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Introduction

Let Sΐ be the n-dimensional sphere with constant curvature c. Let Δ
be the Laplace-Beltrami operator on S". The spectre and eigen-functions
of Δ are well-known [2], Let Vd be the eigen-space of Δ corresponding to the
rf-th eigen-value \d=d(d+n— 1). Let/0, fl9 •••,/«(</) be an orthonormal basis
of Vά with respect to the inner product. Then

is an isometric minimal immersion, where k(d) and m(d) are as follows [6];

m(d) = (2d+n-l)(d+n-2)\ld\(n-l)l-l .

It is proved that any isometric minimal immersion of S2

C into Sf is equiva-
lent to i/r2 td for some d, [3], [6]. But it is not true if the dimension n is greater
than 3. In fact do Carmo and Wallach proved the following

Theorem 0.1 (do Carmo and Wallach, [7]). Let f; S"C->S? be an iso-
metric minimal immersion. Then
(i) there exists an integer d such that c=k(d).
(ii) There exists a positive semi-definite matrix A of size (m(d)-\-\)x(m(d)-\-\)
such that f is equivalent to Ao-\JrΛtd.
(iίΐ) If n~2 or d^3, then A is the identity matrix.
(iv) If n^ and d^>4, then A is parametrized by a compact convex body L in
some finite dimensional vector space, dim L^ 18. If A is an interior point of L
then N=m(d)y and if A is a boundary point of L then N<m(d).

There are some problems concerning (iv) of the above Theorem.
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Problem 0.2 (Chern, [4]). Let Sl-*Sl be an isometric minimal immer-

sion. Is it totally geodesic ?

In [5], do Carmo posed a more general

Problem 0.3. Determine the lower bound \(d) of the dimension N of the

sphere Si into which a given Sΐw can be isometrically and minimally immersed.

Recently Problem 0.2 was negatively answered by N. Ejiri [8]. In fact
he proved that there exists an isometric minimal immersion S\/ιs-*-S\.

As for the Problem 0.3, scarcely anything is known.
In this paper we confine our consideration to the case n=3. In this case

S3 has a structure of a Lie group, S3=SU(2). We investigate whether there
exists an orbit in a representation space V of SU(2), which is a minimal sub-
manifold in the unit sphere in V. And we give an estimate for \(d) (of the
Problem 0.3 in the case n=3). The following will be proved.

Theorem A. Let d be an integer, d^4 . Then there exists an isometric

minimal immersion of Sl/d(d+ 2) into S\d*1.

Theorem B. Let d be an even integer y d^tβ. Then there exists an isometric

minimal immersion of Sl/d^d+2} into S{.

1. Complex linear representations of SU(2)

In this section we give a brief review on the complex linear representation
of SU(2).

The special unitary group SU(2) is the group of matrices which acts on

C2 and leaves invariant the usual Hermitian inner product on C. We can
identify SU(2) with the 3-dimensional unit sphere Si (cC2) by

SU(2) -> SI: g->g

Then the induced metric on SU(2) by the above diffeomorphism is the bi-
invariant metric on SU(2).

A homogeneous polynomial on C2 is called of degree d if it satisfies

, λa>) = \dP(z, a*)

For each positive integer d, let V(d) be the space of homogeneous polynomials
of type (d, 0) on C2. Then SU(2) acts on V(d) as follows

> «0 = JWM*, «))), g^SU(2)y *,

Then (V(d), p) is a complex irreducible representation and each complex ir-
reducible representation of SU(2) is equivalent to (V(d), p) for some d [12].
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Define a Hermitian inner product in V(d) by

(i.i) (P,Q) =

where dg is the normalized Haar measure on SU(2). Let P, be the polynom-
ial in V(d) defined by

PA*, «0 =

Then PO, P!, •••, P</ is an orthonormal basis of V(d).
Let Su(2) be the Lie algebra of 5C/(2). Take the following basis of Su(2)

and fix them once for all.

i)1/2 o I x2 = r o π, x3 = v o (-i)1/2l.
o -(-i)1/2J L-i oj L(-i)1/2 o J

Then the bracket relations of Xly X2 and X3 are

[Xλ> X2] = 2X3 , [X2, X3] = 2X1 , [X3, Xλ] = 2X2 .

We denote also by p the representation of §u(2) induced by the represen-
tation of SU(2\ i.e.,

p(A)(P) =

Then by a direct calculation we get

(1.2), P(X1)(PJ) = (-

(1.2),

(1.2),

where we put P_ι— P^+i— 0.

2. Real irreducible representations of SU(2)

In this section we give a brief review on real irreducible representations

of SU(2).
Let G be a compact Lie group and (V, p) be a complex irreducible re-

presentation of G. Then (V, p) is said to be self-conjugate if V has a struc-
ture mapy, i.e., a conjugate linear map on V such that

J(p(g)Ό) = pfei/M > ^ e G , ^

, ϋ, ^e V ,.
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A self-conjugate representation (F, p) is said to be of index 1 (resp. —1) if
j2= 1 (resp./2= — 1). For simple Lie groups self-conjugate representations and
their indices are known [13]. We denote by (VRy p) the representation of G
over R obtained by the restriction of the coefficient field from C to R.

Let (F, p) be a self-conjugate representation of G of index — 1. Then
(FΛ, p) is also irreducible. But (FΛ, p) is reducible if (F, p) is a self-conjugate
representation of G of index 1. Namely (l+/)Fβ and (1—j)VR are mutually
equivalent real irreducible representation of G and

VR = (l+ΛfVKl-ΛF,, (direct sum).

For these facts we refer, for instance, to [1].
Now we confine our attention to the case G—SU(2).
Let/ be a conjugate-linear automorphism on C2 defined by

j(z, w) = (-W, z),

Extend/ to an automorphism on V(d) by

w) = POX*, w)),

Then/ is a structure map on V(d) with J2=(— l)dl. So (V(d)R, p) is a self-
conjugate representation of index (— l)d. Let d be an even integer d=2d' and
put ρ,.=(— IJ^P,, O^ί^rf. Then

Since PO, P!, -,P,, ρo, &, -, ρ, are basis of F(</)Λ, (l+/)Pt ,
i^d, are generators of (1+/)F(J)Λ. It is easily seen that (1+/)P, , (1— j )
Q^i^d-l and (l+j)Pd> [resp. (l+/)ζ>^] are basis of (l+j)V(d)Λ if α' is an
even [resp. odd] integer. We denote (ί+j)V(d)R by VQ(d).

Lemma 2.1. Let d be an even integer, d=2d'. Then Σ»-o^tP, is con-
tained in VQ(d) if and only if

Proof.

- (Re z0P0+Re zdPd)+(Im z0Q0+Im zdQ

+(Re aΛ

Remember that p,+(_l)/P,_,, ρ._(_l)^_ ., O^ ^rf'-l and Pd, [resp. ρ,,]
are basis of V0(d) if έ/' is an even [resp. odd] integer. So Σί»o#,Pt is contained
in V0(d) if and only if
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- = (-1)' Re^_t. , Im*t = -(-I)1' Im*,., , Q

Im v = 0 [resp. Re zd* = 0] if dr is even [resp. odd].

50 we get the Lemma. Q.E.D.

3. Orbits in a sphere

Let G be a Lie subgroup in SO(N+l). Then G acts on the unit sphere
51 in RN+1 centered at the origin in a natural manner. Take a point pQ in
S* and let M be the orbit of the action of G through p0.

Let g be the Lie algebra of G. We denote by A* the vector field on S ι
defined by

(3.1) A\ = dldttM&φ(tA)(p), ptΞS?.

We consider elements of g as skew symmetric (ΛΓ+l)x(ΛΓ+l)-matrices in
a natural manner. Then we get from (3.1) the following

So the tangent space of M at p is

Tp(M)={A(p)\A<=$.

Let Np(M) be the normal space at p in S". Consider the tangent space Tp(M)
and the normal space Np(M) as a subspace in RN+1. Then RN+1 is decomposed
into the direct sum

(3.2) RN+1 = Rp+ TP(M)+NP(M) .

For a vector A in RN+\ we denote Aτ and AN the Γ/M)-component and
Λ^(M)-component of A in the decomposition (3.2) respectively.

Lemma 3.1. Let G be a Lie subgroup in SO(N+1). Let a be the second
fundamental form of the orbit G p in Sf . Then

(3.3)

(3.4) V*A\ = (A(B(pW , A,

where V is the Riemannian connection on M,

Proof. Let D be the Riemannian connection in RN+l. Then

DB*A*\p =

= A(B(p)).
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Since a(A*, B*)\p=(DB*A*\p)
N and VB*A*lp=(DB*A*lp)

τ, we get the Lemma.
Q.E.D.

4. Left invariant metrics on SU(2) and SO(3)

In this section we denote by G the Lie group SU(2) or 5Ό(3). The Lie
algebras of SU(2) and *SΌ(3) are mutually isomorphic. We denote them by

Let B be the Killing form of 8u(2). Then X19 X2y X3 defined in § 1 are
orthonormal with respect to — jB/8. Let gQ be the Riemannian metric on G
which is the bi-invariant extension of —B/8.

Lemma 4.1. [11]. Let g be an inner product on §u(2). Then there exists
an element σ in G such that
(i) X'i = Ad(σ)(Xi), ί= 1, 2, 3, are mutually orthogonal with respect to g.

(ii) <gf=λιωι+λ2ω2 + λ3ω3, where λt are positive constants and ωi( )=gQ(X/i9 •)>
ί=l, 2, 3.

Let g be the Riemannian metric on G which is the left invariant extension

of the inner product £ on Su(2). Extend X i/(λ, )1/2, l<£i ̂ 3, to the left invari-
ant vector fields Yiy l^/^3. Let Θi9 l^z^S3, be the dual coframe fields on
G to Yiy l^z'^3. Let 0,-y (resp. Ω^ ) be the connection (resp. curvature)
form of (G, g) with respect to the orthonormal frame fields Yl9 Y2, Y3. Then
we get easily

^ a) ^3 >

Ω12 = (((λ1-λ2)
2-3λi+2λ3(λ1+λ2))/λ1λ2λ3)ι91Λ(92 ,

Π23 = (((λ2-X3)
2-3λf +2λ1(λ2+λ3))/λιλ2λ3)^Λ(93 ,

Ω3ι = (((λ3-λ1)
2-3λi+2λ2(λ3+λ1))/λ1λ2λ3)ι93Λ(91 .

So (G, o') is a space of constant curvature k if and only if X1=χ2=χ3— Ijk, i.e.,

Let (F, p) be a real representation of G and < , > be a G-invariant inner
product on F. Then an orbit M of G through a unit vector ̂ e F is contained
in the unit sphere Sλ (in V centered at the origin).

Lemma 4.2. (i) The orbit M is a 3-dίmensional space of constant cur-
vature k if and only if

(ii) Assume that the orbit M is a ^-dimensional space of constant curvature k.
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Then M is a minimal submanifold in S1 if and only if

Proof. Define a map /: G -> *SΊ by

Then

Let g be the induced metric on G of /*. Then g is a left invariant metric. So
(G, g) is a 3-dimensional space of constant curvature k if and only if g=(l/k)g0.
By definition of g

if and only if g=(
(ii) Since (G, g) is a space of constant curvature, exp tX{ are geodesies in
(G,g). By Lemma 3.1, (p(Xi))2(p) is normal to M. Consider the vector

XJ* iι (p(Xi))2(P) ίn ̂  which is normal to M. Then its Λ^(M)-components
in the decomposition (3.2) is the mean curvature vector of M in S1 at p. Since

M is an orbit of a representation of G, M is a minimal submanifold in Sλ if

and only if the mean curvature vector of M in Sλ at one point is 0. So M is

a minimal submanifold if and only if

(4.1) Σ, 3-ι (p(Xi))\P) = fp ,

for some constant c. Assume that (4.1) holds, then

= -Ik . Q.E.D.

5. Proof of Theorems

For each integer d, there exists a (complex) irreducible linear representation

of SU(2). We denote by (V(d)R, p) the real representation of SU(2) obtained
by the restriction of the coefficient field. Then (V(d)Ry p) is irreducible if d
is odd. (V(d)R, p) is reducible if d is even and we denote by VQ(d) one of the
irreducible component of V(d)R. In this section we study whether there exists
an orbit of constant curvature which is a minimal submanifold in the unit sphere
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Let < , > be the real part of the Sϊ7(2)-invariant Hermitian inner product
( , ) on V(d) defined in (1.1). Then < , > is an St/(2)-invariant inner product
on V(d)R.

(5.1) Σ»ίo *,*,= !

By a formula of Freudenthal [14], we have

(5.2) p(xlγ+P(x2γ+p(x3γ =
Then the following is an immediate consequence of Lemma 4.2.

Lemma 5.1. If an orbit M=ρ(SU(2)) (p) is a space of constant curvature
k, then
(i) k=3ld(d+2),
(ii) M is a minimal submanifold in S2{+1.

By virtue of the above Lemma, we have only to verify the existence of
an orbit of constant curvature in S2Ϊ+1 to prove Theorem A.

Extend p: §u(2)-*gI(<Z+l, C) to 61(2, C)=(§u(2))c and put

l = Γl 01, X = X1-(-iγ*Xt = ΓQ 21,

LO -ij LO oj
JO 01.
\2 oj

Then from (1.2), we get

(S.3)1 p(H)(Pj) = (2j-d)PJ,

(5.3)2 P(X)(PA = -2((d

(5.3), p(Y)(Pj)=-2(j(d-j+l))^Pj_l,

where we put P_1==Prf+1=0.

Lemma 5.2. An orbit M=p(SU(2J) (p) is a space of constant curvature
Zld(d+2) if and only if

(5.4), (p(H)(p), p(X)(p))+(p(H)(p), p( Y)(p)) = 0 ,

(5.4)2 (p(X)(p),P(Y)(p)) = 0,

(5.4), (P(H)(P), p(H)(p)) = d(d+2)β .

Proof. By definition of H, X and Y
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A simple computation shows

), p(Y)(p))

Similarly

= Re(p(H)(p), P(X)(p))+Re(p(H)(p), p(Y)(p))

<P(X*)(P), P(X*)(P)>

= 2Im(p(X)(p),P(Y)(p)),

<P(X2)(P), P(X2)(P)>

= (P(X)(P), P(X)(P}}+(P(Y)(P), p(Y)(p))-2Re(p(X)(p), P(Y)(p)) ,

<P(X3)(p), p(X3)(p)>

= (p(X)(p), P(X)(P))+(P(Y)(P), p(Y)(p)) + 2Re(p(X)(p), p(Y)(p)) .

An orbit M=ρ(SU(2))(p) is a space of constant curvature 3/d(d+2) if
and only if

by Lemma 4.2. Taking (5.2) into account, the Lemma is an immediate con-
sequence. Q.E.D.

Proof of Theorems. Let ρ=~Σi-o ZjPj be a point in S2i+1, i.e.,

(5.1) Σ/-o*A=l

From (5.3)1( (5.3)2 and (5.3)3, we get

p(X)(p) = -

p(Y)(p) = -

Then

), p(Y)(p))

= -2Σ/-ι (2j-d)(j(d-j

), P(Y}(p))

, p(H)(p))
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So (5.4)ι and (5.4)2 is equivalent to the following

(5.5)! Σy-i (2/—d)(j(d—y+l))1/2^ ^-ι+Σy=o (2;—*?)((_;+l)(rf-—j)) l/2ZjZ j+l = 0,

Taking (5.1) into account, (5.4)3 is equivalent to

(5 5)s Σ/ίo (6j2-6dj+d2-d) 2jZj = 0 .

Now we prove the system of equations (5.5)!, (5.5)2 and (5.5)3 has a solu-
tion under the condition (5.1)

When d=4 we put

(1/2 , if ί=0, 4,

*, = |(-2)"V2, if ι = 2,

(0 , if f = 1, 3 .

When d is an even integer d=2df and d^69 we put

a, = (-\y\(2d'- l)/3<f )1/2, if J = d',

, if otherwise.

When d is an odd integer d~2d'-\-l, d'^2, we put

, if i = 0,

, ifi=d'+l,

0 , if otherwise.

Then it is easily verified that (#0, zl9 •••, #,/) is a solution of the equation. So

Theorem A is proved.

When d is an even integer, J^6, 2ί-o 3̂  is contained in Fo(rf) by Lemma
2.1. So the orbit passing this point must be contained in the unit sphere in
V0(d). So we get Theorem B. Q E.D.

In Theorem B the case d=4 is excluded. But this is a natural consequence

of the following

Theorem 5.7 (J.D. Moore, [10]). Let M be a connected n-dίmensional
Riemannian manifold of constant curvature k isometrίcally and minimally immersed

in a simply connected (2n—l)-dίmensional Riemannian manifold N of constant

curvature K. Then either M is totally geodesic or it is flat.

Recently Li [9] proved the following
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Theorem. If Φ: Sm->S" is an isometric minimal immersion, then Φ(Sm)

is either an embedded sphere or an embedded projective space.

But this is not true if the codimension is not maximal. Let M be the

orbit passing (21/2P0-(-5)1/2P3+21/2P6)/3 in F0(6). As we proved, M is a

space of constant curvature 1/16 and is a minimal submanifold in Si. But the

orbit is neither an embedded sphere nor an embedded projective space in Si.

Namely we have the following

Proposition 5.8. Let π be the covering map

π: SU(2) -*M;g^ p(g)((2^P0-(-5)^

Then π is at least 6-fold.

Proof. Put£=Γα 1, a=e^1/2>M/3 (O^k^S). Thenf <,]
A»((?)((21/2Po-(-5)1/2P3+2I/2F6)/3)

= (21'2P0-(-5)1/2P3+21/2P6)/3

So the covering π is at least 6-fold. Q.E.D.
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