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1. Introduction

This paper is concerned with an open problem proposed by Kawashima and
Matsumura [4]. Namely, we study the nonlinear asymptotic stability of viscous
shock profile for a one-dimensional non-convex system of viscoelasticity in the form

(ll) Ut_u:l::()’
(1.2) uy —o(V)y = Pz, T €R, t>0,

with the initial data
(1.3) (v, u)|t=0 = (vo, uo)(z)

which tend toward the given constant states (viy,us) as * — oo. Here, v is the
strain, u the velocity, 4 > 0 the viscous constant, and o(v) is the smooth stress
function satisfying the condition

(1.4) o'(v) >0 forall v under consideration,
and the condition of non-convex (non-genuine) nonlinearity
(1.5) 0”(v) 20 for vSO0 under consideration,

which Kawashima and Matsumura [4] proposed as an unsolved case. Note that the
condition (1.4) assures the strict hyperbolicity of the corresponding inviscid system,
and the condition (1.5) yields the inviscid system neither genuinely nonlinear nor
linearly degenerate around v = 0.

The stability of viscous shock profile for various one-dimesional viscous conser-
vation laws has been studied by a number of authors (see [1-16] and the references
therein). In 1985, an efficient energy method to prove the stability was first in-
troduced independently by Matsumura and Nishihara [9] and Goodman [1] in the
case of convex (genuine) nonlinearity, and later then, this case with effect of N-waves
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was completed, via Liu [5,6], by Szepessy and Xin [16]. In the case of non-convex
nonlinearity, Kawashima and Matsumura [4] proved the stability of viscous shock
profile for the scalar non-convex conservation law u; + f(u), = pugy, where the
non-convexity of f(u) means f”(u) S0 for S 0. When f(u) satisfies the opposite
sign relation like (1.5), they pointed out that a simple change of independent vari-
able, y = —uz, easily solves the problem in the scalar case, however does not this
technique work to the system. Recently, Mei [11] and Matsumura and Nishihara
[10] studied the stability as well as the time decay rate even for the degenerate shock
(Oleinik’s shock), and more genearal flux function. See also Jones and Gardner and
Kapitula [2] by using the spectral analysis method, but their time decay rate is less
sufficient than that of Kawashima and Matsumura [3,4], Mei [11] and Matsumura
and Nishihara [10]. The time decay rates in [3,4,11,10] are optimal in a sense (cf.
[15]). On the other hand, Kawashima and Matsumura [4] also treated the system
case and proved the stability of viscous shock profile for system (1.1), (1.2) with the
non-convexity condition

(1.6) o”"(v)S0 for v30.

Under the non-convexity condition (1.6), Nishihara [14] studied the stability of
the degenerate viscous shock profile for the system (1.1), (1.2) at the first time.
Furthermore, Mei and Nishihara [13] succeeded in improving the stability results
in [4,14] with weaker conditions on nonlinear stress function, initial disturbance,
and weight function. When the nonlinear stress function o (v) satisfies the opposite
non-convex condition (1.5), remarkably different from the scalar case, the procedures
in [4,10—14] can not be applied to our problem (1.1)—(1.5), so the stability remains
still open as is stated in Kawashima and Matsumura [4] (also cf. [8]). In the
present paper, to overcome this difficulty, we shall introduce a suitable transform
function depending on the viscous shock profile of (1.1), (1.2) to transfer the original
system into a new one, and then, following the technique in [4], choose a desired
weight function to establish a basic energy estimate. The approach is due to an
elementary but technical L?-weighted energy method. Our plan of this paper is as
follows. In Section 2, we shall give the main theorem and some basic properties of
the viscous shock profile. In Section 3, we shall reformulate the system (1.1), (1.2)
into an “integrated” system, and prove our stability theorem based on a basic energy
estimate. Finally, Section 4 is the proof of the basic energy estimate by introducing
a suitable transform function and a weight function, which plays a key role in the
present paper.

NotaTions. L2 denotes the space of measurable functions on R which are
square integrable, with the norm

=/ |f(w>|2dx)1/2.
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H'(I > 0) denotes the Sobolev space of L?-functions f on R whose derivatives

8if,j=1,---,1, are also L%-functions, with the norm
z 1/2
Il = { D182 fII?
=0
We note that L? = H? and ||-|| = || - |lo, and denote generic positive constants by C

in what follows.

Let T and B be a positive constant and a Banach space, respectively. C*(0,T; B)
(k > 0) denotes the space of B-valued k-times continuously differentiable functions
on [0,T), and L%(0, T; B) denotes the space of B-valued L2-functions on [0,T]. The
corresponding spaces of B-valued function on [0, c0) are defined similarly.

2. Preliminaries and Main Theorem

In this section, before stating our main theorem, we now recall the properties
of traveling wave solution with shock profile.

We call a traveling wave solution with shock profile, or say, a viscous shock
profile, for (1.1) and (1.2) if and only if it is a smooth solution of (1.1) and (1.2)
in the form

2.1 (v,u)(t,m) = (Va U)(f), §=x— st,
(2.2) (V,U)(€) — (v, us), § — oo,

where s is the shock speed and- (vi,uy) are constant states at +oo satisfying the
Rankine-Hugoniot condition

—s(vy —v_) —(uy —u_) =0,
03 { (v = v-) = (s —u-)
—s(uy —u_) —(o(v4) —o(v-)) =0,
and the generalized shock condition
<0, if vy <v<ow-
>0, if vo <v<uy.

2.4) %h(v) - %[—32(1; — 1) + 0(v) — o (vs)] {

We note that the condition (2.4) with (1.4) and (1.5) implies
2.5) AMvg) <s<Aw-) or —Alwy) <s < =A(v),

where A(v) = /o’(v) is the positive characteristic root, and that, especially when
0" (v) > 0, the condition (2.4) is equivalent to

(2.6) AMogp) <s<Alw-) or —Awg) <s< =Alvo),



592 A. MATSUMURA AND M. MEI

which is well-known as the Lax’s shock condition. We call the condition (2.5) with
s = Awv_) or = —A(v4) (resp. the condition (2.6)) the degenerate (resp. non-
degenerate) shock condition. If (v,u)(¢,z) = (V,U)(§) (£ = = — st) is the viscous
shock profile, then (V,U)(§) must satisfy
—sV'-U'" =0,
2.7
—sU' — (V) = pU".

Integrating (2.7) and eliminating U, we obtain a single ordinary differential equation
for V(¢&):

(2.8) usV' = =2V 4+ o(V) —a = h(V),
where
2.9) a=—s%vy +o(vy).

Let (vy,u4) # (v—,u_) and s > 0 (the case s < 0 can be treated similarly). We are
now ready to summarize a characterization of the generalized shock condition (2.4)
and the results on the existence of viscous shock profile that can be easily proved
by the same procedure as in [4]:

Proposition 2.1.  Suppose that (1.4) and (1.5) hold. Then the following state-
ments are equivalent to each other.
(i)  The generalized shock condition (2.4) holds.
(i) o'(v_) > s?, ie, AM(v_) > s.
(ii)) o'(vy) <2< o' (v_), ie, ANvy) < s < A(vo).
(iv) There exists uniquely a v, € (v4,v_) such that o’ (v.) = s? and it holds

(2.10) o'(v) < 8% for veE (vy,vs), s°<a'(v) for ve (vi,v_).
ie,
(2.11) W (vi)=0, h(v)<0 for ve (vy,vs), h'(v)>0 for ve (vi,v_).

Moreover, if one of the above four conditions holds, then we must have v, # 0.
In addition, v, Sv_ and v, 2 0 hold when vy 20, ie., vivy > 0.

Proposition 2.2.  Suppose that (1.4) and (1.5) hold.
(i) If(1.1), (1.2) admits a viscous shock profile (V(xz — st),U(z — st)) connecting
(ve,uy), then (vi,uy) and s must satisfy the Rankine-Hugoniot condition
(2.3) and the generalized shock condition (2.4).
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(ii) Conversely, suppose that (2.3) and (2.4) hold, then there exists a viscous shock
profile (V,U)(z—st) of (1.1), (1.2) which connects (vy,uy). The (V,U)(£)(€ =
x—st) is unique up to a shift in £ and is a monotone function of . In particular,
when vy Sv_ (and hence uy 2 u_) we have

@13) W SVE S, V©OSO,

for all§ € R. Moreover, (V,U)(&) — (v+,us) exponentially as &€ — oo, with
the following exceptional case: when \(v_) = s, (V,U)(§) — (v—,u_) at the
rate |¢]71 as € — —oo, and |h(V)| = |usVe| = O(|¢]72) as & — —oo.

In this paper, our aim is to show the stability of viscous shock profile in the
non-degenerate case (2.5). Now, without loss of generality, we restrict our attention
to the case

(2.14) §>0 and vy <0<w_, de, usVe=h{V)<O.

Let (V,U)(z — st) be a viscous shock profile connecting (v, u4), we assume the
integrability of (vo — V,uo — U)(z) over R and

2.15) [ 0= Viuo ~ U)@)ds = mofws vy — ),

for some zo € R. Then it is easily seen that the shifted function (V,U)(z — st + o)
is also a viscous shock profile conneting (vi,u4) such that

(2.16) /oo (vo(z) — V(z + z0),uo(z) — U(z + z0))dz = 0.

—00

In what follows, set o = O for simplicity. Let us define (g, 1) by
2.17) (o, %0) (@) = / (vo — V;uo — U)(y)dy.
Our main theorem is the following.

Theorem 2.3 (Stability).  Suppose (1.4), (1.5), (2.3), (2.5), (2.16), and (¢g, o)
€ H?. Furthermore, assume that

(2.18) s <o'(v_) + 30" (v-)[2(ve —vy) + - — vy,
(2.19) 0" (v) <0, wve (vy,0)U(0,v_).
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Then there exists a positive constant 8, such that if ||(¢o,%o)||2 < 61, then (1.1)—(1.3)
has a unique global solution (v,u)(t, ) satisfying

v =V € C°((0,00); H') N L*([0, 0); H),
u—U € C°[0,00); H') N L%([0, 00); H?),

and the asymptotic behavior

(2.20) sup |(v,u)(t,z) — (V,U)(z — st)] - 0 as t— oo.
TER

Remarks 1. First note that our condition (2.18) is, as easily seen, much
stronger than Lax’s shock condition. We get the stability of any viscous shock
(weak shock or not) as long as the condition (2.18) is satisfied. This means that we
don’t necessarily assume that the viscous shock profile is weak, i.e., vy —v_| < 1,
which is a sufficient condition in the previous works.

2. An important example is o(v) = av — Bv3 for v € [vy,v_], where o, 3 are
any given positive constants. It is easy to see that o(v) satisfies (1.4), (1.5) for some
vy and v_. In this case, the Lax’s entropy condition is equivalent to v4 < —2v_,
and our condition (2.18) to vy < —a,v—_, where a, = 7.418190--- is a unique
positive root of

—224+ 10z +5=2V3V22 —z + 1.

3. For the general stress o(v), if viscous shock is weak, i.e., vy —v_| < 1,
and suppose ¢"’(0) # 0, then the condition (2.18) is equivalent to the condition
vy < —a,.v—. A significant example is o(v) = v/v1 + v2.

3. Reformulation of Problem and Proof of Theorem

In this section, we shall prove the Stability Theorem 2.3 by means of a key
estimate which will be proved in the next section. In order to show the stability,
we first make a reformulation for the problem (1.1)—(1.3) by changing unknown
variables '

3.1 (U7u)(tal‘) = (VvU)(§)+(¢§v¢€)(ta£)a E=x—st
Then the problem (1.1)—(1.3) is reduced to the following “integrated” system
bt — g —Pe =0

(3.2) Y — stpg — ' (V)pe — pabgg = F
(¢’ 1/))(0, g) = (¢07 ¢0)(€)
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where
F=0(V+¢e)—0o(V)=0'(V)pe.
For any interal I C [0, 00), we define the solution space of (3.2) as
X(I) ={(¢,¥) € C°U; H?), ¢¢ € L*(I; H), ¢ € L*(I; H*)},
and set

N(t) = JSup (¢, %)(7)]|2-

It is well-known in the previous papers that Theorem 2.3 can be proved by the
following theorem to the problem (3.2).

Theorem 3.1.  Suppose that the assumptions in Theorem 2.3 hold. Then there
exist positive constants 6o and C such that if ||(¢o,%o)|l2 < 62, then (3.2) has a
unique global solution (¢,v) € X([0,00)) satisfying

¢
(3.3) I8, ¥)(®)II3 +/O {llpe(MIF + (T3} dr < Cli(0, %0)lI3
for allt > 0. Moreover, the stability holds in the following sense :

(3.4) sup |(¢e, ¥e) (£, €)| = 0 as t— oo,
£ER

By the same continuation procedure as in [4], we can prove Theorem 3.1 com-
bining the following local existence and a priori estimate.

Proposition 3.2 (Local existence). For any 69 > 0, there exists a positive
constant T, depending on 8y such that, if (¢o,%0) € H? and ||(¢o,%0)||2 < b0, then
the problem (3.2) has a unique solution (¢,v) € X([0,To]) satisfying ||(¢p,¥)(t)||2 <
cobo for 0 <t < Ty, where cq is a positive constant independent of by.

Proposition 3.3 (A priori estimate). Under the assumptions in Theorem 2.3,
let (¢,v) € X([0,T]) be a solution of (3.2) for a positive T. Then there exist positive
constants 63 and C which are independent of T such that if N(T') < 83, then (¢, )
satisfies the a priori estimate (3.3) for0 <t < T.

The proof of Proposition 3.2 is standard, so we here omit it. In the rest of
this paragraph, our purpose is to prove Proposition 3.3 by using the following key
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estimate. In what follows, we assume that (¢, ) € X([0,T]) is a solution of (3.2)
for a positive T and N(T) < 1.

Lemma 3.4 (Basic Estimate). Suppose the assumptions in Theorem 2.3. Then
it holds

35 eI +_/0 lle(r)lI*dr < C <|I(<ﬁo,¢o)ll2 + N(lt)/0 l|¢g(7)||2d7) ;

fort e [0,T).

Proof of Proposition 3.3.  Since the proof is given exactly in the same way as
in [4], we only show its rough sketch. From the equations (3.2), we have

(3.6) pde: — sugee + o' (V)de + stbe — ¢y = —F.

Multiplying (3.6) by ¢ and integrating the resultant equality over [0,t] X R, using
the basic estimate of Key Lemma 3.4, we obtain

G eI + (1 - C’N(t))/0 llge()lIdr < C(ll(go, Yo)lI* + lidoel®)-

For the estimates of ¢, we may differentiate the equations (3.2) in £, and mutiply
the frist equation by o’(V)¢, and the second one by 1, respectively, then may add
them up and integrate the resultant equality over [0,¢] x R. Then, combined with
(3.5) and (3.7), it consequently gives us

(3.8) uw@%me+Alw&vNHTSCM%mmm

provided N(T') is suitably small. Similarly, for the estimates of ¢¢¢, differentiating
equation (3.6) in £, multiplying it by ¢¢¢, and integrating the resultant equality over
[0,t] x R, we then obtain, combined with (3.5), (3.7) and (3.8),

T+ llbo,eell®)

(3.9) |mmW+Auvawscm%wm

provided N (T) is suitably small. Furthermore, we differentiate the second equation
of (3.2) in £ twice, and mutiply it by ¢¢¢. Then, for suitably small N(T'), we can
similarly show

(3.10) I(¢ee, ee) ()11 +/0 [beee (T)II>dr < Cl(o, %o)ll3-
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Combining (3.5)—(3.10) yields

(¢, )3 +/O {llge (DT + llsbe (N)l3}dr < Cll(¢o, %0)l3

for suitably small N(T'), say N(T') < 63. Thus, we have completed the proof of
Proposition 3.3. Ll

4. Proof of Basic Estimate

To prove the stability by energy method, the key step is to establish the basic
estimate (3.5) in Key Lemma 3.4. Since the previous procedures in [4, 12, 13, 14]
are invalid for the non-convexity condition (1.5), so we have to find another way
to arrive at our goal. Here, our idea is that after transforming the system (3.2) into
a new one by selecting a suitable transform function, we prove the basic estimate
(3.5) by the weighted energy method with a suitable weight.

Let us introduce a transform function T'(v) and a weight function w(v) as
follows

4.1) T(v) = Co(v +1), v e [0,v_],
Vo' @) (v +b), v e [vs,0],
(42) w('u) = (U + b)2, vE [’U+,’U_],

where Cp = 4/07(0) and b is a positive constant choosen as
(4.3) 0<2v,—3v, <b<2(s®—0a'(v_))o"(v_)"! —v_

corresponding to the assumption (2.18) and Proposition 2.1. It is noted that T'(v)
and w(v) are bounded and positive on [v;,v_], and are in C*[v,v_], but without
the continunity of 7" (v) at the point v = 0, for example, in the case of o”’(0) # 0.
We shall show how to choose T'(v) and w(v) in the following procedure.

Let (¢,%)(t,€) be the solution of equations (3.2). We define a transformation
in the form

(4.4) (¢,9)(t,8) = T(V()(®(t€), ¥ (¢ ),

where V' (€) is the viscous shock profile. We denote &y as a number in R such that
V(&) = 0. It is easily seen that & is unique because of the monotonicity of V' (),



598 A. MATSUMURA AND M. MEI

i.e., Ve(£) < 0. Then the equations (3.2) can be transformed into

4
T T
B, — 5B — g — 50— LW =0
e A S ’
T ,
U, — s+ 2“? \I/g -0 (V)(I’E - H“I’Eﬁ
4.5)

(T Tee\ g inleg
(sT+,LLT)\II U(V)T<I>—F/T(V),

| (@.9)(0,) = (60,40)(/T(V),

in respect of two spatial parts £ € (—o0,&p] and & € [€g, 00) due to the discontinuity
of T¢¢ at the point &, where T denotes the transform function T'(V'), T = 0T(V')/9¢
and ng = B2T(V)/3§2.

Multiplying the first equation of (4.5) by ¢/(V)w(V)® and the second one by
w(V)¥ respectively, noting uV; = h(V'), we have

46) S (o) (V)2 + (V)WY — -+ e + (V) B2

+ %w(V)Y(V)(sfb + )% + '—V;—lw(V)Z(V)\p2
= Fuw(V)¥/T(V),

in respect of the two spatial parts (—oo, &) and [£g, 00), where

@7) ()= gg’(v)w(V)sz +0' (V)w(V) oW
+ [(% + u%) w(V) + gw(V)ﬁ] v,
(4.8) Y(V)=-d"(V)—0o'(V) (I:JUI(({‘//)) - 27;((“//))) ’
49) 2(V) = # FR(V) 1:;/((“//7) _hY) ,;l;’((“//)) 7;((“//)) —K(V) I;((“/{))
T'V)\* , V) (@ o, BV) (w(V)Y?
*"“”(ﬂv)) T (E) W+ (w<v>> |

We see that the coefficient functions in (4.7) are continuous in R since w(V (£)) and
T(V(£)) are in C*(—o00, 00), so {- - -}¢ will disappear after integration over (—oo, co).
The most essential point of this paper is to choose w(V') and T'(V') properly so that
both Y(V) and Z(V') are non-negative in (4.6).

Lemma 4.1.  Under the sufficient conditions (2.18) and (2.19), let T(v) and
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w(v) be choosen as in (4.1) and (4.2). Then it holds
(4.10) Y(0) 20,  Z(v)>Cilo"(v)|
for all v € [vy,v_], where Cy > 0 is a constant.
Proof.  Since ¢”(v) changes its sign depending on the sign of v, we have to
divide the region of v into two parts as follows.

Part 1. When v € [0,v_], ie., ¢”(v) < 0 and A'(v) = o'(v) — s% > 0, we find
T'(v) and w(v) satisfy

_d"(v) A (w)w'(v)  h(v) (w ! h(v) [(w'(v))?
@.11) Zw) = 5 + 9 w(v)+ 5 (E) ( )+T(w—(v)—>
_ 71(v)
v+b’
where
(4.12) @) = B'(v) + %a"(v)(v +b).

Therefore, in order to see (4.10), we should show g;(v) is positive on [0,v_].
We first note that ¢;(v) is monotonicaly decreasing since gj(v) = (3/2)0” (v) +
(1/2)0" (v)(v+b) <0, " (v) <0, 0" (v) <0and v+b> 0 (see (2.18) and (4.3)).
Then we have g1(v) > q1(v-) = h'(v-) + (1/2)0"” (v_)(v— + b) > 0 by (4.3). Thus,
we observe that

2oy > B02) 5 @i )lo" ()

v_+b = (v +b)o"(v_)|’ v € [0,v_].

Part 2. When v € [vy,0], i.e., 0”(v) > 0 and A’ (v) = 0’(v) — s S0 for v S v,,
see (2.11) in Sect. 2, we find T'(v) and w(v) satisfy

w'() _,T'w) o"(v)
w) T TE) ()’

which yields Y (v) = 0, and

" " 2 ’ —
(4.13) Z(v) = 3;‘;((:)1)) + h(4v) (U (v)) Lo (;,:_b 2'
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To show Z(v) > Co”(v), we further devide the region [v4, 0] into [v,,0] and [v4, v,].
When v € [v, 0], since o’(v) — s?2 > 0 and b +v > 0 for v € [v,, 0], we have

s v) h(v)o” (v) ”
Here we used the fact
h 1"
(4.15) 0 < ga(v) = —%(?(;j—) <1, for wvé€ [vy,0].

To see (4.15), making use of h(vs) = ¢”(0) = 0, and 0"/(v) < 0, we observe that
g2(v4) = q2(0) = 0, and ¢(v) > 0 for v € (v4,0). Consequently, g2(v) attains its
maximum over [v,, 0] at a point v = v in (v, 0), and hence g = maxve[wﬁo] g2(v) =
g2(0) > 0 and ¢4(v) = 0. Rewriting g2(v) as —h(v)o”(v) = s%0'(v)gz2(v) and
differentiating it with respect to v at v = o, we have

@) _ @ m) _

)o'
s2 s2o’(

v
)

When v € [vy,v.], i.e., 0/ (v) — s2 < 0, there exists a point ¥ € (v,v,) such that
(4.16) o' (v) — 8% = 0" (D) (v —vs) > " (v)(v - v),

because of ¢’”/(v) < 0. Substituting (4.16) back into (4.13), we have

(4.17) Z(v) > 4(::((;)))2 {23201('0) + h(v)o" (v) + 40'(1;)2%’;1)1}

= f}((z_))i%(v)'

Differentiating g3(v) with repect to v, and making use of h(v) < 0 and ¢"'(v) < 0,
we have

o' (v)
(v+b)?

(v),

(4.18) gs(v) = h(v)o"” (v) + 0" (v)qs(v) + 4

a'(v)
CET

gs(v)

> 0" (v)ga(v) +4

where

5v —4v, +b

94(v) = s* + 0'(v) — T B0) =@ +b) + (v +b) (v~ vi)o" (v).

Making use of s2 > ¢’(v) and v + b > 0 on [v4,v.], and (2.18) and (4.3), we know
ga(v) > 0 for v € [v4,v.]. On the other hand, we can see that

(4.19) g5(v) > gs(=b) = o’ (=b)(vs +b) > 0
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In fact, by o”(v) > 0, v+ b > 0, (2.18) (see also (4.3)) and (2.19), we have
g5(v) = 20" (v)(v +b) + (v + b) (v — v.)o""(v) > 0

for v, > v > —b, which implies (4.19). Consequently, we have proved g5(v) > 0 for
v € [v4,v,] in (4.18). Thus using s? > o/(vy), (2.18) and (4.3), we obtain

0(0) 2 m(o2) > 200, {1 +2u} >0, ve oyl
V4 +b

Therefore, by (4.17), we can see that Z(v) > Const.o”(v) > 0 for v € [vy,vi].
Combining Parts 1 and 2, we have completed the proof of (4.10). O

Integrating (4.6) over [0, ¢] x (—oo, &] and [0, ¢] X [€o, 00) respectively, and adding
them, we obtain by Lemma 4.1

Lemma 4.2. Suppose the assumptions in Theorem 2.3. Then it holds

@20) @ 0O + [ v+ / | Weluv)zvywagar

colimmre [ [ 3w

Proof of Key Lemma 3.4. Since ||(®,¥)| ~ |[(¢,%)| by the boundedness of
T(V), and |F| = O(|¢¢|?), we have due to Lemma 4.2

Sfort e [0,T).

@21 (g, )OI + / e () szT-l—// w(V)Z(V)W2dédr

< ¢ (16w wo)I? + N0 /0 “¢f(7)“2‘”> |

Furthermore, multiplying the first equation of (3.2) by ¢ and the second one by
o’ (V)™ respectively, and adding them, we have

(4.22) {¢2+ v* } —{ﬁ‘i- i oY — Wg}
¢ (V)

2 Yoy 2 T
u o VIVe o 1o (V)Ve Fy
Y ) Y e e
We note that
uo” (V)V pp  po"(V)2VEy?
(423 (V) WE‘ )t T a )
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for 0 < e < 1. Substituting (4.23) into (4.22), and integrating the resultant inequality
over [0,t] x R, we have

t
@24) 16O + [ Ive(rlPar
t oo t
<c(IGasolP+ [ [ 10" Velwasar+ ) [ ||¢§<T)||2dr) |
Making use of Lemma 4.1 and w(V) ~ T(V) ~ Const., we obtain
t o) t [e%e)
(4.25) /O /_ . lo” (V) Ve|y?dédr < C /0 /_ . |Ve|Z(V)w(V)¥2dédr.

Applying (4.25) and (4.21) to (4.24), we finally have (3.5). This completes the proof
of Key Lemma 3.4. O
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