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Introduction

Recently many authors have studied the following integrodifferential equa-

tion:

(0.1) u(t, x) = φ(x)+['h(t—s)Au(sy x)ds * > 0 , χ(ΞR
Jo

where A=(d/dx)2. (cf. [3], [5], [7], [16], [17]). The equation (0.1) describes
the heat conduction with memory ([5], [7]). In the present paper, we shall

consider the case h(t)=- ( = hJt)) for l<a<2. Here Γ(*) is the gamma
Γ(α)

function. Thus, the equation (0.1) becomes

(IDE). u(ty x) = Φ W + ^

For the selection of {hΛ(t)} X^&J w ^ have two reasons. The first reason is that
the operator

(0.2) I'f{t) = - 1 ^ \\t-s)*->f(s)ds

defines the Riemann-Liouville integral of order a ([11]). As a result, (IDE)*
( l < α < 2 ) interpolates the heat equatoin (IDE)! and the wave equation (IDE)2.
Formally, (IDE)Λ corresponds to "partial differential equation''

(dldt)*u(ty x) = Au(t, x).

The second reason is that {hΛ(t)} 1 < Λ < 2 represents memory of a long-time tail of
the power order ([14]).

The aim of the present paper is to show the following for \<a<2:

1) The fundamental solution —PJty \x\) of (IDE)* takes its maximum at x=
a
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±c,ί* / 2 for each £>0. Here r ,>0 is the constant determined by a (for the
definition of PΛ(t, #), see § 1).

2) If φ(x)>0 for Λ G Λ , the solution uΛ(t, x) of (IDE),, is also nonnegative for
(t, #)e(0, o o ) χ β ; the support of uΛ(t, •) is not compact in R for each
£>0, even if φ(x) ( ΐ θ ) has compact support. Moreover f*f2ιιΛ{t, x) tends
to a constant for every # e i ? , as t-> oo.

By 2), the solution of (IDE), ( l < α < 2 ) has the same properties as that of the
heat equation. On contrast to this fact, by 1), the fundamental solution of
(IDE), has the similar property to that of the wave equation: the points, where
the fundamental solution takes its maximum, propagate with finite speed. There-
fore, (IDE), ( l < α < 2 ) is resonable interpolation of the heat equation and the
wave equation.

The present paper consists of two sections. In § 1, we give the represen-
tation of the solution by the fundamental solution. In § 2, we show the above
statement 1) and 2).

Finally we mention the work of Schneider and Wyss [12]. After most
of this work was completed, we learned the existence of it. Although they
also gave the representation of the solution, our methods for it are indepen-
dent of theirs. We emphasize the following point: our aim of the present
paper is not only to give the representation of the solution but also to show
the statment 1) and 2).

1. Representation of solution

Let C([0, oo): S(R)) be the space consisting of <5 (Λ)-valued continuous
functions on [0, oo). Here S(R) is the space of the rapidly decreasing func-
tions of Schwartz. Throughout this paper we assume that φ of (IDE), belongs
to S(R).

DEFINITION. For l<αr<2, the function uΛ in C([0, oo): S(R)) is called
the solution of (IDE),, if it satisfies (IDE), for every (ί, x)e(0, oo)χ R.

The reason why we consider the solution in C([0, oo): S(R)) is that this
space is convenient for treating Fourier transform.

Before stating the theorem, we need some notations. For l < α < 2 and
t>0y let

(1.1) 5-&f) = exp[-

2 2
where δ = — , γ = 2 — — and

a a

(1.2)

0 0τ = 0).
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Define PJt, x) by

(1.3) PJt, x) = J - Γ qjt, ξy*dξ .
Zπ i-~

Then, PJjt, x) is a probability density for each t>0, i.e.,

(1.4) Γ Pa(t,x)dx = 1 ί<=(0,

(cf. Theorem 5.7.3 of [6]). Moreover, it holds that

(1.5) PJt, x) = PΛ(xΓ*<2)r*<2 (ί, Λ )e(0, oo)χΛ

where P ^ J Ξ P ^ I , Λ?).

Now we state the theorem of this section.

Theorem A. For l<a<2, (IDE)^ has a unique solution uΛ(t> x) given by

> \y\¥y (i<«<2)

[φ(x+t)+φ(x-t)] (a = 2).
2

The representation (1.6) is proved in [4] and [12]. Although the represen-
tation in § 3 of [12] is slightly different from (1.6), they coincide mutually by
Theorems 5.8.3 and 5.8.4 of [6]. Since the proofs of [4] and [12] are too com-
plicated, we shall give a simple proof for the self-containedness.

In the proof of Theorem A below, we shall use the following symbols:

Re z = the real part
Im z = the imaginary part of
Res (/, a) = the residue of the function/ at a,

Sf(ξ) = Γ j{x)e'ixUx (Fourier transform),
J —CO

1 I* oo

ζFf(x) = 1 f(x)eix*dx (Fourier inverse transform).
2π J-°°

Proof of Theorem A (uniqueness). It is sufficient to show that if UEL
C([0, oo): S(R)) satisfies the equality

(1.7) u(t, x) = I*[(dldx)2u](t9 x) (ί, *)e(0, oo)XR ,

then u = 0. Here /* denotes the Riemann-Liouville integral defined by (0.2).

Applying the Fourier transform to (1.7), we have
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Fix Γ > 0 arbitrarily. Since SFu{t, ξ) is continuous in (t, ?)e[0, T] X R, we

have for (t, ξ) e [0, T] X R

' - — " | f f u ( ί > f ) | Λ >ιι(*, g) 1

GronwalΓs inequality yields 3ϊu(t, g)=0 for (ί, g)e[0, Γ]xΛ. Hence we get
ι/(ί, Λ;) = 0 on [0, T]xR. Since Γ > 0 is arbitrary, we have proved the uni-
queness.

To show the existence, we need four lemmas. Put

(1.8) y"
t3>T{ka+\)

This is called the Mittag-Leffler function and investigated by many authors
(cf. [2], [9]). Define the function Fa{ξ) by

The function FΛ plays an important role in the construction of the solution.
To investigate the properties of FΛ9 we shall give an integral representation of it.
We set for l < α < 2

(1.10)

and

/.(?) =

* ( \ Γ°

π Jo
(gΦO)

Lemma 1.1. For \«x<2\
(I) i4// of the functions txτρ[aΛ(ξ)]9 txp[bΛ(ξ)] and fjjξ) are continuous on R

and belong to L\R).

(II) F#(g)==i-{exp[^(g)]+exp[iii(g)]}+Λ(g)/orgeΛ. Therefore FΛ{ξ) also
a

belongs to L\R).

Proof. (I) First we shall show that exp [aΛ(ξ)]> exp [bΛ(ξ)] and fΛ(ξ) are
continuous on R. It is easy to see that exp [#*(£)] and exp [K(ξ)] are continuous
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on R. Since fΛ(ξ) is continuous at ξ ΦO clearly, it remains to check that/Λ(£) is
continuous at ξ=0. Using the change of variable t= \ ξ \2/«s1/Λ (ξΦO) in (1.11),
we have

_ sinjaπ)
ait

The dominated convergence theorem yields

Γ) Γ
aπ i»s?+2sco$(aπ)+l

= -— Γ ^
ds

ot(«<)

[ ^ ] o ( ί ί )
aπ a

since tan~x[—cot(ατr)]=ία——jπ for l<a<2. Hence fΛ(ξ) is continuous

at £=0.
Next we shall show that exp[e#(f)], exp[iΛ(f)] and /Λ(|) belong to L\R),

We have

Iexp[aJtξ)] I = Iexp[δβ(?)]| = exp [ |ξ \*" cos l ] e L ' ( β ) ,

since cos — < 0 for l < α < 2 . On the other hand, by the dominated con-
a

vergence theorem, we get

Urn \ξ\*m) = S^C7t) Km Γ ^e'tt"1 dt

= sinί^r) r e - ^ . - i Λ = Γ ( « ) s i n ( α ? r )

π Jo π

Since /*(£) is continuous on i?, /Λ(?) belongs to L\R). This completes the
proof of (I).
(II) We shall prove (II) following the idea of [9]. The case ξ=0 is trivial.
Therefore, assume that ξΦO. Let R>0 be sufficiently large and £ > 0 suffi-
ciently small such that R*> | ξ 12>6*. By (3) of chapter 18 of [2] we have

( U 2 > FJ ()

Here C\ is the path defined as follows; we draw, first, a straight line from ooe~*f

to Re"*1 along the real axis, then the cricle of center 0 and radius R in the
positive sense, and, finally, a straight line from Re*1' to ooe*1" along the real axis.
(Figure 1).
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Fig. 1

Next, let C2 be the closed path defined as follows we draw, first, a straight line
from Ge~*' to Re"*' along the real axis, then the circle of center 0 and radius R
in the positive sense, then a straight line from Re*1' to Be*1 along the real axis,
and, finally, the circle of center 0 and radius £ in the negaitve sense (Figure 2).

Fig. 2
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In the domain surrounded by C2, the function φ(*)=— takes its singulari-

ties at aΛ(ξ) and bΛ(ξ) of (1.10). By residue theorem we have

(1.13) 2*i{Res(Φ, aΛ(ξ))+Res(Φy ba(ξ))} = [ Φ(t)dt
Jc2

= [RΦ{te~ici)d(te-1ti) + ^ Φ(Re"W(Re'«)+Γ Φίttf'Wte*')
Jt J - * JR

+ \~*Φ(Sei$)d(Seie).

Thus we get by (1.12) and (1.13)

2πiFm{ξ) = [Rφ(te-^)d(te-^)+2πiiRes(Φ, αΛ(f))+Res(Φ, bΛ(ξ))}

- ί*Φ(te-*y( te-« ' )-Γ Φ(te*i)d(te*i)-[~*Φ(6eit)d(€eiβ)+ ["Φ(tέ")i(tέ")
Jΐ JR J* JR

-I2(ε, R)-I3(£, R)-I4(S)+I5(R).

It is easy to see that lim /1(iί)=lim 75(jR)=lim I4(S)=0 and lim lim [—72(£, R) —

Itf, K)]=2*ifjg). Since Res(Φ, « . ( £ ) ) = 1 exp[«.(?)] and Res(Φ, 6.(f)) =

— exp [δrt(£)], we get the desired result. This completes the proof of Lemma

1.1.

Lemma 1.2. The function ^ [ F ^ ί ^ Ξ F φ (£)](*) is a solution of (IDE)Λ

for.l<a<2.

Proof. Put α(ί, Λ?)=ff[Fβ((ff^Jffφίf)](Λ?). Since FΛ and its derivatives of
any order are bounded and continuous on R, it is easy to see that v belongs to
C([0, oo): S(R)). We have

I*[(d/dxYv](ty x) = IΛ9[{-e&υ](t, x)

By (1.9), it holds that

T(a) Jo

for every ξ&R. Hence

i"[(didχ)2v](t,
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so that v is a solution of (IDE)tf. This complets the proof of Lemma 1.2.

By Lemmas 1.1 and 1.2, (IDE)rt has a unique solution uΛ(ty x)=

S[Fct(ξteύ/2)Sφ(ξ)](x). It remains to show the expression (1.6). In Lemmas 1.3

and 1.4 below, we shall calculate the inverse Fourier transform of Fa(ξ).

Lemma 1 3. For

Γ
-~?4+2?2cosc*;r+l

sinaπ

Proof. We shall show only the case x>0, since the case x<0 can be pro-
ved similarly. Let C3 be the closed path defined as follows; we describe, first,
the segment [—R, R], then the circular arc #=Re ί β with 0<θ<iπ (Figure 3).

Fig. 3

In the domain surrounded by C3, the function

vr> / \ Z

takes its sungularities at ^ x=exρ πi and #2=exp πi . By residue

theorem, we have

Ψ(z)dz = 2*ί Σ Res(Ψ, zΛ = ~~π

c 3 y=i sin(α7r)

Since the integral over the circular arc tends to 0 as i?-»oo, we have the desired
result. This completes the proof.
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Lemma 1.4. ff[FJ(*)=—P,(M) (l<a<2).

Proof. When α = l , this lemma follows easily from (1.3) and the equalities
Fi(ξ)=Φ> ?)=exp[-£2], where &(*, f) is the function of (1.1). Therefore,
assume that or>l. It follows from (1.3) that

ί-
l 3

Now we shall consider ΞF[fΛ](x). By Fubini theorem and Lemma 1.3, we have

(1.14) 3[fa]{x)

Jo J—ξ4+2ξ2t*cos{a2π2 ξξ

2Γ t^-'e-'dt [~ -2- exp[ixηt*'*]dv

Jo )—ηA+2v

2cos(aπ)+l L J y

t e d t [
2π2 Jo )—ηA+2v

2cos(aπ)+l

= - — Im f" ί<-/2'-1 exp Γ - ί + I * I F<>e*«i/2+^
2π Jo L 2

= _ J - Im f" exp Γ-r**+ \ x | re'*"2 +
aπ Jo L 2

Cauchy's integral theorem enables us to change the variable r into w exp πi I

in the last expression of (1.14). We have, thereofre, by (1.3)

= — Re{ ί°° exp [ - β V - Γ " ^ |*|wildw} (<y=2~)
aπ Jo \ a I

= ~PJί-\*\)

Hence we obtain by (II) of Lemma 1.1

1 m(χ)-Pm(- I x I )] = 1 P,( IΛI ) .

This completes the proof.

Proof of Theorem A. (expression (1.6))
Since the existence of the solution has been proved in Lemma 1.2, we shall

prove the expression (1.6). The case a—2 is widely known. Therefore we

shall treat the case l<a<2. Put QΛ(t, x)=—PJt, \x\). By Lemma 1.4 and
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(1.5), 3Λ[FΛ(- t*/2)](x) = Q06(t, x). Fourier inverse theorem yields F<Λ(ξfn) =
t, •)](£). Hence we get by Lemma 1.2

ujit, x) = 3[3[QΛ{t, OKftffφtfHW = Γ β Λ y)Φ{χ-y)dy.
J -co

This completes the proof of (1.6). We have, therefore, proved Theorem A.

2. Properties of the solution

We recall that—PΛ(t, \x\) is the fundamental solution of (IDE) Λ : the
a

integral kernel of the operator from φ (the initial data) to uΛ{t> x) (the solution)

of (IDE), (cf. (1.6)).

Theorem B. For l < α < 2 ,

(Bl) PΛ(t, \x\)is continuous in (ί, x)e(0, o o ) x R .

(B2) PΛ(£, |Λ?|) takes its extreme values at x=±cΛt*
/2 (maximum) and x — 0

(minimum); it is monotone elsewhere. Here cΛ>0 is the constant determined

by a,

(B3) PΛ(t, \x\) never vanishes for (t, x)<^(0, oo)χR (Figure 4).

PJlt, \χ\)

Fig. 4

By (B2), the points, where the fundamental solution takes its maximum,
propagate with finite speed. Thus the fundamental solution of (IDE)rt (1<
a<2) has the similar property to that of the wave equation.

Theorem C. For 1 < a < 2,

(Cl) ifφ(x)>0for x(ΞRy then uo6(t) x)>0for (t, x)<=(0, <χ>)χj?,
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(C2) limt?'2ua(t,x)=±PJ0)[ φ(z)dz

(C3) if φ(x)>0 and φ(x)^0, the support ofuΛ(ty •) is not compact in R for each
t>0.

The statement (C1)~(C3) shows that the solution of (IDE)Λ (ί<a<2)
inherits the properties of the solution of the heat equation (IDE)!.

Proof of Theorem B. (Bl) Since PΛ{t> x) is continuous by (1.3), this is
trivial.
(B2) By Lemma 5.10.2 of [6] and its proof, PΛ(x) ( = ^ ( 1 , *)) takes its
maximum at x—cΛ and is monotone elsewhere (refer to (5.8.2c) of [6]). Here
cΛ>0 is the constant determined by α. By (1.5), we have the desired result.
(B3) By (1.5) and (B2), it is sufficient to show that PJ0)Φ0 and Pm{\x\)Φθ
(\x\>M) for some sufficiently large M>0. First, by Theorem 5.8.2 of [6], we
have

Next, by [13] (see also Theorem 2.1.6 of [8]), we can show

limP^lx^ilxl-^-^^txplAJxl2^-^]} = Ba.

Here AΛ and BΛ are positive constants determined by α. Hence PΛ{\x\) never
vanishes for x^R. We have, therefore, proved Theorem B.

Proof of Theorem C. The statement (Cl) and (C2) follows easily from
(1.7), (1.8), (Bl) and dominated convergence theorem.

To prove (C3), we need a lemma. Choose M > 0 sufficiently large so that
φ(x)mθ on [-M, M]. Put

φ(x) \x\<M

0 \x\>M.

We recall the following notation:

) = Γ f(χ)e-ix*dx (Fourier transform).

Lemma 2.1. (i) φ{x)>φM{x)>0 {x<=R).
(ii) ^ΦM can be extended to an entire function and it satisfies

lim [13φM{ίξ) I + I EFφM(-iξ) I ] = oo .

Proof, (i) This is trivial,

(ii) By the Paley-Wiener theorem (see [1], pp. 158), 3fφM

 c a n be extended to
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an analytic function and satisfies \3φM{z)\ <Aecuι ( « G C ) for some A, C>0.
Suppose that

Em [ISφjiξ) I +13φM{-iξ) I] <oo .

Then, by the Phragmέn-Lindelϋf theorem ([1] pp. 155), 3φM(z) must be boun-

ded on C Since 3φM(z) is an entire function and lim 3φM(ξ)=09 we find that

3φM(z)=iQ on C This contradicts the fact such that φ M φ 0 . This completes
the proof.

Proof of (C3). We get by (1.4) and i) of Lemma 2.1

um(t, x) = — Γ φ(x-y)Pm(t, \y\)dy
a J-°°

> - Γ Φ*(χ-y)PJt, \y\)dy (s«-tM(ί, *

Hence it is sufficient to show (C3) for uΛM(t, x). By (1.10), FΛ(ξ) can be extend-

ed to an entire function. Therefore, Lemma 1.4 and the Fourier transform lead

to

3uΛtM{ty z) = $φM(z)FΛ(zt«<η (z<=C).

Now, fix ί > 0 arbitrarily. By (10) of Chapter 18 of [2] we find that

a

Since FJ<iξ1*^=FΛ{--iξ1*f7) = EΛ(ξΨ) for £<ΞJR, we have by ii) of Lemma 2.1

lim exp [-tIξ \2'*]{13uΛtM{t, iξ) \ + \3uΛtM{t, - i f ) |} = oo .

By Paley-Wiener theorem ([1], pp 158), the support of uΛ>M{t, •) is not compact

in R for each t>0. This completes the proof of (C3). Thus Theorem C has

been proved.
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