattern, respectively, but
                              'mrP), nrP), mrF), and n(F) depend on partitions, too. The examples of

                                                                'these notations are shown in Fig. 5.3(b).

                 '
tt
              '5.3 Automatic Feature Extraction
                                  '                                                                   '
    Learning algorithm for automatic feature extraction is investigated

in this section. Feature extraction may be to select some of common

subpatterns to many patterns. It is not necessary that a feature is
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                                                         '
               '
contained in all patterns in the class. Let us attach the following

hypothetical conditions to features:

[hF a' it)i st h, ez i;? .t- gi;] i. iZe Z (F) . sho ui d be grea ter th an or eq uai to e (F) ,

(F.2) if a feature is contained in a pattern, then m(P)>-e(P), n(P)<-e(U)s

(F.3) more than or equal to e(A) of shifted versions of the feature

Sthig.Uigh.b..e i:gtl.i".2d..l"i.th2.P.a.Igedr;n Yithi" t?e neiborhood [ of the pos--

(F.4) a feature should be contained in many patterns,

where e(l7), e(P), e(U), and e(A) are predetermined thresholds. If we

want all bits in a pattern to be covered by a feature, then we set them

as fo llows:e (P) =Z (P) -rn, eCU) = 0. '
    A common subpattern l7 to two patterns Xl and X2 is a eandidate

eommon suZ)patte?n for a feature, if it satisfies the following condi--

 .tlons:

(C.1) the number Z(ff? of the specified bits in F is greater than or

equal to erP), that is, ZrF)ze(F); • -                           -
(C.2) the number m(Pl) of the covered bits in Xl and the number m(P2) of

the covered bits in X2 are greater then or equal to e(P], and the number

nrPl) of the uncovered bits in Xl and the number nrP2) of the uncovered

b..i gSn(;;],Xfi(p2i2.eleuS)i tha" Or. equai to e(u], that is, m(pi), m(p2?e(p),

                                                     '
(C.3) there are more than e(A) of common subpatterns to Xrz and X2 which

satisfy the above two conditions (C.1) and (C.2) within the neiborhood

g of the position where F is located;
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                                                    '                                               '
                                      '                                                     '                            '                              '
(C.4) F is contained in at least two patterns. ' . •

These four conditions (C.1)-(C.4) eorrespond to the conditions (F.1)-(F.

4), respectively. Generally, however, (C.3) and (C.4) are looser condi-

tions than (F.3) and (F.4), respectively, and (C.4) is always satÅ}sfied
                                                '
apparently. (C.3) and (F.3) are the same,, if only the shifted versions
              '
of the subpattern Z7 are checked within the neiborhood g. It might be

better to impose this restriction on a candidate common subpattern, but

we do not do so for saving computation time.

    There are usually some candidate common subpattern withÅ}n the nei-

borhood. From the condition (C.3) they may be regarded as the distorted

versions of the same features, and it is sufficient to select the opti-

mum one among them. Here occurs a problem about the decision of the

neiborhood fi. Different features in ff may be gathered to make one fea-

ture, if it is too large. On the contrary, some distorted versions of

the same feature may be redundantly selected as different features, if

it is too small. So we should decide the range of neiborhood adequate to

select one candidate common subpattern for one feature. We employ five

il:t:iZS..1:r.,.S:ie[i:O.g. :".g ::.ih:,glndidate common subpatterns ..th..

                                                  '(P.l) the minimuTn of m(PO and m(P2) is greatest; . , .

(P.2) (m(PO+mrP2)? is the greatest; '
                                                     tt                                                            '
(P.3) the maximum of n(Pl) and n(P2) is the least; '

(P.4) the partition are constructed by the greatest number of subparti-

tions which are identity operators; . '
(P.5) the amount of the translations is smallest, •
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where (P.1) has the first priortty, and (P.1) has priority over (P.2),

and (P.2) over (P.3), and so on. According to the priority ordering, the

extracted features may differ to some extent, but not so large.

    Learning algoirithm for feature extraction is introdueed by using the

above defined notatÅ}ons and conditions. Let {Xl,X2,---,Xt} be the tratn-

ing set and {lil,F2.---,Fs} be the set of features which have been ex-

tracted by the a-th step. Fig. 5.5 is a flow diagram for the learning

algorithm. This algorithm differs from that of Sterns [1] in the point

that it allows for distortions and noise within certain limits. To ex-

tract effectively features by this algorithm, the size and orientation

of patterns must be normalized in advance, and thickness in character

reeognÅ}tion must be too. The product MAU'' which is used in our learning

algorithm is defined by Table 5.1. The table shows the value of the i--th

bit of XXY, where X=[x(0),x(1),---,x(n-O], Y=[yCO).yrl),----,yrn--O],

and ld and 0d mean that the bit has been distorted by at least one par-

tition in B except for an identity operator and translations. In compu-

tation of common subpatterns, for simplicity, we do not distort further

the bit with subscript d by any partition except for an identity opera-

tor and translations. We may distort by a partition in B the bits which

have no subscript. Therefore a common subpattern to a subpattern F and a

pattern Xl is also common to patterns X2 and X3, where F is a common
    '                                                              'subpattern to X2 and X3.
                                                            '                                                   '
    Let us take a very simple example in Fig. 5.6 to see how our learn-

ing algorithm works. In the example admissible distortions are only

horizontal translations and the trainig set is {Xl.X2.X3}, where the
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BZoek A(Y]: Is there any candidate

  common subapttern to Ki and,Y?

  Check the conditions (C.1)-(C.4).

BZock BrY]: Se!ect oue candidate

  eommon subpattern E to Xi and Y

  which is the best according to the

  priority (P.I)-(P.5).

BZoek C : lf the candidate comaon

  subpattern F is contained in all

  the patterns which contain Fg., then

  E'. is eliminated from the feature
   g
                              '  set andE is added into it.

  Otherwise, F is eliminated.

BZoek Ci : Add F into the feature set

BZock DrXiJ: Is almost every bit in

  Xi covered by the feature set?

                             '

feature extraction.
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5.1. Definition of xE )"y(i).
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xct)
y(o

o Od 1 ld -

o o Od - . -

Od Od Od - . -

1 - - 1 ld .

ld - . ld ld .

. - - - - -

Table 5.2. Definition of f(i)caf'(i).

1ict)f(o

o Od 1 ld .

o o Od x x o

Od Od Od x x o
d

1 Å~ Å~ 1 ld 1

ld Å~ Å~ ld ld 1
d

. o Od 1 ld -
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hatched bits are 1's and the white bite are O's. The thresholds are as

fo nows :e (lv) =o, e(C) --1, eCM) =1 6, e(P] --e (F) =1 9, e(U) =1 6, e(A?=1 and g--

{Å}0 btt}. Fig. 5.6(b) shows the values of m(Pl)-rmCP2) and the candidate

common subpatterns to Xl and X2, where g(i) means tanslating operator

by i bits. [Phere is no candidate common subpatterns to X3 and Fl. Fig. 5.

6(c) shows the values of m(P3)(=m(F2)) and the candidate common subpat-

tern to X3 and Fl. Thus we obtain two features F3 and l74 which are com-

mon to and contained in Xl. X2, X3. Then all patterns in the training

set can be generated by possible combinations of F3 and F4. The gener-

ation is carried out by the product "pa" defined by Table 5.2. In the

table "Å~" means prohibited combination, and the value is that of the i-

th bit of FpaF', where F-nv[f(O],f(V,---,,P(n-1)] and F'--[f'(0),f'(0,----,

f'Cn-1)]. The patterns which contain Z73 and F4 are obtained by filling

each bit location labelled by "-" with a black bit or a white bit in Fig.

    Next a more complicated example is considered. Fig. 5.7(a) shows

copies of the numeral '6' written without constraint by different people

[1]. Fig. 5.7 shows a few example of portion where the upper stroke

joins the bottom loop in closed-loop 6's. {Xl,X2,----,X16} is used as the

training set after normalization of thickness. Every subpartition is

obtained by 900 rotations and combinations of basic sgbpartitions AO and

                                                               'Al as shown in Fig. 5.8(a), (b). In this example we direct our attention

only to black bits and Z(P), m(P), n(P), Z(F). mrF?, and n(F) are newly

defined as the number of covered or uncovered black bits. The thresholds

are set as fo llows :e av) -- 0, e(e) =1, e (M) =e (W =30, e CP) =4 0. e rF) =2 s,
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                                         '                                              '                                                            '                                                             '                                                 '
                                                      '                                                     '                        'e(A) =5, and fi={Å}3 bits}. The extracted features are shown in Fig• 5•8(c)•

                                                            'The patterns which are covered by these features are indicated under the
                                        '                                                           '                                                        '                                                               '                                           'features. • ' -
                                                            '                                      '    The process of thickness normalization is explained in more detail.

First, patterns in Fig. 5.7(b) are thinned to be patterns in Fig. 5.9(b).

                                                             '                    'The thinning process as follows:

(Step 1) If there is a portion which matches one of windows in Fig. 5.

9(a) and the 900 rotated versions of them, then the central 1 is changed
      '

                                                      '
(Step 2) After (Step 1) is applted to as many portions as possible, all
         '                                             '2's are changed to O. Repeat (Step 1) and (Step 2) until these can not

be applicable to any portion.
                                             '                                                                   'Thus we obtain the thinned patterns which are shown in Fig. 5.9(b). Next,

those patterns are thickened to be patterns in Fig. 5.IO(b). The thick-
                                                        '                                                  '                                                               'ening process is as follows:' '
                                                 '(Step 1) If there is a portion which matches the window in Fig. 5.10(a),

                                'then the central O is changed to 2.

                                               '(Step 2) After (Step 1) is applied to as many portions as possible, all
                    '
2's are changed to 1. (Step 2) is applied only once.

The thickened patterns of patterns in Fig. 5.9(b) may be considered as

the thickness normalized patterns of patterns in Fig. 5.7(b). The set of

those patterns is used as the training set. According to the feature
                                        '
extraction algorithm, we obtain the features l71, F2, F3, and F4. Fl is
                            '                                                          '                                                                   '                              '    '      'contained in Xl. X2. X4, X6. and XlO, F2 in X5 and X13. F3 in X7 and
 '                  '
X16, and F4 in X3 and X14. Covered and uncovered blaek bits of patterns
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                 '
by those features are shown in Fig. 5.11.

    It depends on the values of the thresholds as well as the range of

the neighborhood what features are extracted and which patterns are

covered by the features. It is one problem how to decide appropriately'

them in advance. One solution is to iterate the learning process as we
                                                            '
change them increasingly or decreasingly toward the looser condition for

feature extraction. In spite of the desirable results this method takes

a long time. After determination of features the next problem rises,

                                                                      'that is, how to construct a classifier funetion by using them.

                                       '                                                        '                                                      '                                                               '                                                                       '
5.4 Selection of Features and Construction of Classifier Functions
                                                                   '
    In this section we consider a method to select some features out of

the extracted features and construct a classifier function. The selec-

tion and the construction have a close relation to each other and they

should not be done separately. The same training set as that employed in

extracting features is used in the process for them. As seen in the

paper [62], it is not always right that the best subset of features must

contain the a-th best features E=1,2.---,k), where k is the number of

features in the subset. The selection problem is approached by means of

a table called a Ii-table, which is an extension of a prime implicant

table'used in minimizing a Boolean function. A technique for F-table

reduction is very similar to that for seleetion of a minimum cost subset

of prime implicants of a Boolean function. A Z]-tabZe has a row Fa for

every selected feature M, and a column mg' for every bit of patterns in

the training set: 1(O) is placed at the intersection a(a,J') of Fi and
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                                                     '

                                                                    ' J-mg, if Fz can cover (can not cover) mo'. E and mJ' ina F-table work as a

prime implicant and as a minterm in a classical prime implicant table,

respectively. A column mg' is said to be eoveyed by a subset of features,

if it has 1's in Tnore than e(C) of M's(a=1,2,----k).A max-eovey is the

subset of features M's which covers as many columns as possible. A man-

max-eove" is the max-cover the number of features in which is minimum.

Finding a min-max-cover must be a kind of quasi-optimum feature selec-

 -tlon.

    Reduction of a F-table can be obtaioned by a technique, which is

based on generalized rules of row dominanee, column dominance, and row

essentiality [65], [67]. These rules also al!ow, in general, large sim-

plification in reducing a F-table without any modification if e(Cj=1,

and with some modification if e(C?.>.2. For example, the same reducing

technique as that in [67] can be applicable to a l7-table with the modi-

fieation such that the constant terms s(a) in a P-table are set to be

O(C) instead of l. .
CRuZe 1) Eliminate Erom the l7-table each column which has no 1 in every

row. A row M is an essentiaZ row, if there is at least one column mg'

                                                     '                                                   '
              '                                           '                                               '                                       '      Z.a(a, g') <e-.e (C). ' (5 •1)        z '-
Every essential row must be a member of any min-max-cover. For simplici-

ty we mainly deal with the case when e(0)--1. .
(RuZe 2) Delete every, essential row Ri from the table and take it as a

member of a min-max-cover. Eliminate from the table each column nzg' such

that l7i covers mg' , that is, aE,g')=1. A row Fi domauates a row Z7h, if in
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                                                                  '

                                      '
every column the entry of M is greater than or equal to the one of Zi'h,

that is, a (a, g') )a (h, gV .

(RuZe 3) Eliminate from the table each row Fh which is dominated by at

least one row Fi. A set of rows {M}Ci-T=i 1, i2, ---, ak] domi na tes a set of

rOws {ptz} 5.hk--hl,h2,----,hZ)Azif in every column it is satisfied that

      2i-.ai a(i.g'),>. Zh=hi a(k,g'] Ck--<Z)• (s.2)
(RuZe 4) Eliminate from the table each column which is in Fhts(h--hl,h2.

--- , hZ) and no t in Fa 's (i-Tal, i2, --- --. ik) , that is , {Fh }-{Fa } . A column nj

domiuates a column mh, if in every row the entry of mg' is greater than

                                                                  'or equal to the one of mh, that is,a(i,g'?=>a(i,h). . '

(RuZe 5) Eliminate from the table each column mu' which dominates at

least one column.

    After these rules have been applied as many times as possible, a
                                                                   'reduced F-table is obtained. Several methods [63]-[73], which have been

used to make a minimum cover for prime implicant tables can be employed

                  ttto determine a min-max-cover for any F-table. We express a classifier

function in the form of a product-of-sums whose geometrical meaning and

weakness are expressed in the similar example to that shown by Ullmann

[1], [2]. Let us suppose that four 2's in a training set are divided
                    '              'into features as shown in Fig. 5.12. Every member in the class "2"

should contain one of Fl, lil2, and F3, one of F4, F5, and Z76, and one of

F7, F8. Z79, and Z710. Then a elassifier functions Åë1 for the class ''2"
              '                                             'might be expressed by a product-of--sums as follows:
                                                       tt
      Åë1=(l71VF2VI73]A (F4VF5VF6)A rF7VF8VF9VFIO? (5.3)
               tt
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                                                               '
                                                  '
                                   '                                                          '
      M(X): (ol: itfhg,:;r. .t. ger? X contains a fea.ture Fi ' (s.4).

                                                  '                '        '
for a=1,2,----,10. As shown in [1], [2], [58], a fundamental weakness of

                                                       '                'product-of-sums expression arises from the faet that a pattern which
                         '
satisfies the product-of-sums is not necessarily a member of the c!ass.
                            'The weakness is illustrated in Fig. 5.12(b). The character 'l' in Fig. 5

12(b) satisfies (5. 3) and it is mÅ}srecognized as "2". The use of the
                                          '
absence of features and the use of ru-tuples of features may lessen this

weakness. For instance, Åë2 expressed as follows does not make such a
          '                                                     ' -t           .mlsrecogmtlon: •
                                                                  '                                      '  . Åë2=ÅëIArii72AZJ'9? ' (5.5)                         'where "nt" is the negation. Åë3 using 2-tuples of features does not make

                                                             'such a misrecognition, too:

   • Åë3=((FIAF4)V(Z72Al75)V(l73AF6]]V((Z74AF7)V(Z75AF8)V(F4AF9)Vrf6AFIO)).

                                              '            '

:ge closest approximation to the tramzng set is obtamed by Åë4 defmed

      04== (FIAF4AF7)V (ET 2AF5A F8 )V rFilA F4A ,l T9)V (F3A F6A FI O) . (5 . 7)

04 also avoids such a misrecognition. We could use the logical sum
                                                              '                      '                          'of all features like . •
                         '      Åë5=FIVF2V-----VFIO. (5.8)
                                                 '                'However, the approximation by 05 seems too rough. Let 0rÅëi) be called
    '                                    'the on-set of a function Åëi and defined by 0(Åëa)--{XlÅëi(X)--1}, t.hen the

aspect of the relations among 0(Åë1).0(02),--.0r05) is shown in Fig. 5.
                                             '
13. 0ripi)'sE=1. 2,- -,5) contain every pattern in the training set. On
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                                        '                                                       '
                                                                    '                                                  '
the contrary to the weakness, product-of-sums expression has a good

point of flexibility and economy. The reliability of a classifier func-

tion can be increased by using overlapping covers.'  Therefore we adopt
                                           '
product-of-sums expression.
                                                     '                                       '    Let us introduce the product "of" which works as a design tool for
   '                                  'sums in the product-of-sums. The product zallXPV2 of two families Nl and
                                                  '                                                   '
                                                                   '          '
 • ' "1njN2--{ {ti, sg'}} ra==1, 2. --, Z, g'=1, 2, -- --, m) ' (s .g)

where IVI and ff2 are two families of s.ets of features and are expressed

as VVI={tl,t2,---.tZ} and W2={sl,s2,----,sm}. Let nl' be the maximum subset

of PV such that every member of pmt does not include any other member 6f

                                                            '                                                         'P7, and "PVI-"P72" means that "pm2--N2r". For example,

                        '
      {{Fl }. {F2}, {R3, F4}}Q{{Fl }, {F3}}

     = { {Fl }, {Fl, F2}, {Pl, ,E73}, {Z72. F3}, {F3, F4 }, {Fl? F3, F4 } }

                         '
                                                     '     ;>{{Fl }, {E72, F3}, {F3. F4}}. (5.10)
                                             t ttNow we can introduce the procedure to determine a classlfier function.

The sum of features in every member of Plr obtained as follows is a can-
                                                             '                                                           'didate forasum inaproduct•-of-sums: • . .' . '
                                                      '      W="rXl)Xzai(X2?X- -op"(Xt)?Nt ' • • ' ' (5.11)
                                '
vihere '  {Xl, X2. -- -- -, Xt} is the training set and NrXa? (i --1. 2, -L -, t) is the

set of features in a min-max--cover which are contained in Xa. The sum of

features in every member of W' is always one for ME=1,2,---,t). Then

we can obtain a classifier function by a product-of-sums such that as
                      '                                                                      'many features in the min--max-cover as possible appear in at least one

sum. The on-set of the product-of-sums constructed in this way always
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includes the training set {Xl,X2,---•-,Xt}.

    Let us take an example and see how a product-of-sums is constructed

by the procedure introduced here. Table 5.3 shows a F-table. {Xl.X2.---,

X5} is the training set and Fi'sri :1,2,----,14) are extracted features

                                                  '                                     'which are contained in Al patterns, where admissible distortions are only

translations and e(N)=0. erC)=1, e(M)=eCU)==4. e(P)=e(F)=4, e(A)=1 and

ff={Å}0 bit}. ' After Rule 5 is applied to the l7-table in Table 5.3(a),

                                                     'there is no reduction rule applicable to the reduced table. We select
      '
Fl which is contained in all patterns in the training set, and eliminate

from the table the row Fl and all the column mg''s covered by Fl. Then

the reduction rules are applied again and we obtain the further reduced

table which is shown in Table 5.3(b). Repeating these process we obtain

two min-max-covers'  {'F'1,R3,F4,F13} and {Fl,i73,Z75,l713}. Every bit of pat-

terns in the training set is covered by these min-max-covers. In Table 5.

                  '                                                            '3(c) 1's are put to show that the corresponding pattern contains the

                                      'eorresponding feature in a min-max-cover. Let us construct a classi-

fier function by usÅ}ng the former min-max-cover:
                                       '            '      W(X2)--W(X2? =N(X3) --{{Fil }. {F3}. {F4}}

      bl(X4) =N(X5) ={ {Fl }, {IJ713} }

                                                                        '                           '
      ni= W(Xl)&PV(X2) C!b----opW(X5) => {{Fl }, {l73, Fl 3}, {F4, Fl 3}}. (5 .12)

Then we can obtain a classifier function as follows:

      Åë--FIA (F3VF1 3] A (F4VF1 3] . (5.13)
                                                                 '                             'Patterns in the on-set 0(O) are generated by possible combinations of

features which satisfy (5.13). For example, we have



Tab1e S.3. A F-table and mln-max-covers.
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1-OOI s 1111 1111 1111
1001 6 11}1 }111 1111)111
10001 7 11111 11111
101-O 8 1111 11i1
O-101 9 1111 1111
1-O-Ol 10 1111 1111z
10-O-1 11 1111 1111
10101 IZ 11111 11111
OIOIO 13 lllll lllll
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                '
      Fl:[10 - Ol] -"> llOllO-Ol] -•-> [10110001]=Xl
           IMI . IHi
        F3:OllO . F4:100-1
                                 '
      F2:[iOTTiTOi] -e [i??iiOOi] ---> [looiiogi]==x2

         F3:OllO P4:100-1

      Fl:[10----- Ol] --> [10-OllOl] --) [10001101l-X3
           • III. Illl
          l73:OllO F4:IOO-1
        '
      Fl:[IO-----Ol] --> [!OIOIOOI]=X4
           IINI
       FI3:O1010

      Fl:[10- --Ol] -> [10010101]=X5
             lllll •        F13:OIOIO ' (5.14)
In this case the trainig set Å}s equal to the on--set 0Cth). Generally the

           'former set is included in the latter set. For simplicity we set e(C)=1,

but the higher reliability can be got by the use of the, greater e(C).
                         '                          '                                                                         '
It is not always necessary to find a min-max-cover first. After obtain-

ing the sums of features we could select the sums so that as many bits
      'of patterns in the training set as possible can be covered by the mini-

mum number of the sums.

     '
5.5 Conclusions
     '                    '                            '    We have introduced subset methods for distorted pattern recognition,
          '                               '                    '      'a technique for automatic determination of features, and for automatic

construction of a classifier funetion. Patterns in the on-•set of the
                                              '
classifier function can be generated by using possible combinations of
 '

features. The reliability oÅí a classifier function may be rendered high-

                          'er by the use of an overlapping cover, the use of the absence of fea-
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tures, and the use of Al-tuples of features. Furthermore we can use posi-
                                           '                                                     '
tional features and accordingly some more information, if we store the

locations of features in learning and allow features to move within the

                                                                    '           'neighborhood of the locatÅ}ons tn covering. Generally the higher reliabi-

                       'lity can be achieved at the cost of greater storage requirements. To
             'attain a big reduction in storage requirements, the idea of vandom

supenimposed eoding (known as gatocoding) has been adapted by Ullmann

[76], [771. This is an excellent technique worth reseaehing.
                                                          '
    As shown in the computer simu!ation in 5.3, the feature extraction

algorithm may be applicable to unsupervised learning of a classifier

function. In other wo'rds, patterns are classified into the same class,

if they include the same candidate common subpatterns. The technique
                                          'using subset methods is particularly efficient in handwritten character

recognition. So bÅ}nary patterns have been mainly dealt wÅ}th, but pat-
                        '
terns with gray level must be dealt with in speech recognition and in

medical diagnosis such as vectorcardiograms, X-ray pictures, blood cells,

blood-pressure wave recognition, and so on. It is possible to adapt the

technique to patterns with gray level after some modification.
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                                                                 '
                                                                   '
                                                             tt                                                         '
                               CHAPTER 6

                              CONCLUSIONS

                                     '                                                '    Some transformation-invariant functions are presented in ichis thesis.

It is said that every interesting geo:netrical property is invariant to

any elcment of some transfommation group. Sinee transformation-invariant

                                               '                              tt                'functions can be considered one kind of features of an input pattern,
              'the methods developed above are app:icable to feature extraction. This

                 'paper is at the stage of preprocessing or normarization of patterns in
                                                           '
pattern ]recognition. Tt is the next probZem how to reaiize pattern ree-

                                                            'ognition systenis by using information obtained here. .
                                                                            '
    Although immense progress has been made in regard to eomputer's

ability of pattern recognition, there is stiZl a wide gap between human

and maehine. Mt appears almost irnpossible to bridge over the gap without

basie research. :n this paper the problem of eomposing transformation-

invariant functions Åíor reeognizing noisy distorted patterns is discuss-

                                                  'ed. Partial functions are Zimited to Boolean funetions, Walsh-Hadaniard
                             '
power speetrums, and Fourier speetrums on a diserete input spaee. Z?he
                                                                   '                           '
author, however, hopes the diseussions will enhance the furthet7 researeh
                          '                                '                                                                            'of transformation-invariant functions.'  EvidenUy people use more infor-

mation, sueh as topology and eontext, rather than speetruJns and so on,
                                '                                         'in recognizing an objeet. Under what transformations do ichey regard
                                                  '
that the objective pattern class•is invariant? This i$ not well-known

yet. [Vhe transformations eould help to design effieient pattern reeog-
    '
nition systems. This is left for future work.
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    Von Neumann type of general purpose computers on the market seems
                                                           'inherently weak in picture proÅëessing from a viewpoint of eoinputation
                                                                           '                   'tirne. Researehes on special purpose computers for picture processing,

such as the massively parallel proeessor being designed by "IASA, are

produeing fruit. [Dhe development of software and hardware wiil faciZi-
                                               'tate the great progress of advanced patternrecognition systetns. The
                                                   '
author wUl be happy if the present paper wiU make some contributions
                                                                     '         tt                                                       'to the study of pattern reeognition. '
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