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1. Introduction

Let M be a closed orientable 3 -manifold admitting an orientation reversing
involution r (i.e.τ2= identity and τ#[M]=— [M] for the fundamental class [M]
of M). Let Fixr be the fixed point set of r on M.

According to Smith theory (cf. [1]), each component of Fix r is a point or a
closed surface, and the Euler characteristic number *(Fixτ)Ξθ (mod 2). A.
Kawauchi has shown in [4] that TorίZ^M; Z)^A($A or Z2($A®A for some
finite abelian group A and dim^if^Fixr; Z2)=0 (mod 2) iff Tor/f^M; Z)s*
A® A. J. Hempel has proved in [2] that if Fixτ=φ or contains a closed orien-
table surface 5=f=*S2, then /S1(M)>0. And in [3], he has shown that if π^M) is
not isomorphic to {1} or Z2, and π^M) is not virtually representable to Z, then
Fix T is a 2-sphere or two points or Fix r contains a projective plane. The author
proved in [6] that for rational homology 3 -spheres M with an orientation revers-
ing involution T, dimZ2 J3i (Fix T Z2)<ZdimZ2Hl(M; Z2). In this paper, we shall
give a generalization of this inequality in the case of general closed 3-manifolds.

Theorem. For any closed orientable Z-manifold M admitting an orientation
reversing involution r, we have

dimZ2 fli(Fix τ;

vΰhere βι(M) is the first Betti number of M.

This inequality is best possible. For example, consider a double of handle-
body with involution interchanging handlebodies. Another example is in the
proof of theorem 1 of [5],

Throughout this paper, we will work in the piecewise-linear category.
The auther world like to express her hearty thanks to Professor A.

Kawauchi for helpful advice.
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2. Proof

We may assume that Fixr contains surfaces. Let F be the union of sur-
faces contained in Fixr and /*: H^F; Z) ->Hλ(M\ Z) the homomorphism
induced by the inclusion map. Note that Hj(F; Z)^H1(Fixτ] Z). For each
1 -cycle C on F such that [CJeKer^, there exists a 2-chain D in M such that
QD=C. Note that D—τD is a 2-cycle in M. Now define a subgroup G of

as follows;

G = {#eKer ί* I there exists a 2-chain D in M such that [8Z)]=# and

Let φ: Kef*'*— >Keri#/G be a canonical homomorphism. For each element
j> of Kerίsfc/G, let jp be an element of Kerz* such that φ(j)— J. Then there
exists a 2-chain D such that [8Z>] = ,y. Note that [d(D + τD)] = 2y and
[(D+τD)-τ(Z)+τD)]=0. Hence 2j€ΞG. It follows that each element of

m

Kerifc/G has at most order 2. Thus we have Kerί*/G«φZ2 for some integer
m.

m

Let y19 y2y •••, jw be a basis of Kerίίiί/G^0Z2 and y1? J2> •"> Vm elements of
Kerz* such that φ(yi)=yi (i=l, 2, •-•, m). Then there exist 2-chains Dj, D2ι •">
Z),,, in M such that [9J5f.]=,yf. (ί=l, 2, — , m). We will prove that [A— τZ)J,
[D2-τZ>2]> -•> [ΰ« — rDJ are linearly independent in #2(M; Z). If Σf-i
dilPi— τD,] = 0 for some integers ,̂ Λ2, ••••, amt we may assume the greatest
common divisor of aly a2, •• ,am is one, since H2(M\ Z) is torsion free. Then,

P(ΣΓ-ι <*&)] = ΣΓ.i αΛ and [Σlf-i ^A ~ τ(Σf-ι ^ A)] = 0. Hence
Σfβl^,.eGand φ(Σ3Γ-ιΛίyί)=Σ3Γ-ι^«yf = 0. It shows that each a{ is even
(i=l, 2, •••, m) and this is a contradiction.

Therefore, [A~~ TAL [A— τA]» •••> [-Dw— rDJ are linearly independent in
H2(M\Z). Hence m^β2(M)=β1(M), where /3, (M) is the z-th Betti number
ofM.

On the other hand, we will have G<2H1(F; Z). For each element x of
G, there exists a 2-chain D in M such that [QD]=x and [D— τD]=Oe /f2(Λf Z).
Let £ be a 3 -chain in M such that dE = D—τD. Then we can see that
Q=[d(EnF)]2 = [x]2(=H1(F', Z2)c*Hι(F\ Z)βHl(F', Z). Hence, jceZH^F; Z).
For detail, see the proof of theorem 4 of [5].

Hence we have,

Im ί*0Z2^ dimZ2 fΓ^F; Z)®Z2-m^ dimZ2 H^Fίx τ; Z^-

On the other hand,

dimZ2 Im **®Z2^ dimZ2 H^Af Z)<g)Z2 = dimZ2 ̂ (M; Z2) .

Thus, we have,
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dimZ2 fl ̂ Fix τ; Z2)^ dimZ2

This completes the proof.
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