

Title	Fixed point sets of orientation reversing involutions on 3-manifolds
Author(s)	Kobayashi, Masako
Citation	Osaka Journal of Mathematics. 1988, 25(4), p. 877-879
Version Type	VoR
URL	https://doi.org/10.18910/4051
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kobayashi, M.
Osaka J. Math.
25 (1988), 877-879

FIXED POINT SETS OF ORIENTATION REVERSING INVOLUTIONS ON 3-MANIFOLDS

Dedicated to Professor Junzo Tao on his sixtieth birthday

MASAKO KOBAYASHI

(Received August 18, 1987)

1. Introduction

Let M be a closed orientable 3-manifold admitting an orientation reversing involution τ (i.e. τ^2 =identity and $\tau_*[M]=-[M]$ for the fundamental class $[M]$ of M). Let $\text{Fix } \tau$ be the fixed point set of τ on M .

According to Smith theory (cf. [1]), each component of $\text{Fix } \tau$ is a point or a closed surface, and the Euler characteristic number $\chi(\text{Fix } \tau) \equiv 0 \pmod{2}$. A. Kawauchi has shown in [4] that $\text{Tor } H_1(M; \mathbb{Z}) \cong A \oplus A$ or $\mathbb{Z}_2 \oplus A \oplus A$ for some finite abelian group A and $\dim_{\mathbb{Z}_2} H_1(\text{Fix } \tau; \mathbb{Z}_2) \equiv 0 \pmod{2}$ iff $\text{Tor } H_1(M; \mathbb{Z}) \cong A \oplus A$. J. Hempel has proved in [2] that if $\text{Fix } \tau = \emptyset$ or contains a closed orientable surface $S \neq S^2$, then $\beta_1(M) > 0$. And in [3], he has shown that if $\pi_1(M)$ is not isomorphic to $\{1\}$ or \mathbb{Z}_2 , and $\pi_1(M)$ is not virtually representable to \mathbb{Z} , then $\text{Fix } \tau$ is a 2-sphere or two points or $\text{Fix } \tau$ contains a projective plane. The author proved in [6] that for rational homology 3-spheres M with an orientation reversing involution τ , $\dim_{\mathbb{Z}_2} H_1(\text{Fix } \tau; \mathbb{Z}_2) \leq \dim_{\mathbb{Z}_2} H_1(M; \mathbb{Z}_2)$. In this paper, we shall give a generalization of this inequality in the case of general closed 3-manifolds.

Theorem. *For any closed orientable 3-manifold M admitting an orientation reversing involution τ , we have*

$$\dim_{\mathbb{Z}_2} H_1(\text{Fix } \tau; \mathbb{Z}_2) \leq \dim_{\mathbb{Z}_2} H_1(M; \mathbb{Z}_2) + \beta_1(M)$$

where $\beta_1(M)$ is the first Betti number of M .

This inequality is best possible. For example, consider a double of handlebody with involution interchanging handlebodies. Another example is in the proof of theorem 1 of [5].

Throughout this paper, we will work in the piecewise-linear category.

The author would like to express her hearty thanks to Professor A. Kawauchi for helpful advice.

2. Proof

We may assume that $\text{Fix } \tau$ contains surfaces. Let F be the union of surfaces contained in $\text{Fix } \tau$ and $i_*: H_1(F; Z) \rightarrow H_1(M; Z)$ the homomorphism induced by the inclusion map. Note that $H_1(F; Z) \cong H_1(\text{Fix } \tau; Z)$. For each 1-cycle C on F such that $[C] \in \text{Ker } i_*$, there exists a 2-chain D in M such that $\partial D = C$. Note that $D - \tau D$ is a 2-cycle in M . Now define a subgroup G of $\text{Ker } i_*$ as follows;

$$G = \{x \in \text{Ker } i_* \mid \text{there exists a 2-chain } D \text{ in } M \text{ such that } [\partial D] = x \text{ and } [D - \tau D] = 0 \in H_2(M; Z)\}.$$

Let $\phi: \text{Ker } i_* \rightarrow \text{Ker } i_*/G$ be a canonical homomorphism. For each element y of $\text{Ker } i_*/G$, let \bar{y} be an element of $\text{Ker } i_*$ such that $\phi(\bar{y}) = y$. Then there exists a 2-chain D such that $[\partial D] = \bar{y}$. Note that $[\partial(D + \tau D)] = 2\bar{y}$ and $[(D + \tau D) - \tau(D + \tau D)] = 0$. Hence $2\bar{y} \in G$. It follows that each element of $\text{Ker } i_*/G$ has at most order 2. Thus we have $\text{Ker } i_*/G \cong \bigoplus \mathbb{Z}_2$ for some integer m .

Let y_1, y_2, \dots, y_m be a basis of $\text{Ker } i_*/G \cong \bigoplus \mathbb{Z}_2$ and $\bar{y}_1, \bar{y}_2, \dots, \bar{y}_m$ elements of $\text{Ker } i_*$ such that $\phi(\bar{y}_i) = y_i$ ($i = 1, 2, \dots, m$). Then there exist 2-chains D_1, D_2, \dots, D_m in M such that $[\partial D_i] = \bar{y}_i$ ($i = 1, 2, \dots, m$). We will prove that $[D_1 - \tau D_1], [D_2 - \tau D_2], \dots, [D_m - \tau D_m]$ are linearly independent in $H_2(M; Z)$. If $\sum_{i=1}^m a_i [D_i - \tau D_i] = 0$ for some integers a_1, a_2, \dots, a_m , we may assume the greatest common divisor of a_1, a_2, \dots, a_m is one, since $H_2(M; Z)$ is torsion free. Then, $[\partial(\sum_{i=1}^m a_i D_i)] = \sum_{i=1}^m a_i \bar{y}_i$ and $[\sum_{i=1}^m a_i D_i - \tau(\sum_{i=1}^m a_i D_i)] = 0$. Hence $\sum_{i=1}^m a_i \bar{y}_i \in G$ and $\phi(\sum_{i=1}^m a_i \bar{y}_i) = \sum_{i=1}^m a_i y_i = 0$. It shows that each a_i is even ($i = 1, 2, \dots, m$) and this is a contradiction.

Therefore, $[D_1 - \tau D_1], [D_2 - \tau D_2], \dots, [D_m - \tau D_m]$ are linearly independent in $H_2(M; Z)$. Hence $m \leq \beta_2(M) = \beta_1(M)$, where $\beta_i(M)$ is the i -th Betti number of M .

On the other hand, we will have $G < 2H_1(F; Z)$. For each element x of G , there exists a 2-chain D in M such that $[\partial D] = x$ and $[D - \tau D] = 0 \in H_2(M; Z)$. Let E be a 3-chain in M such that $\partial E = D - \tau D$. Then we can see that $0 = [\partial(E \cap F)]_2 = [x]_2 \in H_1(F; Z_2) \cong H_1(F; Z)/2H_1(F; Z)$. Hence, $x \in 2H_1(F; Z)$. For detail, see the proof of theorem 4 of [5].

Hence we have,

$$\dim_{Z_2} \text{Im } i_* \otimes Z_2 \geq \dim_{Z_2} H_1(F; Z) \otimes Z_2 - m \geq \dim_{Z_2} H_1(\text{Fix } \tau; Z_2) - \beta_1(M).$$

On the other hand,

$$\dim_{Z_2} \text{Im } i_* \otimes Z_2 \leq \dim_{Z_2} H_1(M; Z) \otimes Z_2 = \dim_{Z_2} H_1(M; Z_2).$$

Thus, we have,

$$\dim_{Z_2} H_1(\text{Fix } \tau; Z_2) \leqq \dim_{Z_2} H_1(M; Z_2) + \beta_1(M).$$

This completes the proof.

References

- [1] G.E. Bredon: *Introduction to compact transformation groups*, Pure and applied mathematics, 46, Academic press, New York, London, 1972.
- [2] J. Hempel: *Orientation reversing involutions and the first Betti number for finite coverings of 3-manifolds*, Invent. Math., **67** (1982), 133–142.
- [3] ———: *Virtually Haken manifolds*, in Combinatorial methods in topology and algebraic geometry, J.R. Harper and R. Mandelbaum, Ed. Comtemp. Math. **44**, Amer. Math. Soc. Providence R.I., 1985, 149–155.
- [4] A. Kawauchi: *On 3-manifolds admitting orientation-reversing involutions*, J. Math. Soc. Japan, **33** (1981), 571–589.
- [5] M. Kobayashi: *A construction of certain 3-manifolds with orientation reversing involution*, J. Math. Soc. Japan, **40** (1988), 151–159.
- [6] ———: *Rational homology 3-spheres with orientation reversing involution*, Kobe J. Math., **5** (1988), 109–116.

Department of Mathematics
 Osaka City University
 Sugimoto, Sumiyoshi-ku
 Osaka, 558, Japan

