

Title	On $\pi\text{-solvable}$ groups whose character degrees are $\pi\text{-numbers}$
Author(s)	Yao, Takashi
Citation	Osaka Journal of Mathematics. 1977, 14(2), p. 437-452
Version Type	VoR
URL	https://doi.org/10.18910/4027
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ON π -SOLVABLE GROUPS WHOSE CHARACTER DEGREES ARE π -NUMBERS

Takashi YAO

(Received June 8, 1976)

1. Introduction. Let π be a set of primes, and let $n=p_1 \cdot p_2 \cdot \cdots \cdot p_t$ be a positive integer, where the p_i are (not necessarily distinct) primes. Then we say that the total exponent (shortly T-exponent) of n is t and write e(n)=t. If $p_i \in \pi$ for $i=1, 2, \dots, t$ with the above notation, then n is said to be a π -number.

Let Irr(G) be the set of irreducible complex characters of a group G. We say that a group G has $c.d.\pi$ (character degrees π) if $\chi(1)$ is a π -number for any $\chi \in Irr(G)$, a group G has r.x.e (representation exponent e) if $e(\chi(1)) \leq e$ for any $\chi \in Irr(G)$, and G has r.x.e for π (representation exponent e for π) if G has $c.d.\pi$ and f.x.e.

In this paper we shall prove the following theorems.

Theorem I. Let G have r.x.e for π . Suppose G is π -solvable when $|\pi| \ge 3$. Then G has a normal series

$$G = A_{\bullet} \triangleright B_{\bullet-1} \triangleright A_{\bullet-1} \triangleright \cdots \triangleright B_{\bullet} \triangleright A_{\bullet}$$

and there exists some prime $p_i \in \pi$ for any i such that

- (1) A_i has r.x.i for π ,
- (2) A_i/B_{i-1} is a cyclic π_i -group, where $\pi_i=\pi-\{p_i\}$,
- (3) B_{i-1}/A_{i-1} is an elementary abelian p_i -group, and
- (4) $|A_i: A_{i-1}|$ is a π -number with $e(|A_i: A_{i-1}|) \leq 2i+1$.

In particular G has a subnormal abelian subgroup A_0 whose index is a π -number with $e(|G:A_0|) \leq e(e+2)$.

This theorem generalizes the result of I.M. Isaacs and D.S. Passman [5] in the case $\pi = \{p\}$. In the case $\pi = \{p\}$, indeed, $p_1 = p_2 = \cdots = p_e = p$ and the π_i are empty with the above notation. Thus $A_i = B_{i-1}$, that is, the normal series in Theorem I has elementary abelian factor groups.

In Theorem I G may have, however, larger subnormal abelian subgroups. We shall show the existence of such subgroups. First we make the following definition.

Let f_s (resp. f_n) be a function with the following property. If G is a sol-

438 Т. Үло

vable (resp. nilpotent) group with r.x.e, then G has a subnormal abelian subgroup A with $e(|G:A|) \le f_s(e)$ (resp. $f_n(e)$). Moreover we assume that f_s (resp. f_n) is the smallest such function. Let $f_{(p)}$ be the corresponding function for the class of groups with r.x.e for a prime p.

In what follows, we denote the largest integer $\leq x$ by [x].

In [6] we know the existence of $f_{(p)}$ for any prime p. Actually $f_{(p)}(0)=0$ and

$$2e \leq f_{(b)}(e) \leq [4e - \log_2 4e]$$
 when $e \geq 1$.

In this paper we have:

Theorem II. The functions f_s and f_n exist and satisfy

(1)
$$f_n(0)=0, f_n(1)=2$$
 and $2e \le f_n(e) \le [4e - \log_2 8e]$ when $e \ge 2$.

(2) $f_n(e) \leq f_s(e) \leq e(e+3)/2$.

This yields in particular

$$f_n(0)=f_s(0)=0, f_n(1)=f_s(1)=2, f_n(2)=4 \text{ and } f_s(2)=4 \text{ or } 5.$$

All groups in this paper are assumed to be finite unless otherwise stated. Let $N \triangleleft G$. If $\mathfrak{X} \in Irr(G/N)$, then \mathfrak{X} may be viewed as a character of G. For example $\widehat{G} = Irr(G/G')$, where G' is the commutator subgroup of G, is the set of linear characters of G. In what follows an irreducible character means an irreducible complex character. If G is a group, then Z(G) and $\Phi(G)$ denote the center and Frattini subgroup of G respectively. If G is a set, then |G| denotes the cardinality of G. We write

```
\pi(G) = \{\text{primes } p \mid p \text{ divides } |G|\},\

\pi' = \{\text{primes } p \mid p \in \pi\}, \text{ and }

p' = \{p\}'.
```

Let \mathcal{X} be a character. We denote simply $e(\mathcal{X}(1))$ by $e(\mathcal{X})$. If $e(\mathcal{X})=e$, then we say that \mathcal{X} is a character with total exponent e (shortly T-exponent e). All the other notation can be seen in [3] or [6].

The author would like to express his hearty thanks to Professor H. Nagao who encouraged him in whole study.

2. Groups with $c.d.\pi$. The following theorem is a slight extension of the Burnside's $p^a q^b$ -Theorem, (see [3] 4.3.3).

Theorem 2.1. Let G have $c.d.\pi$. If $|\pi| \leq 2$, then G is solvable.

Proof. Since any normal subgroup or factorgroup of G satisfies the same assumption, the theorem follows at once by induction on |G| if G is not simple. So we may assume G is simple. Therefore we may also assume $p \in \pi \subseteq \{p, q\}$ and G has a nontrivial Sylow p-subgroup P. Choose $1 \neq x \in Z(P)$. Let $1_G \neq x \in Irr(G)$. If x(1) is a power of p, then the simplicity of G and Burnside's

lemma (see [3] 4.3.1) imply $\chi(x)=0$. Thus by orthogonality relations,

$$0 = \sum_{\mathbf{x} \in Irr(G)} \chi(1)\chi(\mathbf{x}) = 1 + q\alpha$$

where α is an algebraic integer. So $\alpha = -1/q$, which is clearly imposible.

There exists no extension of Theorem 2.1 to the case $|\pi| \ge 3$ as SL(2,5) shows.

The following results on groups with c.d. p' for a prime p are shown in [8] and [1].

Proposition A (N. Ito). If G is a solvable group with c.d.p', then G has a normal abelian Sylow p-subgroup.

Proposition B (P. Fong). If G is a p-slovable group with c.d.p', then G has a normal abelian Sylow p-subgroup.

The latter includes the former. We shall extend these propositions in Theorem 2.5. We start with some lemmas.

If a π -number n is also a π' -number, then n=1. Therefore the following lemma is immediate.

Lemma 2.2. If G is a π' -group with $c.d.\pi$, then G is abelian.

Lemma 2.3 (P. X. Gallagher [2], Theorem 8). Suppose G is a π -separable group with a Hall π' -subgroup H. If the degree of any irreducible constituent of $(1_H)^G$ is a π -number, then $H \triangleleft G$.

REMARK. In [2] the term " π -solvable" seems to be used in the sense of " π -separable".

The following lemma is proved by using the Schur-Zassenhaus Theorem, (see [3] 6.3.5).

Lemma 2.4. If G is π -separable, then G possesses a Hall π' -subgroup.

We are now ready to extend Proposition B. If G is a π -separable group with $\operatorname{c.d.}\pi$, then G has a Hall π' -subgroup H by Lemma 2.4 and hence Lemma 2.3 is applicable. Therefore $H \triangleleft G$ and H is a π' -group with $\operatorname{c.d.}\pi$. So H is abelian by Lemma 2.2. By combining Theorem 2.1 and Ito's Theorem we have:

Theorem 2.5. Suppose G is π -separable when $|\pi| \ge 3$. Then G has a normal abelian Hall π' -subgroup if and only if G has $c.d.\pi$.

The following corollary is useful in the proof of Theorem I in section 3.

Corollary 2.6. Let G have $c.d.\pi$. Suppose G is π -solvable when $|\pi| \ge 3$.

Then G is solvable.

Proof. By the theorem G has a normal abelian Hall π' -subgroup H. Then G/H is a π -solvable π -group, and hence G/H is solvable. Therefore G is also solvable.

Now it is clear the following corollary holds for subnormal subgroups of arbitrary groups.

Corollary 2.7. Let G have $c.d.\pi$. Suppose G is π -separable when $|\pi| \ge 3$. Then every subgroup of G has also $c.d.\pi$.

Proof. Let G be as above. By the theorem G has a normal abelian Hall π' -subgroup H. Let K be a subgroup of G. Then $H \cap K$ is a normal abelian Hall π' -subgroup of K and hence the theorem implies the corollary.

3. Groups with r.x.e for π . In this section we shall prove Theorem I. The following properties of the total exponent immediately follow from our definition.

Lemma 3.1. (1) $e(m) \ge 0$, and e(m) = 0 if and only if m = 1.

(2) e(mn) = e(m) + e(n).

In particular these yield:

- (3) When s divides t, $e(s) \le e(t)$, and the equality holds if and only if s=t.
- If G has r.x.0, then G has no nonlinear irreducible characters and hence G is abelian. We know that groups with r.x.1 are solvable ([7] Theorem 6.1), but groups with r.x.2 are not necessarily solvable. Indeed the simple group A_5 , the alternating group on 5 letters, has character degrees 1, 3, 2^2 , 5.

By using Frobenius Reciprocity Theorem, Clifford's Theorem and our definition, we have the following immediately.

Lemma 3.2. Let N be subnormal in G where G has r.x.e for π . Then N has r.x.e for π .

The following lemma will be useful in applying induction on the total exponent.

Lemma 3.3. Let $N \triangleleft G$ where G has r.x.e for π . If G/N is nonabelian, then N has r.x.(e-1) for π .

Proof. By Lemma 3.2, it will be sufficient to show that N has no irreducible characters with T-exponent e. Assume that N has an irreducible character θ with $e(\theta)=e$. Let χ be an irreducible constituent of θ^G . Then $\theta(1)$ divides $\chi(1)$ and hence

$$e = e(\theta) \le e(\chi) \le e$$

for G has r.x.e. We have the equality throughout so that $e(\chi)=e$ and $\chi|_N=\theta \in Irr(N)$. Since G/N is nonabelian, there exists $\varphi \in Irr(G/N)$ such that $\varphi(1)>1$. Then $\varphi \chi \in Irr(G)$ (see [2] Theorem 2), and hence

$$e = e(\chi) < e(\varphi) + e(\chi) = e(\varphi \chi) \leq e$$
.

This is a contradiction.

We remark that in the proof of Lemma 3.3 above we obtained the following result.

Corollary 3.4. Let $N \triangleleft G$ where G and N have r.x.e. Suppose $\theta \in Irr(N)$ with $e(\theta) = e$. If X is an irreducible constituent of θ^G , then e(X) = e and $X|_N = \theta \in Irr(N)$.

The following proposition generalizes Lemma 2.7 in [5] however it will not be used in this paper.

Proposition 3.5. Let $N \triangleleft G$ where G has $c.d.\pi$. Suppose G/N is a π' -group. Then we have:

- (1) Any irreducible character of N is G-invariant and $\chi|_N \in Irr(N)$ for any $\chi \in Irr(G)$.
 - (2) If N has r.x.e for π , then so does G.

Proof. Let $\chi \in Irr(G)$. By Clifford's Theorem, $\chi|_{N} = e\sum_{i=1}^{l} \theta_{i}$ where the θ_{i} are distinct irreducible constituents and $\chi(1) = et\theta_{1}(1)$. Then et is a π -number since G has $c.d.\pi$. Now et divides |G:N| which is a π' -number. Thus we have e=t=1. Since χ is arbitrary, (1) and (2) follow from Frobenius Reciprocity Theorem.

Before going on to another result, we state here the result by Isaacs and Passman, which will be needed.

Lemma 3.6 ([5] Proposition 2.5). Let $N \triangleleft G$ with G/N nilpotent. Suppose $X \in Irr(G)$ with $X|_N$ reducible. Then there exists a normal subgroup T of G of prime index such that $N \subseteq T$ and $X = \psi^G$ for some $\psi \in Irr(T)$.

The following lemma generalizes Lemma 2.8 in [5].

Lemma 3.7. Let $N \triangleleft G$ with G/N nilpotent. Let G have r.x.e for π and N have r.x.(e-1) for π . If F is the inverse image of $\Phi(G/N)$ in G, then F has r.x. (e-1) for π .

Proof. $F \triangleleft G$ and thus by Lemma 3.2 F has r.x.e for π . Therefore it would be sufficient for our purpose to show that F has no irreducible character with T-exponent e. Suppose $\theta \in Irr(F)$ satisfies $e(\theta) = e$. Let χ be an irreducible constituent of θ^c . By Corollary 3.4, $e(\chi) = e$ and $\chi|_F$ is irreduc-

442 T. Yao

ible. Since N has r.x.(e-1) for π , $\chi|_N$ is reducible, and by Lemma 3.6 there exists a subgroup T maximal in G and containing N with $\chi=\psi^G$ for some $\psi\in Irr(T)$. Therefore ψ is a constituent of $\chi|_T$ which is thus reducible. Consequently $\chi|_F$ must be reducible for $F\subseteq T$. This is a contradiction and the result follows.

The following lemma is a part of the result appearing in [6], which is extremely useful in proving our main theorems. We will call it Isaacs-Passman's Lemma in this paper.

Lemma 3.8 (Isaacs-Passman's Lemma). Let E be a group such that E'' = 1 < E' and $E' \subseteq K$ for all K with 1 < K < E. Then we have one of the following.

Case P. (1) E is a p-group for some prime p.

- (2) Z(E) is cyclic.
- (3) Every nonlinear irreducible character has degree $|E: Z(E)|^{1/2}$.

Case Q. (4) E is a Frobenius group with a cyclic complement and elementary abelian q-group Q as kernel.

- (5) Every nonlinear irreducible character has degree |E:Q|.
- (6) For any $\lambda \in \widehat{Q}$ and any $x \in E Q$, there exists $\mu \in \widehat{Q}$ with $\lambda = \mu^x \mu^{-1}$.

Let N be normal and maximal with respect to G/N being nonabelian. We note that if G is solvable then E = G/N satisfies of Isaacs-Passman's Lemma. We are now ready for the proof of Theorem I.

Proof of Theorem I. We prove the result by induction on e. When e=0, the result is trivial. Suppose $e \ge 1$. It will be sufficient to show that G has a normal series $G \triangleright B_{e-1} \triangleright A_{e-1}$ and there exists some prime $p_1 \in \pi$ such that

- (1)' A_{e-1} has r.x.(e-1) for π ,
- (2)' G/B_{e-1} is a cyclic π_1 -group where $\pi_1 = \pi \{p_1\}$,
- (3)' B_{e-1}/A_{e-1} is an elementary abelian p_1 -group, and
- (4)' $e(|G:A_{e-1}|) \leq 2e+1.$

We know that G is solvable by Corollary 2.6. We may assume G is non-abelian. Then there exists $N \triangleleft G$ which is maximal with G/N nonabelian. Now E=G/N satisfies the hypotheses of Isaacs-Passman's Lemma. Thus E has a unique nonlinear irreducible character degree m, which is also a character degree of G. So m is a π -number with $e(m) \leq e$, because G has r.x.e for π . Since E is nonabelian, N has r.x.(e-1) for π by Lemma 3.3.

We consider two cases according to Isaacs-Passman's Lemma, which we apply to E.

Case P. E is a p-group for some prime p. Then p divides m and thus $p \in \pi$. Let A_{e-1} be the inverse image of $\Phi(G/N)$ in G. By Lemma 3.7 A_{e-1} has r.x. (e-1) for π , and satisfies (1)'. Since Z(E) is cyclic and $|E:Z(E)| = m^2$,

$$\begin{aligned} e(|G:A_{e^{-1}}|) &= e(|E:\Phi(E)|) \leq e(|E:\Phi(E) \cap Z(E)|) \\ &= e(|E:Z(E)|) + e(|Z(E):\Phi(E) \cap Z(E)|) \leq 2e(m) + 1 \leq 2e + 1. \end{aligned}$$

Thus we get (4)'. Let $B_{e-1}=G$ and $p_1=p$. Then (2)' and (3)' hold, and the result follows for this case.

Case Q. E is a Frobenius group with a cyclic complement and elementary abelian q-group Q as kernel. Let K be the inverse image of Q in G. Since K has r.x.e by Lemma 3.2, we may consider the following two cases.

Case Q-1. K has r.x.(e-1) for π . Let A_{e-1} be the inverse image of $\Phi(G/K)$ in G. Now $G/K \cong E/Q$ is a cyclic group of order m, therefore by Lemma 3.7 A_{e-1} has r.x.(e-1) for π and satisfies (1)'. Since $|G:A_{e-1}|$ divides m, (4)' follows for $e(m) \leq e \leq 2e+1$. Choose a prime divisor p_1 of $|G:A_{e-1}|$, which is a square-free π -number, and let B_{e-1} be the inverse image of a Sylow p_1 -subgroup of G/A_{e-1} in G. Then (2)' and (3)' follow.

Case Q-2. K has r.x.e for π but not r.x.(e-1) for π . Then there exists $\theta \in Irr(K)$ such that $e(\theta) = e$. By Corollary 3.4 θ is G-invariant. Let $g \in G - K$. For any $\mu \in \widehat{Q}$, $\mu \theta \in Irr(K)$ and $e(\mu \theta) = e(\theta) = e$. Thus similarly $\mu \theta$ is G-invariant, so that

$$\theta\mu = (\theta\mu)^g = \theta^g\mu^g = \theta\mu^g$$

and $\theta = \theta \mu^g \mu^{-1}$. Hence θ vanishes off $\operatorname{Ker}(\mu^g \mu^{-1})$. By (6) of Isaacs-Passman's Lemma, for any character $\lambda \in \widehat{Q}$ we can find a character $\mu \in \widehat{Q}$ and an element $g \in G - K$ with $\lambda = \mu^g \mu^{-1}$. Thus θ vanishes $\operatorname{Ker} \lambda$. Now Q = K/N has a subgroup of index q. Let A_{e-1} be its inverse image in G. A_{e-1} is the kernel of $(1_{A_{e-1}})^K$ which is a sum of linear characters of Q. So θ vanishes off A_{e-1} . Let $\theta \mid_{A_{e-1}} = a \sum_{i=1}^t \varphi_i$ where φ_i are distinct. Then

$$a^2t = (\theta \mid_{A_{e-1}}, \theta \mid_{A_{e-1}})_{A_{e-1}} = \frac{|K|}{|A_{e-1}|} (\theta, \theta)_K = q.$$

Hence a=1 and t=q. Thus $q=\theta(1)/\varphi(1)\in\pi$ and $\theta|_{A_{e-1}}$ is reducible. For any irreducible character of K with T-exponent e, similarly its restriction to K is reducible. Therefore we have (1)'. Let $B_{e-1}=K$, $p_1=q$ and $\pi_1=\pi-\{p_1\}$. Since q is relatively prime to m=|E:Q|=|G:K|, (2)' and (3)' are satisfied. Now

$$e(|G:A_{e-1}|) = e(|G:K|) + e(|K:Q|) = e(m) + 1 \le e + 1 \le 2e + 1$$
,

and hence (4)' is also satisfied. This proves the theorem.

As consequences of Theorem I we have the following.

Corollary 3.9. Assume that G satisfies the hypotheses of Theorem I. Then we have:

- (1) G has the derived length $\leq 2e+1$, and Sylow p-subgroup of G has the derived length $\leq e+1$.
- (2) G has a subnormal abelian subgroup A_0 with $|G: A_0| \le r^{e(e+2)}$, where r is the biggest prime of $\pi(G) \cap \pi$.
 - (3) If G has an abelian Hall π -subgroup, then G has a normal series

$$G = A_e \triangleright A_{e^{-1}} \triangleright \cdots \triangleright A_0$$

such that (i) A_i has r.x.i for π and (ii) A_i/A_{i-1} is a cyclic π -group of square-free order, whose T-exponent $\leq i$.

Proof. (1) and (2) immediately follow from Theorem I. We consider (3). Any section of G which is a π -group must be abelian. Theorefore only Case Q-1 in the proof of Theorem I can occur. Hence the result follows.

The above (1) may be of interest as the analogy to the following result appearing in [4]. A Sylow p-subgroup of a solvable group G has the derived length $\leq 2m+1$, where m is the biggest integer such that p^m divides $\chi(1)$ for some $\chi \in Irr(G)$.

Let G be a (not necessarily finite) group, and we suppose every irreducible C[G]-module is of finite dimension over C, where C is the field of complex numbers. Then we may use the terminology "r.x.e for π " as in the case of finite groups.

The following consequence of Theorem I generalizes Theorem I of [5].

Corollary 3.10. Let G be (not necessarily finite) finitely generated group with r.x.e for π . Moreover suppose $|\pi|$ is finite when G is not finite. Then G has a normal series

$$G = A_e \triangleright B_{e-1} \triangleright A_{e-1} \triangleright \cdots \triangleright B_0 \triangleright A_0$$

and there exists some prime $p_i \in \pi$ for any i such that

- (1) A_0 is abelian,
- (2) A_i/B_{i-1} is a cyclic π_i -group where $\pi_i = \pi \{p_i\}$,
- (3) B_{i-1}/A_{i-1} is an elementary abelian p_i -group, and
- (4) $|A_i:A_{i-1}|$ is a π -number with T-exponent $\leq 2i+1$.

In particular $|G: A_0|$ is a π -number with T-exponent $\leq e(e+2)$ and hence $|G: A_0| \leq r^{e(e+2)}$, where $r = \max(\pi(G) \cap \pi)$.

Proof. Let G be a finitely generated group which satisfies the above hypotheses. By the assumption there exists a prime r such that $r \ge s$ for any $s \in \pi(G) \cap \pi$. There are only finitely many subgroups of G with index $\le r^{e(e+2)}$ by M. Hall's Theorem (see [9] p. 56 or [6] p. 901). Suppose that L_1, L_2, \dots, L_t are all of those which are nonabelian. Choose $x_i, y_i \in L_i$ with the commutator $z_i = [x_i, y_i] \pm 1$. By Passman's Theorem ([10] Theorem V), G is a subdirect

product of finite groups. Thus we can find a normal subgroup N of finite index in G such that $z_i \in N$ for $i=1, 2, \dots, t$. Then G/N is a finite group with r.x.e for π and thus there exists a normal series

$$G = A_{\bullet} \triangleright B_{\bullet-1} \triangleright A_{\bullet-1} \triangleright \cdots \triangleright B_{0} \triangleright A_{0} \triangleright N$$

such that (2), (3) and (4) hold, A_0/N is abelian and $|G:A_0| \le r^{e(e+2)}$ by Theorem I. By the choise of N, A_0 is abelian and hence the result is proved.

4. Large subnormal abelian subgroups. In this section we shall prove Theorem II.

We note that the function f_s exists and satisfies $f_s(e) \le e(e+2)$ by Theorem I. Thus there exists f_n and clearly $f_n(e) \le f_s(e)$.

In order to improve the upper bounds, we start with lemmas which correspond to the results in [6]. The following lemma is due ultimately to Isaacs and Passman.

- **Lemma 4.1.** Let G have r.x.e. Suppose $N \triangleleft G$ with E = G/N being as in Case P of Isaacs-Passman's Lemma. Let Z be the complete inverse image of Z(E) in G. Let $\beta \in Irr(E)$ with $\beta(1) > 1$. Then we have:
- (1) Given any character $\varphi \in Irr(Z)$, if χ_1 is an irreducible constituent of φ^c and if χ_1 is an irreducible constituent of $\chi\beta$, then

$$e(\chi) + e(\chi_1) \ge e(\beta) + e(t) + 2e(\varphi)$$

where t is the number of distinct conjugates of φ .

- (2) $Z has r.x.[e-e(\beta)/2].$
- (3) Moreover if $e(\beta)$ is even, then G has a normal subgroup B with the following properties: B > Z, e(|B:Z|) = 1 and B has $r.x.(e-e(\beta)/2)$.
- Proof. (1) Let χ be an irreducible constituent of φ^c . Then since $Z \triangleleft G$, $\chi|_{Z} = a \sum_{i=1}^{t} \varphi_i \ \varphi_1 = \varphi$. Let $\beta|_{Z} = \beta(1)\lambda$, where $\lambda \in Z/N$. Let $(\varphi \lambda)^c = \sum a_i \chi_i$. By the proof of Lemma 3.5 of Isaacs-Passman [6], $a_1 a t/\beta(1) = (\chi \beta, \chi_1)$, $\chi(1) = a t \varphi(1)$ and $\chi_1(1) = a_1 t \varphi(1)$. Hence

$$\chi(1)\chi_1(1) = a_1 a t^2 \varphi(1)^2 = (\chi \beta, \chi_1)\beta(1) t \varphi(1)^2$$

and

$$e(X)+e(X_1) \ge e(\beta)+e(t)+2e(\varphi)$$

as desired.

(2) Since G has r.x.e, e(X) and $e(X_1)$ are $\leq e$. By (1), therefore, $e(\varphi) \leq e - e(\beta)/2$. Since φ is an arbitrary character of Z, Z has r.x. $[e - e(\beta)/2]$, and (2) follows.

(3) Let $e(\beta)$ be even. Since G/Z is a p-group for some prime p, there exists B such that Z < B < G and |B:Z| = p. We may show B has $r.x.(e-e(\beta)/2)$. Suppose that there exists an irreducible character θ of B with $e(\theta) > e - e(\beta)/2$. By (2) Z has $r.x.(e-e(\beta)/2)$ and hence $\theta|_Z$ is reducible. By Lemma 3.6 there exists $\varphi \in Irr(Z)$ with $\theta = \varphi^B$. So $e(\theta) = e(\varphi) + 1$, and we have

$$e-e(\beta)/2 \le e(\theta)-1 = e(\varphi) \le e-e(\beta)/2$$
.

Thus we have $e(\varphi)=e-e(\beta)/2$. Now φ has p conjugates in B. Hence if φ has t conjugates in G, we have $t \ge p > 1$ and e(t) > 0. Thus by (1),

$$2e-e(\beta) = 2e(\varphi) \leq 2e-e(\beta)-e(t) < 2e-e(\beta).$$

This is a contradiction. Therefore B has $r.x.(e-e(\beta)/2)$.

Lemma 4.2. $f_s(0) = 0$ and

$$f_s(e) \le \max \{f_s(e-1)+e+1, f_s(e-(m+1)/2)+2m, f_s(e-n/2)+2n-1 \mid m \text{ is an odd integer with } 0 < m \le e \text{ and } n \text{ is an even integer with } 0 < n \le e \}.$$

Proof. A group with r.x.0 is abelian and hence $f_s(0)=0$. Let v be the right-hand side of the above inequality. The proof is by induction on |G|. We may assume that G is a nonabelian group with r.x.e and that $e \ge 1$. Since G is solvable, we can choose $N \triangleleft G$ with E=G/N being a group as in Isaacs-Passman's Lemma.

We consider three cases according to the cases of the proof of Theorem I. First we consider the case Q-1.

Case Q-1. K has r.x.(e-1), where K is as in the proof of Theorem I. Then K has a subnormal abelian subgroup A such that $e(|K:A|) \le f_s(e-1)$. Since $K \triangleleft G$ and $e(|G:K|) \le e$, A is a subnormal abelian subgroup of G such that

$$e(|G:A|) = e(|G:K|) + e(|K:A|) \le e + f_s(e-1) < v$$
.

Case Q-2. K has r.x.e but not r.x.(e-1). Let A_{e-1} be as in the proof of that theorem. Then A_{e-1} is a subnormal subgroup with r.x.(e-1) and with $e(|G:A_{e-1}|) \le e+1$. By induction A_{e-1} has a subnormal abelian subgroup A with $e(|A_{e-1}:A|) \le f_s(e-1)$. Therefore A is a subnormal abelian subgroup of G such that

$$e(|G:A|) \leq e+1+f_s(e-1) \leq v$$
.

Case P. E is a p-group for some prime p. Let Z be the inverse image of Z(E) in G. Let $\beta \in Irr(E)$ with $\beta(1) > 1$. We know that $|G:Z| = \beta(1)^2$ and that $0 < e(\beta) \le e$.

Moreover there exist two cases to consider.

Case P-1. $e(\beta)$ is odd. Then

$$[e-e(\beta)/2] = e-(e(\beta)+1)/2 \le e-1$$
.

By Lemma 4.1 (2), Z has $r.x.(e-(e(\beta)+1)/2)$. By induction Z has a subnormal abelian subgroup A with $e(|Z:A|) \le f_s(e-(m+1)/2)$, where $m=e(\beta)$. Thus A is a subnormal abelian subgroup of G with

$$e(|G:A|) \leq 2m + f_s(e - (m+1)/2) \leq v$$
.

Case P-2. $e(\beta)$ is even. Then let B be as in Lemma 4.1 (3). Since B has $r.x.(e-e(\beta)/2)$ and $e(\beta)\geq 2$, B has a subnormal abelian subgroup A with $e(|B:A|)\leq f_s(e-n/2)$, where $n=e(\beta)$. Thus A is a subnormal abelian subgroup of G with

$$e(|G:A|) \leq 2n-1+f_s(e-n/2) \leq v$$
.

In any case G has a subnormal abelian subgroup A with $e(|G:A|) \le v$, and hence $f_s(e) \le v$. This completes the proof of our lemma.

From the proof of Theorem A in [6], we have immediately (2) of the following lemma.

Lemma 4.3 (Isaacs-Passman). For any prime p there exists $f_{(p)}$, which satisfies

- (1) $f_{(p)}(0)=0$, $f_{(p)}(1)=2$, $f_{(p)}(2)=4$ and
- $(2) 2e \leq f_{(p)}(e)$

$$\leq \max\{f_{(b)}(e-(m+1)/2)+2m, f_{(b)}(e-n/2)+2n-1\}$$

m is an odd integer with $0 < m \le e$ and n is an even integer with $0 < n \le e$.

The equality $f_{(p)}(2)=4$ of (1) is seen in [11], and the other equalities of (1) are seen in [6].

We remark that clearly $f_{(p)}(e) \le f_n(e) \le f_s(e)$ for any prime p.

Corollary 4.4.
$$f_{(p)}(e) = 2e$$
 for $e \le 1$.
 $f_{(p)}(e) \le 4e - [\log_2 8e]$ for $e \ge 2$.

Proof. By Lemma 4.3 (1), $f_{(p)}(0)=0$, $f_{(p)}(1)=2$ and $f_{(p)}(2)=4$, therefore by (2)

$$f_{(p)}(3) \leq 4 \cdot 3 - \lceil \log_2 8 \cdot 3 \rceil$$
.

Thus the result holds for $e \le 3$. We may suppose $e \ge 4$. Our inequality will be proved by induction on e. By Lemma 4.3 (2), it would be sufficient to show the following two inequalities.

(i) If m is any odd integer with $0 < m \le e$, then

$$f_{(p)}(e-(m+1)/2)+2m \leq 4e-[\log_2 8e]$$
.

(ii) If n is any even integer with $0 < n \le e$, then

$$f_{(p)}(e-n/2)+2n-1 \leq 4e-[\log_2 8e]$$
.

Proof of (i). Let m be as in (i). Then since $e \ge 4$, $2 \le e - (m+1)/2 \le e - 1$. Hence induction is applicable. Write

$$A = \{4e - [\log_2 8e]\} - \{f_{(b)}(e - (m+1)/2) + 2m\}.$$

By induction,

$$A \ge 4e - [\log_2 8e] - \{4(e - (m+1)/2) - [\log_2 8(e - (m+1)/2)] + 2m\}$$

= $[\log_2 4(e - (m+1)/2)] - [\log_2 e]$.

Since $m \le e$, $4(e - (m+1)/2) \ge 2(e-1) \ge e$ for $e \ge 4$. Therefore we get $A \ge 0$, and hence (i) also follows.

Proof of (ii). Let n be as in (ii). Then $2 \le e - n/2 \le e - 1$ for $e \ge 4$. Thus by using induction we get

$$\begin{aligned}
&\{4e - [\log_2 8e]\} - \{f_{(p)}(e - n/2) + 2n - 1\} \\
&\geq [\log_2 2(e - n/2)] - [\log_2 e] \geq 0,
\end{aligned}$$

because $n \le e$, $2(e-n/2) \ge e$. Thus (ii) is proved, and hence the result follows. We will need the following elementary inequality in (3).

Lemma 4.5. (1) $[x]+[y]+1 \ge [x+y]$.

- (2) $[x]-[y] \ge [x-y].$
- (3) We define a function z on all of nonnegative integers as follows.

$$z(x) = \begin{cases} 2x & \text{if } x = 0 \text{ or } 1, \\ 4x - [\log_2 8x] & \text{if } x \ge 2. \end{cases}$$

Then we have

$$z(x+y) \ge z(x)+z(y)$$
 for any x, y .

and thus $z(\sum_{i=1}^r x_i) \ge \sum_{i=1}^r z(x_i)$.

Proof. The inequalities (1) and (2) are well-known.

(3) By induction on r the last inequality follows from the first inequality. We consider three cases.

Case 1. $x \le 1$ and $y \le 1$. Then since z(2) = 4, $z(x+y) \ge z(x) + z(y)$.

Case 2. Either x or y is ≤ 1 . We may assume that $x \geq 2$ and y=1. Then we have

$$z(x+y)-z(x)-z(y) = z(x+1)-z(x)-2$$

= 2+[\log_2x]-[\log_2(x+1)]\geq[\log_2(4x)/(x+1)]>0.

The first inequality follows from (2) and the last inequality follows from the fact that (4x)/(x+1) > 2 for $x \ge 2$.

Case 3. $x \ge 2$ and $y \ge 2$. Then we have

$$z(x+y)-z(x)-z(y)$$
= 3+[log₂x]+[log₂y]-[log₂(x+y)]
\ge 2+[log₂xy]-[log₂(x+y)]
\ge [log₂(4xy)/(x+y)]>0.

The first (resp. the second) inequality follows from (1) (resp. (2)) and the last inequality follows from the fact that (4xy)/(x+y) > 2 for $x \ge 2$ and $y \ge 2$.

Now we are ready to prove our second main theorem.

Proof of Theorem II. By the first remark in this section, we may prove (1) and, (2)': $f_s(e) \le e(e+3)/2$.

We discuss (2)' first. Use induction on e. By Lemma 4.2, it would be sufficient to show that the following inequalities:

- (i) $f_s(e-1)+e+1 \le e(e+3)/2$ for $e \ge 1$.
- (ii) If m is any odd integer with $0 < m \le e$, then

$$f_s(e-(m+1)/2)+2m \leq e(e+3)/2$$
.

(iii) If n is any even integer with $0 < n \le e$, then

$$f_s(e-n/2)+2n-1 \leq e(e+3)/2$$
.

Proof of (i). By induction,

$$f(e-1)+e+1 \le (e-1)\{(e-1)+3\}/2+e+1 = e(e+3)/2$$
.

Proof of (ii). Let m be as in (ii). Since $0 \le e - (m+1)/2 \le e - 1$, induction is applicable. Thus

$$f_{s}(e-(m+1)/2)+2m$$

$$\leq \frac{1}{2}\left(e-\frac{m+1}{2}\right)\left(e-\frac{m+1}{2}+3\right)+2m$$

$$= \frac{1}{2}e(e+3)+\frac{1}{8}(m+1)^{2}-\frac{1}{4}(2e+3)(m+1)+2m$$

$$\leq \frac{1}{2}e(e+3),$$

because m and e are integers with $0 < m \le e$.

Proof of (iii). Let n be as in (iii). Since $0 < e - n/2 \le e - 1$, by induction we can prove (iii) similarly.

Next we discuss (1). By Lemma 4.3 and the remark following that lemma, it would be sufficient to show that

$$(1)'$$
 $f_n(0)=0$, $f_n(1) \le 2$ and $f_n(e) \le 4e - \lceil \log_2 8e \rceil$ for $e \ge 2$.

Now $f_n(0)=0$ is trivial. Let G be a nilpotent group with r.x.e, and write $G=P_1\times P_2\times \cdots \times P_r$, where P_i is a Sylow p_i -subgroup of G. Suppose that P_i has $r.x.e_i$ but not $r.x.(e_i-1)$. Then G has $r.x.\sum_{i=1}^r e_i$ and hence $\sum_{i=1}^r e_i \leq e$. We define z(x) as in Lemma 4.5 (3). By Corollary 4.4 we know $f_{(p_i)}(e_i) \leq z(e_i)$. Thus P_i has a subnormal abelian subgroup A_i with $e(|P_i:A_i|) \leq z(e_i)$. If $A=A_1\times A_2\times \cdots \times A_r$, then A is a subnormal abelian subgroup of G, and

$$\begin{array}{l} e(|G:A|) = \sum_{i=1}^{r} e(|P_i:A_i|) \leq \sum_{i=1}^{r} z(e_i) \leq z(\sum_{i=1}^{r} e_i) \\ \leq z(e). \end{array}$$

The second and the last inequalities follow from Lemma 4.5 (3). We have, therefore, $f_n(e) \le z(e)$, and prove (1)'. This completes the proof of Theorem II.

5. A remark on a result of Issacs-Passman. A group G is said to have r.b.n (representation bound n) if $\chi(1) \le n$ for any $\chi \in Irr(G)$.

The following result appears as Theorem D of [6]. Let h_2 be the function with the following property. If G is a solvable group with r.b.n, then G has a subnormal abelian subgroup of index $\leq h_2(n)$. Moreover we assume that h_2 is the smallest such function. Then

$$h_2(n) \leq n^{3/2 \log_2 2n}$$
.

In this section we remark that the above upper bound may be slightly improved as follows.

Theorem 5.1.
$$h_2(n) \leq n^{\log_2 2n}$$
.

Proof. If G is abelian, the result is trivial, so we may assume that G is nonabelian. As usual, choose $N \triangleleft G$ with G/N being a group of Isaacs-Passman's Lemma. There are three cases in the proof of Theorem D of [6].

Case P. G has a normal subgroup of index $\leq n^2$ with r.b.(n/2)...(1)Case Q-1. G has a normal subgroup Q of index $\leq n$ with r.b.(n/2)...(2)

Case Q-2. G has a normal subgroup Q of index $\leq n$ with r.b.n but not r.b. (n/2), and Q/N is an abelian Sylow q-subgroup of G/N for some prime q. In this case, moreover, it is known that if $\theta \in Irr(Q)$ with $\theta(1) > n/2$ then θ vanishes off N. We consider this case more precisely.

Now Q/N has a subgroup of index q. Let D be its inverse image in G. Then θ vanishes off D and $D \triangleleft Q$. Let $\theta \mid_{D} = a \sum_{i=1}^{t} \varphi_{i}$. Then

$$a^2t = (\theta|_D, \theta|_D) = \frac{|Q|}{|D|}(\theta, \theta) = q.$$

Hence a=1 and t=q. Thus

$$q \leq at\varphi_1(1) = \theta(1) \leq n$$
,

because Q has r.b.n. So

$$|G:D| \leq nq \leq n^2$$

and $\varphi_1(1) = \theta(1)/q \le n/2$. Since θ is an arbitrary character of Q with $\theta(1) > n/2$, D has r.b.(n/2) by Frobenius Reciprocity Theorem. Thus we have:

We now apply induction on n. (1), (2) and (3) imply that G has a subnormal subgroup M of index $\leq n^2$ with r.b.(n/2). By induction M has a subnormal abelian subgroup A with

$$|M:A| \leq (n/2)^{\log_2 n}.$$

Then A is subnormal in G with

$$|G:A| \leq n^2(n/2)^{\log_2 n} = n^{\log_2 2n}$$

and the result follows.

OSAKA UNIVERSITY

References

- [1] P. Fong: On the characters of p-solvable groups, Trans. Amer. Math. Soc. 98 (1961), 263-284.
- [2] P.X. Gallagher: Group characters and normal Hall subgroups, Nagoya Math. J. 21 (1962), 223-230.
- [3] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
- [4] I.M. Isaacs: The p-parts of character degrees in p-solvable groups, Pacific J. Math. 36 (1971), 677-691.
- [5] I.M. Isaacs and D.S. Passman: Groups whose irreducible representations have degrees dividing p^e, Illinois J. Math. 8 (1964), 446-457.
- [6] —: A characterization of groups in terms of the degrees of their characters, Pacific J. Math. 15 (1965), 877-903.
- [7] ——: A characterization of groups in terms of the degrees to fheir characters II, Pacific J. Math. 24 (1968), 467-510.
- [8] N. Ito: Some studies on group characters, Nagoya Math. J. 2 (1951), 17-28.

452 Т. Үло

- [9] A.G. Kurosh: The theory of groups, II, 2nd English ed. Chelsea, New York, 1960.
- [10] D.S. Passman: On groups with enough finite representations, Proc. Amer. Math. Soc. 14 (1963), 782-787.
- [11] ——: Groups whose irreducible representations have degrees dividing p², Pacific J. Math. 17 (1966), 475–496.