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Introduction

Recently many authors have studied the following integrodifferential equa-
tion:
(0.1) u(t, x) = ¢(x)+j'h(z~s)Au(s, xds >0, xR

0
where A=(8/dx)%. (cf. [3], [5], [7], [16], [17]). The equation (0.1) describes
the heat conduction with memory ([5], [7]). In the present paper, we shall
consider the case h(t):% (=h,(t)) for 1<a<2. Here I'(x) is the gamma
a
function. Thus, the equation (0.1) becomes
(IDE), u(t, ¥) = () +—— s’ (t—5)*" Auls, x)ds .
T(a) Jo

For the selection of {A,(t)},<a<s We have two reasons. The first reason is that
the operator

(02) 10 = s o s

defines the Riemann-Liouville integral of order a ([11]). As a result, (IDE),
(1<a<2) interpolates the heat equatoin (IDE), and the wave equation (IDE),.
Formally, (IDE), corresponds to “partial differential equation”

(9/08)"u(t, x) = Au(t, x) .

The second reason is that {%,(¢)} <4<, represents memory of a long-time tail of
the power order ([14]).
The aim of the present paper is to show the following for 1<a<2:

1) The fundamental solution ~1~P,(t, |x|) of (IDE), takes its maximum at x=
a
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+c,t*? for each t>0. Here ¢,>0 is the constant determined by e (for the

definition of P,(¢, x), see § 1).

2) If ¢(x)>0 for xR, the solution u,(¢, x) of (IDE), is also nonnegative for
(¢, x)(0, o)X R; the support of u,(t, +) is not compact in R for each
t>0, even if ¢(x) (£0) has compact support. Moreover t*/2u,(t, x) tends
to a constant for every xE R, as t— oo,

By 2), the solution of (IDE), (1<a<2) has the same properties as that of the

heat equation. On contrast to this fact, by 1), the fundamental solution of

(IDE), has the similar property to that of the wave equation: the points, where

the fundamental solution takes its maximum, propagate with finite speed. There-

fore, (IDE), (1<a<2) is resonable interpolation of the heat equation and the
wave equation.

The present paper consists of two sections. In § 1, we give the represen-
tation of the solution by the fundamental solution. In § 2, we show the above
statement 1) and 2).

Finally we mention the work of Schneider and Wyss [12]. After most
of this work was completed, we learned the existence of it. Although they
also gave the representation of the solution, our methods for it are indepen-
dent of theirs. We emphasize the following point: our aim of the present
paper is not only to give the representation of the solution but also to show
the statment 1) and 2).

1. Representation of solution

Let C([0, c): S(R)) be the space consisting of S(R)-valued continuous
functions on [0, ). Here S(R) is the space of the rapidly decreasing func-

tions of Schwartz. Throughout this paper we assume that ¢ of (IDE), belongs
to S(R).

DerFiniTION.  For 1<a<2, the function #, in C([0, c0): S(R)) is called
the solution of (IDE),, if it satisfies (IDE), for every (¢, x)€(0, )X R.

The reason why we consider the solution in C([0, c0): S(R)) is that this
space is convenient for treating Fourier transform.

Before stating the theorem, we need some notations. For 1<a<2 and
t>0, let

(1.1) 9u(t, £) = exp[—t|§ % eTrien @]
where 8=£, 7=2_£ and
a a
£ (g0
(1.2) sgn (&) = { &l (E0)
0 (£=0).



INTEGRODIFFERENTIAL EQUATION 311

Define P,(t, x) by

(13) Pty 5)= ot Eleta.

Then, P,(t, x) is a probability density for each >0, i.e.,
b,(t, x)=0 (¢, x)€(0, 0)X R

(14 glp,(t, Kde=1 te(0, )

(cf. Theorem 5.7.3 of [6]). Moreover, it holds that
(1.5) P(t, x) = P,(xt™*?) ™% (1, x)€(0, )X R

where P,(x)=P,(1, x).
Now we state the theorem of this section.

Theorem A. For 1<a<2, (IDE), has a unique solution u,(t, x) given by

|7 bt 13Dy (1<a<2)
N
5 [0+ 9(e—1)] (a=2).

The representation (1.6) is proved in [4] and [12]. Although the represen-
tation in § 3 of [12] is slightly different from (1.6), they coincide mutually by
Theorems 5.8.3 and 5.8.4 of [6]. Since the proofs of [4] and [12] are too com-
plicated, we shall give a simple proof for the self-containedness.

In the proof of Theorem A below, we shall use the following symbols:

Re z = the real part of z&C,
Im 2 = the imaginary part of 2C,
Res (f, a) = the residue of the function f at a,

Ff(E) = S: f(x)e *tdx (Fourier transform),

Ff(x) = 51; g f(x)e*tdx (Fourier inverse transform).

Proof of Theorem A (uniqueness). It is sufficient to show that if ue
C([0, 0): S(R)) satisfies the equality
(1.7) u(t, x) = I°[(8/0x)’u](t, x) (¢, x)E(0, ©)X R,

then u=0. Here I® denotes the Riemann-Liouville integral defined by (0.2).
Applying the Fourier transform to (1.7), we have
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Fu(t, £) = —EI[Ful(t, £) .

Fix T>0 arbitrarily. Since Fu(t, £) is continuous in (¢, §)€[0, T] X R, we
have for (¢, £)€[0, T]1X R

1, )| < ELTZ (1 uts, )1
T(a)
Gronwall’s inequality yields Fu(z, £)=0 for (t, £)[0, T]X R. Hence we get
u(t, x)=0 on [0, T]xR. Since T>0 is arbitrary, we have proved the uni-
queness.
To show the existence, we need four lemmas. Put

18) B0 =Sk O=R-

This is called the Mittag-Leffler function and investigated by many authors
(cf. [2], [9]). Define the function F,(£) by

(19) F®) = E—8) = 5 1

The function F, plays an important role in the construction of the solution.
To investigate the properties of F,, we shall give an integral representation of it.
We set for 1<a<<2

au§) = [£1%* exp| = sgn(@) |
(24
(1.10) . (EER)
bu(g) = 1E(%= exp| — L sgn(®)|
a

and

sin(ax) ( Frpelent & (Es0)
(1.11) fu(&) = 7’2 S” +2E%t” cos (am)+ &

1‘; (E=0).

Lemma 1.1. For l<a<2:
(I) Al of the functions exp [a (&), exp [b.(E)] and f.(E) are continuous on R
and belong to L'(R).

(II) F (&)= ~a1~{exp [au(E)]+exp [b(E)]} +fu(E) for EER. Therefore F,(§) also
belongs to L'(R).

Proof. (I) First we shall show that exp [a,(£)], exp [64(£)] and f (&) are
continuous on R. It is easy to see that exp[a,(£)] and exp [b,(£)] are continuous
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on R. Since f,() is continuous at £=0 clearly, it remains to check that f,(£) is
continuous at £=0. Using the change of variable ¢=|£|¥*s¥* (£50) in (1.11),
we have

_ Sin(an') ~ exp [.._ lgl?-/asl/a]
J(&) an so #+ 25 cos () + 1 ds (£%£0).

The dominated convergence theorem yields

i _ sin(az) (~ 1 ds
51-1'13 1€) ar so §?+42s cos (ar)+1
S O O U

am J -cot(ax) 772+1

1 —1_7ee 2
= T [tan ln]—cot(ﬂ) =1-=,
an (24

since tan”'[—cot(az)] =(a—%)7z for 1<a<2. Hence f,(§) is continuous

at £=0.
Next we shall show that exp[a,(£)], exp[b.(§)] and f,(&) belong to L'(R).
We have

lexpla(®)]] = lexp[au(B)]] = exp |1 cos g] EL(R),

since cos =<0 for 1 <a<2. On the other hand, by the dominated con-
a

vergence theorem, we get

lim E1%£.(6) =

sin(az) . (~ Elette!
Y im So #?* 428t cos (am)+ &

__sin(ar) sw e-tto-1dp — L(9) gin (ar) .
4 0 i

[£]>o

Since f (&) is continuous on R, f (&) belongs to L'(R). This completes the
proof of (I).

(II) We shall prove (II) following the idea of [9]. The case £=0 is trivial.
Therefore, assume that £40. Let R>0 be sufficiently large and €>0 suffi-
ciently small such that R*> |£|*>&®. By (3) of chapter 18 of [2] we have

-1
S K’y
¢ t*4-E
Here C, is the path defined as follows; we draw, first, a straight line from ocoe™™
to Re ™ along the real axis, then the cricle of center 0 and radius R in the

positive sense, and, finally, a straight line from Re® to coe™ along the real axis.
(Figure 1).

(1.12) Fye) = L

27t
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Fig. 1

Next, let C, be the closed path defined as follows; we draw, first, a straight line
from &e™ to Re™™ along the real axis, then the circle of center 0 and radius R
in the positive sense, then a straight line from Re®™ to &e* along the real axis,
and, finally, the circle of center 0 and radius & in the negaitve sense (Figure 2).

C.

Fig. 2
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@1
In the domain surrounded by C,, the function q)(t)z‘;:tsz takes its singulari-

ties at a,(&) and b (&) of (1.10). By residue theorem we have
(1.13) 2 {Res (@, a(§))+Res (@, bEN} = | @(t)ar
— ([ otte=die)+[7_o®edRe)+{ @)
+S;' D(Ee)d(Ee™) .
Thus we get by (1.12) and (1.13)
2miF(E) = S:q>(te--f)d(re~ﬁ)+zm'{Res (D, au(£))-+Res (P, by(£))}

—Sfcp(ze-*f)d(te-ﬁ)—S; <1>(ze‘f)d(te'f)-s;' @(Eefﬂ)d(eef°)+S:cp(te'f)d(te*f)

= I(R)+2mi x {4} —I,(§, R)—I(€, R)—L,(€)+I(R) .
It is easy to see that lim [,(R)—lim I(R)=lim 1,(6)=0 and lim lim [—L(¢, R)—
16, R=2mi[6). Since Res(®, a,(E)= - explaa()] and Res(®, b)) =

1 exp [0,(&)], we get the desired result. This completes the proof of Lemma
a
1.1.

Lemma 1.2. The function F[F,(Et**)F ¢ (£)](x) is a solution of (IDE),
for 1<a<2.

Proof. Put o(t, ¥)=F[F,(£t*)F $(E)](x). Since F, and its derivatives of
any order are bounded and continuous on R, it is easy to see that v belongs to
C([0, =): S(R)). We have

I*[(8/Bx)0](t, x) = I°F[(—E)F2](t, %)

= F[-B1p [ REBTo@ |

By (1.9), it holds that
1
[(a)
for every EER. Hence
1°[(0foxy=](, %)
= F[F (") F () —F(E)(*) = (¢, ) — (),

(8 || (=) FulEsers = Fulgre)—1
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so that v is a solution of (IDE),. This complets the proof of Lemma 1.2.

By Lemmas 1.1 and 1.2, (IDE), has a unique solution u,(t, x)=
FF () F $(E)](x). It remains to show the expression (1.6). In Lemmas 1.3
and 1.4 below, we shall calculate the inverse Fourier transform of F,(£).

Lemma 1.3. For 1<a<?2,

) e g = — T 1 [ { wrif2 an-i}]
S—*E‘—I—Z«E’cosan{—le dt snae TLEP [x|e +—2— .

Proof. We shall show only the case x>0, since the case x<0 can be pro-
ved similarly. Let C; be the closed path defined as follows; we describe, first,
the segment [—R, R], then the circular arc 2z=Re® with 0<0<= (Figure 3).

Cs
R
0
Fig. 3
In the domain surrounded by Cj, the function
22 .
\Ir 2) = {273
(=) 244222 cos ar+1

takes its sungularities at 2,=exp [a_;l ni] and 2,=exp [3 Za

m']. By residue

theorem, we have

S W(s)ds = 2ni 3} Res(¥, 7,) = —~ Im[exp{xe"‘/z—i—a_”i}] .
G =1 sin(az) 2

Since the integral over the circular arc tends to 0 as R— oo, we have the desired
result. 'This completes the proof.
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Lemma 14. F[F,](x)=-LP(|x]) (1<a<2).
a

Proof. When a=1, this lemma follows easily from (1.3) and the equalities
F(8)=q,(1, &)=exp[—£?], where ¢,(¢, ) is the function of (1.1). Therefore,

assume that ¢>1. It follows from (1.3) that
{ F [exp (a](x) = Pu(—)
F [exp (ba)](*) = Pul) -

Now we shall consider F[f,](x). By Fubini theorem and Lemma 1.3, we have

(114)  FLIx)

_ sin(am) (* u-1,-t g [~ & izt
S £e tj-w E‘—}—Zfzt’cos(an)—{—tz“e a

sin (ar7) S“ 1@D=1 =t gy r 7’
- *+29% cos(ar)+1

=1 ImSm /D= exp [——t+ |x] t"”e"‘/zﬂ—a—;i]dt
T

exp [ixnt*?]dy

I
|
|
5

‘r exp [— ro+ | x| re*il? —l—aTm.]dr .
0

Cauchy’s integral theorem enables us to change the variable 7 into w exp [I—_Zit m']

in the last expression of (1.14). We have, thereofre, by (1.3)

F[flw)
— _L = _ ® ,—VEi[2 - __2
= Re{S0 exp [—w¥* e ™2+ | x | wi]dw} (7_2 z)
— —Lp(—1x).
a

Hence we obtain by (II) of Lemma 1.1
FFI(x) = — [Pu(—)+ Pule)—Pu(—|21)] = —P(s1).

This completes the proof.

Proof of Theorem A. (expression (1.6))
Since the existence of the solution has been proved in Lemma 1.2, we shall
prove the expression (1.6). The case a=2 is widely known. Therefore we

shall treat the case 1<a<2. Put Q,(t, x)=i (2, |#|). By Lemma 1.4 and
a
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(1.5), F[Fo(- t9)](x) = Q.(2, ). Fourier inverse theorem yields F,(£*/?) =
F[Q.(t, -)](¢). Hence we get by Lemma 1.2

ult, %) = FFQU, NOFEN = | Qult, No—2)dy .
This completes the proof of (1.6). We have, therefore, proved Theorem A.

2. Properties of the solution

We recall that 1 P,(t, |x|) is the fundamental solution of (IDE),: the
o

integral kernel of the operator from ¢ (the initial data) to u,(t, x) (the solution)
of (IDE), (cf. (1.6)).

Theorem B. For 1<a<2,

(B1) Pt |x]|)is continuous in (t, x)(0, o)X R.

(B2) Pt |x|) takes its extreme values at x = +c,t** (maximum) and x=0
(minimum); it is monotone elsewhere. Here ¢,>>0 is the constant determined
by a,

(B3) P, |x|) never vanishes for (t, x)E(0, o)X R (Figure 4).

Pt |x)

—_——f—

Fig. 4

By (B2), the points, where the fundamental solution takes its maximum,
propagate with finite speed. Thus the fundamental solution of (IDE), (1<
< 2) has the similar property to that of the wave equation.

Theorem C. For 1<a<?2,

(C1) if ¢p(x)=0 for xE R, then u,(t, x)=0 for (t, x)E(0, )X R,
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(€2) limerut, )="P0)| ¢z weR,

(C3) if p(x)=0 and ¢(x)=£0, the support of u,(t, +) is not compact in R for each
t>0.

The statement (C1)~(C3) shows that the solution of (IDE), (1<a<2)
inherits the properties of the solution of the heat equation (IDE),.

Proof of Theorem B. (B1) Since P,(t, x) is continuous by (1.3), this is
trivial.
(B2) By Lemma 5.10.2 of [6] and its proof, P,(x) (=P,(1, x)) takes its
maximum at ¥=c, and is monotone elsewhere (refer to (5.8.2c) of [6]). Here
¢,>0 is the constant determined by . By (1.5), we have the desired result.
(B3) By (1.5) and (B2), it is sufficient to show that P,(0)3=0 and P,(|x|)=0
(lx|>M) for some sufficiently large M>0. First, by Theorem 5.8.2 of [6], we
have

PL(0) = %r(_‘%ﬂ)gm (12’5) - —mﬂ :

Next, by [13] (see also Theorem 2.1.6 of [8]), we can show

lim P,(|x|){|x| @ WC = exp [4,|x|? 9]} = B,.
[x|->oo

Here A, and B, are positive constants determined by «. Hence P,(|x|) never
vanishes for x&R. We have, therefore, proved Theorem B.

Proof of Theorem C. The statement (C1) and (C2) follows easily from
(1.7), (1.8), (B1) and dominated convergence theorem.
To prove (C3), we need a lemma. Choose M >0 sufficiently large so that
¢(x)=0 on [—M, M]. Put
(x) |xI<M
4’”(’“)_{ 0 |%|>M.

We recall the following notation:

Ff(E) = S f(x)e"*¢dx  (Fourier transform).

Lemma 2.1. (i) ¢(x)>¢,(x)=>0 (xR).
(i) by can be extended to an entire function and it savisfies

gi:g (1 Fou(EE) |+ | Fpp(—1E)|] = oo .

Proof. (i) This is trivial.
(i) By the Paley-Wiener theorem (see [1], pp. 158), F¢, can be extended to
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an analytic function and satisfies |F¢py(2)| <Aef'? (2€C) for some 4, C>0.
Suppose that

gf—}g UF bu(iE) |+ | Fdal—iE)|] <oo .

Then, by the Phragmeén-Lindelof theorem ([1] pp. 155), F¢(2) must be boun-
ded on C. Since F ¢ (2) is an entire function and lim F¢,,(£)=0, we find that
g

Fpu(x)=0o0n C. This contradicts the fact such that ¢,==0. This completes
the proof.

Proof of (C3). We get by (1.4) and i) of Lemma 2.1

Ug(t, %) = 7.1(— S: P(x—)Pt, | y1)dy

2% S :, bulx—y)Pu(t, | y1)dy (Stam(?, %))20.

Hence it is sufficient to show (C3) for u, 4(t, x). By (1.10), F,(£) can be extend-
ed to an entire function. Therefore, Lemma 1.4 and the Fourier transform lead

to
Fuyu(t, 2) = FPu(2)F (2%  (2€0).
Now, fix t>0 arbitrarily. By (10) of Chapter 18 of [2] we find that

lim exp [—¢| £ | Y] E(8%%) = L.
gree a

Since F,(iEt**)=F (—i£t*?) = E,(£") for EE R, we have by ii) of Lemma 2.1
il*m” exp [—t|E|7“I{| Fuug,u(t, 16)| + | Ftho pe(t, —iE)[}= o0 .

By Paley-Wiener theorem ([1], pp 158), the support of u, ,(t, +) is not compact
in R for each t>0. This completes the proof of (C3). Thus Theorem C has

been proved.
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