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1. Introduction. Let = be a set of primes, and let n=p,+p,-+-- -p, be
a positive integer, where the p; are (not necessarily distinct) primes. Then we
say that the total exponent (shortly T-exponent) of z is ¢ and write e(n)=t. If
p:En for i=1, 2, .-+, t with the above notation, then #z is said to be a z-number.

Let Irr(G) be the set of irreducible complex characters of a group G. We
say that a group G has c.d.w (character degrees =) if X(1) is a z-number for any
X&Irr(G), a group G has r.x.e (representation exponent e) if e(X(1))=<e for any
X&Irr(G), and G has r.x.e for n (representation exponent e for r) if G has c.d.n
and 7.x.e.

In this paper we shall prove the following theorems.

Theorem I. Let G have r.x.e for n. Suppose G is m-solvable when
|w| =3. Then G has a normal series

G= AeDBe—XDAe—ID DB0\>A0

and there exists some prime p,Er for any i such that
(1) A; has r.x.ifor z,
(2) A,B;_,is a cyclic m;-group, where w,=n— {p;},
(3) B;_/A;_, is an elementary abelian p;-group, and
(4) |A;: A;_| is a m-number with e(|A;: A;_,|)<2i+1.
In particular G has a subnormal abelian subgroup A, whose index is a w-number

with (| G: Ay|) <e(e+2).

This theorem generalizes the result of I.M. Isaacs and D.S. Passman [5]
in the case #={p}. In the case == {p}, indeed, p,=p,=--=p,=p and the
z; are empty with the above notation. Thus 4,=B,_,, that is, the normal
series in Theorem I has elementary abelian factor groups.

In Theorem I G may have, however, larger subnormal abelian subgroups.
We shall show the existence of such subgroups. First we make the following
definition.

Let f, (resp. f,) be a function with the following property. If G is a sol-
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vable (resp. nilpotent) group with 7.x.e, then G has a subnormal abelian sub-
group A with e(|G: A|)< f(e) (resp. f,(¢)). Moreover we assume that f, (resp.
f.) is the smallest such function. Let f,) be the corresponding function for
the class of groups with r.x.e for a prime p.

In what follows, we denote the largest integer <x by [x].

In [6] we know the existence of f(,) for any prime p. Actually f(,)(0)=0 and

2e < f(,)(e) =< [4e—log,4e] when e=1.
In this paper we have:

Theorem II. The functions f, and f, exist and satisfy
(1) £.(0)=0, f,(1)=2 and
2e=< f,(e)=[4e—log,8¢] when e=2.
(2) fu)=fl)=e(e+3)/2.
This yields in particular

Fl0)=£(0)=0, ,()=f(1)=2, f(2)=4 and f(2)=4 or 5.

All groups in this paper are assumed to be finite unless otherwise stated.
Let NQG/\. If X€Irr(G/N), then X may be viewed as a character of G. For
example G=Irr(G/G’), where G’ is the commutator subgroup of G, is the
set of linear characters of G. In what follows an irreducible character means an
irreducible complex character. If G is a group, then Z(G) and ®(G) denote the
center and Frattini subgroup of G respectively. If S is a set, then |S]|
denotes the cardinality of S. We write

7(G)= {primes p| p divides |G |},

n’= {primes p| pe =}, and

p'=1{p}"

Let X be a character. We denote simply e(X(1)) by e(X). If e(X)=e,
then we say that X is a character with total exponent e (shortly T-exponent
e). All the other notation can be seen in [3] or [6].

The author would like to express his hearty thanks to Professor H. Nagao
who encouraged him in whole study.

2. Groups with c.d.z. The following theorem is a slight extension of
the Burnside’s p?¢’-Theorem, (see [3] 4.3.3).

Theorem 2.1. Let G have cd.x. If |z|<2, then G is solvable.

Proof. Since any normal subgroup or factorgroup of G satisfies the same
assumption, the theorem follows at once by induction on |G| if G is not simple.
So we may assume G is simple. Therefore we may also assume pEz C {p, g}
and G has a nontrivial Sylow p-subgroup P. Choose 1Z+x& Z(P). Let
1,+=XEIrr(G). If X(1) is a power of p, then the simplicity of G and Burnside’s
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lemma (see [3] 4.3.1) imply X(x)=0. Thus by orthogonality relations,
0= >3 X(1)X(x) = 14qa
)

XEIrr(G

where « is an algebraic integer. So a=—1/g, which is clearly imposible.
There exists no extension of Theorem 2.1 to the case |z |=3 as SL(2,5)
shows.
The following results on groups with c.d.p’ for a prime p are shown in [8]

and [1].

Proposition A (N. Ito). If G is a solvable group with c.d.p’, then G has
a normal abelian Sylow p-subgroup.

Proposition B (P. Fong). If G is a p-slovable group with c.d.p’, then G has
a normal abelian Sylow p-subgroup.

The latter includes the former. We shall extend these propositions in The-
orem 2.5. We start with some lemmas.

If a z-number # is also a z’-number, then n=1. Therefore the following
lemma is immediate.

Lemma 2.2. If G is a n’-group with c.d.x, then G is abelian.

Lemma 2.3 (P. X. Gallagher [2], Theorem 8). Suppose G is a n-separable
group with a Hall n’-subgroup H. If the degree of any irreducible constituent
of (14)¢ is a w-number, then H {G.

ReMARK. In [2] the term “z-solvable” seems to be used in the sense of
“m-separable”.
The following lemma is proved by using the Schur-Zassenhaus Theorem,

(see [3] 6.3.5).
Lemma 2.4. If G is n-separable, then G possesses a Hall n'-subgroup.

We are now ready to extend Proposition B. If G is a n-separable group
with c.d.z, then G has a Hall z’-subgroup H by Lemma 2.4 and hence Lemma
2.3 is applicable. Therefore H<{G and H is a #'-group with c.d.z. So H
is abelian by Lemma 2.2. By combining Theorem 2.1 and Ito’s Theorem we
have:

Theorem 2.5. Suppose G is z-separable when |z| =3. Then G has a nor-
mal abelian Hall n’-subgroup if and only if G has c.d.x.

The following corollary is useful in the proof of Theorem I in section 3.

Corollary 2.6. Let G have c.d.n. Suppose G is n-solvable when |m|=3.
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Then G is solvable.

Proof. By the theorem G has a normal abelian Hall z’-subgroup H.
Then G/H is a n-solvable n-group, and hence G/H is solvable. Therefore G
1s also solvable.

Now it is clear the following corollary holds for subnormal subgroups of
arbitrary groups.

Corollary 2.7. Let G have c.d.x. Suppose G is m-separable when |m|=3.
Then every subgroup of G has also c.d.x.

Proof. Let G be as above. By the theorem G has a normal abelian Hall
n’-subgroup H. Let K be a subgroup of G. Then H NK is a normal abelian
Hall #’-subgroup of K and hence the theorem implies the corollary.

3. Groups with r.x.e for z. In this section we shall prove Theorem I.
The following properties of the total exponent immediately follow from
our definition.

Lemma 3.1. (1) e(m)=0, and e(m)=0 if and only if m=1.

(2) e(mn)=e(m)+e(n).

In particular these yield:

(3) When s divides t, e(s)<e(t), and the equality holds if and only if s=t.

If G has r.x.0, then G has no nonlinear irreducible characters and hence
G is abelian. We know that groups with 7.x.1 are solvable ([7] Theorem 6.1),
but groups with 7.x.2 are not necessarily solvable. Indeed the simple group
As, the alternating group on 5 letters, has character degrees 1, 3, 27, 5.

By using Frobenius Reciprocity Theorem, Clifford’s Theorem and our
definition, we have the following immediately.

Lemma 3.2. Let N be subnormal in G where G has r.x.e for =. Then N
has r.x.e for =.

The following lemma will be useful in applying induction on the total
exponent.

Lemma 3.3. Let NG where G has r.x.e for n. If G/N is nonabelian,
then N has r.x.(e—1) for =.

Proof. By Lemma 3.2, it will be sufficient to show that N has no irreducible
characters with T-exponent e. Assume that N has an irreducible character ¢
with e(d)=e. Let X be an irreducible constituent of §¢. Then 6(1) divides X(1)
and hence

e=e(f)=e(X)=<e
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for G has r.x.e. We have the equality throughout so that ¢(X)=eand X | y=60€&
Irr(N). Since G/N is nonabelian, there exists @ € Irr(G/N) such that @(1)>1.
Then X &Irr(G) (see [2] Theorem 2), and hence

e = e(X) <e(p)+e(X) = e(pX)=e.

This is a contradiction.
We remark that in the proof of Lemma 3.3 above we obtained the fol-
lowing result.

Corollary 3.4. Let N <G where G and N have r.x.e. Suppose 6 €Irr(N)
with e(0)=e. If X is an irreducible constituent of 0°, then e(X)=e and X|y=0&
Irr(N).

The following proposition generalizes Lemma 2.7 in [5] however it will
not be used in this paper.

Proposition 3.5. Let N<|{G where G has c.d.x. Suppose G|N is a ='-
group. Then we have:

(1) Any irreducible character of N is G-invariant and X|,&EIrr(N) for
any XEIrr(G).

(2) If N has r.x.e for =, then so does G.

Proof. Let X&Irr(G). By Clifford’s Theorem, X|,y=e>!_,0; where the
0; are distinct irreducible constituents and X(1)=et6,(1). Then et is a z-number
since G has c.d.x. Now et divides |G: N| which is a z’-number. Thus we
have e=t=1. Since X is arbitrary, (1) and (2) follow from Frobenius Reciprocity
Theorem.

Before going on to another result, we state here the result by Isaacs and
Passman, which will be needed.

Lemma 3.6 ([5] Proposition 2.5). Let N |G with G|N nilpotent. Suppose
XeIrr(G) with X|y reducible. Then there exists a normal subgroup T of G of
prime index such that N CT and X=+° for some & Irr(T).

The following lemma generalizes Lemma 2.8 in [5].

Lemma 3.7. Let N <G with G|N nilpotent. Let G have r.x.e for = and N
have r.x.(e—1) for =. If F is the inverse image of ®(G|/N) in G, then F has r.x.

(e—1) for m.

Proof. F <G and thus by Lemma 3.2 F has r.x.e for =. Therefore it
would be sufficient for our purpose to show that F has no irreducible character
with T-exponent e. Suppose @&Irr(F) satisfies e(d)=e. Let X be an
irreducible constituent of 8. By Corollary 3.4, e(X)=e and X| is irreduc-
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ible. Since N has r.x.(e—1) for =, X| is reducible, and by Lemma 3.6
there exists a subgroup 7" maximal in G and containing N with X=+¢ for
some Yy EIrr(T). Therefore +r is a constituent of X |, which is thus reducible.
Consequently X |, must be reducible for FCT. This is a contradiction and
the result follows.

The following lemma is a part of the result appearing in [6], which is ex-
tremely useful in proving our main theorems. We will call it Isaacs-Passman’s
Lemma in this paper.

Lemma 3.8 (Isaacs-Passman’s Lemma). Let E be a group such that
E"=1<E’ and E'CK for all K with 1<K {E. Then we have one of the fol-
lowing.

Case P. (1) E is a p-group for some prime p.

(2) Z(E) is cyclic.

(3) Every nonlinear irreducible character has degree |E: Z(E)|Y2.

Case Q. (4) E is a Frobenius group with a cyclic complement and elemen-
tary abelian g-group Q as kernel.

(5) Every nonlmear trreducible character has degree |E 0l.

(6) For any hEQ and any xEE — Q, there exists ,u.EQ with A=p*p™%

Let N be normal and maximal with respect to G/N being nonabelian.
We note that if G is solvable then E=G|N satisfies of Isaacs-Passman’s Lemma.
We are now ready for the proof of Theorem I.

Proof of Theorem I. We prove the result by induction on e.  When e=0,
the result is trivial. Suppose e=1. It will be sufficient to show that G has a
normal series G B,_ ;> 4,_, and there exists some prime p, Ex such that

(1) A, hasr.x.(e—1) for =,

(2) GJB,.,is a cyclic z,-group where #,=n— {p,},

(3) B,.,/A,-, is an elementary abelian p,-group, and

(4) e(1G: A, ,1)<2e+1.

We know that G is solvable by Corollary 2.6. We may assume G is non-
abelian. Then there exists N <{G which is maximal with G/N nonabelian.
Now E=G|N satisfies the hypotheses of Isaacs-Passman’s Lemma. Thus
E has a unique nonlinear irreducible character degree m, which is also a char-
acter degree of G. So m is a z-number with e(m)=e, because G has r.x.e for
n. Since E is nonabelian, N has r.x.(e—1) for » by Lemma 3.3.

We consider two cases according to Isaacs-Passman’s I.emma, which we
apply to E.

Case P. Eis a p-group for some prime p. Then p divides m and thus pe
m. Let 4, , be the inverse image of ®(G/N)in G. By Lemma 3.7 4,_, has r.x.
(e—1) for =, and satisfies (1)’. Since Z(E) is cyclic and |E: Z(E)|=m?,
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o1G: A,]) = o |E: D(E)|)=e(|E: D(E)NZ(E)|)
=e(|E: Z(E)|)+e(| Z(E): D(E)NZ(E)|)=2e(m)+1=2e+1.

Thus we get (4). Let B,.,=G and p,=p. Then (2)' and (3)’ hold, and the
result follows for this case.

Case Q. E'is a Frobenius group with a cyclic complement and elementary
abelian g-group QO as kernel. Let K be the inverse image of QO in G. Since
K has r.x.e by Lemma 3.2, we may consider the following two cases.

Case O-1. Khas r.x.(e—1) for z. Let 4,_, be the inverse image of ®(G/K)
in G. Now G/K=E|Q is a cyclic group of order m, therefore by Lemma 3.7
A, has r.x.(e—1) for = and satisfies (1)’. Since |G: 4,_,| divides m, (4)
follows for e(m)<e=<2e¢+1. Choose a prime divisor p, of |G: 4,_,|, which is a
square-free z-number, and let B,_, be the inverse image of a Sylow p,-subgroup
of G/A,.,in G. Then (2) and (3)’ follow.

Case O-2. K has r.x.e for = but not 7.x.(e—1) for . Then there exists
0 = Irr(K) such that e(@)=e. By Corollary 3.4 § is G-invaraiant. Let g&G—K.

Forany pe /Q\, p@ < Irr(K) and e(n0)=e(d)=e. Thus similarly u0 is G-invariant,
so that

Op = (Op) = 0%uf = Ou®

and §=0ufu"'. Hence 0 vanishes off Ker(pfn""). By (6) of Isaacs-Passman’s
Lemma, for any character A € @ we can find a character ,u,E/Q\ and an element
€ G—K with A=p4u"'. Thus 0 vanishes Ker A. Now Q=K/N has a sub-
group of index g. Let A4, , be its inverse image in G. A,_, is the kernel of
(14,_ )" which is a sum of linear characters of Q. So 6 vanishes off 4,_,. Let
0|4, ,=a2li-ip; where @, are distinct. Then

|K|
|Ae—l'

Hence a=1 and t=q. Thus ¢=60(1)/p(1)Ex and 0| ,,_, is reducible. For any
irreducible character of K with T-exponent e, similarly its restriction to K is
reducible. Therefore we have (1). Let B, =K, p,=q and z,=n— {p}.
Since q is relatively prime to m=|E: Q|=|G: K|, (2) and (3)" are satisfied.
Now

azt:(elAe_,’elA,_l)AB_lz 0,0)=q.

e(|G: 4,,]) = e(| G: K |)+e(|K: Q) = e(m)+1=e+-1=2e-+1,

and hence (4)’ is also satisfied. This proves the theorem.
As consequences of Theorem I we have the following.

Corollary 3.9. Assume that G satisfies the hypotheses of Theorem 1. Then

we have:
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(1) G has the derived length<2e+1, and Sylow p-subgroup of G has the
derived length<e+1.

(2) G has a subnormal abelian subgroup A, with | G: A,| =r*“*?, where r is
the biggest prime of n(G)Nr.

(3) If G has an abelian Hall n-subgroup, then G has a mormal series

G = AGDAG—ID'..DAO

such that (i) A; has r.x.i for = and (i1) A;[A;_, is a cyclic n-group of square-free
order, whose T-exponent <i.

Proof. (1) and (2) immediately follow from Theorem I. We consider
(3). Any section of G which is a z-group must be abelian. Theorefore
only Case Q-1 in the proof of Theorem I can occur. Hence the result follows.

The above (1) may be of interest as the analogy to the following result
appearing in [4]. A Sylow p-subgroup of a solvable group G has the derived
length <2m-+1, where m is the biggest integer such that p divides X(1) for
some XE Irr(G).

Let G be a (not necessarily finite) group, and we suppose every irreducible
C[G]-module is of finite dimension over C, where C is the field of complex
numbers. Then we may use the terminology ‘‘7.x.e for z”’ as in the case of finite
groups.

The following consequence of Theorem I generalizes Theorem I of [5].

Corollary 3.10. Let G be (not mecessarily finite) finitely generated group
with r.x.e for w. Moreover suppose |z | is finite when G is not finite. Then G
has a normal series

G=A,>B, DA, ,>-D>B,>A4,

and there exists some prime p,En for any i such that

(1) A,is abelian,

(2) A;B;_,is a cyclic w,-group where r,=n— {p;},

(3) B;.,/A;-,1is an elementary abelian p;-group, and

(4) |4;: A;-,| is a w-number with T-exponent <2i+1.

In particular |G: Ay| s a m-number with T-exponent <e(e-+2) and hence
|G: Ay| Sre™D, where r=max(z(G) N ).

Proof. ‘Let G be a finitely generated group which satisfies the above
hypotheses. By the assumption there exists a prime 7 such that r=s for any
s€n(G)N=. There are only finitely many subgroups of G with index <r¢¢*?
by M. Hall’s Theorem (see [9] p. 56 or [6] p. 901). Suppose that L,, L,, -+, L,
are all of those which are nonabelian. Choose x;, y;€L; with the commutator
z;=[x;, y;]#1. By Passman’s Theorem ([10] Theorem V), G is a subdirect
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product of finite groups. Thus we can find a normal subgroup IV of finite index
in G such that z;&N for i=1,2, «--,t. Then G|N is a finite group with r.x.e
for z and thus there exists a normal series

G=A4,B, DA, ,>--D>B>A,>N

such that (2), (3) and (4) hold, 4y/N is abelian and |G: 4,| <r*“*? by Theorem
I. By the choise of N, 4, is abelian and hence the result is proved.

4. Large subnormal abelian subgroups. In this section we shall prove
Theorem II.

We note that the function f, exists and satisfies f,(¢) <e(e+2) by Theorem I.
Thus there exists f, and clearly f,(e) < f(e).

In order to improve the upper bounds, we start with lemmas which corre-
spond to the results in [6]. The following lemma is due ultimately to Isaacs
and Passman.

Lemma 4.1. Let G have r.x.e. Suppose N<|G with E=G/|N being as in
Case P of Isaacs-Passman’s Lemma. Let Z be the complete inverse image of Z(E)
in G. Let BEIrr(E) with B(1)>1. Then we have:

(1) Given any character p&Irr(Z), if X, is an irreducible constituent of
@¢ and if X, is an irreduchile constituent of X3, then

e(X)+e(X,) Z () +e(t)-+ 2¢()
where t is the number of distinct conjugates of .
(2) Z has r.x.le—e(B)/2].
(3) Moreover if e(B) is even, then G has a normal subgroup B with the
following properties: B>Z, e(|B: Z|)=1 and B has r.x.(e—e(5)/2).

Proof. (1) Let X be an irreducible constituent of °. Then since Z ]G,

AN
X|z=a2Y_,p; ¢py=@. Let B|,=pB(1)\, where A\€Z/N. Let (pr)°=>a;X..
By the proof of Lemma 3.5 of Isaacs-Passman [6], a,at/B(1)=(Xg3, X,), X(1)=
atp(l) and X (1)=a,tp(1). Hence

X(1)X(1) = (1) = (X8, X,)B(1)tp(1)
and

e(X)+e(X,) Ze( B)+e(t) +2e(p)

as desired.

(2) Since G has r.x.e, e(X) and e(X,) are <e. By (1), therefore, e(®)
<e—e(B)/2. Since @ is an arbitrary character of Z, Z has r.x. [e—e(8)/2], and
(2) follows.
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(3) Let e(B) be even. Since G/Z is a p-group for some prime p, there
exists B such that Z <B<]G and |B:Z |=p. We may show B has r.x.(e—e(3)/2).
Suppose that there exists an irreducible character 6 of B with e(6)>e—e(8)/2.
By (2) Z has r.x.(e—e(/3)/2) and hence |, is reducible. By Lemma 3.6 there
exists @ €Irr(Z) with 0=¢”. So e(f)=e(p)+1, and we have

e—e(B)2=e(8)—1 = e(p)<e—e(B)2.

Thus we have e(p)=e—e(3)/2. Now ¢ has p conjugates in B. Hence if ¢ has
¢ conjugates in G, we have £=p>1 and e(2)>0. Thus by (1),

2e—e(B) = 2e(p) < 2e—e( B)—e(t) <2e—e(B) .
This is a contradiction. Therefore B has r.x.(e—e(83)/2).
Lemma 4.2. £,(0)=0 and
fle)=max{f(e—1)+e+1, f(e—(m+1)[2)+2m, f(e—n[2)+2n—1|

m is an odd integer with 0 <m=e and n is an even integer with 0 <n=e} .

Proof. A group with 7.x.0 is abelian and hence f,(0)=0. Let v be the
right-hand side of the above inequality. The proof is by induction on |G|.
We may assume that G is a nonabelian group with 7.x.e and that e=1. Since G
is solvable, we can choose N <]G with E=G/|N being a group as in Isaacs-
Passman’s Lemma.

We consider three cases according to the cases of the proof of Theorem I.
First we consider the case O-1.

Case O-1. K has r.x.(e—1), where K is as in the proof of Theorem I.
Then K has a subnormal abelian subgroup A such that ¢(|K: A|)=< f(e—1).
Since K ]G and ¢(| G: K|)<e, A is a subnormal abelian subgroup of G such
that

e(|G:Aly=e(|G:K|)+e(|K: A|)Se+f(e—1)<v.

Case Q-2. K has r.x.e but not r.x.(e—1). Let A4, ; be as in the proof of
that theorem. Then A, ; is a subnormal subgroup with r.x.(e—1) and with
e(|G: 4,,])<e+1. By induction 4,_, has a subnormal abelian subgroup 4
with e(|4,-,: A|)= f(e—1). Therefore 4 is a subnormal abelian subgroup of
G such that

e(|G: AN)=et+14fle—1)=v.

Case P. Eis a p-group for some prime p. Let Z be the inverse image of
Z(E)in G. Let B€Irr(E) with B(1)>1. We know that |G:Z|=/(1)* and
that 0 <e(B)=e.



7-SOLVABLE GROUPS 447

Moreover there exist two cases to consider.
Case P-1. ¢(B)is odd. Then

[e—e(8)/2] = e—(e(B)+1)/2<e—1.
By Lemma 4.1 (2), Z has r.x.(e—(e(8)+1)/2). By induction Z has a subnormal

abelian subgroup 4 with e(|Z: 4])< f(e—(m-+1)/2), where m=e(8). Thus 4
is a subnormal abelian subgroup of G with

| G: A|)S2m-+f (e~ (m+1)/2) o

Case P-2. ¢(B)is even. Then let B be as in Lemma 4.1 (3). Since B has
r.x.(e—e(8)/2) and e(3)=2, B has a subnormal abelian subgroup 4 with e(|B:
A f(e—n/2), where n=e(3). Thus A is a subnormal abelian subgroup of
G with

e(|G: A|)E2n—14-f(e—n[2)<v.

In any case G has a subnormal abelian subgroup A with ¢(|G: 4|)=<v,
and hence f(e)<v. This completes the proof of our lemma.

From the proof of Theorem A in [6], we have immediately (2) of the fol-
lowing lemma.

Lemma 4.3 (Isaacs-Passman). For any prime p there exists f,,, which
satisfies
(1) fp(0)=0, fiu(1)=2, fin(2)=4 and
(2) 2e=fi(e)
< max{fo(e—(m-+1)[2)+2m, fip(e—n/2)+2n—1]
m is an odd integer with 0 <m=e and n is an even integer with
0<n=e}.

The equality f(,)(2)=4 of (1) is seen in [11], and the other equalities of
(1) are seen in [6].

We remark that clearly f,)(e) < f,(e) < f,(e) for any prime p.

Corollary 4.4. fi,)(e) =2e  fore<l1.

Jip(e)=4e—[log,8¢]  for ex=2.

Proof. By Lemma 4.3 (1), f(,)(0)=0, f,(1)=2 and f(l,)(2):4-,‘ therefore by

)
f»(3)=4-3—[log,8-3].

Thus the result holds for e<3. We may suppose e=4. Our inequality will

be proved by induction on e. By Lemma 4.3 (2), it would be sufficient to show
the following two inequalities.
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(i) If mis any odd integer with 0 <m=e, then

fip(e—(m—+1)/2)4-2m <4e—[log,8¢] .
(i) If » is any even integer with 0 <n=e, then
fip(e—n[2)+2n—1=<4e—[log,8¢] .
Proof of (i). Letm be as in (i). Then since e=4, 2<e—(m+1)/2=<e—1.
Hence induction is applicable. Write
A = {4e—[log,8el} — {f(,(e—(m+1)/2)+2m} .
By induction,
A 2 4e—[log,8e] — {#(e—(m+1)/2)—[log,8(e—(m+1)/2)]+2m}
= [log4(e—(m+-1)/2)] —[log.e] -
Since m=e, 4(e—(m+1)/2)=2(e—1)=e for e=4. Therefore we get A= 0,
and hence (1) also follows.

Proof of (ii). Let n be as in (ii). Then 2<e—n/2=<e—1 for e=4. Thus
by using induction we get

f4e—[log,8el} — {f(e—nf2)+2n—1}
= [log,2(e—n/2)] —[log,e] 20,

because n=<e, 2(e—n/2)=e. Thus (ii) is proved, and hence the result follows.
We will need the following elementary inequality in (3).

Lemma 4.5. (1) [x]+[y]+1=[x+y].
(2) []-DIzlx—)-
(3) We define a function z on all of nonnegative integers as follows.
2x ifx=0or1,
(%) = 4 .
x—[log,8x] ifx=2.

Then we have

At Za()+5(3)  for any x, .
and thus 2(337_1x;) =3 ,3(x;).

Proof. The inequalities (1) and ( 2) are well-known.

(3) By induction on r the last inequality follows from the first inequality.
We consider three cases.

Case 1. x=<1and y<1. Then since 2(2)=4, 2(x+y)==2(x)+=2(y).

Case 2. Either x or y is <1. We may assume that x=2 and y=1. Then
we have
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A(x+y)—2(x)—2(y) = #(r+1)—»(x)—2
= 2-+[log,x]—[logy(x+1)] = [log,(4x)/(x+1)]>0.
The first inequality follows from (2) and the last inequality follows from the

fact that (4x)/(x+1)>2 for x=2.
Case 3. x=2 and y=2. Then we have

2(x+y)—2(x)—2(y)
= 3+[log,x]+-[log,y]—[loga(x-+y)]
= 2+[logyxy] —[log,(x+y)]
2 [log,(4xy)/(x+y)]1>0.

The first (resp. the second) inequality follows from (1) (resp. (2)) and the last
inequlity follows from the fact that (4xy)/(x+y)>2 for x=2 and y=2.
Now we are ready to prove our second main theorem.

Proof of Theorem II. By the first remark in this section, we may prove
(1) and, (2): fJ(e)<e(e+3)/2.
We discuss (2)’ first. Use induction on e. By Lemma 4.2, it would be suffi-
cient to show that the following inequalities:

(i) fle—1)4e+1=e(e+3)/2 for ex=1.
(i1) If m is any odd intetger with 0 <m=e, then

fle—(mt-1)]2)+2m=e(e+3)[2.
(iii) If  is any even integer with 0 <n<e, then
fle—n[2)+2n—1<e(e+3)/2 .
Proof of (i). By induction,
fle—1)tet+1<(e—1){(e—1)+3}/2+e+1 = e(e+3)/2.

Proof of (ii). Let m be as in (ii). Since
0<e—(m+1)/2<e—1, induction is applicable. Thus

fe—(m+1)[2)+-2m

<3 mg)m e

- %e(e+3)—}——;— (m+1)2--}:(2e+3) (m+-1)+-2m

= %e(e—}—S) ,

because m and e are integers with 0 <m=e.
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Proof of (iii). Let n be as in (iii). Since 0<e—n/2=<e—1, by induction
we can prove (iii) similarly.

Next we discuss (1). By Lemma 4.3 and the remark following that lemma,
it would be sufficient to show that

(1)/ fn(O):O’ fn(l)éz aIld
f.(e) <4e—[log,8e] for ex=2.

Now f,(0)=0 is trivial. Let G be a nilpotent group with 7.x.e, and write G=
P, X P,Xx - x P,, where P; is a Sylow p,-subgroup of G. Suppose that P; has
r.x.e; but not r.x.(e,—1). Then G has r.x.>7_je; and hence >Y_e;<e. We
define z(x) as in Lemma 4.5 (3). By Corollary 4.4 we know fi,,(e;)=z(e;).
Thus P, has a subnormal abelian subgroup 4; with e(|P;: 4;|)<z(e;). If A=
A, X Ay -+ X A,, then A is a subnormal abelian subgroup of G, and

e(1G: A1) = el IP: A1) S T-rx(e) S2(Sose)
=< z(e).

The second and the last inequalities follow from Lemma 4.5 (3). We have,
therefore, f,(¢)<z(e), and prove (1)’. This completes the proof of Theorem II.

5. A remark on a result of Issacs-Passman. A group G is said to
have r.b.n (representation bound n) if X(1)<n for any X&Irr(G).

The following result appears as Theorem D of [6]. Let A, be the function
with the following property. If G is a solvable group with 7.b.n, then G has a
subnormal abelian subgroup of index </,(n). Moreover we assume that £, is
the smallest such function. Then

hz(n) é n3/2 log,2n .

In this section we remark that the above upper bound may be slightly
improved as follows.

Theorem 5.1.  k(n)<n'es",

Proof. If G is abelian, the result is trivial, so we may assume that G is
nonabelian. As usual, choose N <]G with G/N being a group of Isaacs-Passman’s
Lemma. There are three cases in the proof of Theorem D of [6].

Case P. G has a normal subgroup of index <»? with 7.b.(n/2). +-+----- (1)

Case O-1. G has a normal subgroup Q of index < with 7.b.(n/2). -+---- (2)

Case Q-2. G has a normal subgroup Q of index <# with 7.b.n but not 7.b.
(n/2), and Q/N is an abelian Sylow g-subgroup of G/N for some prime ¢g. In
this case, moreover, it is known that if d&Irr(Q) with 6(1)>n/2 then 6
vanishes off N. We consider this case more precisely.
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Now Q/N has a subgroup of index q. Let D be its inverse image in G.
Then @ vanishes off D and D<]Q. Let 6|,=a>)i_,p;. Then

w=wmm»=¥%@m=m

Hence a=1 and t=q. Thus
g<atpy(1) = O(1)=n,
because Q has r.b.n. So
|G: D| <ng=n?

and @,(1)=60(1)/g=n/2. Since 6 is an arbitrary character of Q with 6(1)>n/2,
D has 7.b.(n/2) by Frobenius Reciprocity Theorem. Thus we have:
G has a subnormal subgroup D of index =n? with 7.b.(n/2). «+-ceeeeeo(3)
We now apply induction on . (1), (2) and (3) imply that G has a subnor-
mal subgroup M of index =<#? with r.b.(z/2). By induction M has a sub-
normal abelian subgroup 4 with

| M: A] < (nj2)s .
Then A is subnormal in G with
|G: 4| <n¥(n|2)o82r=nlel"
and the result follows.
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