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SYNOPSIS 

Semi-conducting bulk gallium arsenide single crystals grown by boat growth 

method 訂e commonly used as substrate for light emitting diodes and also laser diodes. 

In this thesis , the present author has chosen some problems on the lattice defects which 

have been commonly found in gallium arsenide single crystals grown by the gradient 

仕eeze method , a kind of boat growth method. 

Defect distribution and the shape of the solid-liquid interface were investigated 

by chemical etching. The nature of each defect was identified by transmission electron 

microscopy. There is a close relation among the distribution of defects, the shape of 

solid-liquid interface and the nature of defects. A numerical simulation of the initial 

stress caused by solidification-induced volume expansion and the stress started at the 

interface was carried out. The obtained defect distribution corresponds well with that of 

observed defects. 

Gallium arsenide crystals grown by the gradient freeze method are usually 

contaminated with silicon and oxygen, from the reaction between gallium and quartz 

boat. This is explained by a thermodynamic analysis of the gallium -arsenic -silicon -

oxygen system. The effect of reduced oxygen concentration on the electrical properties 

of the crystals is also discussed. 

Beside above problems, (1) the effect of arsenic vapor pressure on the spatial 

dis甘ibution of silicon, (2) the effect of silicon doping on the lattice parameter, and (3) 出e

nature of silicon related defects are also discussed in the following chapters. 
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1. INTRODUCTION 

1-1. GENERAL INTRODUCTION 

Gallium arsenide (GaAs) has semiconducting properties which are different 合om

those of silicon (Si). For example, GaAs , features direct band gap and high electron 

mobility. Thus, it is used for optical devices such as light emitting diodes (LEDs) and 

laser diodes (LDs) , high frequency amplitude devices such as field effect transistors 

(FETs) , and high electron mobility transistors (HEMTs)・ These devices are usually 

fabricated by ion implantation (1.1.) directly into the substrate and/or epitaxial growth 

using such as vapor phased epitaxy (VPE) , liquid phased epitaxy(LPE) , metal organic 

chemical vapor deposition (MOCVD) , or molecular beam epitaxy (MBE) on the 

subs町ate. Naturally, the quality of these devices depends on the quality of the substrate. 

The important substrate properties are those that indicate crystal perfection such 

as low dislocation density and those that indicate enough quality in electrical properties 

such as carrier concentration, mobility, and resistivity. These characteristics are 

controlled during the process of crystal growth by ch如ging growth condition, doped 

lmpunty concentration and so on. Group IV impurities such as Si and carbon (C) in III-V 

compound semiconductors exhibit, especially , very interesting behavior. It should be 

noted that Group IV impurities are amphoteric impurities, i.e. , they act as donors at 

group III sites，組d act as acceptors at group V sites. 

There is a basic problem in bu1k growth of single crystals. Growth of industrialｭ

sized single crystals is not easy, even for GaAs whose growth technique is considered to 

be well-known comp訂ed with other III -V crystals. Structural defects such as low-angle 

grain boundary, twin crystals , poly-crystals , and inclusion of impurities are often 

observed. Quantitative understanding how to con仕01 these crystal defects is stiU obscure. 

There have been only a few reports on the boat growth method, although it has been 

studied for a long time. 

1 



In this report, the nature of GaAs crystals made by one of the boat growth 

methods (the gradient freeze method) will be discussed because almost al1 semi-

conducting GaAs crystals are made by the boat growth method at the present time. First, 

the relationship between structural defects and the solid-liquid interface shape was 

studied to devise a method of high quality single crystals. Next, the control of 

unintentionally doped impurities was investigated. By applying the results of these two 

studies, growth ofpurer single crystals will be hoped. Finally, the behavior of Si in GaAs 

was studied, by measuring the electrical properties and lattice parameters of the crystals. 

1-2. BULK CRYSTAL GRO明'TH OF GALLIU恥1: ARSENIDE 

1・2・1. Boat Growth Method and Liquid Encapsulated Czochralski Method 

Various GaAs bulk crystal growth methods have been investigated [1] until 

recently. Generally , the liquid encapsulated Czochralski (LEC) method and the boat 

growth (BG) method are commonly used for GaAs bulk crystal growth at the present 

time. The LEC method has been studied extensively because of the requirement for the 

substrates for GaAs integrated circuits (ICs). However, the requirement for the boat 

growth crystals is also increased with increasing demands for LEDs and LDs. Recently , 

new method for growing GaAs bulk crystals has been discussed by combining the 

characteristic points of both methods , but very little information is cuπently available 

concerning these new method. 

As a technical problem, it is relatively easy to grow large-diameter crystals using 

the LEC method [2 ,3] , because the growth direction is vertical. Generally speaking , it is 

easy to grow the crystals along the direction of gravity. A schematic diagram of the LEC 

method is illus甘ated in Fig. 1-1. Contamination from the crucible is small because it is 

generally made of pyrolytic boron nitride (pBN). The heater is made of carbon. Carbon 

contamination from the heater compensates n-type native defects in the LEC crystal. As 

a result, semi-insulating GaAs crystals can be grown without impurity doping. The 

く100> growth direction can be used in the LEC method. Cutting process, perpendicular 

Fig.l ・ 1

Crys• 01 
Ro•otion 

Crucible 
Rototion 

Heot Shield 

8203 
Encopsulan• 

Schematic illustration of the liquid encapsulated Czochralski (LEC) 

method. 
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to <100> direction, is usually required because the (l00) surface substrate is generally 

used to fabricate electronic devices on. As the LEC crystals have cylindrical shape and 

the growth is chosen to く 100> direction , the cutting loss , when round shaped (100) 
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orientated wafers are sliced, is small enough compared to the case of the crystals of 

<111> growth direction. The temperature gradient in the growing LEC crystal is so steep 

that the dislocation density of the crystals is difficult to control and to reduce. 

It is harder to grow large size crystals using the BG method [4] because the 

growth direction is horizontal and growth condition including temperature gradient and 
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the shape of the solid-1iquid interface shape is difficult to control. The < 111> growth 

direction is usually chosen for easy direction of crystal growth. The (l00) orientated 

wafers used as substrates are usually cut from a crystal with <111> growth direction with 

an angle of 54044' slope. The shape of these wafers is half-oval because a semicircular 

boat is generally used for crystal growth. The loss due to the slicing process is not sma11 

are generally requested for device enough because circular wafers as substrates 

processing. The boat and reactor are made of quartz, from which contamination of Si and 

oxygen can not be eliminated. In this kind of growth process , semi-insulating crystals 

C組 be obtained only by using impurity doping such as chromium (Cr). Dislocation 
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density of the BG crysta1s is low because of a smaller temperature gradient compared 

with those by the LEC method. 
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To summarize, semi-insulating properties can be easily obtained by the LEC 
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method without using any dopants. On the other hand, the BG crystals have a feature of 

lower dislocation density. Based on each character, the LEC crystals are used as 1.1. 

substrates and the BG crystals are used as epitaxial substrates. The main use of GaAs 

subs甘ates is summarized in Table 1-1. 
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1-2-2. The Boat Growth Method 
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The horizontal Bridgman (HB) method and the gradient freeze (GF) method are 

are 

demonstrated schematically in Figs. 1-2 and 1-3 , respectively. These two methods are 

They for GaAs bulk crystal growth. methods major boat growth the two 
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Temp 
similar in principle; the difference is only in the temperature changing method. In the HB 

method , crystal growth is started from a GaAs seed crystal , and is controlled by 

maintaining the temperature distribution constant by moving the furnace or the reactor. 

In the GF method , crystal growth is controlled by graduallowering the temperature. 

As well known, the growth temperature is nearby the softening temperature of 

"ー・ーーーーーーーーーーーー・・ーーーr- コF園田

I I r , J.. f 
k 可・ 1 、、、

、・、J 'I.
、-------ーー-ーー-ーー_-'ーー.~

T
i
Tム

GaAs 
心

quartz. Thus , there is a problem that the shape of the quartz reactor deforms more in the 

higher temperature part. As a resu It, the characteristics of these two methods are 

As R
R刈

different. The dislocation density of the HB-grown crystals is relatively high because of 

the steeper temperature gradient after solidification. It is easy to grow long crystals 

using the HB method because the temperature gradient is not required in all parts of the 

Fig.I-2 Schematic illustration of the horizontal Bridgman (HB) method. 
reactor. In the industrial HB method , a constant temperature area is provided to keep the 

crystal temperature high enough after solidification. The dislocation density achieved in 

the GF method is lower because of the smaller temperature gradient. It is difficult to 

grow long crystals using the GF method, because a temperature gradient is required in all 

Temp. 
parts of the reactor. In the actual industrial GF method, the temperature distribution is 

m.p. 一._-

modified so as to enable the growth of longer crystals. 

To begin with, the phase diagrams of GaAs should be considered. Figures 1-4 -e _. 
，・-

and 1-5 give 加 x-T (composition -temperature) diagram [5] and a P-T (arsenic vapor 

pressure -temperature) diagram [6] , respectively. The only solid compound in a gallium 

(Ga) ー arsenic (As) system is a GaAs crystaI , the melting point of which is 1238 oc, 

T
〒
ム

GaAs 

ρ 

higher than those of both Ga and As. In Fig. 1-5, the curve on the left shows the As 

vapor pressure of an As-saturated Ga liquid, and the straight line on the right shows the 

伝 E
i
M
 

As vapor pressure of pure As. In the case, As vapor pressure of about 1 atm is required 

Fig.l ・3 Schematic illustration of the gradient freeze (GF) method. 

for GaAs solidification from a congruent GaAs melt. Keeping the temperature of solid 

As at 615 oC helps to reaIize the As vapor pressure at about 1 atm. 

The apparatus of the boat growth method is explained as follows. There are two 

temperature zones; one is lower temperature zone maintained at around 615 oC to control 

the As vapor pressure of pure As and the other is higher temperature zone maintained at 

around 1238 oC to grow GaAs crystals. These zones are situated the one next to another. 

6 7 
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Fig. 1-5 The P-T (As pressure -temperature) phase diagram for GaAs. 

Fig. 1-4 The x-T (composition -temperature) phase diagram for GaAs. 
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Whole vacuum quartz reactor is place� in the furnace. The starting materials in the 

reactor are pure As in the low temperature part, and pure Ga in the quartz boat in the 

high temperature part. The starting materials in the quartz boat are not only elemental Ga 

but GaAs poly-crystals or a hybrid of elemental Ga and GaAs poly-crystals. A high 

quality seed crysta1 for single crystal growth is set at the lowest temperature part, that is , 

Go 

the terminal position in the quartz boat. The vapor pressure of As can be easily 

controlled by varying the temperature of the low temperature part. As a result, the 

composition of As in the GaAs melt is easily controlled, but the control range is limited 
GoAs 

by the defonnation of q u紅白 reactor.

Because of the high reactivity of Ga, the quartz boat is sand-blasted to prevent 

reactions between the quartz boat and GaAs (or Ga). Si contamination into GaAs crystals 

from the quartz boat is reduced by impeding the flow of gaseous products into the lower 

temperature p訂t， i.e. , by placing a diffusion barrier at the end of the higher temperature ト\ 十民〈 ヅ)
part. The temperature of this diffusion barrier is very important to control impurities in 

the GaAs crystals. Attempts of growing highly puri白ed GaAs crystals using a reactor 釦d

a boat made of other materials that can withstand such a high temperature has been 

reported but no material have been found. One thing should be noted here; contamination 

Figure 1-6 shows crystal growth process by the GF method wﾌth the time passage 
S T上

Tム ~#さ 会of Si is serious when the boat material is changed for new material. 

as a parameter. At the beginning, the furnace must be tilted, so as for the seed not to 

touch the melt. After small amount of GaAs solid phase have been synthesized on the 

liquid phase, the solid phase is melted into the liquid. As proceeding this process whole 

amount of originalliquid Ga material is changed into nearly perfect GaAs liquid phase. 

Next, the temperature profile is adjusted, and the melt touches the seed when the fumace 

is leveled. Crystal growth is started at the seed by lowering the temperature steadily after 

上\
T 陥匂@}'~ノノモ込

melting of the end of the seed crystal. The temperature pro白le near the solid-liquid 

interface is very important for the growth of high quality single crystals. The shape of the 

solid-liquid interface , which is strongly related to the introduction of structural defects , 
Fig. 1-6 Schematic crystal growth of the GF method along the time passage. 

can be controlled by the shape of temperature profile. 
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1 ・2・3. Impurities in the crystal 
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The electrical properties of the crystals are controlled by impurities added into 

the melt. The equilibrium distribution constant (ko) is defined as the ratio of impurity 

concentration in the solid (Cs) to that in the liquid (CL) when the solid and liquid phases 

、
、
，
，

r
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E
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E
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are in equilibrium [1], i.e. , 

ko = Cs / CL. 

Actually, they are not in equilibrium at the solid-liquid interface because of the effect of 

impurity migration in the liquid, which depend on the growth rate , the degree of mixing 

加d impurity concentration. Thus , the effective equilibrium constant (k) , which is quasi-

equilibrium number, must be introduced. In both of the HB method and the GF method , 

the process of solidification in which all the materials are initially melted and then 

gradually solidified, is called the normal 台eezingprocess. The following assumptions are 

introduced as the first step. 

(1) Diffusion of the impurity is negligible in the solid. 

(2) 百leeffective distribution constant (k) is kept constant. 

(3) During the small period in the whole growth process, 

(1・2)

the impurity density in the melt is assumed to be constant. 

Impurity distribution of normal freezing process is described as follows. 

Cs = k Co (1・g)k-l ，

where Co is the original concentration, g is the fraction solidified, respectively. In the 

case of k = 1, the impurity concentration in the solid is the same as that in the melt. This 
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concentration in solid phase decreases with increasing the fraction solidified when k is 

more th叩 unity，加dincreases when k is less than unity. 

The dopants normally used in GaAs crystals are Cr for semi-insulating prope口y ，

zinc (Zn) for p-type, and Si for n-type materials, respectively. The effective distribution 

constant ofCr (kcr) is 6.4xlO-4, that ofZn (kzn) is 0.3，加d that of Si (kSi) is 0.14 [7]. The 

distribution constants for these impurities are less than unity. As a result, the impurity 

concentration increases with increasing the fraction solidified , as shown in Fig. 1-7. 
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1-2-4. Structural Defect 
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The properties of semiconductors are sensitive not only to impurities but to 

structural defects which 訂echaracterized by the techniques in heat treatment and growth 

of crystals. Thus, it is necessary to characterize microstructure to understand the nature 

of materials. 

Point defects , as illustrated in Fig. 1-8 , are fundamental structural defects. 

Though direct observation of these defects is difficult, these defects affect electrical 

prope口iesgreatly. Impurity atoms in materials mainly behave like this kind of defects. 

Dislocations are the one-dimensional structural defects. The basic structures of an 

edge and a screw dislocation in the simple lattice are illustrated in Fig. 1-9 (a). The 

definition of Burgers vector is also illustrated in Fig. ト9 (a). In case of the diamond 

lattice, for example Si and GaAs , a 600 dislocation is more stable than an edge 

dislocation. In Figs. 1-9 (b) and (c) , the possible structures of a 600 and a screw 

Vaconcy 

1 nters• it ia I 

。

dislocation in the diamond lattice are visualized, respectively. 

仏
U

In two dimensional defects , a small 加gle gr泊n boundary and a stacking fault are 

Impurity Subst i•ut iono I C typical structural defects. A small angle gr出n boundary, illustra犯din Fig. ト 10 (a), often 

Impurity In•ers• i• iol d : appears on the boundary between two crystal grains giving a small amount of misfit and 

edge dislocations in line. A stacking fault is also a kind of two dimensional defect. The 

structures of interstitial type and vacancy type stacking fault are il1ustrated in Figs. 1-10 

(b) 叩d (c) , respectively. 

A precipitation and a void are the typical three-dimensional defect structures. A 

The schematic illustration of point defects. Fig. 1-8 precipitation is a kind of a gathering of atoms, and a void is a kind of a gathering of 

vacancles. 
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Fig.1 ・9 The structures of dislocations and the definition of Burgers vector. 

(a) An edge and a screw dislocation in the simple lattice. 

(b) A 60
0 

dislocation in the diamond lattice. 

(c) A screw dislocation in the diamond lattice. 
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Fig. 1-10 The structures of planar type defects. 

(a) A small 加glegrain boundary. 

(b) An interstitial type stacking fault. 

(c) A vacancy type stacking fault. 



2. CRYSTAL EVALUAIION 

2-1. INTRODUCTION 

The growth condition of the crystals affects seriously the results of crystal 

evaluation. On the other hand , various kinds of characterization techniques in 

semiconductors have been applied in evaluating the nature of structural defects [8,9]. 

Bulk semiconductor materials are believed to have high density of defects than epitaxial 

materials because of their higher Crystal growth temperatures. 

Impurities in bulk semiconductor materials come not only from the material but 

also from the boat and the reactor. Direct observation of defects by an electron 

microscopy is one of the powerful tools for structural defects. Electrical characterization 

is the most common way to evaluate the nature of semiconductor materials. First, this 

chapter introduces the crystal growth condition. After that, impurity , structural, 

electrical, and optical evaluation methods, which wiU be appeared in this report, will be 

also introduced. In some cases , the details of these analyses will be described in the 

following chapter where they are quoted. 

2-2. CRYSTAL GROWTH 

Almost all crystals used in this study , except for LEC undoped crystals used in 

chapter 6, were grown by the GF method as illustrated in Fig. ト3. Undoped, Si-doped, 

and Cr -doped GaAs crys凶s were prep訂ed in this study , however, dopant impurities, for 

example Si and Cr, were added into the melt. For undoped and Si-doped crystals, they 

were grown from the melt, being synthesized from elemental liq uid Ga in a q uartz boat 

and another material, that is, As in the low temperature zone. For Cr-doped crystals , the 

melt was synthesized from elemental Ga, GaAs poly-crystals and As. 

The boat was 65 mm in diameter and 450 mm (undoped and Si-doped crystals) or 

380 mm (Cr-doped crystals) in length except for the one appears in chapter 5. In the case 

of chapter 5, it was 50 mm in diameter and 380 mm in length. The inner surface of the 

18 

boat was sand-blasted to prevent the reactions between the quartz boat and GaAs (or Ga) 

melt. The q uartz boat was evacuated and sealed to eliminate oxygen. 

They were grown along the <111> As direction by using a seed crystal. A 

temperature gradient of 0.5 -1.0 oC/cm was applied along the length of the boat. Crystal 

growth proceeded together with lowering temperature slowly and steadily , the growth 

rate was about 3 mm/hr. 

2-3. IMPURITY ANAL YSIS 

2・3・ 1. Impurities in Semiconductors 

The impurity concentration in the semiconductor materials must be estimated as 

first step. Residual and doped impurity concentrations can be investigated by the 

chemical analyses. Recently , secondary ion mass spectroscopy has found wide 

application, but there is some difficulty in understanding the generation process of 

secondary ions. Thus , some other methods were used for impurity analysis in this study. 

2・3・2. Flameless Atomic Absorption Spectrometry 

Flameless atomic absorption spectrometry (FL-AAS) [9] is one of these 

applicable methods. It uses the optical absorption of electrons excited from the ground 

state of the outer shell to the exited sta記. A schematic diagram of FL-AAS is illustrated 

in Fig. 2・ 1. The optical source should supply a n紅row width in optical wavelength, 

because the optical beam absorbed by electron excitation in atom is very naπow. The 

same atom is usually used for the optical source, that is to say, a hollow cathode 1出np

whose cathode is made from the same material to be analyzed. A monochrometer and a 

photomultiplier are used for the spectrometer and photo-detector, respectively. A 

graphite fumace is used to atomize the sample. Standard samples are needed for 

quantitative analysis. 

This method is used in order to estimate the amount of impurities in GaAs. About 

1 gram of GaAs is dissolved in hydro-chloric acid (HCI). About 10μg of this solution is 
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put into the graphite fumace. The solution is evaporated to ash at a high temperature 

around 1500 oC. Most of the GaAs matrix is removed by this operation. Residual 

impurities are atomized at higher temperature: about 2700oC. Analytical sensitivity 

depends strongly on the temperature. The impurity concentration is calibrated from 

standard samples made from the solution of pure analyzed material. 
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2・3・2. Secondary Ion 恥1ass Spectroscopy 

Secondary ion mass spectroscopy (SIMS) [8] has become a very powerful 

technique to analyze the impurities in solids. This technique relies on the removal of 

isolated atoms from the specimen by sputtering and on the analysis of sputtered ionized 

ions. Most of the sputtered material consists of neutral atoms and can not be analyzed. 

Only the mass/charge ratio of the ionized atoms can be analyzed by an energy filter and a 

mass spectrometer. The principle of SIMS is illustrated in Fig. 2-2. 

Generally speaking, SIMS has high detection sensitivity for many kinds of 

elements, but it is not as sensitive as electrical or optical methods. Sputtering yield is the 

average number of atoms sputtered per an incident prim訂y ion. It depends on the 

material , its crystallographic orientation, the energy and the incidence angle of the 

primary ions. The secondary-ion yield is significantly lower than the total yield but can .
(
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be influenced by the type of primary ion. Elec町onegative oxygen (02+) is a secondary 

h・5
5
2

ぢ
ω
仏
∞
口
。z
e
g告
と

g
g
d
w∞
∞ω
{
ω
E
ω
ロ
』
。
』υ宕
E
ω
Z
υ
ご
5
5
E
2
5
2

』
笠
三
一
←
一
コ

E
o
←o
z
a

。
υ
o
c』
コ
比

。
←
一z
a
o
』
。

』ω
c
一a
ε。
υ
E
O
ω
∞
 

ion yield-enhancing species for electropositive elements (e.g. , B and Al in Si) which 

a
ε
o
J
 

E

コ
一
と
コωQ

reversed for sltuatlon IS The secondary ions. posltlve produce predominantly 
【e
N
.凶
戸
山

a
ε
o
J
 

electronegative elements (e.g. , P, As and Sb in Si) which have greater yields when 

sputtered with electropositive ions like cesium (Cs+). The secondary ion yield for the ω
ちo
z←
。υ

室
。
=
。
工

elements varies over five to six orders of magnitude. The technique called SIMS also 

shows strong variations in the secondary ion yield from the same element in different 

S加nples or matrices (matrix effect). 

Signal intensity can be calculated, in principle, from some factors , knowing the 

primary ion beam current, the sputter yield, the ionization efficiency, the atomic fraction 

of the ion to be analyzed, and an instrumental factor. Some of these factors 訂egenerally 
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Secondary ion mass spec甘oscopy (SIMS) schematic. 
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poorly known , and a successful technique for routine quantitative SIMS analysis has not 

yet emerged. The most useful approach is to use standard samples. Ion-implanted 

standards are veηuseful and also very accurate. When such a standard is measured , the 

SIMS system is calibrated by integrating the second訂y ion yield signal over the entire 

profile. It should be noted that 幻MS analysis determines the total impurity 

concentration, not the elec町ically active impurity concentration. 

A SIMS sample size of approximately 5 x 5 x 1 mm3 was used in this study. The 

surface was previously etched in the solution containing H2S04:H202:H20 = 10: 1: 1 for 

about 15 min at RT. Primary ion O2+ was used for Mg, Al , Cr, Mn, Fe, and Zn in GaAs 

matrix, and Cs+ was used for C, 0 , Si , S, Cu, Se, and Te in GaAs analysis. 

2-3・3. Charged Particle Activation 

Charged particle activation (CPA) [8 ,10-12] is similar to neutron activation 

analysis (NAA). The difference between CPA and NAA is that of materials to be 

activated. These are trace analysis methods in which nuclear reactions lead to the 

production of radioactive isotopes from stable isotopes of the elements in the sample, 

followed by measurement of the radiation emitted by the desired radio isotopes. 

The sample is placed in a nuclear reactor. Generally speaking, those elements that 

absorb 3He (for CPA) or neutrons (for NAA) are found themselves in a highly excited 

state that is relaxed by ﾟ (beta)ー and y (gamma)-ray emission. The sample may also 

become radioactive. As well known , -゚rays have a continuous spectrum and are not 

useful for elemental identification. On the other hand, y-rays have well defined , tabulated 

energies that are usually measured by a germanium (Ge) detector. The y-ray energy 

identifies the element, and their intensity determines the amount of contamination. The 

detection system is well calibrated for quantitative measurements by using standard 

lsotopes. 

Oxygen concentration in GaAs was measured by using CPA technique in this 

study. The products of the 160(3He,p)18F are position emitters and are used for counting 

the annihilation of the radiation as a function of time. The half-life time of the products 
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of 18F is 109.8 min. The activation of the Si matrix causes no serious interference 

because of its shorter half-life (2.5 min.). For the GaAs matrix , the beam energy must be 

carefully chosen because the activation of the GaAs matrix has some inf]uence on the 

analysis. 

In this study, the activated 3He energy emitted for 40 min was used at 11 Me V. 

The measurement energy ofy-rays emitted from 18F was used at 511 KeV. 

1 nc ident 
Woves 

Chemical etching is convenient to evaluate structural defects. Electron beams and 
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2-4. STRUCTURAL ANALYSIS 

2-4-1. Structural Defects of Semiconductors 

A knowledge of the structura1 defects is important in evaluating the character of crystals. 

It is, especially, unavoidable for bulk materials because they are used as substrates for 

1.1. and for epitaxy. 

9 

X-rays are sensitive to lattice spacing. The fundamental theory of these beam techniques 

derives 仕om Bragg's law [13]. Bragg's law defines constructive interference as occurring 

when the path difference between waves scattered by successive parallel planes of atoms 

of inte中lanaspacing (d) is equal to an integral number of wavelength. If e is the angle of 

incidence, then, as shown in Fig. 2-3 , the path difference between two waves lS 2d sin 9; 

hence Bragg's law is: 

2d sin e = n入， (2-1) T ronsm itted 
Waves 

Diffracted 
Waves 

where n is the order of reflection and 入 is the wavelength of incidence. This relationship 

is used in lattice spacing measurement, X-ray topography and transmission electron 
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Fig.2-3 The Bragg reflection. 

2・4・2. Chemical Etching 

Etch pit density (EPD) is commonly used for evaluating dislocation density. 

Figures 2・4 and 2-5 show a GaAs (100) surface etched in the molten KOH for about 10 

min and a GaAs (111) As surface etched in the solution HN03:H202:H20 ニ 3:1:4 + 
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Fig.2-4 

Fig.2-5 
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Etch pits ofGaAs (111) surface etched by HN03:HF:H20 = 3:1:4 

+ 0.3 wt% AgN03・
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AgN03 0.3 wt% at RT for 3 min, respectively. Typical etching solution for the etch pits 

evaluation are listed at Table 2-1 [14-17]. 

The etched surfaces involve other information. For example, details of S-pits of 

etched GaP surface [18 ,19] and observation of the impurity concentration around the 

dislocations in GaAs crystals [20] have been reported. 

The overall and local distributions of crystal defects can be observed by using 

chemical etching. Sometimes, a differential interference microscope and controlled light 

are needed for observation. Generally speaking , chemical etching is the most 

conventional technique for crystal evaluation. 

In this study , HN03:H202:H20 = 3: 1:4 + AgN03 0.3 wt% (RT for 3 min on 

(111) As surface [14]) is used for evaluating dislocation distribution , and 

H2S04:H202:H20 = 10:1:1 (10 oC for about 25 min under the illumination of strong light 

[21]) is used for evaluating the shape of s汀iation (solid-liquid interface shape). This kind 

of pattem is thought to be deri ved from fluctuations in impurity concentration . 

2-4-3. Lattice Parameter Measurement 

The lattice parameters are affected by the existence of point defects such as 

vacancies , interstitial atoms，出ld impurity atoms on the normal lattice sites. It is well 

known that the change of lattice parameter by changing the impurity concentration is 

usually estimated from the difference of covalent radii between impurity atoms and 

matrix. Well known numerical relationship is called Vegard's law. 

So-called Bond method [22,23] is used to estimate lattice parameters as 

illustrated in Fig. 2-6. Lattice parameters can be measured to a few parts in a million by 

this method. The apparatus measures the angle between two reflecting positions of the 

crystals. The reading of the crystal position on a divided circle for one position is noted 

R 1, and the position for the second is noted R2・ The following is readily shown, on 出e

conditions for R2 > Rl and R = 0 not between R1 and R2: 

。 =90。ー (R2 -R1) /2 , (2-2) 
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Table 2-1 Typical etch pit etching solution for GaAs. 

Nome Etchan• Surface Ref 

Schell 

R-C 

A-8 

1 HN03 : 3H20 (111) Go 

( 111 ) Ga 

(111)As 

1 HF: 1"'2 H20 :4",6 H20 

1"'2 HF: 3HN03: 0"-4 H20 (approx.1
0/0 Ag N03 added) 

4HF: 5H20 (approx 0.0020/0 Ag ,200/oCr03 added) 

Mol • en KOH 

R6C 

( 1 00), (11 0 ) , ( 11 1 ) 

( 1 00 ) 1 (11 0 ), ( 111 ) 

A8 8 

GBW 

X-ray 
-ー炉 ~ 

Fig.2-6 

11180-28ff 
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8 =900 一 (R 2 -R 1 )/2

Schematic illustration of the Bond method for lattice parameter 

measurement. 



where e is the Bragg angle. This methυd of determining 8 eliminates the eccentricity (444) reflection of GaAs was used with Cu Kα1 radiation (0.15405981 nm wavelength 

[24]) at 25士 1 oC to measure the lattice par創ne臼r.error, the absorption e汀orand the zero error [22J. 

The peak position is determined by the least square fitting of the Cauchy 

distribution function from measured X-ray intensity and measurement position. The 2・4・4. X-ray Topography 
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(2・3)

X-ray Topography (XRT) is a nondestractive technique for determining structural 

defects [8 ,25J. The XRT image is not magnified because no lenses can be used. It is 

function is: 

where 8 is the half width, 1 is the integrated intensity, and 80 is the peak position. From 

this e, a measurement lattice par担neter(aobs) is calculated using equation 2-1. 

therefore not a high-resolution technique. But it does give microscopic information only 

through the enlargement of the photograph. The microscopic information has the s創ne

The observed lattice parameter involves the temperature e汀or， the reflection resolution as that obtained using the etching technique. 

error, the axial divergence error, and the Lorenz-polarization eπor. The temperature The transmission XRT (Lang method) , illustrated in Fig. 2-7 , is the most 

correction (企atemp)is: 

�temp =αðT aobs , 

common XRT technique. Monochromatic X-rays pass through a narrow slit and strike 

(2-4) the sample aligned at an appropriate Bragg angle. The tall and n紅row primary beam is 

transmitted through the sample and strikes a lead screen. The dif仕acted beam falls on the where � T is the deviation from the standard temperature , and αis the thermal linear 

exp釦sioncoefficient. The reflection correction (ða拍) is: 

4.48xl0・6nO入2COS(μ)
, (2-5) 

refr = sin(8+μ)sin(8-μ) 
where no is the electron density of the sample，入 is the wavelength of the X-ray , and μis 

photographic plate through a slit in the screen. A topography is generated by 

synchronous scanning the sample and the film , with the screen held stationary. 

correction (企匂iv) is: 

知v=jA2hbs ，
where � is axial divergence. The Lorenz-polarization error (�Lp) is: 

企 T n = (8/2)2 aT n = . 
~y (2sin28)aobs 

where ﾒ is the half width. 

(2-6) 

A sample with a GaAs (111) surface plane and a (220) reflecting plane were used 

for imaging in this study. The thickness was around 250μm. The sample had one side 

polished and both sides etched with H2S04:H202:H20 = 10: 1: 1 for 30 min at RT. 

Characteristic X-ray called CuKα1 was used as the incident X-ray beam. The film used 

was Ilford nuclear research plate (Emulsion Type L4). The development process was as 

the rotation between the reflecting planes and the surface. The axial divergence 

(2-7) follows: 

In this study on GaAs specimens ， αwas 0.0000058 and no was 1.4167 ﾁ-l. The: 

value of � was used as 0.00278 rad for the present apparatus. In this study, {111 } wafers 

Dip in water 

Copinal (at 10 oC with ice) 

n
 
m
 

A
り

4
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20 rnin 

with 1 mm thickness were sliced 仕om GaAs ingots , and the side to be measured was 

(the ice is melted) 

Stop (water + acetic acid) 

20 rnin 

n
 
m
 

A
り

唱
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polished. Square shaped samples , of approximately 10 rnm x 10 mm, were cut from each 

wafer. These pieces were etched on both sides in a solution of H2S04:H202:H20 == 

10: 1: 1 for about 20 min at RT to remove surface damage completely. The sample was 

Fix (F吋ifix) 2 -3 hr 

日owingwater over 3 hr 

The defect image was observed after image enlargement process. 

fixed at the crystal fixture with a little amount of water to prevent mechanical stress. The: 
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2・4・5.Transmission Electron Microscopy 

Transmission electron microscopy (TEM) was originally used for highly 

magnified sample images [8 ,13]. The observation using TEM is , in principle, similar to 

that of optical microscopes; both contain a series of lenses to magni fy the image of 
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Sta• ionary 
I Screen 

A schematic TEM is shown in Fig. 2-8. Electrons from an electron gun are 

accelerated at high voltages -typically 100 to 400 kV -and focused on the sample by 

X-ray 

Reflecting 
Cr ysta I Planes 

condenser lenses. The static bearn has a diarneter of a few μm. The sample must be thin 

enough (a few tens to a few hundreds of nm) for electrons to be 甘ansmitted through it. 

As a result, the resolution of TEM is higher than scanning electron microscopy (SEM) 

~ 
because the electron beam does not have a chance to spread like a "balloon" in the thin 

sample. The transmitted and forward scattered electrons from a dif台action pattern are 

Pho• ographic 
Pla•e 

focused on the back focal plane (Ewald sphere) and a magni白ed image is focused on the 

image plane. With additional lenses , either the image or the diffraction pattern is 

projected onto a screen for viewing or for photographic recording. 

Images formed using only transmitted electrons are known as bright-field images 

and images formed using a specific diffracted beam 訂e called dark-field images, as 

illustrated in Fig. 2-8. Few electrons 訂e absorbed in the sample. Sometimes , absorbed 

electrons lead to sample heating, which can change the structure of the sample during the 

observation. 

Fig.2-7 Schematic illustration of Lang transmission X -ray topography. 

High-resolution TEM (HREM) gives structural information on the scale of the 

atomic size level , in the case of planer defects such as interface and stacking faults. In 

lattice imaging technique using HREM , a number of different diffracted bearns are 

combined to give an interference image. Several photographs of lattice images must be 

taken to determine the appropriate focus condition. The focus condition must be changed 

from over-focus to under-focus condition. The result on these image condition must be 

compared with the numerical simulation of the image contrast given by dynamical 

theoη. 
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In this study, specimens for TEM observation were fabricated as follows: Wafers 

with a thickness of 0.35 mm on (111) orientation were cut from the ingots. Some disks of 

3 mm in diameter were also cut from the sample. A "pot-hole" of 1 mm in diameter and 
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0.28 mm in depth was dug by an ultrasonic dril1 at the center of the surface of each disk. 

Next, these disks were dipped in a solution (H2S04:H202:H20 = 3: 1: 1) for about 10 sec ω
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at 50 oC in order to get metallic gloss on the specimen surface. After this treatment the 

disks were transferred to another solution (HN03:HF:H20 = 3:3:4) and kept at 25 OC 

until small holes formed around which were wedge shaped and suitable for TEM 

o bservations. 

Bright-field images , dark-field images, and HREM were used in this analysis. 

The acceleration voltage was fixed at 200 kV. 

2-5. ELECTRICAL AND OPTICAL ANALYSIS 

2-5・1. Electrical and Optical Properties in Semiconductors 

Electrical properties are the basic semiconductor material parameters. Carrier 

concentration and Hall mobility are particularly important for the characterization of 

bulk crystal. These characteristics depend greatly on the kind of semiconductor, the 
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find out, but greatly influence their electrical properties. Photoluminescence is a useful 

tool in analyzing shallow and deep levels. In this study, resistivity, carrier concen凶tion，∞
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and Hall mobility were measured using the Van der Pauw method. Deep level transient 

spectroscopy and photoluminescence were applied for deep level 加alysis.

2・5・2. Resistivity, Carrier Concentration, and Hall Mobility 

Resistivity , carrier concentration, and Hall mobility 紅e commonly measured by 
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using the Van der Pauw method [8 ,26] , where the resistivity is measured by a kind ofthe 

four-point probe technique. This is one of the most common techniques to estimate 

semiconductor resistivity , because two-point probe method requires a pair of reliable 



ohmic contacts. In the present four-point probe method, contact resistance and spreading 

resistance are negligible in principle. 

Van der Pauw [26] showed how to estimate specific resistivity of a flat sample of 

arbitrary shape without defining a p出r of current probes. In case , the following 

(1) the contacts are on the periphery of the sample, 

し
conditions are satisfied: 

(2) the contacts 訂e sufficiently small compared to sample size, 

(3) the sample thickness is approximately uniform, 

(4) the sample does not contain any isolated holes among the four contacts. 

Let us consider a f1at sample of a conducting material with arbitrary shape , with 

contacts 1, 2, 3, and 4 along the periphery as illustrated in Fig. 2-9 (a), which satisfies the 

(a ) 

above conditions. The resistance R 12,34 is defined as: 

R12,34 = V 34/112 , (2-8) 

where the cu汀ent112 enters the sample through contact 1 and goes out through contact 2, 

and V 34 = V 3 -V 4 is the voltage differen(~ between the contact 3 and 4. R23 ,41 is defined 

similarly. 百leresistivity (p) is given by: 

(R12.34 + R23.41) F 
p = (悶 / fn(2)) 今， (2-9) 

5mm 

where t is the sample thickness and F is a function only of the ratio Rr = R12,34 / R23 ,4h 

satisfying the relation: 

exp(fn(2) / F) 、(Rr-l) / (Rr+1) = 一一' ""，， arcosc"，n v ，~，-， , -') 
fn(2) u.J. V~"'\ 2 ノ

(2-10) 

The function F on the right side of equation 2-10 depends onl y on Rr・

‘‘ 
.. 

E,, 」
H
M

The Van der Pauw Hall mobility is given by the similar expression to the Hall 

mobility: 

μH = abs(RH) / p = abs(RH)σ ， (2-11 ) 
Fig.2-9 (a) A lamella-type Van der Pauw HaU sample and (b) A Van der Pauw 

Hall sample used in this study. with the Hall coefficient (RH) given by: 

RH = t ~ V34 / (2BI12) , (2-12) 

where σis the conductivity (σ= l/p) and ~ V 34 = V 34 (for +B) -V 34 (for -B) with 112 

flowing in the specimen through the terminal 1 and terminal 2, and B is the magnetic 

field applied in the z-direction. 
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For extrinsic p-type material, where p >> n: 

RH = r / (qp) , (2-13) 

where q is the electronic charge, p is the hall concentration , and n is the electron 

concentration. The scattering factor r lies between 1 and 2, depending on the scattering 

mechanism in the semiconductor, that is , for lattice scattering r = 3π/ 8 = 1. 18 , for 

ionized impurity scattering r = 315π/ 512 = 1.93 , and for neu町al impurity scattering r = 

1. The scattering factor c釦 be determined by measuring RH in the high magnetic field 

limit, and a scattering factor of 1 is used conventionally. 

For extrinsic n-type material, where n >> p: 

RH = r / (qn) . (2-14) 

When comparable number of holes and electrons are present, the expression of the Hall 

coefficient becomes: 

r[(p -b2n) + (μnB)2(p -n)] = L'r --: , .-u-=- ~_ 'r -~/:_， (2-15) 
q[(p +bn)2 + (μnB)2(p -n)2] 

This expression is rather complicated and its sensitivity depends on the mobility ratio b = 

μn /μp and on the magnetic field strength B. 

The s加nple shape used in this study is illustrated in Fig. 2-9 (b). The applied 

magnetic field was 3000 Gauss , and the cu汀ent was 500 mA for a sample with the 

carrier concentration of above 1 x 1017 cm-3 and 50 mA for that with a concentration 

below 1 x 1017 cm-3. 

2・5・3. Deep Level Transient Spectroscopy 

Deep level transient spectroscopy (DL TS) is based on the technique called 

capacitance measurements. The emission power and capture transient analysis was onl)' 

fully realized when automated data acquisition techniques were adopted [8 ,27]. 

Lang introduced the rate window concept to determine deep level 

characterization. If the C-t (capacitance -time) curve from a transient capacitance 

experiment as illus町ated in Fig. 2-10, is processed so that a selected decay rate produces 

a maximum output, a signal whose decay time changes monotonically with time reaches 

a peak when the rate passes through the rate window of a box-car averager or the 

(Input) 

v 
o 

-V1 

• e 
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n -type 

o-t.... …・1

Fig.2-10 Relationship between capacitance and time. A Schottky diode for 

a: zero bias, b: reverse bias at t = 0, c: reverse bias as t →∞. 

The applied voltage waveform is shown (Input); (Output) is 

the capaci tance 甘ansient.



frequency of a lock-in amplifier. When 珖serving a repetitive C-t transient through such 

a rate window while varying the decay time const加tby varying the sample temperature, 
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a peak is seen to appear in the temperature versus output plot, as shown on Fig. 2-11. 

Such a plot is named a DL TS spectrum. 

Next, DL TS using capacitance transients is explained. Assuming that the C-t 

transient follows the exponential time dependence for n-type semiconductors , one can 

(2-16) 

(2-17) 

get the fol1owing expression, 

C ニ Co [1 -(nT(Q) / 2ND) exp(ぺ /τe)] , 

with τe depending on 飽mperature as: 

'te = [exp(Ec -ET) / kT] / (YnσnT2) , 

where Co is the capacitance without any deep-level impurities at reverse bias -V 1, nT(t) is 

the concentration of generation-recombination (G-R) centers occupied by electrons at 

time t, ND is the concentration of shallow donors , E� is the level of the conduction band, 

ET is the level of G-R centers, k is Boltzmann's constant, T is the temperature, Yn is the 

electron density-of-states effective mass, and σn is the carrier capture cross section. 

The G-R centers usually lie deep in the band gap and are known as deep energy 

8C= C( •1)-C(t2) Time t2 o t1 
level impurities. They act, for example, as recombination centers when there are excess 

carriers in the reverse-biased space-charge region (scr) of p-n junctions. The time 

constantτe increases with decreasing temperature , and a series of C-t curves are 

illustrated in Fig. 2・ 11 as a function of temperature. The capacitance decay waveform is 

corrupted by noise, and the essence of DL TS is the ex汀action of the desired signal from 

Implementation of a rate window by a double boxcar integrator. 

The output is the average difference between the capacitance 

amplitudes at sampling times t1 and t2・

Fig.2-11 
that covered with the noise in some automated manner. A coincidence technique is also 

used , which is a signal processing method where the input signal is multiplied by a 

reference signal and a weighting function w(t) , and the product is filtered (averaged) by a 

weighting function. The filter can be an integrator or a low-pass filter. The correlator 

(2-18) 

output IS: 

� = (1!f) fJf(t)w(t) dt , 
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where we use equation 2-16 for f(t). By measuring � and T for the different rate 

windows (weighting function) , one can obtain the G-R level together with the capture 

cross sechon. 

In this series of studies, the following conditions had been previously settled: 

zero bias (set bias) was 1 V, -V 1 (peak bias) was -1 V , pulse time was 0.01 s, minimum 

waiting time was 0.004 s, and delay time was 0.01 s. 

2-5-4. Photoluminescence 

Photoluminescence (PL) provides a non-destructive technique to find certain impurities 

in semiconductors [8 ,28]. It is p訂ticularly suitable to the detection of shallow-level 

impurities, but can also be applied to certain deep-Ievel impurities. Identification of 

impurities is easy with PL, but estimation of impurity concentration is rather difficult. 

However, only impurities that produce radiative recombination processes can be 

detected. A typical PL setup is illus住ated in Fig. 2-12. Sometimes, a sample is placed in 

a cryostat and cooled down to liquid helium temperatures. Low-temperature 

measurements are necessary to obtain the fullest spectroscopic information by 

minimizing thermally-activated non-radiative recombination processes and thermal line 

broadening. 

The sample is excited by an optical source , typically a laser with hv > Eg , to 

generate electron-hole pairs that are recombined by one of several mechanisms. Photons 

are emitted in a radiative recombination processes. In non-radiative recombination 

mechanism , no photons 訂e emitted any more. The photon energy depends on the 

recombination processes illustrated in Fig. エ 13 ， where five of the most commonly 

observed PL transitions are shown. Band-to-band recombination (Fig. 2-13 a) dominates 

at room temperature, but is rarely observed at low temperatures in materials with small 

effective masses due to the large electron orbital radii. Excitonic recombination is 

commonly observed at low temperatures. A free exciton (FE) decay energy, shown in 

Fig. 2-13 b, is slightly less than the band-gap energy required to create separatedl 

electron-hole pairs. This is because coulombic attraction can lead to the formation of an 

Reference Signal 

Light 
Chopper 

Spectrometer 

De•ector 

Fig.2-12 Apparatus for photoluminescence (PL) measurements. 



excited state in which an electron and a hole remain bound one another in a hydrogen-

like state. A free hole can combine with a neutral donor (Fig. 2-13 c) and forms a 

positively charged excitonic ion or a bound exciton (BE). Similarly, electrons combining 

with neutral acceptors also form BEs (Fig. 2-13 d). Lastly , an electron which escaped 

from a neutral donor can recombine with a hole in a neutral acceptor: the well-known 

i 

7 

Ec 

donor-acceptor (D-A) recombination (Fig. 2-13 e). 

ln this study, a 400 mW  514.5 nm Ar laser and a Ge detector have been used for 

PL measurement. The input and output slit was relatively wide , i.e. , 3 mm because the 

intensity of radiative recombination was not strong enough. The measurement 

Incident 
Photon 

wavelength was between 800 nm and 1200 nm at 4.2 K for GaAs samples. Square 

shaped samples, of approximately 5 mm x 5 mm, were used for this measurement which 

e 

↓
一-
U
7

had been cut from each wafer and etched in a solution contained H2S04:H202:H20 = 

10: 1: 1 for about 20 min at RT. 

。 b C d 
Ev 

Fig.2-13 Radiative transitions observed with PL. 

44 4S 

「一一一一一一一一一一一一一一一一一一ーァーーーーーーーーーーー一一一一一一竺週



C HARACTERISTIC AND SHAPE INTERFACE SOLID-LIOUID J..,. 

STRUCTURAL DEFECTS 
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3-1. INTRODUCTION 
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One of the most important problems is to control the crystal structure and the 

nature of defects during the crystal growth from a melt. Dislocations in a substrate 

material seriously affect the nature of the epitaxiallayer grown on it. A number of papers 

[3 ,29-31] have already discussed the relations among thermal stress induced while the 

crystal is being cooled, the shape of solid-liquid interface during the crystal growth and 

893 K 
the defect density. 

The crysta1s grown by the boat growth method have been used as substrates for 

LEDs because of their low dislocation density and their uniform distribution. However, 

\ノ

~ 

the defect rich regions are sometime introduced in crystals and affect the uniformity of 

2
 

宝モミthe material. These regions are not appropriate for practical use. It has also been reported 

GaAs 

~L 

that controlling the shape of solid-liquid interface is important to avoid the introduction 

of such defects [32]. The causal relationship between the shape and the nature of defects 

is still obscure. 

In this chapter, defects were observed by using the etching technique as the 

simplest and most reliable way to find out them. The shape of solid-liquid interface was 

also observed from the striations revealed after etching the specimens in particular kind 

of chemical solution. Defect characterization was carried out by TEM. The nature of 

The schematic diagram of the gradient freeze method. We fixed the 

X, Y and Z directions as illustrated. 

Fig.3-1 

defects and their distribution will be discussed together with the simulation of the 

distribution of intemal s甘ess in solid phase. 

3-2. EXPERI九1ENTS

GaAs single crystals used in this chapter were grown by the GF method [33] as 

described in section 1-2-2. Figure 3-1 schematically shows the configuration in the 

growth system. For the purpose of later discussion, the Z axis is assigned along the 
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growth direction, the X axis along the width of the boat and the Y axis perpendicular to 

them as shown in Fig. 3-1. 

The (111) As surface of each specimen was etched for 3 min at 25 oC in a 

solution ofHN03:HF:H20 = 3:1:4 + AgN03 0.3 wt% (etching test 1) [14]. This etchant 

revealed the distribution of the defects. 

To observe the striation pattern, another etchant which contains H2S04:H202 

:H20 = 10: 1: 1 was used. The specimen was dipped into the solution for about 25 min at 

10 oC under the illumination of strong light (etching test 2) [21]. Etched specimens were 

carefully observed by a differential interference optical microscope. Figure 3 ・2 shows 

the shape of solid-liquid interface as traced by a digitizer. 

After the above preliminary experiment, TEM observation was carried out to 

identify the microstructure of these defects. The samples for TEM observation were cut 

台omthe regions where the existence of defects had been checked by etching test 1. 

3-3. EXPERIMENT AL RESUL TS 

The crystals were grown in three different conditions. Figure 3-3 summarizes the 

results of etching tests. The distribution of defects and the shape of the solid-liquid 

interface on X-Y and Y -Z planes can be classified into three groups. Etching tests 1 and 

2 were applied to Si or Cr doped materials , but TEM observation was carried out mainly 

in Cr doped crystals. One can easily visualize the three dimensional temperature 

distribution in solid phase in individual cases A, B or C [34,35]. The detailed defect 

structures of following discussions is described in section 1-2-4. 

CaseA 

Judging from the results obtained by TEM observation, the principal defects that 

cause the etching patterns are groups of rows of edge type 600 dislocations; One can 

simply identify the defects of this type to be typical small angle grain boundaries on the 

(110) plane (see Fig. 3-4 (a)). Figure 3-3 shows that this type of defect usually appears in 

every part other than the central part along X axis. In this case, the solid-liquid interface 

has a small radius of curvature. In this region, it also has been found another type of two 
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Fig.3-2 

800μm 

20mm 

The trace of the shape of solid-liquid interface by using a differential 

interference optical microscope. Each specimen was etched by 

etching solution 2. 
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Defects observed in case A. 

(a) A row of edge dislocations on the (110) plane. 

(b) Stacking fault on the (111) plane with some precipitates on. 

Fig.3-4 
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dimensional defects as shown in Fig. 3-4 (b) , which has the form of a stacking fault on 

the (111) plane. On this plane , one can also recognize the images of small precipitates. 

CaseB 

The etching pattern in case B in Fig. 3-3 ref1ects the presence of complex defects 

as shown in Fig. 3-5. The shape of solid-liquid interface is relatively smooth compared 

with that of case A. Etching treatment 1 caused only one simple straight line. After 

detailed observation , a stacking fault on the (111) plane was found surrounded by 

complex structures including entangled dislocations and dislocation loops. The origin of 

the etching pattern B is tentatively imagined as follows: A crack started at the 

solidification front is introduced during the growth process of the crystal. Next, both 

fresh surfaces contact each other giving a small amount of misfit. 50 much strain 

accumulates around the stacking fault or boundary around which groups of complicated 

defects were also formed. 

CaseC 

Here , solidification must have started at the bottom end of the melt, in other 

words, there was a region of negative temperature gradient along the Y axis in the region 

close to the bottom. With this negative temperature gradient, a convection current, which 

usually helps the melt mixing, must never have occurred. 

Two types of s汀ing shaped precipitates have been found as shown in Fig. 3-6 (a). 

One labeled A, is not a dislocation and does not present any dislocation like strain field 

contrast. No particular impurity atoms have been detected by using an analytical 

microscope. The type B defect must also be a kind of precipitate , but this part must have 

been etched off while the specimen was being etched. The following understanding has 

been supposed: Constituent atoms of both types , Ga and As atoms , precipitated 

independently around dislocations with different character, minimizing the strain field 

around the dislocations. Another example of the defects is shown in Fig. 3-6 (b); these 

were taken under conditions of a dark field image. 5mall triangles of precipitates in lines 

can be recognized; they are supposed to have been nucleated around the strain field of 

dislocations. 
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吋?。
200nm 

Fig.3・5 Defects observed in case B. 

Stacking fault on the (111) plane and complex defects. 
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(a) 

8 

h220 

Fig.3-6 Defects observed in case C. 

(a) Two types of one dimensional precipitates. 

(b) Dark field image around dislocations and precipitates. 
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3-4. DISCUSSIONS 

As mentioned already, there is a close causal relationship among the distribution 

of defects , the shape of sol冝-l厲uid interface, and the nature of defects. Defects have 

been observed mainly in regions near the concave interface; the propagation direction of 

these defects is normal to the interface [36]. The former reporters have proposed that the 

generation of dislocations derives from the internal thermal stress [3 ,30,31]. However, 

for 出is GF method, the thermaI stress is not large enough to introduce these defects by 

applying a very small amount of temperature gradient ( about 1 OCjcm ) and cooling rate 

( less than 1 oC/h). 

Then, the amount of stress was estimated starting at the solid-liquid interface, 

taking the volume expansion by solidification into consideration. A numerical simulation 

was carried out by the finite element analysis [37]. The model was simplified as an 

isotropic two dimensional plane stress model. The force was applied on the solid-liquid 

interface, the shape of which was traced from that of striations as shown in Figs. 3・2 and 

3-3. Free boundary condition was applied on the surface of crystal while the points 

crossing at the wall of the boat and the solid-liquid interface were fixed in this 

simulation. The simulation models are illustrated in Fig. 3-7. Figure 3-8 shows the 

distribution of principal stress estimated by this simulation. The value of the stress at 

each point in a solid is given in arbitrary units where positive and negative values mean 

compression and dilation, respectively. 

According to the stress map in Fig. 3-8 , the orig� of the defects is able to be 

concluded the local concentration of stress , although detailed calculation including 

component of shear stress wil1 be required. 

3-5. CONCLUSION 

Defect distribution and the shape of the solid-liquid interface in GaAs single 

crystals grown by the GF method were observed by etching. The nature of defects was 
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identified by TEM. There is a close relation among the distribution of defects , the shape 

of solid-liquid interface and the nature of defects. A numerical simulation of the initial 

stress caused by solidification-induced volume expansion and the stress started at the 

interface was carried out. The obtained defect distribution co汀esponds well with that of 

observed defects. 
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4. THE ROLE OF DIFFUSION BARRIER TE九fPERATURE IN CRYSTAL 

GRO羽'TH

4-1. INTRODUCTION 

GaAs crystals grown by the boat growth method [4] (HB Method/GF Method) 

are commonly used as materials for LEDs and LDs, as mentioned before. However, such 

GaAs crystals are contaminated with Si from the quartz used in the boat growth method 

[38-41]. The Si atoms come not only from the quartz boat but from the quartz ampoule 

[39-41]. GaAs crystals 訂e probably a1so contaminated with oxygen from quartz, but the 

effect of oxygen contamination in GaAs crystals has not yet been clarified. 

The reaction of gallium with the quartz boat was described by Cochran and 

Foster [38 ], using equilibrium caIculations. Kobayashi et al. [41] reported that Si 

contamination was enhanced by the presence of boron. They also reported that GaAs 

crystals grown in a pyrolytic boron nitride (pBN) boat were contaminated with Si and 

concluded that Ga vapor reacted with the quartz 出npoule. Suzuki and Ak泊 [42] and 

Ak泊 eta1. [43] clarified that Si contamination in GaAs crysta1s was mainly controlled by 

the temperature of the medium temperature zone in the three-temperature zone horizonta1 

Bridgman (3T-HB) method. The medium temperature zone of the 3T-HB method is 

situated between the high temperature zone and low temperature zone. They reported 

that Si contamination could be prevented by setting a medium temperature zone so as to 

control the gallium suboxide (Ga20) vapor pressure. The solubility of oxygen in GaAs 

crystals was discussed by Leitner and Moravec [44] using the above mentioned results. 

Woods and Ainsle [45] reported the relationship between the partial pressure of 

additional oxygen in the ampoule and electronic properties in order to reduce Si 

contamination of GaAs crysta1s. They reported that oxygen added in the quartz ampoule 

in amounts varying from zero to 150 Torr at room temperature, suppresses the Si02 

dissociation at the wa11 of the qu紅白 boat. The room temperature resistivity increased by 

about ten orders of magnitude. Martin et al. [46] reported that gettering of Si was 
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observed even in Si and Ga203 co-dope� GaAs crystals. They proposed a compensation 

scheme that takes account of the value of resistivity measured in undoped or slightly Cr 

doped boat-grown GaAs crystals. Gatos et al. [47] reported that oxygen in GaAs 

introduces a midgap level, ELO , which has almost same activation energy as EL2 and 

1511 K 
with four times lager electron capture cross section. However, they have not investigated 

oxygen concentration in GaAs crystals yet and its correlation with crystal growth 

九
ω
」
コ
←0」
ω
a
ε
ω←

conditions. 

This chapter describes the origin and behavior of oxygen contamination in GaAs 

crystals in the GF growth process. Experimental results on the relationship between 

with concentration are compared diffusion barrier temperature (T d) and oxygen 

893K 

calculations of chemical equilibrium. The effect of oxygen concentration on the 

properties of GaAs crystals is also repoロed.

4-2. EXPERI恥tENTS

4・2・ 1. Crystal Growth 

Undoped and intentionally Si-doped GaAs crystals were grown by the GF 

v Lム/
/→六、庄でζ 

method [4,33] , as schematically illus町atedin Fig. 4-1. A diffusion barrier is a small hole 

sitting between a high temperature zone and a low temperature zone. It is well known 

GaAs [38]. Si are produced by the reaction of Ga with quartz that gaseous products 

contamination in GaAs crystals has been reduced by impeding the diffusion of the 

gaseous products to the low temperature zone [38] by placing a diffusion barrier at the 

end of the high temperature zone [48] , which is the coldest point of the high temperature 

zone. The temperature of the diffusion barrier (T d) was measured by a thermocouple in 

contact with the qu訂tzampoule. 

Schematic diagram of the gradient 仕切ze method. T d is 出e

temperature of the diffusion barrier. 

Fig.4-1 Crystals were grown under various T d conditions in the range of 1280 -1500 K. 

Here, 42.1 ppm Si by weight was added into GaAs melt for Si-doped GaAs crystal 

growth. 
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AgN03 0.3 wt% [14]. The surface etched by a solution of HN03:HF:H20 = 3: 1:4 + 

aggregation of impurities in the Si-doped crystals was evaluated by etching the wafers 

with H2S04:H202:H20 = 10: 1: 1 at 100C under strong light illurnination [21]. This 

etching is the same as the striation etching. The impurities were analyzed by SIMS , and 

the oxygen concen町ation was rneasured by CP A [10,46]. Hall effect measurements were 

carried out at 300 K and 77 K using the VDP method [26]. The compensation ratio (9) 

was determined from the carrier concen汀ation and Hall mobility at 77 K using the tabl，巳

reported by Walukiewicz et al. [49]. The deep levels in the undoped GaAs crystals were 

measured by DLTS [27]. 

4-3. RESUL TS 

4・3・1. Crystallographic Properties 

The crystals used in this study were single crystals with EPD of less than 1 x 10-4 

cm-3. In imperfect crystals, the impurities concentrate at the grain boundaries , and the 

electrical properties 訂e different from normal ones. By this time, it seerns to be hard to 

....s 
grow perfect and undoped GaAs single crystals by the GF method, so sarnple wafers 
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were sliced from the p副tnear the seed, where the fraction solidi白ed (g) is equal to 0.15. 

4・3・2.Impurity Analysis 

Typical results of the impurity analysis for various T d 紅e shown in Table 4・1.

ω
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The CPA measurernents show that oxygen concentration depends on Td. The SIMS 

刀
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u
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-C

measurements indicate that Si and AI are the dorninant impurities. Si and Al come frorn 

the reaction of Ga with quartz or, in the case of Si in Si-doped GaAs, come from the Si 

lf) コ
dopant. Other irnpurities were detected at very low levels or some others were the s副ne

as the background level. 
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The differences in oxygen concentrations estimated by SIMS and CPA must have 

for analysis. The emission efficiency of secondary ions from oxygen compounds in 
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resulted from the inherent differences in the two techniques. SIMS uses secondary ions 

GaAs crystals would not be large enough. Therefore, it has been concluded that SIMS is 

not a suitable for quantitative oxygen concentration analysis. On the other hand, CPA 
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Figure 4・2 shows oxygen concen甘ation measured by CP A versus T d. One must 
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4・3・3. Electronic Properties 

oxygen concentration and carrier concentration at 300 K in GaAs crystals is shown in 

Figs. 4-3 and 4-4 for undoped and Si-doped GaAs crystals , respectively. The carrier 

concentration of undoped crystals increased slightly with increasing the oxygen 

concentration. In Si-doped GaAs crystals , there was no correlation with oxygen 
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4-4. DISCUSSION 
ト

4-4・1.Reaction Between GaAs Melt and Quartz Boat 一」一一

0.65 0.70 

103, Td 
ム 4 

0.80 

Cochran and Foster [38 ,50] were the first to propose equilibrium calculations for 

a GaAs melt in a quartz ampoule and a boat. They assumed that Ga20 exists only in the 

0.75 
( K-1) 

4-4-1-a. Review of Previous Studies 

vapor phase, because there was no analytical data for oxygen concentration in GaAs 

crystals at that time. Their calculations were studied in detail by Woods and Ainsle [45] Fig.4-2 Oxygen concen町ationin GaAs crystals by CP A versus the reciprocal 

of the diffusion barrier temperature T d. and Akai et al. [43]. Kobayashi et al. [41] proposed the reaction between Ga vapor and 

the quartz ampoule. They [41 ,43,45] also assumed that oxygen exists only in the vapor 

phase. A thermodynamic analysis [44] of oxygen concentration in GaAs crystals 
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suggested to divide the reactions proposed by Cochran and Foster [38] into more 

fundamental reactions. Therefore , these reactions are reconsidered in detail using 

equilibrium calculations. 

Cochran and Foster [2] proposed four reactions: 

(1) Dissolution of Si into GaAs melt (or Ga melt) from a quartz boat 

4Ga(f) + Si02(S) = 2Ga20(g) + Si(f) , 

3Ga20(g) + AS4(g) = 4GaAs(s) + Ga203(S) , 

(2) Removal of Si from GaAs melt (or Ga melt) 

Si(f) + Si02(S) = 2SiO(g) , 

SiO(g) = SiO(s) , 

(4-1) in ref. 38 

(4-2) in ref. 38 

(4-3) in ref. 38 

(4-4) in ref. 38 

where suffix (f) means that the species is present in the GaAs or Ga melt, (s) means solid 

phぉe ， and (g) means gas phase. 

Reactions 4・ 1 and 4-3 occur in the melt, and reactions 4-2 and 4-4 proceed at the 

lowest temperature part of the high temperature zone , i.e. , at the diffusion barrier. 

Basically, these reactions show that Si dissolves into the melt according to reactions 4-1 

and 4-2, and Si is removed 合om the melt by reactions 4-3 and 4-4. 

The equilibrium conditions of these reactions are given by the following 

equatlOns: 

R則ion4-1: K1(T) =も。 asAa'

Reaction 4-2: fog (PGa20) = -2071 0.庁g+ 12.82 , 

Reactio叫3: K3(T) =ベidaSi ，

Reaction 4-4: fog(PSiO) = -16950rrg + 7.639 , 

(4-5) in ref. 38 

(4・6) in ref. 39 

(4・7) in ref. 38 

(4-8) in ref. 38 

where Kl (T) is the equilibrium constant of reaction 4-1 at T Kelvin , PGazO is the pressure 

of Ga20 gas in the ampoule, aSi is the activity of Si in the melt, acJa is the activity of Ga 

in GaAs melt (or the activity of Ga melt) , T g is the gas temperature in the high 

temperature zone, K3(T) is the equilibrium constant of reaction 4-3 at T Kelvin, and PSiO 

is the pressure of SiO gas. In this system, T g means T d because the solid phase in 

reactions 4-2 and 4-4 occurs at the diffusion barrier, i.e. , the coldest part of the high 

temperature zone. 
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Ga could also react with the quartz ampoule to produce gaseous products that 

could diffuse back into the boat and be a origin of contamination. The reactions between 

Ga vapor and the quartz ampoule are shown by the following equations [41]: 

Ga(f) = Ga(g) , 

2Ga(g) + Si02 = Ga20(g) + SiO(g) , 

The equilibrium constants for reactions 4-9 and 4-10 are: 

Reaction 4・9: K9(T) = PGalacJa , 

Reaction 4-10: K lO(T) = PωoP出O~a'

(4-9) in ref. 41 

(4-10) in ref. 41 

(4-11) in ref. 41 

(4-12) in ref. 41 

where K9(T) is the equilibrium constant of reaction 4-9 at T Kelvin, PGa is the pressure 

of Ga vapor in the ampoule, and KlO(T) is the equilibrium constant of reaction 4-10 at T 

Kelvin. In an atmosphere of arsenic vapor, the equilibrium Ga activity in the gas phase is 

the same as that in GaAs melt [38]. Ga20 is more easily produced by reaction of the melt 

in contact with the quartz boat. Ultimately , the equilibrium wiU be on the common 

condition whether the reaction is with the boat or with the walls. 

Two relationships 訂e introduced to explain the impurity concentration in GaAs 

crystals in this study: one for the activity , and the other for the segregation. It is well 

established that the relationship between activity ar and impurity concentration in the 

melt N I is gi ven by: 

aI= "(IN1, (4-13) 

where YI is the activity coefficient of the impurity. 

It is also well established that the relationship between the impurity concentration 

in the solid and the impurity concentration in the liquid is represented by the following 

equatlOn: 

nI = kIN1 (4・ 14)

where kI is the segregation coefficient of the impurity. 

The results of previous studies combined with equations 4-13 and 4-14 are 

summarized in Fig. 4・5 ， which shows the activity of Si in GaAs melt, Si concentration in 

the GaAs liquid, and Si concentration in the GaAs solid. The pressure of gases at T d is 

calculated 仕om 出e equilibrium conditions of reactions 4-1 ， 4-2 ， 4-3，加d 4-4. Here , aaa 
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1500 
Td (K) 
1400 

was used for the Ga in GaAs melt. The temperature of GaAs melt was assumed to be the 

1300 melting point of GaAs, 1511 K. Here, aSi, NSi and nSi mean the Si activity in GaAs melt, 
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。
the Si concentration in GaAs melt by weight ratio, and the Si concentration in the GaAs 
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The following physical parameters were also used for the calculation: the density 

of the GaAs so1id is 5.3 g/cm3, the average atomic weight of Ga and As is 70 g!mol, and 

Avogadro's number is 6 x 1023 atoms/cm3. 
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4-4-1-b. Oxv~en Contamination 

-6 There is some controversy over which reaction predominates in the problem of 

oxygen contamination. Akai et al. [43] 釦d Leitner and Moravec [44] considered reaction 

4-1 to be the predominant reaction, and derived theoretical relationships between NSi and 

the oxygen concentration in the melt (No). However, our experiments showed that No 

did not depend on NSi , as shown in Table 4-l. A clear relationship was found between 

0.65 0.70 0.75 
1 /T d ( X 1 0-3 K-1) 

oxygen concentration in GaAs crystals and T d, independent of NSi as shown in Fig. 4-2. 

These results suggest that oxygen concentration in GaAs crystals depends on 

Fig.4-5 Equilibrium relationships of reactions 4-1 , 4-2, 4-3 and 4-4. 

The diffusion barrier temperature T d determines the activity 

of Si in GaAs melt at 1511 K, Si concentration in GaAs melt at 

1511 K (weight ratio) , and Si concentration in GaAs crysωs after 

solidification (atomic number). T d also determines the pressure of 

gases in the ampoule. 

reaction 4-2, which determines the relationship between T d and PGa20・ However， this 

reaction does not relate with oxygen concentration in GaAs crystals. Therefore, we 

introduced a new reaction for oxygen concentration in GaAs crystals. It involves the 

formation of Ga20 台om the reaction of Ga203 with Ga [51]. 

3Ga20(g) = Ga203(f) + 4Ga(f) , (4帽 15)

The equilibrium constant of this reaction K15(T) is given by: 

4 In.3 
Reaction 4-15: K15(T) = aaa203aGa / PGa20 , (4・ 16)

70 71 



where <lGa203 ﾎS the activity of the Ga203 in the melt. For Ga203 in GaAs , there are 

defined the activity coefficient to be 'YGa203 , the concentration in GaAs melt to be NGa203, 

the segregation coefficient to be kGa203, and the concentration in the GaAs solid to be 

nGa203・ Fromeqs. 4-13 and 4-14，加done obtain: 

acJa203 = 'YGa203N Ga203 , 

nGa203 = kGa203NGa203. 

(4-17) 

( 4-18) 

The relationship between nGa203 and PGa20 is obtained from the equations 4-16, 4-17 如d

4-18. 官lis c釦 beexpressed as: 

n KGa203KlS(TL-..3 
Ga203=4PGa20 ・ ( 4-19) 

'YG位03<iaa 
The temperature of GaAs melt can be regarded as constant in our experimental 

conditions. Thus, equation 4-19 can be written as: 

nGa203 = C P，ふ。， (4・20)

where C is an unknown constant. 

This suggests that the oxygen concentration in GaAs crystals is proportional to 

the third power of the Ga20 pressure. The relationship between T d and oxygen 

concentration in GaAs crystals can be derived 仕omequations 4-6 and 4-16. The value of 

Td and the oxygen concentration enable us to deterrnine the constant C in equation 4-20. 

The constant C was fitted by using the point of T d to be equaled 1477 K, and oxygen 

concentration to be equaled 2.3 x 1019 cm-3 from the data in Table 4・ 1. The calculated 

line closely fits our experimen凶 dataas shown in Fig. 4・2.

It can be concluded that the oxygen contamination in GaAs crystals originates 

from Ga20 gas in the ampoule by reactions 4-2 and 4-15. Therefore, reaction 4-1 

supplies Ga20 仕omthe melt and the quartz boat and keeps the PGa20 at equilibrium. 

4-4-1-c. Si Concentration 

The arnpoule was evacuated to eliminate oxygen adsorbed on the surface of 

quartz and the materials , and oxygen was not doped into the materials in the quartz 

ampoule. Reactions 4-1 and 4-2 require Ga20 gas sources to satisfy the equilibrium 

condition. If Si did dissolve from the quartz boat into GaAs melt by reaction 4-1 to 
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supply Ga20 gas to the inside of the quartz ampoule , Si concentration in GaAs crystals 

would increase with oxygen concentration. However, the experimental results show that 

the Si concentration in GaAs crystals does not increase with oxygen concentration, as 

shown in Table 4-1. 

Reaction 4-1 , which is the reaction between the Ga in the melt and quartz boat to 

produce Ga20 gas, will produce dissolved Si near the inner surface of the quartz boat 

and near the top surface of GaAs melt. This reaction 4-1 continues to supply Ga20 gas to 

the quartz ampoule until the Ga20 pressure reaches the equilibrium condition. This 

condition promotes reaction 4-3 , which is the reaction between Si in the meIt and qu訂tz

to produce SiO gas. 

The rate of reaction 4-3 depends on the Si concentration as shown in equation 4-

7. Table 4-2 shows the relationship between the calculated Si concentration (Ile) and 出e

measured carrier concen甘ation (nc) in undoped and Si-doped GaAs crystals. 

Si concentration was calculated 仕om the equation of distribution [1]: 

ne = k凶;i(1ずsi-l , ( 4-21 ) 

where kSi is the seg均剖ion coefficient of Si in G山 melt，時i is the initial Si 

concentration in GaAs melt and g is the fraction solidified. 

The measured carrier concentration was lower than the calculated value because 

of the arnphoteric prope口Y of Si. When the initial Si doping concentration in GaAs melt 

is about 1 x 10-4 by weight ratio , the carrier concentration increases in proportion to the 

calculated Si concentration. This initial Si concentration corresponds to the range where 

Si concentration in the melt is reduced by reaction 4-3. This range is represented by the 

紅eaabove the equilibrium line for reactions 4-3 and 4-4 in Fig. 4-5. The rate of reaction 

4-3 is assumed to be very low when the initial Si concentration is about 1 x 10-4 by 

weight ratio. 

The Si concentration near the inner surface of the qu紅白 boat and near the top 

surface of GaAs melt is probably higher than 1 x 10-4 because of reaction 4-1. The rate 

of reaction 4-3 of this region is probably faster th釦 in other regions , and almost all of 
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the dissolved Si probably escape into the gas phase. Consequently , the Si concentration 

in GaAs crystals does not increase with increasing oxygen concentration. 

Table 4-2 Calculated Si concentration (11e) versus measured carrier concentration 

(nc) at 300 K, with the 合action solidified g and diffusion barrier 

temperature T d under different initial Si concen町ations

in GaAs melt (weight ratio). 

Carrier concentration is not reduced by reactions 4-3 and 4-4, 

when the initial Si concen甘ationin GaAs melt is higher than 

1 x 10-4 by weight ratio. 

4-4・2. Effect of Oxygen in GaAs Crystals 

4-4-2・a. Electronic Prooerties 

The relationship between oxygen concentration in GaAs crystals and carrier 

concentration is shown in Figs. 4-3 and 4-4. There is scarcely any difference between 

undoped and Si-doped GaAs crys凶s. In this section, whole discussion is concentrated 

on undoped GaAs crystals to investigate this relationship in detai1. Here, T d is used as an 

indication of the oxygen concentration in GaAs crystals, because T d dominantly controls 

the oxygen concentration. 

Figure 4-6 shows the relationship between T d and e measured at 77 K. e is 

Ini•ial Seed side Tail side 

Nsi 
Td ne nc 9 ne nc 

(K) (cm-3) (cm-3) (cm-3) (cm-3 ) 

。 1361.5 0.15 1.8x 1016 0.75 8.2 X1015 

4.21 X 10-5 1309.7 0.15 7.7x10f7 4.8x1017 0.75 2.2x1018 9.6x10117 

1.06x10-4 1300.8 0.15 1.9x1018 1.0x1018 0.75 5.6x1018 2.1x1018 

defined for n-type material by: 

。 =N人/~， (4-22) 

+ 
where N入 is the ionized acceptor concentration and N~ is the ionized donor 

concentration. The value of e at 77 K is calculated from Hall measurements using the 

table supplied by Walukiewicz et al. [26]. 

In Fig. 4-6, e decreases with raising the temperatures T d, so e decreases as the 

oxygen concentration in GaAs crystals increases. One can obtain N人 and NLat77K 

台omthe following equation, using e and carrier concentration flc: 
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+ '1 ... T .1'-" T ..... r ... T+ 
Values of flç, NÃ , Nò 加dN刷 (Ntot =凡+N�) are plotted against T d in Fig. 4・7.

+ Here, N入 decreases with raising T d，加d N~ does not ch釦ge with the variation of T d ・ The

reason for the increase in carrier concentration with that of oxygen concentration in 

undoped GaAs crystals as shown in Fig. 4-3 is the decrease in the number of acceptors. 

So, oxygen in GaAs crystals is thought to suppress acceptors. 

Oxygen in GaAs cηstals can substitute at an As-site and act as a deep donor as 

confirmed with GaAs crystals grown with oxygen doping [42,45-47]. In undoped GaAs 
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Fig.4-7 

1500 

Diffusion barrier 臼mperatureT d versus compensation ratio e of 
undoped GaAs crystals at 77 K. 

1400 
Td (K) 

1300 

Fig.4-6 
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crystals , the existence of oxygen-induced deep donor levels can not be confirmed, 

because the carrier concentration of undoped crystals is about 1 x 1016 cm-3 which is 

mainly Si contamination from the quartz boat. This oxygen at the As-site seems to 

prevent Si substitution at the As-site. Thus , it seems to cause the decrease of the number 

( 0 ) 

( b) 

EL6 of acceptors. A displaced Si atom is supposed to occupy interstitial sites because the 

number of donors, Si atoms at Ga-sites, does not change in Fig. 4-7. 

(
.
コ.d
)

The dependence of carrier concentration on oxygen concentration in Si-doped 

GaAs crystals , shown in Fig. 4・4 ， is not clear. The decrease in acceptors in Si-doped 

亡3
c 
亡フ3

u、

GaAs crystals is considered to be the same as that in undoped GaAs crystals. The 

EL2 maximum number of the decreased acceptoTs in undoped GaAs crystals is estimated to 

EL3 ω
←
J
O
 

be 1 x 1016 cm-3 from Fig. 4-7. This number is too small to cause any significant 

influence on the carrier concentration in Si-doped GaAs crystals. 

4-4-2-b. Deeo Level 

Figure 4-8 shows DL TS signals obtained from undoped GaAs crystals for two 

400 300 
(K) 

200 
Tempera• ure 

100 
different oxygen concentrations. Line (a) shows the signal for an oxygen concentration 

of 5 x 1015 cm-3, and line (b) shows that for 加 oxygen concentration of 4.9 x 1018 cm-3. 

Si concentration is 4 x 1016 cm-3 for line (a), and 3 x 1016 cm-3 for line (b). 

The EL6 peak decreases dramatically as oxygen concentration increases, 

however the EL3 and EL2 peaks decrease slightly. It is clear that the peak temperature of 

DLTS signals obtained at two different oxygen concentratIons m 

undoped GaAs crystals: line (a) 5 x 1015 cm-3 and line (b) 4.9 x 1018 cm久
Fig.4-8 

EL2 observed in high oxygen concentration GaAs crystal is lower than that for low 

oxygen σ
b
 
n
 

•.• 
‘ n
3
 a
 
e
 

ra 
ハ
」n
 

-
冒
且with EL6 m decrease The crystals. concentratlon oxygen 

concentration has been reported with respect to the experiments on Ga203 doped GaAs 

crys凶s by Martin et al. [46]. A shift of EL2 peak position has been reported by Gatos et 

al. [47] and Lagowski et al. [52]. This shift is well explained by an overlap of the 

oxygen-related peak of ELO with the EL2 peak. 

Fang et al. [53] repo口ed that EL2 was supposed to be ASGa-V As, and EL6 to be 

V Ga-V As. V As is assumed to change to 0 As with increasing oxygen concentration. The 

decrease in EL6 might explain the occupation of oxygen in V As, i.e. , the change of V As 
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to OAs' The peak position shift of EL2 ,night also explain the change in comp]ex state 

from Asoa-V As to ASOa-OAs' The origin of EL3 is not clear, but is thought to be related 

to SiAs or V As because of the change in peak height of oxygen concentration. 

These results show that the oxygen contamination 仕om the quartz boat brings 

electrically active centers in GaAs crystals, but the quantity of active oxygen is less than 

1 % of the introduced oxygen in GaAs crystals because the calculated EL6 defect 

concentration is less than 1 x 1016 cm-3 even in the samples with highest oxygen 

concentration. The activated oxygen atoms in GaAs crystals due to the contamination 

合omthe quartz boat acts in the same way as those generated from doped Ga203 in GaAs 

crys凶s.

44-2-c. Concentrations of Imourities AlonS! Dislocation Lines 

Existence of impurity atoms along dislocation lines is easy to observe by etching 

wafer surfaces [21]. In case, Si-doped GaAs wafers was etched for 25 min using 

。l
寸
.
凶
戸
出

H2S04:H202:H20 = 10:1:1 etchant at 10 oC under strong light illumination. Impurity 

precipitation along the dislocation line is observed as a contrast caused by the difference 

in etching rate. Photographs of etched (100) surfaces are shown in Fig. 4-9. These 

microscope: Figure 4-9(a) is pictures were taken using a differential interference optical 

the case of a higher oxygen concen汀ationGaAs crysta1, and Fig. 4-9(b) is that of a lower 

oxygen concentration one. These two crystals were grown from the same starting 

materials , on the common conditions except for the difference in T d. There is a much 

greater precipitation of impurities along the dislocation line in the higher oxygen 

concentration GaAs crystal than in the lower oxygen concentration crystal. These results 

C釦 be expl但nedby assuming that the precipitation of impurities is due to oxide. 

4・4-2-d. Chemical Forms of OxvS!en in GaAs Crvstals 

As already stated, oxygen can not be detected quantitatively by using SIMS , but 

large amounts of oxygen are detected by using CPA. From this impurity analytical result 

and from the wafer etching result, it is considered that almost all of the oxygen in GaAs 
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crysta]s consists of segregated oxides (such as Ga203 , AS203 , GaAS04 , and Si02) 

[54,55]. 

A small amount of oxygen, less than ] %, introduced into GaAs crystals is 

supposed to substitute at As-sites without forming such oxides. This oxygen substitution 

at As-sites would explain the difference in the electronic properties of undoped GaAs 

crystals and the difference in DLTS signals [56]. These electrical phenomena would not 

be clear in Si-doped GaAs because of the presence of a large arnount of Si. 

4-5. CONCLUSION 

The concentration of oxygen in GaAs crystals grown by the GF method using a 

qu制z ampoule c如 be controlled by adjusting the temperature of the diffusion barrier 

T d, which is located between the higher temperature zone in the apparatus of crystal 

growth 釦d the lower temperature zone placed so as to control the vapor pressure of As. 

In this growth system, T d is the lowest temperature spot in the higher temperature zone. 

The oxygen concentration in GaAs crystals increases remarkably as T d increases. This 

can be explained by the equilibrium between oxygen concentration in GaAs melt and 

Ga20 vapor pressure generated from the reaction between quartz and Ga. Oxygen 

concentration in GaAs crystals is proportional to the third power of Ga20 pressure. Most 

of the contarninating oxygen atoms in GaAs crystals are thought to exist as oxides, and 

some of the As-sites are substituted by the reminder oxygen. These oxygen atoms at Asｭ

sites prevent Si atoms from substitution at As-sites and acting as an acceptor. Almost all 

of the Si atoms , which came 仕om the quartz boat and dissol ved in melt, are removed 

仕omthe melt because of the other equilibrium relationships. The DLTS results show that 

the EL6 in undoped GaAs crystals decreases with increasing oxygen concentration. This 

is considered to be caused that V Ga-V As , the ori♂n of the EL6, change to VGa-OAs' The 

precipitation of impurities along dislocation lines in Si-doped GaAs crystals observed by 

etching that is enhanced with increasing the oxygen concentration. This precipitation 

seems to be the experimental support that oxygen atoms have been considered to 
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segregate in GaAs crystals as oxide. These phenomena are the same as those in 

intentionally added oxygen atoms in GaAs crystals. 
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5. THE EFFECT OF ARSENIC V APOR PRESSURE ON THE SPATIAL 

DISTRIBUTION OF SILICON 

5-1.INTRODUCTION 

It is well known that Si atoms occupy Ga-sites where they act as donors , or As-. 

sites where they act as acceptors. A lot of work has already been done to understand the 

characteristics of Si-doped GaAs. The site distribution of Si in GaAs under the influence 

of a second dopant has been studied by measuring the Hall effect [57] and Si localized 

vibrational modes (L VM) [58 ,59]. They reported that the concentration of Si on As-site 

to Si on Ga-site ratio ([SiAs]/[Sioa]) was dependent on the species and the amount of the 

second dopant. The ratio of activated acceptor concentration to activated donor 

+ 
concentration (N~JN~ = e : compensation ratio) measured by the Hall effect was reported 

to be about 0.4 in the carrier concentration range from 5 x 1017 cm-3 to 1.5 x 1018 cm-3 

[60]. The distribution of Si was to be described by a thermo-chemical model , and was 

expected to be influenced by melt stoichiometry [61 ,62]. Fomari [63] reported that the 

distribution of Si in GaAs grown by the liquid encapsulated Czochralski (LEC) method 

was dependent on the melt stoichiometry. 

In this chapter, the effect of As vapor pressure on site distribution of Si wiI1 be 

discussed in the case of the crystal grown by the GF method [33 ,64] which can control 

As vapor pressure around the melt directly. The result is discussed , being compared with 

a thermo-chemical model. 

ι2. EXPERIMENTS 

All GaAs crystals in this study were grown by the GF method, and from a melt 

synthesized from elemental Ga and As. As vapor pressure was controlled by the 

temperature at the low temperature zone. The As source temperature was varied from 

610 oC to 635 oC. The weight ratio of added Si was 43.75 wtppm. All samples were 
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sliced from the single crystals , and from the position of fraction solidified (g) equaled 

0.1 5, in order to keep the same sample condition. 

Si concentration in GaAs crystals was measured by FL-AAS and SIMS. Hall 

effect measurements were carried out at 77 K using the VDP method. The compensation 

ratio was determined from the carrier concentration and Hall mobility at 77 K, using the 

table reported by Walukiewicz et al. [49]. 

5 ・3. RESUL TS AND DISCUSSION 

Figure 5-1 shows the relation among the Si concentration, carrier concentration 

and the As source temperature. Figure 5-2 shows the Hall mobility plotted ag泊nstthe As 

source temperature. The Si concentration was widely scattered from sample to sample 

because the measurement of FL-AAS used this chapter is not precise enough. The Si 

concentration of several samples meぉured by SIMS is around 8 x 1017 cm・3. Although 

the measurements have a large error, the Si concentration is thought to be constant at 

about 6.5 x 1017 cm-3 by FL-AAS. Carrier concentration and mobility measured by the 

Hall effect increases with raising As source temperature. 

U sing the electrical properties measured at 77 K , the compensation ratio was 

calculated [49] as shown in Fig. 5-3. It is clear that the compensation ratio decreases with 

+ 
raising the As source tempe削ure. One can obtain NA and N~ from the relationship 

stated in section 4-4-2. Values of NA, N~ ， N人+ N~ are plotted against As source 

temperature in Fig. 5-4. The decrease in 叫， the increase in N~， and constancy of N人+

N; were observed with the increase in As source temperature. The 町stal grown by the 

LEC method were repo口ed to have a similar trend with compensation ratios [63]. 

It was shown that the compensation ratio calculated from electrical properties 

cannot be entirely explained in terms of the amphoteric behavior of Si measured by 

LVM [57,58,63]. Chen et al. [65 ,66] proposed new LVM models, but the [SiAs] I [SioaJ 

ratio was not suitable when the compensation ratio is calculated from electric prope口ies.
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Fornari [63] proposed the relationship which gives the compensation ratio in Si-doped 

GaAs with carrier concentration (n�) lager th釦 10 17 cm-3 : 

。 =N人 j N~ = (N~ + [SiAsD j [SiGa] , (5-1) 

where NA are ionized acceptors concentration excluding [SiAs]' With regard to the cases 

伽t nc was less than 1017 cm-3 in melt grown crys山， l'も was 陀ported to become 

comparable with the background level of the resid ual acceptors [4]. Here , N A was 

suggested to originate from Si-related complexes , pure point defects , andjor 

substitutional impurities. In addition, a similar compensation was observed in GaAs 

doped with group VI donor elements, which are not amphoteric [60] in principle. 

In these samples, the Si concentration and 札 +Nら is constant, and N 入 varies

+ inve問ly with N�' as shown in Fig. 5-4. For these results , the variations of N入 and NL 

seem to be caused by the distribution change of Si , even with the existence of N A" 

Here, the incorporation reactions are considered for Si-doped GaAs proposed by 

Hurle [61 ,62]: 

Sil + V Ga = Si~a + e-, 

Sil + V As = Si人s + h+ , 

(5-2) 

(5-3) 

where Sil is Si in the GaAs melt, e-is the free electron, and h+ is the free hole. Mass 

action gives [62]: 

KSiGa = ( [Sï(;a] 匂)j ( 'YS� [Sil] [V GaJ ) , 

KSiAS = ( [SiAs] Pgt ) / ( YSi [Sil] [V As] ) , 

(5-4) 

(5-5) 

where ngt is the electron concentration at growth temperature , Pgt is the hole 

concentration at growth temperature，組d YSi is the activity coefficient of Si in the GaAs 

melt. 

Present experimental results were compared with the thermo-chemical model for 

undoped GaAs that was suggested by Wenzl et al. [5 ,67]. The influence of the foreign 

atoms was not considered in this calculation. When more detailed analysis is done , the 

influence of substitutional foreign atoms must be taken into account for the charge 

neutrality condition. The value of [V Ga], [V AJ , ngt, and Pgt were ca1culated using the 

thermo-chemical constant proposed by Wenzl et al. [5] except for the regular solution 
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par創neter. The value of this parameter, which was estimated to be α= 13510 -39.66 T 

from the present experiment. This thermo-chemical model is explained in Fig. 5-5. The 

calculated results on this thermo・chemical model are also shown in Fig. 5-6. Similar to 

+ 
the number of N� and N入 from this experimental results, those of [V Ga] or [V AJ change 

with As source temperature. Thus , it is considered that the melt composition influences 

the site distribution of Si in GaAs Crystals. 

5-4. CONCLUSION 

The change in electric properties were observed in GaAs crystals grown by the 

GF method under various As source temperature conditions. The decrease in N入， and 出e

increase in N~ were observed with raising the As source temperature. The change is 

assumed to reflect the site distribution of Si , that is Ga-site or As-site. This trend is 

considered to be influenced by the melt composition of GaAs material. 
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Si IncorDoration 九10del

Sif + VGa= S込a+ eｭ
Sif + V As = Si As + h+ 

D. T. 1. Hurle 5-出 Conf.on

Semi-Insulating III-V matβrials ， 1988 ， p11 

KSiGa = ([Si~a] n) / (YSi [Sif] [V Ga]) 
KSiAS = ([SiAs] p) / (YSi [Sif] [V As]) 

YSi : activity coefficient of Si in GaAs melt 

GaAs Phase Dia2ram 

As vapor pressure (Ideal Gas) 

H. Wenzl et al. 
J. Crysta1 Growth ,.lQQ (1 990) , 377 

J. Crysta1 Growth, lQ.2. (1 991) , 191 

GaAs liquidus (Regular solution model) 

GaAs solidus Defects: 
0 ・ 0

Ga入s' GaAs' G内， G内， VOa, V Ga 
o . + . 0 . + _ _0 _ _+ 

AsGa, AsOa' Asi , Asi' , V入s' V人s

When_As Source TemDerature Increase. 

同J + [V Ga] increase 司 [Si~a] increase 
バs]+[VL]decrease コ [Si~s] decrease 

Fig. 5-5 (a) 
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Thermo Chemical Model 1 

AsSOURCE 

As pressure 
p -22・ヲ X 103 AS2L = exp( --_.;_ ---- + 19.23) 

- lL 

p-18 竺 X 103 AS4L = exp( ----;,_ ----+ 21.22) 
- lL 

C hemica~ potential 

Af(g)=94ω- 79.93 T 

δμ254包) = 39378 -44.10 T 

LIQUIDUS 

As pressure (Total Pressure) 

PH = PAS2H + PAS4H + PGa + PAsL 

PAS4H=KAsP:幻
26.49 X 103 

KAs = exp(-_. 'T~----17.24) 
Ga Pressure --

Aμ;s= 企GO -RT in(PGa) 

�O = -355186 + 134.82 T 

Regular Solution Model 

Aμ:s=Aμえ +α(1ザ+ RT in(y) 
Aμ込= 23848 -21.88T 
α= 13510 -39.66T (from our results) 

叫=AK包)=AAS4包)

Liquidus 

タT in(4y(l-y)) -払SF(T吋)=α(;-y)2

S゚F = 70 (J/mol) 

TF = 1513 (K) 

Fig. 5-5 (b) 
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Here, 

[V Ga] = [VGa] + [vga], 

[VAs]=[VL]+[VL] 

Fig. 5-5 (c) 

Thermochemical model of Si incorporation model [62] and Ga-As 

phase diagrarn proposed by Wenzl et al. [5,67]. (a) Basic parameter. 

(b) Chemical potential of As source and liquidus.(c) Chemical 

potential of solidus. 

Fig.5・5
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6. EFFECT OF SILICON DOPING ON LATTICE PARA恥1ETER AND THE 

NATURE OF SILIC_QN RELATEDllEFECTS 

6-1.INTRODUCTION 

There have been several studies on the dependence of lattice parameters of Si ・

doped GaAs on the amount of Si incorporated in the crystal. Driscoll et al. [68] have 

reported that the lattice parameter of a heavily Si-doped GaAs crystal was contracted. On 

the con甘訂y， Baker et al. [69] have repoロedthat the lattice par担neterof a melt grown Siｭ

doped GaAs cηstal was dilated. Fewster and Willoughby [70] have reported that p-type 

LPE layers showed a very large lattice contraction, while VPE and GF materials had 

lattice parameters much closer to their undoped values. Watson et al. [71] have reported 

that LEC grown crystals showed a large lattice contraction that is three times lager than 

predicted by Vegard's law. On the other hand, it have been reported that the lattice 

parameter of LEC grown Si-doped GaAs was contracted because of the presence of 

boron which was a contamination produced by reaction between B203 and doped Si 

[72]. 

The results of these reports are inconsistent each other and suggest that the 

change in lattice par街neterdepends on the crystal growth method. This chapter describes 

how the effect of Si doping on the lattice parameter of GaAs grown by the GF method 

has been examined, and the effect of heat treatment of crystals and melt composition is 

considered. The crystals were studied using by Hall measurement and by 

photoluminescence. Possible defect models based on these results will be discussed. 

6・2. EXPERI時1ENTS

The GaAs crystals were grown by the GF method [33 ,64] , and from a melt 

synthesized from elemental Ga and As. The impurity concen甘ations in the crystals were 

measured by SIMS. The diffusion barrier temperature during crystal growth was around 

13∞ K. The impurity concentrations were less than the background levels , except for Si. 
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The range of Si concentration in the crystals , including undoped crystals, was from 7 x 

1016 to 4 x 1019 cm-3. Atomic fractions of As in the melt were controlled to be 

[As]j([Ga]+[As]) = 0.5015 by adjusting As pressure [6 ,62 ,73]. Where [As] and [Ga] 訂e

the value of As and Ga concentration in the melt, respectively. Some of the samples were 

grown under the condition of [As]j([Ga]+[As]) = 0.5000. There were used as-grown 

crystals and crystals that were bulk-annealed at 850 oc for 20 hr under As pressure and 

cooled at 30 oC/h. 

Lattice parameters were measured by CuKα1 radiation at 25 ::t 1 oC by using the 

Bond method [22]. Polished and etched 10 mm x 10 mm square shaped samples were 

used for this measurement. The electrical evaluations were done using the VDP method 

[26] at 300 K and 77 K. Then, the compensation ratio (8) , NA' and N~ were determined 

仕omthe carrier concentration and Hall mobility at 77 K [49]. Photoluminescence spectra 

[28] was analyzed on same samples at 4.2 K. An Ar+ ion laser (514.5 町n wavelength) 

was used to excite carriers and a Ge photodetector was used to detect the photo emission. 

6-3. RESUL TS 

6-3-1. Lattice Parameter 

Figure 6-1 shows the relationship between lattice parameter and Si concentration 

in GaAs crystals where the As atom 古action in the melt was controlled at 0.5015. The 

lattice parameters of both as-grown crystals and bulk annealed crystals were measured. 

Under the present experimental condition, the observed lattice parameters seem to 

depend on Si concen佐ation.

After etching in the solution of HN03:HF:H20 = 3: 1:4 + AgN03 0.3 wt% [14] , 

micro-sized roughness is recognized on the (111) As surface of the specimen, the Si 

concentration of which was higher than 2 x 1019 cm-3, as shown in Fig. 6-2. This surface 

is similar in roughness on etched surface of a heavily Te-doped GaAs [74]. This seems to 

be caused by something like segregation. In practice, stacking faults have been observed 

97 



。

¥ 
,,­
O 

0.5653邸

0.565380 

h 
as -grown 
annealed 
as -grown (segregated area) 
annealed (segregated area) 

。

口

A 

(
ε
c
)」ω←ω
E
E
O
仏
ω
O
一
←
←
o
J

¥.D 
αD 

マ

0.565365 

40 3.0 10 20 30 

Concen•ration ( x 1018ω戸)

Dependence of lattice parameter on Si concentration in as-grown 加d

annealed GaAs crystals with As atom fractions of 0.5015 in the melt. 

2.0 

Silicon 

1.0 0.0 

Fig.6-1 

1...0 
¥..0 

400μm 

( b ) 

Chemical etched (111) As surfaces using HN03: HF:H20 = 3: 1:4 
+ AgN03 0.3 wt% solution for 3 min. (a) Si concentratlOn lS 

5 X 1018 cm-3, (b) 2 x 1019 cm-3. The surface background have very 

(0) 

Fig.6-2 

small roughness. 



in heavily Si-doped GaAs by using TE~Æ [34]. ln addition , X-ray was scattered at the 

segregation region by using XRT as discussed in chapter 7. 

boron with low crystals of undoped LEC GaAs parameters lattice The 

concentration are also plotted in Fig. 6・ 1. The lattice parameter of as-grown crystals with 
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0.56538 nm with increasing the Si concentration up to about 2 x 1018 cm-3. However, 

above 8 x 1018 cm-3, the lattice parameter decreases with increasing Si concentration. 

The annealed crystal with Si concentration of 8 x 1016 cm-3 was observed to have 

a lattice parameter greater than that of as-grown crys凶. This is the same as the change in 

lattice parameter of undoped LEC crystals. ln the case of GaAs crystals with a Si 

concentration of between 1 x 1017 cm-3 and 2 x 1018 cm-3, annealed specimens showed a 
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i.e. ， less 出an 1 X 1017 cm-3, 1 -20 X 1017 cm-3, 2 -8 x 1018 cm-3, and over 8 x 1018 cm-3. 
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in this study exhibited n-type conductivity. Figure 6-3 shows the dependence of carrier 

lapJO) UOHOl•UdJUO) (~_WJ 8,OlX ) concentration on the Si concentration in each specimen. Carrier concentration increased 

linearly with increasing Si concentration below 2 x 1018 cm-3. Above 2 x 1018 cm-3, this 

trend on the increase of carrier concentration became weaker. Eventually, in the range of 

Si concentration above 8 x 1018 cm-3, the carrier concen甘ation of the crystals approached 

asymptotically around 4 x 1018 cm-3• 

Annealed crystals exhibited the increase in carrier concentration which was lager 

than as-grown crys凶s when the Si concentration was below 2 x 1018 cm-3. ln the range 
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above 2 x 1018 cm司3 ， it was smaller than the carrier concentration of as-grown samples. 

As a result, the ratio of carrier concentration to Si concentration approaches 1/5 -1/10 at 

high Si concentration range. 

Figure 6-4 shows the dependency of e, which can be calculated from Hall 

measurement at 77 K as mentioned in section 4-2-2, on Si concentration. The value of e 

o as -grown 
ロ annealed

ﾟ as -grown (seg rega•ed a rea ) 
v annealed (segregated area) decreases abruptly with decreasing Si concentration below 2 x 1018 cm-3. Above 2 x 1018 

0.70σ 

o 

/ 

cm-3, e increases slowly with increasing Si concentration. Annealing of GaAs crystals 

with Si concentration of less than 2 x 1018 cm-3 was observed to produce a decrease in e 

in comparison with as-grown crystal. Above 2 x 1018 cm-3, no change in e was observed 

in the case of annealed crystals. These changes in e are considered to be derived from 

occupation sites of Si atoms in GaAs cηstals. Whether Si atoms sit on Ga-sites (Sioa) or 

As-sites (SiAs) is a matter for discussion. The distribution of Si atoms at different kinds 
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cm-3 were observed to achieve a decrease in ~ and an increase in N ~ in comparison 

with that of as-grown crystals. These trend cause a decrease in e with annealing. 

Otherwise , for Si concentrations above 8 x 1018 cm-3, both N"A and N~ decrease 
A 

simultaneously with 如nealing， so no ch釦ge in 8 has been observed in the present study. 

The dependence of lattice p訂ameter on 札 and Nら except for segrega削 area

was also investigated. Lattice parameter increases with N入， but is independent of 

annealing, as shown in Fig. 6-6. Minimum 0ぱft恥h恥e 1加a瓜t附t

cm-3 and 伽tbecomes cons刷 whe州五 reaches above about 2 x 1018 cm汽 as 山wnin 

0.30 
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40 

Fig.6-4 Dependence of compensation ratio (8) on Si concen町ationin as-grown 

and annealed GaAs crystals with As atom fractions of 0.5015 

in the melt. 

Fig. 6-7. From these results , it seems that the increase of lattice parameter with that of Si 

concentration is 附ted to the increase in N入. This change in N人 is considered to be 

mainly due to that of the amount of SiAs ・
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6・3・3. Photoluminescence 

The PL spectra of as-grown and annealed GaAs crystals are shown in Figs. 6-8 

and 6-9, respectively , where PL peaks are denoted by A through H. The peak wavelength 

of peak H may be longer than 1200 nm. After annealing, those crystals were observed to 

produce increase in peak height, except for peaks D, E, and F. The origin of these peaks 

has been clarified by Suezawa et al. [75,76]. Sharp peaks near the band edge (peaks A, 

B, and C) were thought to be due to the bound excitons related to residual impurities. 

Peaks D, E, and F might be due to emissions related to Cu sitting on Ga-sites (CUOa) and 

its phonon replicas. A broad peak around 1040 nm (peak G) was thought to be related to 

the clusters of Si atoms , for example, a pair of one Si atom sitting on a Ga-site and 

another Si atom sitting on an As-site (Sioa-SiAs pair). A broad PL pe紘 at the range of 

longer than 1200 nm (peak H) has been assigned to be due to Sioa-SiAs pairs. 

Peaks A, B, and C become weaker and broader with increasing Si concentration. 

Eventually , these peaks almost disappear at Si concentrations above 2 x 1019 cm-3 where 

small assemblies of Si seem to exist. Peaks D, E, and F were observed only in crystals 

with Si concentrations below 1 x 1017 cm-3. Peak G was observed in crystals with that 

above 5 x 1017 cm-3, and half width of this peak became narrower with increasing Si 
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The decreasing PL intensity of peaks A, B, C, D, E, and F with increasing Si 

concentration is thought to be related to the increase of carrier concentration. The aJ!~↓ Ol ( WU) Ja~aωOJOd 

behavior of Si in GaAs is assumed to be clarified 企om the changing of Si-related peaks 

G and H. The defect of SiGa-SiAs pairs is assumed to exist in GaAs crystals with the Si 

1 x 1017 cm-3. Both SiGa-SﾏAs pair and Si-cluster defects are concentrations below 

thought to exist in crystals with the Si concentrations between 1 x 1017 cm-3 如d2 x 1018 

cm-3. Si-clusters may be dominant in the crystals with Si concentrations above 2 x 1018 

cm-3. The size of these Si-clusters in the crystals is thought to be smaller than the 
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PL spectra of annealed GaAs crysta]s with As atom fractions of 

0.5015 in the melt. 

Fig.6-9 PL spectra of as-grown GaAs crystals with As atom fractions of 

0.5015 in the melt. 

Fig.6-8 
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segregation observed on the etching pattem. The position of peak G shifts after annealing 

from that of as-grown high Si concentration crystals. It seems that Si-clusters become 

stabilized after moving of Si atoms by annealing. 

The increase in the PL intensity related to Si-clusters (peak G) is considered to be 

related with the decrease in the lattice parameter with increasing Si concentration above 0.565385 
[As] / ([Ga] + [As] ) =0.5015 

8 x 1018 cm-3 (Fig. 6-1). On the other hand, the decrease in PL intensity which is related 

to SiGa-SiAs pairs is (peak H) supported to be due to the decrease in e at low Si 

concentrations, as shown in Fig. 6-4. 
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6・3・4. Dependence of Melt Composition on Lattice Parameter 

The lattice parameters of GaAs crystals with an As atomic fraction of 0.5015 in 

the melt are plotted as a function of carrier concentration in Fig. 6-10. These crystals are 
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thought to be As-rich crystals. The lattice parameter increases with increasing the carrier 
ロ oas-grown 

ロ annealedconcentration except in high Si concentration region where precipitation effect is 

observed by etching. The lattice parameter of the segregated region deviates from this �. as-grown (segrega• ed area) 
v annealed (segregated area ) 

trend. This trend is the same as that of lattice parameter versus Si concentration plots 

The lattice parameter of GaAs crystals with an As atomic fraction of 0.500 in the 

0.565365 
」ー

0.0 1.0 2.0 3.0 4.0 5.0 

Carrier Concentration (x 1018 cm-3 ) 

shown in Fig. 6-1. 

near-stoichiometric crystals. Increasing the Si concentration of the crystals does not 

melt is plotted against carrier concentration in Fig. 6-11. These crystals are thought to be 

change the lattice parameter. Annealing of the crystals does not change the lattice 
Fig.6-10 Dependence of lattice parameter on carrier concentration in GaAs 

crystals with As atom fractions of 0.5015 in the melt. parameter either, except for undoped crystals. After annealing, undoped crystals 

exhibited to produce a decrease in lattice par創neterin comp訂ison with that of as-grown 

crystals. This change is opposite to that of the lattice parameter of As-rich crystals. It 

seems that the change in lattice parameter of the GaAs crystals is related not only to the 

sites of Si but to the As fraction in the crystals. 

In LEC undoped GaAs, no correlation of lattice parameter with the stoichiometry 

in crystals has been repo口ed [77,78]. Similarly, in GF undoped as-grown crystals , no 

correlation of lattice parameter with stoichiometry in crystals is exhibited. On the other 
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hand, boron concentration due to the use of B203 in the growth of LEC undoped crysωs 

was repo口ed to relate to the effect of V As [79]. From this report, the change in lattice 

parameter of crystals with intentionally doped impurities has been considered to be the 

effect of the existence of native defects, especially As-related defects such as V As and As 

interstitials (AsI). [ A 5] / ( [G a ] + [A 5] ) = O. 5000 
0.565385 

E 
C 

6-4. DISCUSSION 0.565380 

Well talked sizes of dopant atoms and ions are Iisted in Table 6-1 [80-82]. 

Considering only these covalent radii, both kinds of Si atoms (SiGa 釦d SiAs) cause a 口
。ロ

0.565375 decrease in lattice parameter [81]. If one talks the ionic radii into consideration, Si~a 。

。

atoms must cause a decrease in lattice parame記r， and S~s atoms cause an increase [81]. ロ

.+ 
It has been reported that even SiGa caused expansion of lattice [82]. 

Here , it must be pointed out that the change in lattice parameter is related not 
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only to Si concentration but to the existence of native defects which is affected by the 
ロ

change of melt composition. Certainly , the distribution of Si in crystals is not to be 
0.565365 

simple, if one considers the present results of compensation ratio, PL measurement, and 4.0 5.0 
( x 1018cm-3) 

2.0 3.0 
Concen• ra• ion 

1.0 
Carrier 

0.0 
TEM observation [34]. The relationship between Si concentration and lattice parameter 

of the crystals can be classified into four ranges of Si concen甘ation as mentioned before. 

A defect model for each group is considered below. 

First, for Si concentrations of below 1 x 1017 cm'J, the form in which Si exists in 

crystals is supposed to be SiGa, SiAs and SiGa-SiAs pairs. The dominant defects in the as-Dependence of lattice parameter on carrier concentration in GaAs 

crystals with As atom fractions of 0.5000 in the melt. 

Fig.6-11 

grown crystals are considered to be excess V As and excess ASI induced during the 

process of crystal growth. The lattice parameter is thought to be affected by defects at 

normallattice sites rather than interstitial defects. In addition, the defect concentrations 

of as-grown crystals 訂e supposed to be the same as that of the equilibrium state at the 

growth temperature and may ch如ge to the equilibrium concentration at the annealing 

temperature. In this case, the lattice parameter may be affected by the existence of V As 

more than by that of As1• The V As density in as-grown crystals affected by stoichiome汀y
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may have small effect to lattice parameter because the change of V As density is not so 

large enough. Annealing of these crystals probably cause a reaction between excess V As 

and excess Asr, and which reaction is thought to change the lattice parameter. Annealing 

of the As-rich crystals is thought to cause a decrease in V As and an increase in lattice (
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number density of V As in those crystals , and a decrease of lattice p訂街neter.

Next, in the range of Si concentrations between 1 x 1017 cm-3 and 2 x 1018 cm-3, 

the sites on which a Si atom exists in crystal are assumed to be in the Sioa, SiAs, Sioa-

SiAs pairs , SiAs・AS1 complexes and smaller Si-clusters. The lattice parameter of As-rich 
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In the range of Si concentrations between 2 x 1018 cm-3 and 8 x 1018 cm-3, Si 

atoms exist in crystals are supposed to be in the forms , Sioa, SiAs, Sioa-SiAs pairs , マ
泡
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SiAﾇAsI complexes, and Si-clusters. The dominant defects in these crystals may be SiAs-

ASI complexes and Si-clusters. 1t is considered 出at Si-clusters increase their density and 的
4
一ω

。
。
一
ω

v) 

d 
c 
l!) to grow into larger sized clusters by the aggregation of Sioa, SiAs. and SiI atoms with 

increasing Si concentration. Therefore, the lattice parameter is thought to decrease with 

growing Si-c1usters. The change in Si concentration and annealing proceeds exhibited 

scarcely any change in the lattice parameter of As-rich crystals because the effects of 
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clusters might have gathered excess Si and As. As a result, the latticc parameter simply 

decreases with increasing Si concentration. Annealed crystal exhibited the decrease in 

both acceptor and donor concentrations, because the Si-clusters were thought to react 

with substitutional Si. As the reaction of SiGa and SiAs may occur at the same time, the 

lattice parameter achieves no change by annealing. The dominant process of this stage 

wiU be discussed in chapter 7. 

The above results 訂e summarized in Table 6-2. 

6-5. CONCLUSION 

The effect of Si doping on lattice p紅白neter in GaAs crystals grown by the GF 

method was investigated. The lattice parameter of As-rich crystals changes with 

changing the Si concentration. The relationship between Si concentration and lattice 

P紅白neter can be c!assified into four ranges of Si concentration in which the trend of 

change in lattice parameter with increasing Si concentration were observed to be: 

increase, increase, no change, and decrease. Annealing of the cηstals caused the change 

N
I沼
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-
A
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of lattice parameter in each r如ge and those were: increase, decrease, no change, and no 

change , respectively. The relationship between Si concentration and lattice p紅白neterof 

stoichiometric crystals is not clear, and the effect of annealing is also not clear too , 

(
?
E
U
)
 

except in the lowest Si concentration region. Therefore, the lattice parameter of crystals 

[
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c
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affected by Si exhibits complicated changes. lt is summarized that the change in lattice 

parameter is affected not 0凶Y by the sites of Si but by native defects in GaAs crystals. 
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7. DEFECT REACTIONS.B_Y HEATTREATMENT OF HEAVILY SILICON 

DOPED GALLIUM ARSENIDE 

7-1. INTRODUCTION 

An important point in the production of the substrate for epitaxial growth is the 

change of the crys凶 characteristics by annealing. There have been number of studies of 

annealing-induced effects on the properties of Si-doped GaAs. Chen and Spitzer [66] 

reported that carrier concentration, infrared absorption due to the defect-inducedl 

localized vibrational mode (LVM) , micro structure observed by TEM , and critical 

resolve shear stress of Si-doped GaAs reveal temperature-dependent anneaIing-induced 

changes in several specific defect concentrations. The effect of heat treatment on PL 

spectra of Si-doped GaAs was investigated by Suezawa et al. [75]. According to these 

reports , Si-related defects affect the characteristics of Si-doped GaAs. 

Si-related segregation seems to be generated when the Si concentration increases 

above 8 x 1018 cm-3, as discussed in chapter 6. This segregation is due to large extrinsic 

stacking faults and small dislocation loops , as determined by TEM [66]. The structure of 

these two types of segregation was determined to be pl組erdefects lying on adjacent two 

{111} net planes of Si atoms [83]. 

In this chapter, the behavior of defects in heat-treated heavily Si-doped GaAs is 

discussed. IsothermaI annealing produces a change in the distribution of Si-related 

segregation, as shown by etching and XRT. Similar changes in lattice parameter, carrier 

concentration, and Hall mobility in the regions, where segregation was observed, were 

produced by heat treatment. Defect reactions due to the heat treatment are discussed on 

the basis of the change in these characteristics. 

7-2. EXPERI恥lENTS

The crystal growth condition was exactly the same as that of chapter 6. Several 

types of specimens such as as-grown crystals and bulk-annealed crystals after 18 

different annealing processing were prepared. They were annealed at the temperatures of 

400 oC, 550 oC, 700 oC, 850 oC , 1000oC, or 1150 oC. The heat treatment was done for 20 

hr then cooled at 30 oCjh , for 20 hr then quenching, or for 0.5 hr then quenching. 

Specimens of { 111} orientated wafers of 1 mm thickness were sliced from GaAs 

ingots grown in the <111> As direction. The concentration of Si in a GaAs ingot 

increases with increasing the fraction solidified (g) because the segregation coefficient of 

Si in GaAs is less than unity [1]. The samples, where the g value was over 0.9 , were used 

in order to find the regions of Si-related segregation. There is no Si-related segregation 

near the free surface of a sliced sample, but near the bottom of the boat such segregation 

was found. Such segregation is depend on the soIidification conditions. The distribution 

of such segregation is illustrated in Fig. 7-1. 

The Si concentration in each sample was measured by SIMS. The value of Si 

concentration of most crystals distributed between 5 and 8 x 1018 cm-3 near the free 

surface and between 1.5 and 3 x 1019 cm-3 near the bottom of the boat. The distribution 

of Si-related segregation was examined on the (111) As surface etched with a solution of 

HN03:HF:H20 = 3:1:4 with AgN03 0.3 wt% for about 3 min at room temperature [14]. 

Micro-sized roughness on the etched surface was observed in the segregation region, as 

discussed in chapter 6. The (220) reflection of GaAs by CuKα1 X-rays and nuclear 

plates were used for the XRT observations [25]. The lattice parameters of the Siｭ

segregated region were measured by CuKα1 radiation at 25 :::!: 1 oC by using the Bond 

method [22,77]. For this measurement, polished and etched 10 mm x 10 mm squ訂e

shaped samples were used. The carrier concentration and HalI mobility were estimated 

by using 出e VDP method [26] at 300 K. 

7 -3. RESUL TS 

7・3・1. Distribution of Si-Related Segregation 

The change of dis甘ibution of Si-related segregation produced by heat treatment 

was observed by chemical etching [14] and XRT [25]. Figure 7-2 shows typical 
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Change in Si-related segregation region observed after heat 

treatment. The crystals were annealed at 850 oC for 20 hr 出en

cooled at 30 oC/h. This figure shows entire samples, the magnified 

areas of etched surfaces , and XRT observations. 

Fig.7-2 
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examples which were annealed at 850 oc for 20 hr then cooled at 30 oC/h. The 

dis町ibution of Si-related segregation is shown on the left-hand side for as-grown samples 

and on the right-hand side for annealed samples. The entire samples are shown at the top 

of Fig. 7-2. The Si-related segregation region looks white and a large number of etch pits 

look like a group of small white dots in these photographs. Figure 7-3 shows an example 

of TEM photographs of Si-related segregation region in an as-grown sample. Large 

stacking faults and small dislocation loops were observed, similar to the results of Chen 

and Spitzer [63]. High resolution end-on views of large and smal1 loops with <110> 

incident beam are shown in F�s. 7-4 (a) and (b) , respect�ely. Burgers circuits are 

depicted in Figs. 7-4 (c) and (d) , wh�h are magnified images of the framed parts in Figs. 

7-4 (a) and (b) , respectively. The Burgers vectors of both loops are detennined to be 

(a/3) <111> [83]. It is seen in both images that an extra {111} 訂ray is inserted, forming 

the interstitial type loop. A schematic diagram of the crystal structure is thought to be a. 

Si {111} layer inserted in the GaAs matrix as shown in Fig. 7-5 [83]. 

ln the photographs at the top of Fig. 7-2 , the Si-related segregation in an asｭ

grown sample can be seen to have an unclear boundary , near the bottom of the boat. The 

annea1ed s加nple can be seen to have a clearly distinguishable region of zone-distributed 

segregation at the middle part of the sample, and shows the segregated region with an 

unclear boundary near the bottom of the boat. Magnified views of these samples are as 

follows: 訂eas 1, 2, and 3 in the middle of Fig. 7-2. Area 1 is the region with no 

segregation; Area 2 is the bound訂y region; and area 3 is the region with segregation. ln 

these photographs , etch pits look like black triangles or black circles. When these 

samples were annealed, regions 1 and 3 exhibited no changes in the etched surfaces, but 

the boundary of region 2 became clearer. A schematic diagram of this change is 

illustrated in Fig. 7-6. The bottom photographs � Fig. 7・2 are XRT results taken at the 

boundary region (region 2). The segregation region appears white in these photographs 

because of X-ray scattering by the segregation. The results obtained from XRT were the 

same as that obtained 合om chemica1 etching. 
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Fig.7-3 

議

警襲撃

む事襲

争議争

唱b

Si-related segregation in as-grown heavily Si-doped crystals , 

observed by using TEM. Large stacking faults (a) and small 

dislocation loops (b) 訂e observed in this photograph. 
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Fig.7-4 High resolution micrographs of (a) large and (b) small planer defect, 

with the incident beam parallel to the defect plane. (c) and (d) 訂e

the Burgers circuits in the framed areas of (a) and (b) , respectively. 

Fig.7-5 Magni白edimage of Fig. 7-4 (b) , on which the projected atomic 

possible structure is superimposed. The ful1 circles represent extra 

atoms (Si atoms?) and the arrow heads indicate the extra plane. 
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n , N: segrego• ed region 

Schematic diagram of the change in Si-related segregation reglOn 

due to heat treatment. No segregation is observed in regions 1 

and 111 after etching, but segregation is observed in regions 11 

and IV. The hatched regions show where Si-related segregatlon was 

observed and the solid lines indicate clear boundaries of the 

segregatlOn regIOn. 
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The results of chemical etching tests and XRT observations were carried out. 

They were annealed at 550 oC, 850 oC, or 1150 oC, for 20 hr then cooled at 30 oC!h, for 

20 hr then quenched, or for 0.5 hr then quenched are shown in Figs. 7-7 and 7-8 , 

respectively. The XRT results taken at the boundary region of heat-treated samples were 

similar to results of chemical etching. The distribution of Si-related segregation varies 

with changing the conditions of heat treatment. Zone-distributed segregation was 

observed after annealing at 700 oC, 850 oC , or 1000 oC for 20 hr. This zone-dis町ibution

was p訂ticularly clear after annealing at 700 oC and 850 oC. 

7・3・2. Lattice Parameter, Carrier Concentration and Mobility in Si-Related 

Segregation Region 

Figure 7 -9 shows the relationship between lattice parameter and Si concentration 

in GaAs crystals with the Si concentration was above 8 x 1018 cm-3. A typical value 

measured by using SIMS was adopted as the Si concentration of the samples because 

localized high Si concentrated parts existed in heavily Si-doped GaAs crystals. The 

lattice parameter of as-grown crystals , which had a Si concentration of l.0 x 1019 cm-3, 

was estimated to be around 0.565380 nm. The broken line shows the values predicted by 

Vegard's law calculated 仕omthe covalent radii of Si, Ga, and As [80,81] , as discussed in 

chapter 6, and using this estimated initial value. The lattice parameter decreases with 

increasing Si concen汀ation in the crystals. The reduction rate when the Si concentration 

was below about 2.5 x 1019 cm-3 was about 1.6 times larger than the rate predicted by 

Vegard's law. The lattice parameter with a Si concentration above 2.5 x 1019 cm-3 was 

constant at about 0.565360 nm, which is lower than that of undoped GaAs (0.565370 nm 

: see chapter 6). 

The lattice parameter of as-grown GaAs crystals with an Si concentration of 

above 8 x 1018 cm・3 was strongly affected by variations of Si concentration. For this 

reason , the effect of heat 町eatmentwas evaluated as a ch加gein lattice parameter, which 

was defined to be the difference between the lattice parameter of a heat-甘eated sample 

加d that of the as-grown sample. These two specimens were cut from two parts , next to 

127 



O.5h , quenched 20h, quenched 20h , -30 oC/h 

(
司
)
∞
ー
ト
.
∞
戸
山

ε
E
F
 

T
-
ー
ム℃ω

Z
υ
c
ω
コ
σ

F
Zの.
0

℃
ω
Z
υ
c
ω
コ
σ
F
L
O
N
 

、

Lj  

LI 
日 ，

、. 司，

550
0

C 

850
0
C 

11 50 Oc 

￡
\
υ。o
m
-
-
z
O
N

υ。
O
の
ω

ト一一→

10mm 

Etched surfaces of nine entire samples. The samples were annealed 

at 550 oC, 850 oC, or 1150 oC, and for 20 hr then cooled at 

30 oCjh, for 20 hr then quenched, and for 0.5 hr then quenched. 

Fig.7-7 

129 128 



8500C 

同
一W
C

20 h, -30 Oc / h 20h , quenched 0.5 h, quenched 

ト一一→
1mm 

Fig. 7-8 (b) 

1150
0
C 

]
{
い
W
H

20h, -30oC/h 20 h, quenched O.5h, quenched 
ト一一→

1mm 

Fig. 7-8 (c) 

Fig.7-8 XRT observation of nine entire samples. The samples were annealed 

at 550 OC (a) , 850 oc (b) , and 1150 oC (c), for 20 hr then cooled at 

30 oC/h, for 20 hr then quenched, and for 0.5 hr then quenched. 



each other in the materials. The effects of heat treatment are shown in Fig. 7-10. In 

general, annealing below 850 oC decreased the lattice parameter, while annealing above 

850 oC either produced no change or increase in lattice parameter. The change in lattice 

parameter due to heat treatment depend slightly on the annealing process. Crystals which 0
.寸

/
/
 
O
J
 

have been annealed for 0.5 hr then quenched are supposed not to have reached the 

equilibrium state at annealing temperature , and crystals annealed for 20 hr then cooled at 

30 oC/h are thought to be affected by the cooling process. Consequently, crystals 

annealed for 20 hr then quenched are considered to be the most suitable evaluate the 

effect of temperature thermal defects on these three annealing conditions. 

Figure 7-11 shows the relationship between annealing temperature and the ratio 

of electrical properties of annealed crystals to those of as-grown crystals for crystals 

annealed for 20 hr then cooled at 30 oC/h (a) , and for 20 hr then quenched (b), and for 

0.5 hr then quenched (c). In the case of crystals annealing for 20 hr then quenched, the 

carrier concentration and mobility exhibited the largest decrease at 700 oC. Annealing at 

1150 oC decreased the carrier concentration and increased the mobility. The change of 

electrical properties after other annealing processing have brought almost the same 汀end

as the change of lattice parameter. 
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7-4. DISCUSSION 
0.
• 

The existence of complex Si 加d As related defects has been pointed out [84,85]. 
小，
ト
.
∞
戸
山

The GaAs crystals used for the samples were grown under As-rich conditions. This 

condition consists very important meaning in the defect reactions in the process of heat 
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treatment. First, the defect reactions of crystals annealed for 20 hr then quenched were 

considered, which were suitable for eva1uating the temperature dependence of defects. aJ!~~Dl .J ataωO.J Dd H
U
 

ω
 

Lattice p紅白neter， carrier concentration, and mobility decreased when crystals 

had been annealed at 400 oC. The change in electrical properties indicates an increase in 

acceptors. It was supposed that a complex of a Si atom sitting on a Ga-site and a Ga 

was formed by this heat vac釦cy (SiGa-VGa) proposed by Chen and Spitzer [66] 
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Change in carrier concentration and mobility due to heat treatment 

in region where Si-related segregation was observed. nAA / nAG is the 

ratio of carrier concentration of annealed sample to that of as-grown 

sample ， μAA /μAG is the ratio of mobility of annealed sample 

to that of as-grown sample. Heat treatment condition were annealed 

for 20 hr then cooled at 30 oC/h (a), for 20 hr then quenched (b), 

and for 0.5 hr then quenched (c). 
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treatment because Si-related defect concentrations showed a relatively small change 

when observed by LVM [66]. The decrease of the lattice p訂ameter was observed after 

these crystals had been annealed at between 500 oC and 1000oC. The carrier 

concentration and mobility also decreased with this heat treatment. The decrease in 

carrier concentration and mobility is thought to be derived from the same origin as the 

unknown acceptor pointed out by Chen and Spitzer [66] because their formation 

temperature is approximately. 

The complex of SiAs-As1 is considered to be the origin of the increase in lattice 

p紅白neter with increasing Si concentration when the Si concentration is below 2 x 1018 

cm-3, as discussed in chapter 6. However, the Si concentration of the crystals used here 

was above 8 x 1018 cm-3. The lattice parameter of these samples decreased with 

increasing Si concentration, and the rate of reduction was larger than the rate predicted 

by Vegard's law. The reason for this larger rate of reduction is considered to be the 

increase in the decomposition of SiA蹉sr complexes. 

Some SiAs-As1 complexes are supposed to exist even in heavily Si-doped GaAs 

crystals. Therefore, the reason for the decrease in lattice p紅白neter， carrier concentration~， 

and mobility in the samples annealed between 500 oC and 1000 oC is considered to be 

explained by the following reactions: 

SiAﾇAs1 

SiAs 

SiGa 

Sil 

ASr + VGa 

AS1 + V As 

ASI 

• V As + Sir + ASI , 

• V As + Sir , 

• V Ga + Sir • 

• Si-cluster or Si-segregation , 

ー今 ASGa ，

• ASAs , 

• Si-cluster or Si-segregation , 

where Sh is a Si interstitial and ASAs is 加 As atom at an As-site. 

When the Si concentration of GaAs crystals is relatively low , i.e. , below 2 x 1018 

cm-3, annealing of the cηs凶s is considered to simulate the produce dissociation process 

of SiAﾇAs1 complexes. After that, each Si atom is considered to occupy a Ga-site and the 
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As atom is considered to occupy a normal As-site , as discussed in chapter 6. When the Si 

concentration of GaAs crystals becomes higher, above 8 x 1018 cm-3, heat treatment of 

such crystals is considered to produce a different reaction 仕om that of crystals with 

lower Si concentration. The reaction due to heat treatment in heavily Si-doped GaAs 

crys凶s is described in the following paragraph. 

Annealing of heavily Si-doped GaAs crystals is considered to produce the 

dissociation of SiAﾇAs1 complexes as well. However the Si atoms at lattice sites are 

thought to be ful1y occupied at this annealing temperature because the defect 

concentration of as-grown crystals is thought to be quenched at the growth temperature. 

From this reason, it can be deduced that a liberated Si atom in a heavily Si-doped GaAs 

crystal is thought not to occupy a Ga-site. Even Si atoms at norma] lattice sites are 

considered to be incorporated into the Si-related segregation because Chen and Spitzer 

reported that a large decrease in SiGa concentration and SiAs concentration takes place in 

the 白rst0.5 hr of annea1ing [66]. As the numbers of ASGa and ASAs seems to be saturated 

in equilibrium at the annea1ing temperature, which have previously been occupied by Si 

atoms, are supposed to be occupied by decomposed As atoms. 

In other words, the decrease in lattice par加neteris thought to cause a dissociation 

of remaining SiA蹉sr complexes, and the decrease in carrier concentration and mobility 

is thought to cause an increase in ASGa concentration. This ASGa is reported to be a 

nonradiative recombination centers [84,85]. 

Use of TEM showed that no Si-related segregation was observed in the crysta1s 

were annealed above 1000 oC [83]. Although, the carrier concentration of the crystals 

decreased and while the mobility of the crystals increased, compared with as-grown 

crysta1s. Annealing of the crystals produced no change in lattice parameter. The reason 

for 出is change seems to be the formation of small clusters in heavily Si-doped crysta1s. 

They could not be observed by TEM, after the decomposition of Si-related segregations 

in the crystals. However, the clusters can be observed by etching as shown in Fig. 7・7

and by XRT as shown in Fig. 7-8. The Si atoms at lattice sites are considered to become 

139 



ω
」
ω
←ω
コ
一ω
1
2
2
E

0
0
ω
d
 

ω
」
ω
←ω
コ
一ω
t
O」
ω
一
巳
」

z
o
z
o
o
ω

」
O
ω
ω
l一ω

3

〉
1
0
0一ω

ω
一C
ω
ω」
d
c
o
υ

一
一
一
ω

一ω
℃0
2
←υ
ω
』ω
。

incorporated into clusters , judging from the change of electrical properties. Defect 

models of crystals annealed for 20 hr then quenched are summarized in Table 7-1. 

The origin of zone-distributed Si-related segregation caused by the annealing 

between 700 oC and 1000 oC is considered to be related to the increase of the number of 

anti-site As atoms, ASGa because of a similar formation temperature [66]. The model of 
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this segregation will be considered below using Fig. 7・6 for reference. Segregation was 

not observed in the low Si concentration region (region 1). When the Si concentration 

was about 1 x 1019 cm-3 (region 11), segregation process was thought to start from Si-As 

nuclei joining being attached with Si 加d excess As atoms (segregation A). Such Si-As 

nuclei are assumed not to form below 700 oC and to dissociate above 1000 oC. When the 

Si concentration was between 1 x 1019 cm-3 and 1.5 x 1019 cm-3, the segregation of Si 

nuclei may have already formed due to the large number of excess Si atoms. In this 

region, no micro-sized roughness was observed on the etched surface, and the X -rays of 

XRT were not scattered by clusters (region 111). These experimental results suggest that 

the clusters in this region are very tiny. The character of the defect existing this region is 

still not clear. When the Si concentration was above 1.5 x 1019 cm-3, segregation 

(segregation B) was considered to be formed from Si nuclei (region IV) dominantly. 

These Si nuclei must be relatively stable on this logic. These possible models of Si-. 

related segregation and experimental results are summarized in Table 7-2. 
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7-5. CONCLUSION 

Defect reactions on heat-treated heavily Si-doped GaAs crystals grown by the GF 

where the Sii method were investigated. The lattice parameter of GaAs crystals 

concentration was above 8 x 1018 cm-3 decreased with increasing Si concentration. The 

rate of reduction is 1.6 times larger than the value predicted by Vegard's law. The reason 

for this increase in reduction is considered to be the dissociation .of SiAﾇAs1 complexes" 

which is thought to be the cause of the increase in lattice parameter of crys同ls with a Si 

concentration of below 2 x 1018 cm・3
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Table 7-2 Summary of model of zone-distributed segregation formed between 

700 oC and 1000 oC. 

Region 
Nuclei 

Commen•S Si +As Si 

ﾗ ﾗ no segrega• lon 

日 。 ﾗ segrega• ion (A) 

E ム ム micro -clus•ers 

W ﾗ 。 segrega• ion (B) 

142 

Crystals annealed for 20 hr then quenched are considered to be the most suitable 

ones for evaluating the temperature dependence of equilibrium defects under three 

different annealing conditions. Crystals annealed at 400 oC exhibited a decrease in lauice 

parameter and an increase in acceptors. This change is explained by the formation of 

SiGa-V Ga pairs. All crystals annealed at between 500 OC and 1000 oC exhibited a 

decrease in lattice parameter and a large decrease in carrier concentration and mobility. 

This change in lattice parameter is explained by the dissociation of remaining SiAﾇAsI 

complexes , with the Si atoms incorporating into Si-related segregation. The decrease in 

carrier concentration and mobility seems to be caused by ASGa formation , which is 

considered to be a nonradiative recombination center. Crystals annealed above 1000 oC 

exhibited no change in lattice parameter, a decrease in carrier concentration, and an 

increase in mobility. The Si-related segregation observed in as-grown cηstals could not 

be found by TEM. Probably, the number density of such defects seems not to be large 

enough. This change is explained by the forrnation of clusters after the decomposition of 

Si-related segregation and the incorporation of Si atoms at lattice sites into clusters. 

Zone-dis甘ibuted segregation forrned by annealing between 700 oC and 1∞O OC 

are considered to be those related to anti-site As atoms, ASGa. 
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8. CONCLUSION ANU S_U時fMARY

Both of semi-conducting and semi-insulating bulk GaAs single crystals were 

grown by the gradient freeze method. The dopant impurities added in the crys凶s were Si 

for n-type dopant, Zn for p-type, and Cr for semi-insulating. Si-doped GaAs ﾎs a 

pa口icularly interesting material because they comprise group IV impurities in III-V 

compound semiconductors. 

Distribution of structural defects were found to be closely related to the concave 

solid-liquid interface. This effect was found by chemical etching. Defects were observed 

mainly in regions near the concave interface. Defects with complex structures were 

found around these defects by TEM observation. By taking into account the volume 

expansion at solidification, the interface shape is the most impo口ant item in growing 

defect f児ecrystals. 

Crystals grown by the boat growth method are contaminated by the quartz boats 

and 創npoules. Here , the mechanism of Si contamination is well established , but the 

effect of oxygen contamination has not been clarified yet. Oxygen contamination in 

crystals was found to depend on the temperature of the lowest 旬mperature position in the 

crystal growth reactor. This can be explained by the equilibrium between the oxygen 

concentration in the melt and the vapor pressure of the oxide of gallium. The 

characteristics of oxygen contaminated gal1ium arsenide crystals are the s却ne as those of 

intentionally oxygen doped crystals. 

Under the condition of various arsenic vapor pressures, Si-doped GaAs crystals 

were grown. The electrical properties of specimens with a common Si concentration 

changed with changing the arsenic vapor pressure. This change in the electrical 

properties is considered to reflect the spatial distribution of Si , which is influenced by the 

melt composition. 

The relationship between Si concentration and the lattice parameter was 

investigated. It was found that the change in lattice parameter of Si-doped crys凶s was 

144 

not consistent with the change predicted by the atomic radii. It is pointed out that the 

change in lattice parameter is related not only to Si concentration but to the existence of 

native defects affected by the melt composition. The characteristics and the lattice 

parameter of crystals were drastically changed after heat treatment, especially in the case 

of heavily Si-doped crystals. 
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