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0. Introduction

In the present paper we shall study a class of degenerate elliptic systems of
pseudo-differential equations, and apply the results obtained there to non-
coercive boundary value problems of fourth order.

One of typical examples of non-coercive problems is the oblique derivative
problem: Let Q be a bounded open set in R* with a smooth boundary T and
consider the problem
‘(A(x, Dyu=fin Q,

Ou

, E):gonI‘,

(0.1)

\

where A(x, D,) is an elliptic differential operator of second order on Q) and v is
a non-vanishing real vector field tangent to T" on its submanifold Iy, The be-
havior of » near Ty has a crucial effect on this problem (for details, see [5],
[14], etc.). We shall consider in §4 a similar problem for an elliptic operator
L(x, D,) of fourth order on 0:

gL(x, Dy=f in Q,

Pu = on I'

(0.2) ovom ! ’
0

l El,i =g, on T,

where »,, v, are vector fields of the same type as in (0.1). We study this problem
by a usual method. Namely, let <? be the Poisson operator of the Dirichlet
problem

Lix,Dyu=/f in Q,
Du=~h on T,

w=~h, on T,
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where D, denotes the normal derivative —ii on I". Then the mapping 7": h==

n
2

86 Ph| ég- _th|p) is a pseudo-differential operator on T', whose
n v,

U ) = (52

principal symbol is the Lopatinski matrix (, which is described in Chapter VI
of [10]); the problem (0.2) can be reduced to investigation of the system of
equations Th=g. The problem of such a system is not characterized even in the
subelliptic case (, which means that the estimate of the type (0.3) below holds),
while scalar subelliptic operators are done completely by Egorov [3], [4].

We shall give in §2 a sufficient condition for the subellipticity. Let A(x, D,)
be an m X m-matrix of pseudo-differential operators on an open ball U(C R") and
A(x, ) be homogeneous of order one in £(|&|=1). On some assumptions (cf.
[A-I]~[A-IV]) we derive the subelliptic estimate

(03) |lulls+so,U'§C(||Au||s,U’—|' Hu“s,U’)y uec?( U/) (80>0) ’

where U’ is an open ball (U’ c U), ||+ ||, is the norm of the Sobolev space H(U’)
and C7(U’) is the set of C~-functions in U’ with compact support. In §3 we
consider the system of equations Au=f on a compact manifold such that its
symbol represented by local coordinates satisfies locally the same assumptions as
in §2. Constructing the almost right inverse (i.e. right regularizer) in the same
way as in [1], [6], [16], etc., we show that the equation Au=:f is of Fredholm
type (i.e., the kernel and cokernel are finite-dimensional in the Sobolev space).
Finally, in §4 we study the solvability of (0.2) by using the reduction stated
earlier. If the vector fields »,, v, satisfy several assumptions (cf. (4.2)~(4.5)),
(0.2) is of Fredholm type and the estimate

ou | Bu

Ov,0n Ov,
+ [u| |s+3,Q} , UEH (Q) (§&>0)

il a0 SC {1l 0+

s+3/2,T s+5/2,1

is obtained for s=0.

Eskin in [6] investigated the degenerate elliptic system Au=f when det 4
is of principal type. We note that in our class det 4 may have multi-character-
istics.

The main results of this paper are stated in our previous note [15] without
proofs.

1. Notations and properties of pseudo-differential operators

We denote by S7(W) (W CR", meR, 0=<86<p=<1, §<1) the set of func-
tions p(x, &)= C=(W x R") satisfying for all multi-indices a, 8

| DEGE p(x, £)| S CoeED"~PIT0P, xeW, EER",
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where Dﬁz(—ia—ak)ﬂ, 62‘:(8%)“ and <E>=(|E[>+1)2. For p(x, E)ESi(W)

we define a pseudo-differential operator p(x, D,) by
P DJu(w) = (evtp(s, iE)aE, e,
where df=(2n)""dE, S is the space of rapidly decreasing fuctions and #(¥) is the

Fourier transform Se‘”‘gu(x)dx. We denote by Sy s(W) the set of these operators
p(x, D,), and call p(x, £) the symbol of p(x, D,). It is well known that the
estimate

165, DYl ZC1pI el wES (ER)
holds for any p(x, £)= .55 s(= S5 s(R")), where

[pl™ = max inf |DEOEp(x, E)-{Ey-mHrIvI-sI8l|

@l 1Bl %, ¢

and the constants C, [ do not depend on p(x, £). This is proved in Calderon-
Vaillancourt [2], Kumano-go [9], etc. For p(x, £)eSy; and ¢(x, S)ES{,”,;
we set

o(pog) (s, &) = lim{ [e=m(en, ex)p(x, £+nga-+y, E)ydn,
where X(7, y)€ S(R*) and X(0, 0)=1. Then we have o(poq) (x, £)€S”;"" and

o(pog) (%, D.Ju = p(x, D,)oq(x, DJu(= p(x, D,)(q(x, D,Ju)).

Furthermore the asymptotic expansion formula

(L.1) o(pog) (v, )~ 0%l E)Dl(x, ) Spi 0D

<N o

is obtained for any integer V(>0). These are explained in Kumano-go [8], [10].
As is considered in [12], we have

Proposition 1.1.  Let p(x, £)ES0% and q(x, £)E.S8%.  If 0 p(x, E)ESi%!
for any j, then it follows that

a(pog) (x, £)—p(x, E)g(x, E)E Sy,

We can prove this proposition in the same way as in Chapter II of [10]. Replac-
ing {¢> in the above discussion with another basic weight function A(§) (i.e.,
ME)EC, 1SME)<SAKE) and |OPN(E)| <A ME)'*)), we obtain the same
results (cf. Chapter VII of [10]). We denote by S}, s the set of symbols defined
by ME) (+<ED).

In this paper we use pseudo-differential operators on a C* compact manifold
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M defined in Seeley [13]. Let Q be a mapping: C~(M)—C=(M). Then for
local coordinates (®,, U)), (D,, U,) (D, is defined on an open set U,) we have in
a natural way a mapping Qs : C5(Us,)—>C"(Us,) (Us,=P@«(U;)). We say that
a mapping P: C~(M)—C=(M) is a pseudo-differential operator on M of order m
when there is a set of local coordinates {(®,, U;)};-, ..y covering M such that
(i) for any pEC3(U), weC(U,) (i+}) satisfying supp (@) N supp (¥)=d
(PPr)e 0, belongs to S7%, (ii) for any @, y&C F(U,) (@Pyr)e,e, belongs to
810 and (iii) the symbol p(x, &) of (@Pvr)ee, has a homogeneous asymptotic
expansion, that is, there exist symbols p,,_ (¥, £) (j=0, 1, ---)&S7'3’ homoge-
neous of order m—j in £(|&| =1) such that for any integer N(=0)

p(x’ E)M gpm—j(x’ E)EST.EN—I .

We call p(x, &) the local symbol of P on V' when @(x)=+(x)=1o0n V. Using
the principal part p,(x, £) of the local symbol, we can define a function £, on
the cotangent space T*(M)— {0}, which is called the pricipal symbol (part) of
an iy

P. Let A:{ } be a matix of pseudo-differential operators on M such

A" Cmm
that the order of a;; is —$,+¢, (s» 1;ER and i, j=1, .-+, m). We say that 4 is
elliptic if its principal symbol is non-singular. In other words, the principal
part a,(x, &) of the local symbol on I always satisfies det a,(x, £)==0 for xeD(V)

and |E|=1.
2. The system of first order operators

We set for €, p>0
U,,= {x = (t, y)ER"; —E<1ILE, |y|<p}.

ay (x’ g)"'alm(x’ E) . .
be a matrix of symbols belonging to
aml(x: E) 'amm(x’ g)

S1,0(U,,e,) and homogeneous of order one in £, that is,

Let A(x; &)= {

a,](x, ,u(f) = :U’azj(x’ E)y ,U'gl) IEI =1.

We assume that when #40 A(z, y; 7, ) is elliptic (i.e., det A(t, y; 7, 7)=+0 for
|7, 7| =(724|7|?)¥*=1) and that when #=0 the ellipticity is degenerate in the
following way: For (¢, y)& Usl,gl and |7, 7| =1

[A-I] det A(t, y; T, 7)==0 when ¢t==0 or t=0 & 70;

[A-II] A(O, y; 0, n)=[0] (zero-matrix), |7|=1;

[A-II1] det aa_f 0, ; 0, 7)=0, |7]=1;
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there exist positive integers &y, ---, k, independent of (¢, y; 7')E Ug,el XS (€>0is
small enough and S={7": |7"|=1}) such that the following decomposition of
the matrix

A, y; 7') = %—f— t, y; 0, 7)1 At, ¥; 0, 7"), (t,y;7)€U,, XS

is possible:

[A-1V] t7%A(t, y; 7’) is smooth on t=0 and has eigen-values Ai(2, ¥; 7'), -+,
Amy(2, ¥; 7)) whose imaginary parts do not vanish on UE,El X S. Other eigen-values
vanish as #—0. Define a projection P! by

1 ) e
P\(t, y; 7) = 2;,7%"“" wA(, y; 7))\,

where T', is a Jordan curve surrounding Aj, ::-, A, and having other eigen-
values outside. Next for the matrix t~%1~%4(I—P") the same statements hold.
We can continue these decompositions one after another, and finally we have

l
S rank Pi=m,
=1

where P is the projection for the eigen-values \i, -+, A}, (m;=rank P?) of
t~h= "k 4(I— P")---(I—P"') with non-vanishing imaginary parts.
On the above assumptions we obtain

Theorem 2.1. If Im \j(0, y; %), -+-, Im A}, (0, y; %') are all positive for
every i such that k\+---+k, is odd, then we have the subelliptic estimate

(2.1) lellosey = C(11Aull, , +llull), #ECT(U,,q,) (0<E<8),

1
where 502;{_{:-_' TR i and sE€ R.

It is obvious that the estimate (2.1) for any s R is derived from the one
for s=0. In order to prove this theorem we state several lemmas.
We write

A(x; 7, m) = A(x; 0, 77)+S:%§(x; or, 7)dor ,
and set
40w; v, m) = [ 24 (x; 07, m)ao),
00T
which belongs to SS9 o Ughel).

Lemma 2.1. If >0 is sufficiently small, we have
(i) for all multi-indices o, B (|| =1)
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| D8, 08 AN, y; £)| SCulE7Y, (t,¥)€U,., EER",

(ii) |det AV, y; £)| 28(>0), (4, )€U, |E| =R,
where R is a sufficiently large constant. (For a matrix A(x)=(a,;(x)) | A(x)| denotes
H}E}X la;(x)]).

Proof. (i) From the definition of A®, it follows that
8, 024Nt v; £)| <\ 1 D%.,02f24 (2, y; do
| D0t y; E)| =) 1Dy 5 (8 25 67, )¢l
SCCy™.

Hence, if —<77—>—281(>0) we have the estimate (i). Let 7-§§>~-~§ 3,, then Tmw
{rymp {romp 7|

=C (/7| =1) when g, is small. Therefore, we get

2 @ 1
| D 0e AV, y; &) = lD'?:.naa.m[? 4@, y; 7, M—At, 350, v)}]|

<0 1050 <o, (7] 21).

T Tl e
So we obtain the inequality (1) for any (7, 7)E R".
(i) By Taylor’s expansion

AD(x; 7, 7) = AD(x; 0, 7])+816A(1)
0o 0T

(x; 07, n)dot
and the estimate (i) we have

det 49, 33 7, 7) 2 1dee 22,350, — G HY (171, (1120,
where C; does not depend on 7, . Hence, from [A-III] the estimate (ii) holds

when %gp and |?] <& (&, p are small enough). When :L:g p, writing
7 7

AN, y; 7, 7) = %{A(t, y; 7, m)—A(t, y; 0, 1)}

= xd(ty; 21, 1)— A 5; 0,9, (111 21)

7|

(where 4means the sign of 7), we have

(¢, p- > . .
| det A0, y; 7, )| = |det A1, 35 21, )

~C S {14t y: 0, m) 0] 77},
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where C; is independent of 7, ». From [A-II] it follows that
[A(%, 35 0, 0)| =Ch|t| 0| =Clnlé (Inl=1).

Therefore, by [A-I] we obtain the estimate (ii) if € is sufficiently small for p.
The proof is complete.
Now we set

Bt y; &) = A, y; )70(E),

where (¢, y)E Uy, 0(&) (EC(R")) is equal to 0 for |£| <R and to 1 for [£| =
R+1 (R is the constant in (ii) of Lemma 2.1). In view of Lemma 2.1 and
Proposition 1.1 it is seen that B®(x;&) satisfies the same inequality as in (i) of
Lemma 2.1 and that B®(x; D,) is a local inverse of AW(x; D,) modulo $54(U..,),
namely, for all @(x), V(¥)ECF(U.,,) such that \(x)=1 on a neighborhood of
supp(p), we have

@BY(x; D,)orAV(x; D,)=¢@ mod S5},
@AY(x; D,)orBY(x; D,)=¢ mod S5}.

This implies
(2.2) @A(x; D,)=pAY(x; D,)oyr[D,~+B"N(t, y; D,, D,)A(t, y; 0, D,)] mod $3,,.

Therefore, noting that A(x; D,) is elliptic when #=0, we have only to examine
the operator

Dt+B(l)(t’ y; Dl’ DJ’)A(t’ y; 0’ D.V)

near t=0. Furthermore, this is approximated by D,+L(t, y; D,), where
L(t, y; n)ESé,o(UE_EI) has the form

L(t,yi m) = 26,33 0,0) A6, 350, 1), (69)€ Vs 0121
More precisely, we have

Lemma 2.2. Let ¢(t, y)ECT(U,,). Then we have

P(t, 9)BO, y; 7, 0)A, 33 0, )—(t, 3L ¥; 1)
= tp(t, Y)Ot, 3 7 TR, y5 7, 7)
where Q(x; £), R(x; £)E S50 and Q(x; £) does not depend on ¢.
Proof. By Taylor’s expansion of B®(x; 7,7) in 7 and B®(x; 0, n)=
g—f(t,y; 0, 7)™* (|7] R+1), we have



544 H. Soca

@(t, ¥)BO(L, y; 7, )AL, y; 0, 7)—@(t, ¥)L(E, y; 1)
1B o
E¢S 222 (1,35 07, )dB7A(t, y3 0,7) mod Sk
0 T

[A-II] yields that

*1
Alt, 3 0,m) = t| 2 (61, y: 0, myd6, 0121

Therefore we obtain the lemma.

Proof of Theorem 2.1. Let |[u(z, y)I|,, s =<D,>*ull,-+ H<D5,>"u| lo(s=0, s =0).
It suffices to prove the following lemma:

Lemma 2.3. Let the assumptions in Theorem 2.1 be satisfied. Then we have
for sufficiently small (> 0)

llpully,e,= C(D,+¥L(2, y; D,)) (Pu)llo+ Cligull, u=C(R"),
where E=-— 1 y P ECT(Us ), W(x)=1 on a neighborhood of supp (@)

kl b ‘kl + 1
and the constant C, is independent of ¢, +r and €.

In fact, combining Lemma 2.2 and this lemma, we obtain

llpully,ee = Cill(D: B2, y; Dy, D,)A(E, y; 0, D,)) (@u)lls
+CEl|D(pu)llo+Cillpull, usCT(RT).

Here @, - are the functions stated in Lemma 2.2 and Lemma 2.3. Since the
above constant C, does not depend on &, if £>0 is small enough it follows (from

(2.2)) that

llpully,eo = Culllvr-A(x, D,)pullo+llpullo) ,

which proves Theorem 2.1.
Now let us derive Lemma 2.3. [A-IV] yields

Lemma 2.4. There exist a finite open covering {V,} on S(=1{n": |7'|=1})
and a set of functions N (x; )€ C=(U, ., X V) such that for any (x, )€U, . XV,
(i) det Ny(x; )0
(i) Na(x; 7)A(x; 7')
14 (x5 7')
tk1+k2142(x; 7]/)
0 :

0
: Ny(x; 7',
th kA (x5 ')

where A, (x; 7') is an m, X m,-matrix with the eigen-values Ni(x; 7'), -+, M (x5 7)



DEGENERATE ELLIPTIC SYSTEMS 545

stated in [A-1V].

Proof. Let us recall that
(2.3) Pi(t, y;7) = — j (A—At, y; 7)) 'dn .
27t J T

Here A,=t"*"""4([I—P°---(I—P*') (P°’=[0]) and T; is a Jordan curve
surrounding Aj, -, Ay, and having other eigen-values outside. Obviously
Pi(t, y; 7) is infinitely differentiable on U,’el x 8. From the definition (2.3) it is
easily seen that for all 4, j=1, .-, [

P4 = AP, P4;= AP, PP =PP.
Set
Oit, y; 7') = ([—P%)---(I—PHP' (=1, 1.
Then we have
rank Q' = rank P’ =m,, Q'Q’ =[0] ifi%j,
AQi — tkl+~--+kiAiQi .

Choose generalized eigen (row) vectors pi(t, y; 7'), -+, ¥ru(t, y; 7’) linearly
independent such that +;Q'=+}. These vectors can be taken smoothly on
U'g,,l XV (V is an open set in S). Put

Vi (& y57')
\Ir,‘nl(t,fy; ')
V1 (t,fy; 7)
%,(t,: v 7)

Then we see casily that N(¢, y; ') satisfies (i) and (ii) of the lemma. The proof
is complete.

N(t, y;7') =

Proposition 2.1. Let A'(n')eC=(S) (S={n": |7'|=1}) be an m'xm’'-
matrix whose eigen-values all have non-vanishing imaginary parts on S, and let k be
a constant positive integer. Set

Lt m) = £4/( L) in166r)

where () (€C*~)=1 for |n| =1 and 0(n)=0 for || g%. Then, we have

(1) If either ‘k is even’ or ‘k is odd and every imaginary part of the eigen-value
is positive’, the following estimate holds
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C7H(IDllo+11£D ol (D, L' (25 Dy)yollo+ 1]l
=C(IID o+ <D Dvlle), ot P)ES .

(i) If k is even, there exists a continuous operator R’ from L} R") to H{P(R")
={ueL? DucL? t*D >uc L? such that S'=(D,+L')R'—1I is continuous from
LXR") to H, .(R")={u& L*; <D yYuec L? for any N >0}.

We can prove this proposition in the same way as in [14]. A sketch of the
proof is given in Appendix. In this section we do not need (ii) of the proposition,
which is used in the next section.

Proof of Lemma 2.3. Let §(7)C>(R"™*) be equal to 1 for |7|=1 and to
0 for |7| g%. For any n we define N,(x;n) by Nm<x; —IZ~I> 6(n). Then
N,(x; 7) belongs to S?n>.1.o(Us,sl)- Let {@2(7)} be a partition of unity on S
subject to the covering {V/,} stated in Lemma 2.4, and define ¢J,,(77)=<p;<#>
+6(n) for any ». By (i) of Lemma 2.4 and the asymptotic expansion formula (1.1)
we have for p(t, y; 7)€ 84,10 and e CF(U,,,,)

24 llep(t, y; D)ully=Co 2 lleNa(t, 35 Dy)pa(Dy)e p(t, 5 Dyulls
+Collully -
Similarly, from (ii) of Lemma 2.4 it follows that
(2.5)  @Ny(x; D,)pu(D,)orL(x; D) =@D(x; D,)orNo(x; D,)po(D,)
mod S8,o(RY) .
Here D(x; 7)€ Sky.1.0(U,,,) is of the form

tk:A,<x; I%l>|’7|
0
D(x; 7]) — tk1+k2ﬂz<x; TZT)MI , "7| >1.
0 tkl+...+k,/jl<x;l%l) (7]

We get easily
KD DV EDa(t, y)llo= Co(lIDyollo+1*<D, Dvllo)

for o(t, y)e C5(R") whose support lies in |#| <1 (k is a positive integer). Com-
bining this inequality and (2.4), we have
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<D, 0oully= C, 23 25 (1Dt o+ 157 45<D ot o)

where ‘(v%, -, v9) =Ny (x; D,)p,(D,) (pu) (y(¥)=1 in a neighborhood of
supp (®)). (2.4) and (2.5) yield that

1D (pu)llo=II(D, +L) (pu)llo+I[L(pu)ll,
SDy++L) (pu)lle
+Cs 2 IWD(x; D,)orNo(x; D,)ea(D,) (2)llo
+Cligpulle.

Noting that [|[\rDo\rNup,(pu)ll,< Cy 33 ||th*+4{ D >v¥||,, we have only to show
]
ID 2 lo+[g4+ 4D Dvslly = Cy(II(Dy+L) (@t)llo+ | pullo) -

This is guaranteed by (i) of Proposition 2.1. 'The proof is complete.

3. The system on a compact manifold

ay

Let M be a compact C manifold and let A:{ } be a matrix of

A1 Amm
pseudo-differential operators on M such that the order of a,; is —s,+¢; (5;,¢,E R).
We define for s€ R, §'=(s/, -+, 5,/) (s, € R)

H (M) = 11 H,,, (M),
i=1

& = (S Mo )2 (= "Gy -y )

Then A4 is a continuous operator from H®(M) to H®(M).
In this section we consider the system of equations

3.1 Au=f

on the following assumptions. Let M (n=dim M =2) be separated into two
connected components by a C~ submanifold M,. We assume that 4 is elliptic
outside M, and degenerate on M, in the following way: Let {x'=(x¢, i, -,
®5_1)},-1 .. x be a set of local coordinates such that each x' transforms an open
set V, to U, . (= {(x5, xi, -+, x5,): [x0] <&, {(w1) -+ (o)} <&} (6,>0))

and that JLV) V, covers M,. Furthermore, let M, be expressed by the equation

1
1=1

xi=0 and the transition from &' to ' in the domain where both x* and x’ are
defined be given by the form

xé:x(’)’ xi:¢7’¢(xi’ )x;—l) (k: 1’ ttty n—l)

We suppose that when 4 is represented near V, by x'=(¢, y,, -+, y,-,) (i=1, «+-,
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N) the principal part Ay(t, y; 7, 1) of the local symbol on V; always satisfies the
assumptions [A-I]~[A-IV] stated in §2, and that the constants k,, ---, k, and
my, -+, m, in [A-IV] are all independent of a choice of x*.

Our purpose is to show the following theorem:

Theorem 3.1. (i) If Im \i(0, y; %), ---, Im X}, (0, ;5 7') are all positive
for every i such that k,+---+k, is odd, then we have the estimate

el | ¢ -1 = C(UAul | +1ull2y), we HP(M)

for sER (Eo=m>.

(i1) If every k(i=1, .-+, l) is even, A is of Fredholm type as a mapping from
HY, (M) to H®(M) (i.e., the kernel and cokernel of (3.1) are finite-dimensional).

ReEmMARK 3.1. Let A=A, have a parameter pu(>0) as a covariable and be
elliptic including p outside M,. Furthermore, assume that the local symbol
Aqt, y; 7, m, u) inclusive of 4 satisfies the same hypotheses as in the theorem.
Then the equation A,u=f is uniquely solvable in the same spaces if n is large
enough.

Proof of Theorem 3.1. Since 4 is elliptic outside M,, we have only to
investigate the equation Au=f locally near M,. Let A(t, y; 7, 7) be the local
symbol of 4 (on V,) in the local coordinates x'=(#, y)=x. Set for 8’'=(s,, -+,

sm,) (S,-’ER)
, [KD>Y 0
Af = .
0 <Dx>3m'
Then A? is a topological isomorphism from H®(R")= ﬁ H,, (R")to H(R")
=11 H(R"). We examine
1=1
A'(x; D,) = A" A(x; D,)oA™t (148 = (1+s, -+, 1+5,))
instead of A(x; D,). Its principal part 4, (x; &) is of the form

/ . . E
AO ) - 140 y T ) E >_—1 )

which is homogenuous of order one in & (|&|=1). A,(x; &) satisfies all the
assumptions for A(x; £) stated in §2. Therefore, by Theorem 2.1 we obtain for
P(t, »)ECS(U,,..,)

H¢uHs+EO§CX(“AOI(x; Dx) (¢u)|ls+ ”¢uHs)> uEHs+1(R”) ’
which proves (i) of Theorem 3.1.
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Now let us show (ii) of Theorem 3.1. From the estimate in (i) of the
theorem the kernel of (3.1) is finite-dimensional. We shall show that the cokernel
is also finite-dimensional by constructing the (right) regularizer R, that is, R is
continuous from H®(M) to H®Y, (M) and S=AR—1 is a compact operator in
H®(M). Obviously it suffices to do so for s=0. Furthermore, as is easily seen,
we can make such an operator R by the local analysis of 4 in the same way as in
Agranovich [1], Visik-Grusin [17], etc. Therefore we have only to construct a
local regularizer of D,+B{"(¢, y; D,, D,)A/(t, y; 0, D,), where B{’(x; 7, 7)=

A(x; 7, 77)"1(2[51%":(96; o, n)de]ﬂ) for large |7, 7| (cf. Lemma 2.1 and
0 07
(2.2)). We obtain the required local regularizer:

Lemma 3.1. Let o(t, y), ¥(t, y)€C5(U..) (6>0 is small enough) and
Y(t, v)=1 in a neighborhood of supp (p). Then, there exists an operator R, con-
tinuous from L R") to H, . (R") (= {u€ L?; DucL? (D, wuec L?) such that

(1) the estimate

(3.2) DA o+ 1IKD > o(Ro f)lle=CI1 £ 1o
holds for a constant C independent of @, &, and

(i) WD,+B(t, y; D,, D,)4/(t, ; 0, D,))oRop f

where K, is a continuous operator from L*(R") to H, (R") and Q is a continuous
one from LA(R") to LA R") with a norm <&C’ (C’ is independent of &, @, ).

Proof. We denote by R} the operator R’ in Proposition 2.1 for k=k; and
A'(7")=A4(0; 7’), and define the functions N,(z, y; 7), @.(7), Va(7)" in the same
way as in the proof of Lemma 2.3. Set

wRY 0
R/ = Zm] YN\, y; Dy)\!ra(Dy)O[ 0 }\JrNﬁ(t, v; D)pdD,) .

R;

Then Proposition 2.1 yields the estimate for R, of the type (3.2). Moreover,
using the asymptotic expansion formula (1.1), we have

WDA+L'(%, y; D)R/pf = o f+O/p f+VK/pf,

4 -
where L'(t, v; 77)—‘—[6;;? (t, »; 0, 77):| 1-/.l(,’(t,y; 0, 7)8(n), K, is continuous from

LXR") to H,,(R") and Q is a continuous operator on L? with a norm =&C,
(C, does not depend on €). Let Xy(7, 7)€ C=(R") be equal to 1 if |7| =(N-+1)

1) Ya(7) is of the same type as ¢4(7) and equal to 1 on a neighborhood of supp (©4).
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<|m| & |7, 7| =1 and to 0 if |7| <N || or |'r,77|_<_:%-. When N is large

enough, the symbol R//(¢, y; 7, n)=+"(¢, y) (T+L'(t, y; 1)) "X (7, 7) belongs to
Seo (W2, »)eC7(U, ,) and ¥/(¢, y)=1 in a neighborhood of supp (v)) and it
follows from Proposition 1.1 that

V(D,A-L'(t, y; D,))oR)/'(t, y; D,, D,)=+Xy(D,, D,) mod St

On the other hand, (1—-X,(D,, D,)) is a continuous operator from H,.(R") to
H, .(R"). Therefore, setting B)=R,’—R,”K,/, we have

V(DAL y; DRy f = o f+O/pf+Kf,
where K is continuous from L*R") to H, ,(R"). Hence, by Lemma 2.2 we
easily obtain (ii) of Lemma 3.1. The proof is complete.
4. An application to boundary value problems

Let Q be a bounded open set in R"(z=3) with a C~ boundary T", and consider
the boundary value problem (mentioned in Introduction):

jL(x, Dyu=f inQ,

ou T,
(4.1) aon o0 "
9
l ajuz = gZ on F )

where L(x, D,) is an elliptic differential operator of fourth order on O with C*
coefficients, # is an inner (unit) normal vector of T" and »,, », are non-vanishing
real vector fields on T". Let the following assumptions (4.2)~(4.5) be satisfied:

T" is separated into two connected components by a C submanifold T',, and
vy, v, are tangent to I" on I’y and transversal to T',. We write

v, =v,tv, (@E=1,2)
where v, is the normal component (=<v,, n)n) and v,, is the tangential com-
ponent to T°;
(4.2) the directions of »), and v,, coincide in a neighborhood of T'y;
(4.3) the sigh of {v,, > (i=1, 2) does not change near T, and <{,(x), n(x)> has

a zero of finite (even) order «, along the curves on I" defined by the vector
field »,, («, is constant on TY).

Furthermore, the following inequality holds near T:

(4.4) ' Y2 n>i < ‘<_V.L .

CNT ]
|V21| 2N
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(The assumption (4.3) implies that »,(i=1, 2) belongs to the third class stated in
Egorov-Kondrat’ev [5] or the author [14].) Let i (x; §), ws(x; §) denote the
roots of the equation Ly(x, {+wn)=0 in » with the positive imaginary part
where L, is the principal part of L and { is any vector (3=0) parallel to T';

(4.5)  oi(x;&) and wj(x; &) are always purely imaginary in a neighborhood of T,.

On these assumptions we obtain

Theorem 4.1. Let the problem (4.1) be coercive outside T, (i.e., the Shapiro-
Lopatinski condition (see [10], [11], etc.) is satisfied) and (4.2)~(4.5) hold. Then
we have for any s=0

( i) ”u”s+3+so,9 =C {[]Lu| |s,Q+ || Byl Is+3/2,l"+ || Bsu| ls+5/2,I‘+ [ue] ]s+3,0} ’

uEHs+4(Q) ’
1 o 1 >’ = u andeu:@u_?
w41 1,41

where &=min ( U= .
Ov,0n | v, |

(ii) The operator u>(Lu, Byu, Byu) is of Fredholm type from H 4., (Q) to
Hs(ﬂ) X Hs+3/2(F) X Hs+5/2(r)'

RemARk. Let L(x, D,) be a strongly elliptic operator and replace L in (4.1)
with L+ u* (1 is a parameter (=0)). Then (4.1) is uniquely solvable for large u,
that is, for any (f, gy, £,) € H(Q) X H,3/)(T") X H,,5,5(T") the solution uE H 3., (Q)
is found uniquely in H,(Q) if p is sufficiently large. This is obtained by
means of Remark 3.1.

Proof of Theorem 4.1. Let ¢ be the Poisson operator, that is, & is a
continuous mapping from H®;,(T) (t=(0, 1)) to H,,,(Q) satisying L(x, D,)$=0
and DP=I+K, (where Du='(D,u|, u|y) and K is continuous from H®;,(T")
to H{&,»(T)). The construction of & is described in [10]. Set

T = B%P (Bu='(Bu, Bu)).

Then T is continuous from H{®;,(T") to H®:,(T") (s=(—1, 0)). If we have for
T the estimate and the regularizer of the same type as for 4 in (3.1), we can
obtain the theorem. In fact, combining the inequalities

Hu”s+3+so,9§CI(HLu”s—EO,Q_I_HDullgt-l)-so+3/2,I"+Hu“s+3,9)
and
Hhmﬁ)m F3/2,P§Cz(”Th”é’-is/z,r“‘I|h1|§t4)3/z,r )
we have

”u”s+3+so,§2 = Cs(”L””s,g‘*‘ HBu”?is/z,r‘f_”B(u_—CPDu)”?islz,r‘F [ul ‘s+3,§2) )

which yields the estimate (i) of the theorem. There exists an operator R, con-
tinuous from H(Q) to H,,,(Q) such that LR,=I+S, and DR,=0 where S, is
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a continuous operator from H(Q) to H,.,(Q). Using this R, and the regularizer
R of T, we set R(f, 8)=PR(g—BR,f)+R,f for (f, g)cH Q)X H&s,(T).
Then Q is the (right) regularizer for the problem (4.1) (i.e., R is continuous
from H(Q)X H5,(T) to H, . 3,,,(Q), and I—(LR, BR) is a compact oprator on
H Q)X H®:,(T)), which proves (ii) of the theorem. Therefore it suffices to
examine T

T is a matrix of pseudo-differential operators on T" modulo a continuous
operator from H&,(T) to H®;, »/(T) (N’ is an arbitrary positive constant),
whose (7, j)-element is of order —s;+t; (¢=(t,, £,)=(0, 1), s=(s,, 8,)=(—1, 0)).
The principal symbol T, of T is expressed by the Lopatinski matrix of (4.1) on
I'. These are explained in Kumano-go [10].

Now, setting M=T" and M,=T',, we shall show that 7 satisfies all the
assumptions for 4 in (3.1) by choosing appropriate local coordinates near T
Let 3(x)=dis (x, T') (*€Q) (, which is a C~-function when s is small enough).
From (4.2) and (4.3) we can take a set of local coordinates {(x’, 3)},.,.. y cover-
ing T, such that (i) {x},_, . y is of the same type as {x’} stated in §3 and (ii) 5%

J

(7=1, 2) is transformed by x’=(t, y) (i=1, ---, N) to
0 | 0
aj(t’ y)5[+t ’bj(t’ y)a—" ’

where @; and 4, are not equal to 0 near the origin. Representing 7' locally by
x*=(t, y) (i=1, ---, N), its principal symbol A(t, y; 7, 7) is of the following form
(near (¢, y)=0):

~*i."‘lbl(a)f +w3)—aT 19w} w3

Ao(t)y;T)n)zlr }»(IT’W'EI)'

From this form and (4.5) it is seen that [A-I] and [A-II] (see §2) are satisfied.
Since

- .
1 t2h, 1 a,T

— 10,0 (0 + 3 )| ,op—a; 1950 (wf w7 )|

04,
. t) 5 0) ==
or (653 0,7) [ 0 ia,

], (Inl=1),
[A-III] also holds. Finally let us check [A-IV]. We have for 7’ € S(= {|7'| =1})
Aft, y; ') = %{iﬂ(t, ¥; 0, 7)1 A2, y; 0, 7')

= {@a,+ 11,60 (] +w3)| .o}
) [t“l {@:b\(0f + @3 )+125,5,0 (w0 03 )} | ..o —t@b,0] wF | _0}
t'2{a,b,+11b,0,0 (i +w3) | o} 0 '
tb,

a,t|

(4.4) yields | 220 for small #, which implies that «x,<x, or x,—x, &
. a?

<
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ab,
| azh,
ky=#,=x,). Let us consider the former case. Set k=«,, ky=r,—x, (I=2).
Then &, and k, are positive even integers. Since

<1. In the latter case, by (4.5) we see that [A-IV] is satisfied (/=1 and

det (A —t""4 (2, y; 7))
= M—(apF-t"""3)) (a8, thay) A A-thBy(ab,+ thets) (g, +tha) 72
(where oy, =ab,0(0} +07) | =0y z=ab\(01 +7) | 1=0) A5=010,0-(0] +3)| =0, B
=b,b0,0 (0T 03)|.= and By=ab 0] 03 | ,-,), the eigen-values A, A, of t™51.4(t, y; %)
are of the forms

xl(tr Y 77/) - (a,az)‘la?+ O(tkl) ,
Mlt, y; 7)) = —tha; b0 By - O(FY)

where O(#*) means that ¢7*O(#*) is smooth (in ¢, ¥ and %’). On the other hand,
we have
(I—P) = J— (A—t"hd)dn = (N,—N,) ! cof [N, —27M 4] .
271 [A=Agl=8

Therefore,
1Ay (I—PY) = ;3”—2; cof [n,—2~414,)

2 1
o [o — a5 b3

Otk +1 .
0 —a{lbza{lﬁj_!— (e )

Hence, by (4.5) we see that [A-IV] is satisfied. The proof is complete.

Appendix. Proof of Proposition 2.1
Proposition 2.1 is derived from the following lemma:
Lemma A. Let A’ be a constant m’ X m’-matrix whose eigen-values all have
non-vanishing imaginary parts, and let k be a constant positive integer.
(i) If either ‘k is even’ or ‘k is odd and every imaginary part of the eigen-value
is positive’, we have the estimate
CHIDw(t)llo,p+ It wllo, 1) S (DA Yol o, !
= C(IIDwllo,p+ |t %llo, ), w(t)ES,
where the constant C can be taken uniformly in n" when A’=A'(v') (A'(v') is stated

in Proposition 2.1).
(ii) If k is even, the operator

(D,+-t:4"): WHRY) — LR
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is a topological isomorphism (Wi(R')= {w(t) € Hy(R'); t'w(t)e LA R")}).

Transforming A’ to Jordan’s normal form, we can prove this lemma in the
same way as in the proof of Theorem 2.1 in the author [14].

Proof of Proposition 2.1. The idea of the proof is referred to Visik-Grusin
[16], Grusin [7]). By the change of the variable: t= |7 | “®**)¢  we have

ID(@)|l5rr = [2|VEVNDyw' (@ )l5rr (@) = w(| 2] 70T,
[1#* (2 [o(@)l[6,r2 = [Vt 2 ()]15,22

DA /() 1210 ot = |1 VD4 44 Yo' ()
|71 7]
Therefore, from (1) of Lemma A it follows that

([ et i wdnt | litnn, mis wdn)

In

= 2 01 k 2 g )
s _IDpliwdnt| ol wdn), ot e,

which proves (1) of Proposition 2.1.

Let 4r(n) (€C=)=1 for |7| =2 and y(»)=0 for || <1. By (ii) of Lemma
A the operator D,~|—t"A’(ﬁ) |7] has an inverse Q, for any n(=0). We define
7

R f(t, y) = F2,[ Qi (m)f (2, 7)) ,
where f(t, n):Se“'y”f(t, y)dy. Then R’ satisfies the requirement of (ii) in
Proposition 2.1.
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