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Introduction

This paper is a continuation of [5].

Denote by M a Z,-Moore space. We take M=.S"U ,¢*, which is obtained
from a 1-sphere S' by attaching a 2-cell ¢, using a map S'—S' of
degree 2. Let =, be the k-th group of the stable homotopy of M, i.e.,
mp=Dir Lim [S™**M, S"M], where the direct limit is taken with respect to

suspensions. Put z4=3) 7., then it admits a ring structure with respect to
the composition. In fact, it forms an algebra over Z,.

In [5] we determined the additive structure of 7y in dim=<21. In this paper
we shall investigate compositions of elements in 74 and the ring structure of
s in dim=<21. Our main theorems are Theo. 4.1 and 4.2. Our methods
deeply depend on the results and the methods of Toda [6].

In §1 we shall state the general formulas obtained from composing elements
of 7zj(2)=Di"r+°];,im [S"7*M, S™, 7z7,"(2)=Di£ Lim [S"*#*', S"M] and =, .

In §2 we fix the generators of the above groups by use of the formulas of §1
and we examine compositions of the generators.

In §3 we prove the theorem in which the relations in the secondary or tertiary
compositions are mentioned. They hold the key to the discussions in §2.

Our main theorems are stated in §4.

§5 is devoted to the improvement in Theo. 5.1 of [5].

The author wishes to express his sincere gratitude to Professor N. Yamamoto
and Professor H. Toda for many advices and kind criticisms given during the
preparation of this paper.

Notations and conventions

The notations of [5] are carried over the present work with making a few
changes and adding new one.

In [5] we did not distinguish between a representative of a set of the
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(co-) extensions and the set itself. In this paper this distinction is essential.

Suppose given a={f}<[Y, Z], B={g}€[X, Y] and y={h} €[W, X] such
that ¢aB=0 in [X,Z] and By=0 in [W,Y]. Then we have two maps
F: YUgCX—Z and H: SW—Y UgCX which are characterized by the following
homotopy commutative diagram,

Y——vu,cx—2 sx

NN

N4

where 75 is an inclusion and pg a map shrinking Y to the base point of SX.
Fand H are called the extension of f, the coextension of % respectively.
We shall fix the following notations.

i) a@p={F}: the extension of a with respect to 3.
ii) §s={H}: the coextension of v with respect to (.
iii) Extg a: the set of &p.

iv) Coextgy: the set of §g.

We note that the Toda bracket {«, B, v}=(Extg a)(Coextg ¥) as a double
coest of two subgroups a[SW, Y] and [SX, Z] (Sv) in [SW, Z] (see Prop. 1.7
in p. 13 of [6]).

If 8=2&G,, then we put iz=i, pg=p, dg=a, ¥p=%y, Extg a=Ext a and
Coextg y=Coext 7y respectively.

Assume that ¢ =G}, is of order 2 and that na € G,,, is divisible by 2, where
7 is the generator of G,. Then we can define Coext (@) and Ext (@) by use of
Prop. 2.5 of [5]. We take
v) (@) eCoext (@) and (@) Ext ().

We put the following new notation.

vi) K;=keri* Nkerpy, where i*: n,—#¥(2) and py: n,— 7,(2) are natural
homomorphisms induced by 7: S'—S'U,¢’ and p: S*U,e#—S>

Our conventions are the following.

In discussions of this paper we often use those properties of Toda brackets
which are stated in Prop. 1.2, Prop. 1.4 and i) of (3.9) of [6] and those results
about (G4; 2) which are stated in Theo. B of [5] and Theo. 14.1 of [6] without

any reference.

1. Compositions of elements of = ,(2), #¥(2) and =,

In this section we shall state some general formulas obtained from composing
elements of 7 ,(2), z¥(2) and =, .
Throughout this section we take o and B in (G;; 2) and (Gy; 2) respectively.
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Proposition 1.1. If o is neither of order 2 nor divisible by 2, then

ap=ia mod iz (2)+7¥.(2)p
and
Coext (ap)i=ia mod im;.,(2)7 .

Proof. By ii) and iii) of Prop. 1.2 of [6], cﬂ)E{i, 2, ap}<{i, 2a, p} 2
{ia, 2, p}>ia. Since the bracket {t, 2a, p} is a coset of iz, (2)+ ;. (2)p,
we have the first assertion.

The second assertion is a direct consequence of the first one.

Proposition 1.2. Assume that a is of order 2 and that na is divisible by 2.
Then we have the following.

i) @=(@mod 3 {7 p}+ir;(2)+7A2)p,

1<s5<m
where 7y, -+, 7,, are the elements of (G ;,,; 2) which are neither of order 2 nor
divisible by 2.

ii) Supose given & and & such that imad=anp. Then

Coext (@)i=a mod X {iy,}+in;..(2)i,

where t runs over the subset of {1, 2, ---, m} which consists of s satisfying the equation
iy, p=0.

Proof. Obviously, (E)E(g) mod p5'e*7'(0). By use of Prop. 1.1, Prop.
1.2 and Prop. 1.3 of [5], it is easy to see that py's*'(0)=px'(G,.,p) and that
this equals the given subgroup of 7., in i). So, i) is proved.

By Theo. A of [5], 2(@)=ina, 2(@) =anp and 2y, p=iny,p. So, i) and
the assumption of ii) lead us to the assertion of ii).

Proposition 1.3. Assume that o is of order 2 and that 3 is neither of order
2 nor divisible by 2. Then we have the following.
i) In case aB=+0:
a) a Coext (Bp)=pLamod ary(2)+G ;. tp,
b) Coext (Bp)(i@)=iBa mod in, . ,(2)ia.
il) In case a3=0:
a) a Coext (Bp)=0mod amy,,(2)+Giprps
b) Coext (Bp)id)=i{B, e, 2}p mod iz, (2)i@+iBG ., p.

Proof. Clearly, @ Coext(Bp)< {a, 2, Bp}2{a, 28, p}. This bracket
contains Ba& or 0 according as aB=+0 or aB=0 and it is a coset of
arg(2)+Gjipp.  So, a) of i) and ii) are proved.

By Prop. 1.1, Coext (Bp)(i@) contains iBa& mod iz, ,(2)i@. So, b) of i) is
proved, -
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If aB=0, iBa=iB{a, 2, p}=i{B, a, 2}p mod iBG,.,p. This leads us to
b) of ii).
Proposition 1.4. Let o and (3 be same as the above proposition. Then
we have the following.
i) In case aB=0:
a) Coext (Bp)a=aB modiG; g4,
b) (a@p) Coext (Bp)=afp.
i1) In case aB=0:
a) Coext (Bp)ad=0mod G, 4y,
b) (a@p) Coext (Bp)<i{2, a, B} p mod iG,.,5p.

Proof. If af=+0, Coext(Bp)a={i, 2, Bp}a<{i, 2, Ba}2{i, 2, a}B>ap.
Since the bracket {7, 2, Ba} is a coset of iG 44, We have a) of i).
The others are obvious.

Proposition 1.5. Assume that a and (3 are of order 2 respectively and that
nat is divisible by 2. Let @, B and & be fixed. Then we have the following.
i)  In case Ba=+0:
a) If ima=amp,

B Coext (@)= (Ba) mod Z {78} + B j1A(2)+ G jigsab

where t runs over the subset of {1, 2, ---, m} which consists of s satisfying the equation
iy, p=0.
b) If aB=0 and afB=0 and if there exists v&(Gig+1; 2) which
satisfies AB=iy,
aBEl"? mod Kj+k+1 o

i) In case Ba=0:
a) B Ext(@)={B, &, 2}p.
b) If aB=0 and {a, B, 2}=0,
aB=i{2, a, B, 2}p mod iG ., Ext 8+ (Coext a)Gp,p -

Proof. a) of i) is a direct consequence of ii) of Prop. 1.2.

b) of i) and a) of ii) are obvious.

By use of ii) of (3.9) of [6], {8, 2, a}+{2, a, B}+{«a, B, 2}20. So, we can
take y=0Ba& mod BG,.,+aGy,+2G .4, in b) of i) and we have {2, @, 8}20
under the assumption of b) of ii).

Now we can construct the tertiary composition {2, a, B3, 2} by use of the
Mimura’s methods (see [2]). Namely, from the fact {2, @, 8}=0, we can
choose 2, and B, such that 2,83,=0. Itis clear that B,2€{i,, a, B}2=
i,{a, B, 2}=0. So, we can define the Toda bracket {2,, B,, 2}. We put
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(2,2, B, 2= {24 Ba» 2} mod 2,[S™Hi+k+2 S, i+ ] [S™7+ Uge™ 7542 §72,,
where 7 is sufficiently large.

It follows that i2,Ei{2, a, p,}={, 2, a} p,—=(Coext a)p,. Similarly, we
obtain 2;pEis Ext 8. Therefore, we have i{2, a, B, 2}p =i{24) Ba, 2}p=
124{Ba, 2, p} < (Coext ) (Ext B) mod iG ., Ext 8+ (Coext a)G:,p. This leads
us to the assertion of b) of ii).

Proposition 1.6. « and (3 are same as the above proposition. Let B and @
be fixed. Then we have the following.

i) In case af=+0:
a) Coext(@)B=(aB) modiG;,;.,.
b) If aB=0 and Ba=0 and if there exists v&E (G p1,; 2) which
satisfies Ba=r1y p,
Ba=Fpmod K .44, -
i) In case af=0:
a) Coext (@)B=1{2, @, B}.
b) If aB=0 and {2, B, a}=0,
Ba=i{2, B, a, 2} p mod iG,,, Ext a-+(Coext B)G,.,p .
The proof is quite similar to the one of the above proposition and we
omit it.
Proposition 1.7. Assume that o and (3 are neither of order 2 nor divisible
by 2 respectively.
i) If aB is neither of order 2 nor divisible by 2,

?«\ﬁ,’é\pfe Coext (aBp) .
ii) Suppose givenz(\ﬁ and ’B\j; such that Zr\]-;izia and ,z-?\pf’iz Bi, then we have
the following.

a) If aB is divisible by 2,
&?E?EO mod K ;.
b) If aB is not divisible by 2 but of order 2,
%§5i5,§+&\ép mod K .
The proof is left to the reader.

Proposition 1.8. Assume that « is neither of order 2 nor divisible by 2 and
that (3 is of order 2 and 13 is divisible by 2. Let B be fixed.
1) If aB=+0,
&?(E)eCoext (aB) .
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i) If aB=0 and if there exists v E(Gj,p+,; 2) which satisfies aB=yp, we
have the following.
a) ap(B)<Coext (vp). _
b) If B, ap and (B) are fixed such that api=ia and (B)i=fB and if
%Gzﬁazi'y and Engyp, we have
(B)ap=ap(B) mod K ;s -
The proof is left to the reader.
In ii) of the above proposition we can take yE{a, B, 2}.
Proposition 1.9. Assume that o and (3 are of order 2 respectively and that
nat and n3 are divisible by 2 respectively. Let @, B, B and (B) be fixed such
that (B)i=p. Then we have the following.
i) IfaB=+0,
(@)(B) & Coext ((@B)) -
i) If @aB=0 and if {@, B, 2} and {2, @, B} consist of the elements which
are not divisible by 2 but of order 2 respectively, we have
~ o~ —~—
(@(B)=i{2, a, B}+{a, B, 2}pmod K 4., .

Proof. 1) is obvious.
ii) follows from a) of ii) of Prop. 1.5 and Prop. 1.6.

2. Generators and relations in 7 ;2), 7¥(2) and =,

In this section we shall use the general formulas of §1 and choose the
generators of 7 ;(2), n¥(2) and z;. We shall compute compositions of elements
of 7.

The Toda brackets which appear in this section are the following.

Theorem 2.1. (Toda).
i) {n, 2, n}=42v, {v, 7, 2}=0,
{n, 2, 7*}=4-2v* mod 7z, {v*, 7, 2}=0 mod 2G,,
i)  {n, 2, vV'}={n, v*, 2} =€ mod s, {+*, 7, 2}=0,
{9, 2, 8c}={n, 80, 2}=p mod {7’c, 7€}, {8, 7, 2}=0,
{n, 2, a*}={n, o, 2}=7* mod np, {*, n, 2}=0,
{n, 2, 6}={n, &, 2}=0 mod 7%, {s, 7, 2}=0,
{u, 2, 8}={u, 8o, 2}=m mod 7*p, {8a, u, 2}=0.
i)  {n, 2, &=0 mod nu, {n, 2, k}=0 mod 7p,
{1, 2, &=0 mod 7.
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iv)  {o, V', 2}={o, 2v, v}=0 mod J*,
{v, ¢*, 2}={v, 20, o}=v* mod 2v*,
{a?, n, v}={o, 70, v}=3, {0, &, v}=0.
v)  {%& m, 2}={7"c, 7, 2}=¢ mod 2G,,,
{7p, 1, 2}=F mod 2G,,,
{v, 87, 2} D {v, 20, 8} ¢ mod 2G,,,
{¢, 8a, 2}D{¢, 20, 8}2% mod 2G,,,
{0, 8a, 2} D{a, 20, 8} p mod 2G,;,
{&, 8a, 2}={na, 80, 2}=1p, {87, 2, 8a}=16p.
vi)  {nx, 9, 2}=vk, {x, 2, V'}=nr.
vil) {2, 4% p}=0, {v, 7, ¥a}=0, {o, v, {}=0.
viii)  {x, 8c, 2} =0 mod 7%, {o, «, 2}=va,
7, =02, V, Vi=x,
{7, ®v, 2}={2, v(x), 7} =0 mod 2G,,.
ix) {2, 4v, n, 2}=0,
{2, &, 7, 2}={2, 7, 3, 2}=0 mod 7.
This theorem will be proved in the next section.

Throughout this section we denote by Roman letters x, y, 2, etc. integers
Oorl.

2.1. First we define §€x_, by
(2.1) d=1p.
We choose

(2.2) 7E€EExty and 5=Coextn

arbitrarily. Then remark that Ext »={7, —7} and Coext n={#, —#}.
We define 7, and 7, in 7z, and n,E 7, by

(23) n=17, m=7p and n,=77.
Take

(2.4) v, € Coext (vp)Cr,

arbitrarily.

Proposition 2.1.
i) 8=0, on,=7,0=0 and 7,8==8n,=inp=2.1,

where 1 is a generator of =, and of order 4.
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i) Smy=mni=in7, n,.0=ni=imp and 57,8=0.

iii)  »,8=08v,=ivp.

)  nmm=n7=0 and 7,7,=7,=0.

V) ==

vi)  73n,=0.

vil) nw,=v=nv,=v2,=0 and np,=vn,=n5=0.

Proof. i), ii) and v) are obvious (see Theo. A of [5]).

By Theo. 3.1 of [5], =,(2)={7"7}. Since in’7i=1i7’=1i(4v)=0, we have
iz, (2)i=0. So, we have, by use of Prop. 1.1,

(2.5) Coext (vp)i =iv.

From this we have the assertion of iii).
iv) follows from the fact %=-+2v of i) of Theo. 2.1.
By Theo. 3.1 and Theo. 3. 2 of [5], #z{(2)=0 and z¥(2)=0. So, we have

(2.6) g, =vi=0 and vi=7r=0.

From (2.5) and (2.6) we have vii).

Finally, we shall prove vi). By use of b) of ii) of Prop. 1.5, n3n,=7m"n=
P r=45=1{2, 4v, 7, 2}p mod iG, Ext n+Coext (4v)G,p=0. By ix) of Theo.
2.1, {2, 4v, m, 2} consists of 0. This leads us to vi).

2.2. By ii) of Theo. 2.1, {*, 2, n}={», 2, ¥’}=E mod ns. So, we can

choose *=Ext »* and »*=Coext »* such that

~

(2.7) Vi =m'=¢E.
It follows from (2.7) that
(2.8) wt=Ep and vn=it.

We shall prove the first. Since {7, »*, 2}=& mod 7o by ii) of Theo. 2.1,
we have mPen{l, 2, p}={n, +*, 2}p=Epmod nap. So, we can put 7’=
Ep-+amop. Multiply this equality by 7 on the right, then we have x=0 by

(2.7) and by the result 7’c=0.
Since {8a, 2, 7} = {7, 2, 8¢}=u mod {r’c, 7€} by ii) of Theo. 2.1, we can

take 8¢ €Ext (8¢ and 8 & Coext (8c) such that
(2.9) 8c7 = n8c = p.

From the results that {&, 2, n}={», 2, & =0 mod nu of iii) of Theo. 2.1,
we can choose (§)€Ext € and &€ Coext & such that
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(2.10) &7 =nE=0.
If follows that
(2.11) 7€) =&y and &n= 7E.

We shall prove the second. Clearly, &n—76€iGy={inu}. Namely, we
can put &p=#E+ximu. Multiply this equality by 7 on the left, then we have
x=0. For 7&7=0 by (2.10), 76=2vE=0 and 7’p=+0.

By Theo. 3.1 of [5], iry(2)i=i{8c, nop, Ep}i=0. So, we have, by use of
Prop. 1.1,

(2.12) Coext (op)i = io .

Since 780 €{n, 8a, 2}p=pp mod {n’sp, nEp} by ii) of Theo. 2.1, we have
nmy(2)=G,p. Therefore, we can choose o, & Coext (ap) Ty, by use of a) of i)
of Prop. 1.3, such that

(2.13) 7o, =—4o% mod 7Ep .

By use of a) of i) of Prop. 1.4, we can put o= jjo -+ xi9E+ yiu.
Multiply this equality by % on the left, then we have y=0. For 5o 5j=07ij=
n7jo=2v0=0, 76é=0 and 7u+0. So, we have
(2.14) o, 7= +7o mod in€ .

Since i7y(2)i=0, inop=20,+0 by Theo. 3.3 of [5] and z'n?z?npzifp
by (2.8), we have, by use of ii) of Prop. 1.2,

(2.15) Coext ()i = 27 .

Since 77(2)=G,p we can choose v, Coext (v*)Cx,, by use of a) of i) of
Prop. 1.5, such that

(2.16) 7w,= -+ (€) mod 7o .
By the similar arguments to (2.14), we have
(2.17) v,7=-+&mod i7’c .
Proposition 2.2.
1) o, 8=08c,=1tcp
i) Sv,=ir” and v,8="vp.
iii)  »{=8v,+v,0.
iv)  om=n0,=ic7 and o ,m,=n,0,=7jocp.

V) V:»’I;:’?ll/z:l'(z) and VM= 7721’2:517.
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vi) o, =+7%on and om,=+n,0,.
Vil) 7= :1:77(8) and v,m,—~+n.v,.

Proof. 1) and ii) are direct consequences of (2.12) and (2.15) respectively.

By use of b) of ii) of Prop. 1.7, v}=ir’+'p mod K,. Since K,={iop} by
Theo. 3.3 of [5], we can put vi=iv’+’p+xicp. Multiply this equality by 7 on
the left, then we have x=0. For 7v}=0 by (2.6), 177:97?%:81) by (2.7) and
(2.8) and 7op=0 by Theo. 3.1 of [5]. This proves iii).

We shall prove the first assertion of iv). The equality o,7,=ic7% is a direct
consequence of (2.12). We have 7,0,=ic7 by (2.13) since inep=i(2(€))=0.

We shall prove the second assertion of v). By (2.17) we have v,n,=
&p mod 17°cp=0.

By use of b) of i) of Prop. 1.6, we have 7,pv,=7v =Ep mod K, since 7°=0
by (2.6) and m*=¢p by (2.8). It follows from Theo. 3.3 of [5] that K,={iup}.
So, we can put ’=&p-+xiup. Multiply this equality by 7 on the right, then
we have x=0. For #%j=4¢ by (2.7), #€=E&n by (2.11) and iyp=+0 by
Theo. 3.2 of [5].

The first assertions of vi) and vii) are obtained from (2.13) and (2.16) respec-
tively since 29p,=imép=1{2, 0, 7€} p=1L p=1{2, 7, 7’0} p=77"c p=27n,0, by V)
of Theo. 2.1.

Similarly, we have inép=in’cp=1{p. By (2.11) and by Theo. 3.3 of [5],

we have &7 =7#(€) mod K,,={itp}. Therefore, we obtain the second assertions
of vi) and vii) by (2.14) and (2.17) respectively.

2.3. By use of ii) of Prop. 1.2, Coext (8_0-)1'55’5\& mod iz,(2)i. So, we can
choose 4 Coext (8¢) C 7, such that
(2.18) Ai = 8o .
From this and (2.9), we can choose
(2.19) () =nA€Exty and p—= A< Coext p .
Since {8c, 2, 8a}=16p by v) of Theo. 2.1, we can take
(2.20) 16p = 80 A=Ext (16p) and B;) = A8z < Coext (16p) .
By use of i) of Prop. 1.9, we can take
(2.21) A*e Coext (16p)m,; -

As nA%=(p)8¢ =75 mod 7°p and p(4’7)=8¢ =% mod #’p by ii) of Theo.
2.1, we can choose
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(2.22) (B)y=nA’mod npn and (@)= A5 mod imp .
Proposition 2.3.

i) 8A=i8¢ and A5=8sp.

ii) 0A=A8+xinap+yi&p and SA°=A?S.

iii) n,Ad=i(u), An,=n,A-+xinon+yicn and niA=Ani.
iv)  An,=pgp, n,A=An,+ximo p+y7HEp and A= An3.
V) ﬂlAin(E) mod i7p7 and A*n,=n,A4°.

vi) Azrzzz(%)p mod #npp and n,A*=Ay,.

Proof. 1) is obvious.

Since 7 Ext (8¢)=1{87, 2, p}=1{2, 80, p} = {i, 2, 8a}p= Coext (8c)p and
{2, 8a, p} is a coset of iG,p={inap, i&p}, we can put 84 = A8+ xinop+yicp.
We have A(inop)=8anop=i{2, 8¢, 1o} p=inpp=i{2, 8, & p=A(i€p) by v) of
Theo. 2.1. Similarly, we have (i7op)A=(i€p)A=inpp. So, we obtain §A4°=
AS8A+(x+y)impp=A"3.

By the above proof of ii) and (2.9), é:-nzip+xinza+yin£. As K,=0 by
Theo. 3.3 of [5], we have, by use of b) of i) of Prop. 1.5, An, =87
—i(u)+xinon-+yicn. Therefore, the first assertions of iv) and v) of Prop. 2.2,

(2.11) and (2.19) imply iii).

The first of (2.22) implies the first of v).

By the similar arguments to the above proof of ii), A(imon)=A(i€n)=17p7n.
On the other hand, (inon)A=ino(u)=iocun=inpn since of=0 and 7(u)=
ppmod ¢ p. We have (i67)A=i&(u)=inpn-=ziv*p since Eu=7p and in@p=D0.
Multiply this equality by », on the left, then we obtain 2=0. For »,(i6)=
wE=0, v,(in)=ivn=0 and »,(iv*p)=ivv*p=ic’p+0 by Theo. 3.3 of [5] (see
(7.16) and Prop. 7.2 of [3]). Consequently, the second of v) is proved.

The proofs of iv) and vi) are quite similar to the ones of iii) and v) respectively
and we omit them.

2.4. From the results that {v, 8, 2}=¢ mod 2G,,, {o, 8¢, 2} =p mod 2G,,
and {¢, 80, 2}=F mod 2G,, of v) of Theo. 2.1, we can take, by use of a) of ii)
of Prop. 1.8,

(2.23) v,A€Coext ({p)T 7y,
(2.24) g, A€ Coext (pp) Cmys
and

(2.25) v, A’ Coext (Ep)C 7y, -
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Proposition 2.4.

1) Ao=+0sA4.

i) Av,=vA.

i) 7,A=%(u) and An,= 41,4 mod v, A.
iv) 7,4°=44(@) mod v, 4* and A*n,=n,A°

Proof. Sinc peE{s, 20, 8} C{s, 87,2} mod 2G,; by v) of Theo. 2.1, p(4a,)=

8a0,E{80, 2, o p}={8, 20, o p}={8, 20, o} p=pp and similarly o, 4i= Ao i=ip.
Therefore, we have, by use of b) of ii) of Prop. 1.8, 4o,=0,4 mod K ;=

{inpp, in*p, i16p}. Namely, we can put Ao,—= o, A+xin*p-+yil6p. Multiply
this equality by 7 on the left and by 4 on the right at the same time, then we
have x=y=0. For it is clear that 74o,5j=%0,A5=0 and that 7*»* and 7z are
linearly independent in (G,; 2).

By the similar arguments to the above, we obtain Av,—v A+zinun. By
i) v,Ao,=v,0,A and this equals Av,o, since v,o,€EK,,={i{p} and (i{p)A=
A@iEp)=1iEp. On the other hand, inpyo,=inuen=1i7"pn=1ip since {7’p, 7, 2} =
& mod 2G,, by v) of Theo. 2.1. 'This leads us to the assertion z=0.

It is clear that 29,A=2An,=inun. So, iii) follows from Theo. 3.3 of [5].

The proof of iv) is left to the reader.

2.5. From the results that {«, 2, 7}={n, 2, x}=0mod 7p of iii) of Theo.

2.1, we can choose (x)EExt « and &€ Coext « such that
(2.26) (R)7=n8=0.
By the similar arguments to (2.11), we obtain
(2.27) (k) = xn and &y = K.
We define «, €7, and x,Ex, by
(2.28) k, = i(k) and K, = 7(k).
Proposition 2.5.
i) dx,=0 and rk,6=ixp.
i) r,=n,=0 and Sx,=rn,=nx,=in(x).
iil)  me=rm=1r1,=0 and n,e,=r,n,=0.
iv)  vitwr,=rp.
V) K=k, =gk, =Tk =iv(x)+ v p mod iv*p.
vi)  v,=iv(k) and g, =v,k, mod iv¥p.

vii)  mw,=vr,=0.
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Vi) vy, =v%(x) and r,,=irn mod ivs p.

ix) Ovi=v30=v,0v,=«,0 and k,8=n,13.

Proof. i), ii) and iii) are obvious.

By viii) of Theo. 2.1, {¢?, 7, 2}=1{2, /%, y}:x. So, we obtain, by use of
ii) of Prop. 1.9 and Theo. 3.3 of [5], v3=«,+&p-+xipp. Multiply this equality
by % on the left and by 7, on the right at the same time, then we have x=0.
For nvim,=nn3=0, 7x,7,=0, 7&pn,—=0 and 7’pp=+0 in 7,(2). Thus, iv) is
proved.

By iv) of Theo. 2.1, p(7xn)=nxn="{nk, n, 2} p=vep and similarly (7x7)i
—=ivk. So, we have 7xy=iv(x)-+#&vp mod K,,={iv*p}. From this and (2.27),
we obtain v).

The first of vi) is obvious.

By use of a) of i) of Prop. 1.3, (#)»,=w(x) mod x7z,(2)-+ G, p={v* p, n7p}.
By the similar arguments to (2.14), we have

(2.29) ()v,=v(x) mod v*p .

From this we have the second of vi).

By (2.6), vc,=»,7()=0. By (2.29), (2.6) and i) of Theo. 2.1, xw,=7(x)»,
=7w(x)=0 mod 7v* p=1{2, , v*}p=0. So, vii) is proved.

The first of viii) is obvious.

By use of a) of i) of Prop. 1.5, «,v,=iz% mod ixmy(2)+iG,,p={ivsp} since
(k)*=#n and ix8c=0 mod ix&p=0 by vi) and viii) of Theo. 2.1.

i), ii) and iv) imply ix) except for the relation »,8v,=8v3. This will be
proved in Prop. 2.9.

2.6. We have the relations
(2.30) @)= ((E=0.

We shall prove the first. By iii) of Theo. 2.1, (§)E=anm. Multiply
this by 7 on the left, then we have x=0 since 77(—6)/7:2677/7,680“:0 and 7z=+0.

Proposition 2.6.
i) Av,=v,A= 0,4 mod {ikn, jxp}.
i) 8Av,=Adv,=Av,6=208v,A=v,04=v,A8=380,A.

Proof. By v) of Theo. 2.1, 24v,=2v,A=i{§, 8c, 2}p=inpp=i{na, 80, 2}p
=20,4. So, we have, by Theo. 3.3 of [5], Av,=v,A=0,4 mod {inpp, in*p,
i16p, ixn, frp}. Multiply these by % on the left and by 7 on the right at the
same time, then we have i) by (2.30).
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By use of iii) of Prop. 2.2, ii) of Prop. 2.3 and Prop. 2.4 and i), we obtain
ii).

2.7. Lemma 2.7 or=v0,=0 and Yo=0c 7 =0.

Proof. By iv) of Theo. 2.1, ov’E{c, 1%, 2}p=0mod o*p. Assume that

ov’=a"p, then we have, by the definition of 6&(G,,; 2) (see iv) of Theo. 2.1)
and by the relation 7v=0 of (2.6),

6 ={d* n, v}
2{c*p, 7, vi={o¥’, #, v}
Ao, V7, v}
={o, & v} by (2.7)
=0 by iv) of Theo. 2.1.

This contradicts to the result that 60 in G,,, Thus the first relation is
proved.

By Theo. 3.1 of [5], vz, (2)=v{n(u), Ep}=0. So, we have v’c,E {V*, 2, op}
={v, 2v, o p}={v, 2v, o} p=0mod o°p by iv) of Theo. 2.1. Namely, we can
put v’o,=x0’p. Multiply this by o on the left, then we have x=0 since ov’s,=0
by the first relation and o°p=0 by Theo. 3.1 of [5].

By the quite similar arguments to the above, we obtain the other relations.

As an immediate consequence of this lemma we have

Corollary. o,v,=v,0,=0.

2.8. Proposition 2.8. «,0,=0,x,=iv5p.

Proof. By viii) of Theo. 2.1, o,x,=io(r)=i{c, &, 2} p=ivsp.

On the other hand, we have 0, Ei{x, 2, op}. The bracket {«, 2, op} is a
coset of xmy(2)+ G sop= {7z p} since ocp=nok=0, Ek=7"% and «8c =0 mod Exp.
By use of Prop. 1.5 of [6], {{2, ¥, ¥}, 2, op} + {2, {%, ¥, 2}, op} +
{2, v, {’17, 2, op}}20. By (2.15) and Corollary of 2.7, we have {;5, 2, op}=
v,0, =0 mod V7, (2) + 7§(2)o p={ipp}. By vii) of Theo. 2.1, {2, 1%, ipp}<
{2, v, pp}21{2, V', p}p=0mod 27,,(2)={7"=p}. Therefore, we have, by viii) of

Theo. 2.1, {x, 2, op}=12, &, cp} 242, , o}p=vsp mod P’zp. This leads us to
the first relation.

2.9. By ii) of (1.4) of [6], we have (1#v)(l#o)=1%#vc=0 and
(1#0)(14v)=140v=0, where 1 is the generator of =, and a#@3 is the
reduced join (see p. 6 of [6]). Clearly, we have 13» & Coext(vp) and
14 o0& Coext (0p). Since Coext (vp) is a coset of iz,(2)={27,} and Coext (o p)
is a coset of iz, (2)={84, 20, 2v,}, we have li#v=v+2x7, and l¥o=
+o,+2yv,+284. So, by the above two relations and the ones that »,84=
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8Av,=27n,0,, we have v, =0 y,=2(x+y)n,0,.

Now we change the definition of v,. We replace v, by v,+2(x+y)7,.
Then we have
(2.31) vo, =ap,=0.

We note that v,+2(x+y)7, is contained in Coext (vp) since this is a coset
of {27,}.

Proposition 2.9.

1) vV, =v,0, =71V, +0,)

) mmp=nm0,=0A.

i) vpi=npi=nx.

iv) v,8v,=0vi.

Proof. Since pvyi=pv,vi=v’=n(E+on)=pn,(v,+o,)i, we have, by use of
Theo. 3.3 of [5], vw,=v,w,=n,(v,+0,) mod {2 7,0, 734, 754}. Multiply these
by 7, on the left and by #, on the right respectively, then we have v, =v,v,=
7y(v,+0,) mod 27,0,. Furthermore, multiply the equality v,v,=v,,+2x7,0, by
4, then we have x=0 by i) of Prop, 2.6. 'This leads us to i).

By vii) of Prop. 2.1 and iii) of Prop. 2.2 and by i), 0=v}v,=3v3+v,6v,.
Namely, iv) is proved.

The proofs of ii) and iii) are left to the reader.

2.10. From the results that {o? 2, n} = {n, 2, ¢’} = 7* mod np of ii) of
Theo. 2.1, we can choose o?€Ext o* and o’ Coext o such that

(2.32) o = nat = 7*.
By the similar arguments to (2.8), we have
(2.33) 7o’ = n*p and o'y = in*.

From the results that {7*, 2, 7} = —{n, 2, »*}=+ 2v* mod 7w of i) of
Theo. 2.1, we can choose 7* € Ext 7* and n* & Coext * such that

(2.34) = +20% and Tp* = +20*.
It is clear that
(2.35) m* = n*5  and 7 = m*.

By Theo. 3.1 of [5], it is clear that iz (2)i={inx} and 77,(2)=G,p. By

use of ii) of Prop. 1.2 and a) of i) of Prop. 1.5, we can choose o, Coext (%) C g
such that
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(2.36) of =0

and

(2.37) 70, = - 7* mod {vkp, v'pp} .
Obviously, we have

(2.38) o= —4n* mod {ivk, i7'p} .

Since {», o*, 2} =v* mod 2v* by iv) of Theo. 2.1, we can choose, by a) of
ii) of Prop. 1.8,

(2.39) v,0,& Coext (v*p)C g -

Proposition 2.10.

i) So,=ic” and 5,5=a"p.

i) oi=dc,+0a,9.

i) 7,0, =47* mod ivk p and o,m,=7,0, mod v p.
iv) aznzzv’y\’"‘p mod ivkp and 7,0,=0,7, mod ivip.

v)  m0,=47* mod ifp and o,n,= 41,0, mod il p.
vi) ow,=v., mod {27,0,, i p, icp}.

The proof is similar to the one of Prop. 2.2 and we omit it.
We note that the following relations hold.

(2.40) ot =gyt =a*.
We shall prove the second relation. By Lemma 2.7 and ii) of Prop. 2.10,
0=o20*=80,0"10,87°. So, we have g’ =ap’= i{2, o, viv=iv*v =ic’.

Therefore we obtain 07;5—0362G21:0 (see [3]).

2.11 By use of ii) of Prop. 1.2, we can choose «,& Coext (v(k))C z,, such
that

(2.41) ki = Ry-+xiv* .
Since v,o,i=iv*, we have
(2.42) K+ xv,o, EExt () .

Since {7, @, 2} ={2, v («), 7} =0 mod 2G,, by viii) of Theo. 2.1, we have,
by sue of a) of ii) of Prop. 1.5 and 1.6 and by (2.6),

(2.43) e, =0 and w7 =0.
Proposition 2.11.

i) Sk,=iv(x) and x,8=iv p mod iv*p.
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) k=K =K== Ky, =0 and nyx,=r;1,=0.
it) vk, =w,k, 4w, mod {ico?, ivep} and kp,=vx,mod {ic o*, o’ ap, WGP}
The proof is easy and left to the reader.

2.12. From the results that {s, 2, 7} = {7, 2, 6} =0 mod 7z of ii) of
Theo. 2.1, we can choose (5)€Ext (5) and (E)ECoext (5) such that

J— ~

(2.44) @7 =2 =0.

It is clear that
(2.45) 7(6)=0 and Gn=0.

Since i7,,(2)i=0 by Theo. 3.1 of [5], we have, by ii) of Prop. 1.2,
(2.46) Coext (@)i = ().

Choose 5, Coext ((oT)) Cr,, arbitrarily, then we have
(2.47) 76,=0 mod {vap, 7’zp} and &,7=0mod {ive, in’x} .
Proposition 2.12. 7%,6,=46,7,=7,6,=a6,7,—=0 mod v p.

Proof. The first two relations are obivous.
For the proofs that 7,6,=a,7,=0, we use the facts that {2, 7, g, 2} =
{2, 5, 7, 2}=0 mod 7’z of ix) of Theo. 2.1. The details are left to the reader.

2.13. Since i7,,(2)i=0 by Theo. 3.1 of [5], we have, by use of Prop. 1.1,
(2.48) Coext (7p)i = i .

Let %, be a representative of Coext (#p) Cr,,, then we have, by use of a)
of i) of Prop. 1.3 and 1.4,

(2.49) e, =+rpmodvsp and & H=+%zmodivs.
Proposition 2.13.
1) &0=0r,=irp.
il) wmm=tren= and 7z, =rn, mod iwsp.
i) wr,=7%rp and =, =n,k, mod v p.
iv) vi=wv,x,+n%, mod ivsp.

The proof is obvious.

3. Proof of Theorem 2.1

In this section we shall prove Theorem 2.1 which holds the key to our com-
putations in the previous section.
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We can find almost all of the results of Theo. 2.1 in [3], [4] and [6]. The
ones which we can not find there will be proved by use of the methods and the

results of [6].

3.1. Proof of i)

{2, 2, =20 by (5,4) in p. 41 of [6].

{v, 7, 2}=0 since G,=0.

{n, 2, 7*} = +2v* mod 7z since 2{n, 2, n*}= {2, n, 2} n* =7'n* =4v* by
Cor. 3.7 in p. 31 of [6].

{v*, 7, 2}=0 mod 2G,, since 720 and {v*, 7, 2}n=v*{y, 2, 7}=20v*=0.

3.2. Proof of ii)

(n, 2, v}—{n, v, 2}=¢€ mod 7o by (6.1) in p. 51 of [6].

{v*, n, 2}=v{v, 7, 2}=0 by i).

{n, 2, 8s}={n, 87, 2}=p mod {7’s, nE}. See p. 189 of [6].

{8a, 7, 2}=0 since {8, 7, 2} <{2, 0, 2}=2G,=0.

{n, 2, a’}={n, o*, 2} =7* mod 7p and {o?, 7, 2}=0. See the proof of (2) of
Lemma 4.2 in p. 279 of [5].

{n, 2, 6} = {n, 6, 2} =0 mod 7« and {s, 7, 2} =0. See the proof of (4) of
Lemma 4.2 in p. 280 of [5].

{1, 2, 8s}={u, 87, 2}=m mod 7°p. See p. 189 of [6].

(8, 1, 1S 42, 0, 2)—=2G,—0

3.3. Proof of iii)

{n,2,6}=0mod 7. We know that {5, 2, 5} =0 mod 7 by (10.1) in p. 95 of
[6]. Since p=%0-+& and {», 2, no}={n, 2, n}o=2vc=0, we have the assertion.

{n, 2, k}=0 mod 7p by Lemma 15.2 in p. 39 of [4].

{u, 2, &4=0 mod 7w since (G; 2)={v*, @}, v{u, 2, &}={v, p, 2}6E€G,£=0
and vr¥*=0c*+0.

3.4. Proof of iv)

{o, v*, 2}={o, v, 2v}=0 mod o* by the fact {», o, v}=0" (see Exsmple 4 in
p. 85 of [6]) and by (3.10) in p. 33 of [6].

{v, 0%, 2}D{v, o, 20}={v, 20, c}=v* mod 2v*. See p. 153 of [6].

{o*, », v}={o, 1o, v}=a by the definition of & (see p. 189 of [6]).

{o, & v}=0. It is sufficient to prove {c, 5, v}=4. By use of (3.7) in p. 33
of [6], {{v, &, v}, n, v}—{», {o, v, n}, v}+{v, o, {v, 7, ¥}} 0. Since {v, 7, v}=0",
{o, v, N} S(Gy; 2)=0 and {v, 1, v}=0 (see p. 53 of [6]), we have {v, o, P}=
{o?, n, v} =6. By use of ii) of (3.9) in p. 33 of [6], {», o, 7}—{o, 7, v}+
{, v, 6}20. Since {*, 2, n}=p mod 7o and {na, v, }=0{n, v, 0}=0, we can
put {5, », o} ={{°, 2, 7}, v, }. By use of (3.7) of [6], {{V’, 2, 7}, v, o}+
{*, {2, n, v}, o} +{°, 2, {n, v, 0}}20. So, we have {5, v, o} =0. From this
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and the above, we have {0, 5, v}={v, o, 7}=a4.

3.5. Proof of v)

{n&, n, 2}={7’c, 7, 2}=¢ mod 2G,, by Lemma 9.1 in p. 91 of [6].

{7p, 7, 2}=F mod 2G,,. See (3) of Lemma 4.2 in p. 278 of [5].

{v, 80, 2} D {v, 8, 25}=¢ mod 2G,,. See p. 189 of [6].

{¢, 80, 2}D{¢, 2, 8s}=C mod 2G,,. See p. 189 of [6].

{o, 80, 2} D {0, 20, 8} 2 p mod 2G,, by Lemma 10.9 in p. 110 of [6].

{¢, 80, 2} = {70, 87, 2} =np. We have {5, 80, 2}n=15{80, 2, 7} =op =0
mod {p7°a, omE}=0. Since G,;={np, n*}=2Z,+Z, and 7’p and 77* are linearly
independent in G,,, we obtain {5, 8a, 2}=0 mod {p7s, 76}+2G,,=0. On the
other hand, {5, 8c, 2}={¢, 8a, 2}-+ {70, 8, 2} and {ro, 8a, 2}=7{c, 8c, 2}=np.
This leads us to the assertion.

{8, 2, 86}=16p. See p. 103 of [6].

3.6. Proof of vi)

{nx, 7, 2}=vk. By Lemma 15.1 in p. 39 of [4], {nx, n, 2} C{n, 71, 2} =vr
mod {n7*, 7’p}. Since {7, n, 2} is a coset of 0, we can put {7« 7, 2} =
vie+xn* +yn°p, where x and y are 0 or 1 respectively. Multiply this equality
by 7, then we have x=0 since {7, », 2}n="7x{n, 2, n}=2v7x=0, wr="7,"p=0
and 7*7*=+0 in G,. Multiply it by % on the right, then we have y=0. For
kvn=rx{v, 1, 2} p=0 by i), ¥’pn={n’p, 1, 2} p=ECp=+0 by v) and Theo. 3.1 of [5]
and {nx, 7, 2} {9, 7, " p}S{k, 4v, np} 2{x, 4, 0}=0 mod xz,(2)+ G,np=0.

{k, 2, v*}=nr. By the definition of = (see p. 44 of [4]) and by the fact
v’={n, v, 7} (see Example 4 in p. 85 of [6]), we have ne=2{v, 7, &}={n, v, 7}&
={ 2, «}. :

3.7. Proof of vii)

{2, v, py=0. By use of (3.7) in p. 33 of [6], {2, v* {o, 20, 8}}+
2, {v*, o, 20}, 8}+{{2, V*, o}, 20, 8}20. Since {? o, 20}=v{v, o, 20} =wv*
=0* {2,7°, 0} =0mod ¢* and {o? 20, 8} =0{0, 20, 8} =op=0, we have
2, {v*, o, 20}, 8}=1{2, ¢°, 8}=4{2, ¢°, 2}=0 and {{2,+’, o}, 20, 8}=0. This
leads us to the assertion.

{v, », Yo}={, 4, o}=2{v, 2v, c}=0.

{o, v, £}=0. By use of (3.7) in p. 33 of [6], {o,v, {n, 7o, 2}}—
{o, {v, n, W'}, 2}+{{o, v, n}, 7o, 2}20. We have {o, {», n,7°c}, 2}={0, 0, 2}
=0G;+2G,=0 and {{o, v, 7}, 7’c, 2}={0, 7’s, 2}=2G,,=0. This leads us
to the assertion.

3.8. Proof. of viii)

{n, #v, 2}=0mod 2G,,. By the proof of Lemma 15.3 in p. 43 and Lemma
15.4 in p. 44 of [4], {nx, 7, v}=-42%. On the other hand {n«, n, v}={7, inx, v}
={7, 2%, v} 2{n, &, 2v} {7, #v, 2}. Therefore we have the assertion.
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{2, v(x), 7} =0 mod 2G,,. 'The proof is quite similar to the above and we
omit it.

v’ 2, 2}={2, v, z?}:/c. The proof that {1’ v, 2} =12, /%, ?}Ex mod o*
is quite similar to the dicussions in p. 40 of [4] and we omit it. By Lemma of
§2, o {7, P, 2}=2{c, ¥, ¥}=2G,=0 and {2, ¥/, P}o=2{%, %, o} =0. So, the
fact 6°=0 leads us to the assertion.

{r, 80, 2}={k, 2, 86} =0 mod 7’z. By use of Prop. 1.5 in p. 12 of [6],
{2, ¥, ¥}, 2, 80} + {2, %, ¥, 2}, 8o} + {2, ¥, {1, 2, 8¢}} 0. We have
(", 2, 8¢} SiG ;= {ip, i} since {1, 2, 8c}={v, 2v, 85} =8{v, 2v, o} =0. It
follows that {2, /%, ip} {2, 1%, p}=0 and {2, 7%, inx} S {2, V", ne}={2, V", njr=Ex
=n'. 'Therefore, we have {«, 2, 8c}=1{2, «, 80}=8{2, k, o}=8G,,=0 mod 7’%.

{o, &, 2}=va. Since {v, 7, 7’a}=0 and {v, 7, V’}={, 7, v}*=0/=0, the
tertial composition {v, 7, 2, 5} is a coset of 0. Obviously, o{v, 7, 2, 5} =
@)y 2 Sy={c, @)y 2,}5=G,,5=0. So, by the definition of «, we can take
k={(v),» 2,, 5} (see p. 96 of [6]).

By use of Prop. 1.5 in p. 12 of [6], {&, {(#)s 20> 5}, 2}+ {0y @)y {20y 7, 2}}+
{{o, @)y 2.}, 5,2} 20.  Since {5, (V) 2,} S Giy~Z, we have {o, «, 2} =
{o, @)y {2, 7, 2}}. Since {2, 5, 2}=7%9=2° by Cor. 3.7 in p. 31 of [6], we can
take (9,0*={2,, 5, 2} modi,f. Since {o, (v), it} {0, v, £} =0, we have
{o, 1, 2}={o, (¥)s v’} ={o, (;)ﬂifﬂ, v}={a, 7, v*}={o, 5, vIv=vs.

3.9. Proof of ix)

{2, 4v, », 2}=0. By the definition of z, we have 0=8z=8{([v),, 2., ¥} <
2{4(v),, 2,, £}={2, 4(v),, 2,}={2, 4v, m, 2}x. It is clear that {2, 4v, 7, 2} is a
coset of 0. So, we have {2, 4v, n, 2}x=0. Since G;={»"} and v’x=47+0 (see
Lemma 15.4 in p. 44 of [4]), we have the assertion.

{2, 3, 7, 2=0mod 7%, 'The proof that {2, &, », 2} is a coset of 7' is left
to the reader.

Since 6={no, o, v} and {o, », 7}=0, we can choose (5),E {70, o, (),}.
So, we can put {2, &, 7, 2}={2, (), 2,} = {2, {10, &, (v),}, 2,} mod ¥’ By
use of Prop. 1.5 of [6], {2, {no, o, @)o}s 2.} + {2, 00, {& ()n 2.}} +
{{2, 70, o}, @)y 2,20. Since {&, @)y, 2,} S Cyy~Z,, {2, 70, o} =12, 1, c*}=0
mod po and {ue, (v),, 2,}=n{o, (v),, 2,}=0, we have the assertion.

{2, 7, 5, 2}=0mod n’z. 'The proof is quite similar to the above and we
omit it.

4. The ring structure of =,

In this section we shall state our main theorems,
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By use of the discussions in §2 and Theo. 3.3 of [5], we obtain the following

Theorem 4.1. A set of additive generators for my is as follows in
dim <21:

3, 1, my, m,, M3, M3, Svy, My, vy, MM, V.8, Sv,, 1,8, S0y, vy, 4y SA, A, MW, MYy
1Oy M0, 7]%1/2, 77%”2) 77%0'1» 7722"71) 7]1A, 77214, 77§A; 77§A, 730715 773(V2+0'1)) 773‘4’ VlA
7,4, 80,8, k.8, 8, 7.8, K, v3, §a,A4, 0,y 0, A, Nk, MYE, SA?, A%, Ky 1,04 7,05
0,4, 10,4, 1,4%, 1,4°, Sk, 1,8, nic, Mio,, nio A, nio A, Sv,0,, Ky 0, MIAT,
13 A4% 1,05, 1,0, A, 86,8, mm,0,, 1A%, v, A%, 86,, 6,8, 87y, Gy, By MMA°, vk, 80,07,5,
VoK, My, MRy, 00,05, 0,0,0, 0v,5,9.

The ring structure of 7y, in dim=<21, is given by the following

Theorem 4.2. The ring ny, in dim <21, is generated by 8, n,, My, M, V1, Vs,
oy A, Ky, 0,y Ky Ky, G, &y, with the following relations:

8°=0,

8n,=n,6=0, d9,=7,6=2.1,

771772 7727]1 0 8773'_771, 7)38—775’ v 8_8V1)

=M =T VT =T =, 0, 7:m,=n,7s,

’72773 0,

ni=np,=v,7,=0, vi=8v,+v,3, 5,6=38q,,

Ad=8A4+2x0,+2yv,,

Vo ="M Vs Vo2="5V3 01111 ="101y O172:=7,0 1,

An,=n,A4xn%c,+yniv,, An,=n,A+xnio,+yniv,,

VM= N3V, 0105= £ 70, V¥, =V, = ’73(7’2:]:0-1) V0, =0 W, = 0.

7730 = AV1—V A, A773 j:?kA—l—(&C—]—j’)V 4,

Sk,=0, Svi=«,5,

ow,=v,0,=0, 01—80'2+a'2

e, = ke, = 0, =8k, = =Nk, 1,8 =13, Ao, =40, A, Av,=v,A=
.4 mod {20, A4, 7k, 703},

o, =10, mod 2k,, o1, =7,0, mod 2«,,

k=10, =10, =0, Kw,=v,18,=8k, mod 8v,0,, NWE="1,=N,K,= Ky, =05+
#,0 mod dv,0,,

01, = +n,0, mod 27,0, 4, o, =v,0, mod {29,0,, 2n,0,4, 85,8},

771"'3="3771=772"3=/‘3772=’73’€z="2773=V1'Cz="2’/1=0> E18=821,

Nakey = KNy = 1,6, =67, =0, 7,6, =67, = 0 mod 6v,6,8, oK, = K0, = 81’1518’
kW, = &, = 7,7 mod 8v,5,8, #,m, = 7,7 mod &v,5,8, vi = v,k + 7k, mod &v,5,9,
vk, =v,k,+7,%, mod {8o,0, &v,6,8}, xw,=v.k, mod {550, o,0,3, 8v,6,8}, where
x and y are fixed integers O or 1 respectively.

Proof. 'The relations hold by use of our propositions in §2.
To complete the proof of this theorem, we must construct the table obtained
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Table of relations, I.

0 | m | 7 [ 73 141 12 0y ‘ A ' £y ‘ g2 K2 ! K3 [}
60|02 Ui ovy dv, |00y O0A 0 da, 71£1 o3 05,
) 0
m| 2|70 0 0 MYz |M01| MA | mE | 7102 0 0 mod
0v,8,0
0Kz +£50
72| 0 | O | 73 | 7273 0 NaVa (M201 WA 0 720, | mod 0 0
0v10,
7510 |293] O 0 0 n%v, [nfoy| n3A | 2k, | 7o, 0 0 0
72310 |0 (275 O 0 73y, o] m3A | 0 | 7%o, 0 0 0
oyl 0|00 0 O0vy0 [pHvatoy) 0 |27s0,| O | Ovy0, 0 Ovyky | 0,8,
N3 | 73 |[mems| O 0 0 N3Y2 (M301] MsA | Mk, | 730, 0 0
VaE 1Ry
vi 160 01 0| 0 Buytvedngvpta) 0 | 1A | Sks | vo | 0 mod |, o
! 100,05,
1‘ ] "oni0,0)
7273 273 0 | O Y 0 A (nA|1msAl 0 |70, 0 0 0
ov, 8 0100 0 0 0 0| 0 | 0 o3| O
o —; 80102 | a o
0vy [6v,0) 0 |20y | N3vy MHvytoy)| kO 0 |00,A|dv,k, | mod | 7iE;
| ) | 0v,3,0 ] ) o
‘ 0,0,0
V0| 0 | 0 |2vy| 72vy [n3(votoy) k(0 0 |06;A| 0 | mod | 7%,
| CEZC20 R R
doy! 0 | O |20, 7}0, 0 0 00,0) da1A| 0 |do,0, 0
Vo | Va0 [m1ve Moz |t gve) Vivy vi 10 1 0, A | vy,
Table of rleatiotions, II.
6 I/ 72 M3 41 Va2 0y A K1 Oz | K2 | K3
114 7{3alv ) ”77101 7504 i—jfl 0 B 0 B 6?026 g,A |0v,6,0 0102_ -
ﬂ2A+2 2
4 o 0 | 24 |Giyme| 21| A (004|048 0 -
0A+2x0, |n A+ xnioyn.A+ xnio,| +9,A+ to,4 2
4 “2vy  tyab tymiaatamA | B4 o mod  |rodl A4
A 71 1,772V2} M S
70,14
71V2 2vy 7}V, 0 0 0 71Ky 0 mod | 7{&,
I N o N 2K, L
72014
72V 0 0 73V, VA 0 72V3 0 mod 0
o . o 2/52 I R
7101 20, H 0 0 0 0 (U 70,4 0 :
7201 0 0 730, v A 0 0 0 (72004 0
nivs 0 2730, 0 0 0 2k, 0 [7f0,A
75V2 0 0 2730, 0 0 2k, 0 |730,A 0
730, 0 2730, 0 0 0 0 0 |7{0,A| 0
730, 0 0 2730, 0 0 0 0 |730,A 0
Al o4 ImA+2g T R Y| R
i I (€ 7 | B 0 | 0 | modde, 7oA mA i
n3A+2y 7,0,A 2
72 A 7770_ B 0 (i’ﬂl +yV32) 72734 0 méd12/cz 7201 4| 724 L
72 A 0 27,4 0 0 0 730,14 |9j0,A| 7}A? ‘
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Table of relations, III.
0 ’ M| 7 N3 Vi P g, A K| 0Oy| Kyl k3| 8y | By
734 0 0 |24 o 0 N A | moA | mA | BERE
7301 730, v, A 'T)" 0 0 o 0 0] 73014 | 0 N

N3(ve+01)| 75(ve+01) | 0 0 0 - 0 - 72,,62 ,7 07 3773?1% B r—_i B :
BA A2 and 0 o 0 imed | Ened | md | B
VA 2750, 0 0 0 0 0 0 v, A?

A | A0 |0 0 0 nA: | onA | gmAr |||
6026¥ A 0 ) >*0r¥0— 0 ] 0 B 0 601026"? ” N
£:0 o |0 | 0| 2 o, Bvyn, +2F, o ||
Yo | Sop 0 201 dior | 0w iomorives | ||
020 0 0 |20 7302 010, mocalaalzfaﬁ moglg 12/(36,5 !

N B "o | 0wy | mkr | s,os | | I
£1 £10 M| 0 0 mod 6v,0, |mod 0v,5,0 01,0,0 N I
v} K0 MEy |72V | 72k Naks ;f&gz%% 0 NN

XIVA& 0 0 |20,A 7%0,A 0 0 ‘

B |
I 26 | 267 | 275014 2700,4,000 | || |
Table of relations, IV.

[ M N2 ‘: 73 B vy vy gy | Al ky | 03| Ky | K3 | T 751
g, A 601A 7014 | 70,A 17;;;11‘17 0 | 6 : o
me | 0 | 2% | 0 | 0 | 0 | gm0 o
i | 0 | 0 | 2% | 0 | o | mm o a
o4 | 0 | 0 | 24 | qpde | 2704
& | oar | e | na | par | s B
g | md | me | 0|0 0
7;7: 20, 730, 0 Ei 0 7 o
moee | 0 | 0 | mor  mmee| o N
10,4 | 20,4 | 7i0,A 0 0 N 0 - 0 |
nA| 0 | 0 | mmA| wma | o | o o
mar | 24t | a2 | o | o | o
7,42 a 0 a 0 7§A2 7 772773A27 o 07 - R R
" O | 2 | O | O o smegyggxl%@, S T N S N N R
I LI N BN ™ ¢ B L
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Table of relations, V.
§ 0 M 72 73 vy Y, l o | A 1' Ky | 02 [ I ‘ K3 | G | By
o, | 0 | 200, | 0 o | o0 | _;_
30, 0 0 2750, | 0 0 E :
730, A 0 2730, A 0 0 (; — ! o
BoA| 0 | 0 | 2p0A 0 | 0 ;
o | 0 | o | o | o | bmed | | | o
| B
N N o ) |
| 02 0v,02 0 4“0’ Y mod 0v,60 —‘“1#_ o
7%A? 7 0 N 273A% 0¥7 0 77770” : _‘—li—*
ar | 0 o [mao| o [T T
7302 7302 | 720302 0 0 0 o o
| 73014 7%0,A v, A? 7})7 40—7\7 0> B o
’: 06,0 0 0 0 0 7 6?1616 ) I o
{ M27302 | 27302 0 o 0 ﬁ 0 N
! 7342 73A2 | 5,73A2 0 ‘! 0 0
Table of relations, VI.
‘7 e ,,i, ”1, B ””127” B 773 B Vi | va oy | Al gy | 0, £y | k3| Gy | Ry.
C nA | 2p50,A 0 0 0 0lo0|o0
Cse, e, 0o | o | o o | o
G,0 0 - 0 ;0 B 0 o o
om0 0 | 2 | am e
W0 meaduea _ .
E B 0%, _ﬁmoggf/llﬁlﬁ gocilzﬁ,illﬁlt?
| 7ams A2 ‘ 27,4 10 0 0 0
om0 o | o | o | | [ 1 |1
5:7170;57 0 o 07777 ¥(;7 B (;7 (V]
P A B
we 2 mEo | 0 0
7;2151 | 677¥} WO - ;73'51 0 O IR
boy | bod | 0 | 1
;1026 7707” 77‘ W 0 ) o o
s 0 0 | 0 o | o
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from multiplying all of the additive generators of 7y except for the unit by
themselves. But this whole work is too long and tedious. So, we write down
a part of the table which plays an essential role for this work. Really, it finishes
the proof.

ReMARk. In Theo. 4.2 we can take y =0 by use of the results that 4vz=
7'%+0 in G,,.
Finally we mention the following relations in secondary or tertiary com-

positions.

Proposition 4.3.

771:{3: 5, 77§}: ’72:{77%; S, 3}’
+7=1{m, m,, 2}, v, € {ny, 2, vy, 1),

x, €48, 8, 73}, Kk, E{nyy 14, 2},

ke, E4{v,, 2, v3}, 7 E vy, 1y 2, vVi+K,)

Proof. We shall prove the first and the fourth relation.

Clearly, {3, &, n3}=/{ip, ip, n3} 2i{p, 1, 7" p}=1{p, 1, 29} 21{p, i, 2}n="mn, since
{p, 7, 2=1mod 2G,. As {8, §, 73} is a coset of 8z,+x_n3 =0, we obtain the
first.

Since {7, 2, v,} is a coset of gz, +mw, = {Svi}=m, we have 7]1(_2),,16
{ny 2, v1} po,={Svip,,}=0 for any (_2)\,IEExt,,1 2.

As {2,v, 0} =12, v, 15} S {2, i, 5} 2 {0, v, 7} = z¥(2)5={nfn,} =0 and
{2, i, 7} is a coset of 2z, + z¥(2)5 =0, we have {2, v,, 7,}=0. From this
(7),,1(;7:),,1=0 for any (Z)vle Coext, 7,.

Now we define {n,, 2, v,, n,} ={n,, (Z)_vl, (77~1)v1} mod Q=[S"*M U, CS™*M,
S ”ﬂﬂ(i)vl+(7l)z[3”+6M, S"MU,CS™M] for some (n,),EExt,n, where n is
sufficiently large.

It is easy to check the group O={20,, 2v,}. So, we have p{n,, 2, v, n,}=
{, 15 ) S (1), S {£7, vy, m}={=x7, i, 5} ={n, v, 7} since {p, 7, (_Z)vl}ivlg
{p, 7, 2}= %%, 7w,=0 and {x7, v, 7} is a coset of (+7)7+ Gn=0.

It is easy to check {», », 7}=0* for »’EExt »* which satisfies (2.7). Hence
we obtain {n,, 2, v,, 7,} = £, mod 20,.

5. Direct summands of =,

The object of this section is to improve Theo. 5.1 of [5]. We shall change
the notations fe.4, and jy,, of §4 of [5] into u, and ¢, respectively.

In [1] Adams proved that A°+0 for s=1 and defined a,&(Gy-,; 2) as
follows:

(5.1) a, = pATi,
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which is of order 2 and satisfies
(5.2) ec(a;)=% mod 1 (see [1]) .

Choose
(5.3) a,=pA° =8cA*'€Exta, and a,= A% = A '8s<Coexta,.

It is clear that
(5.4) a,= 8¢ and a,.,E{a, 2, a,}.

By use of @, Adams defined u,E(Gyy4y; 2) as follows:

(5.5) pe=na, mod 7G,, .

By (5.5) and i) of (3.9) of [6], we have u,={n, 2, a}={a,, 2, n}=
a7 mod nG,,. So, we can choose u,& Ext p, and [:; & Coext u, as follows:
(5.6) w.=nA°mod G5 and p.=A% mod 7G,, .

Lemma 5.1.

i) a,is divisible by 8.

i) J(B)a,=0 for BEmy,_,(SO).

Proof. Let S”Uge"*' be a complex obtained from an #z-sphere S” by
attaching an (n-1)-dimensional cell e”*', using a map of degree 8, where 7 is
sufficiently large. Let i’': S"—>S"U,e""" be a natural inclusion.

Obviously «; is divisible by 8 if and only if 'a,=0.

By induction assume i'a,_,=0, then 'a,€i'{a,_, 2, 8}={1, a,_,, 2}80c=
8({¢'y as-y, 2}). By use of Theo. 4.4 in p. 324 of [7], this consists of 0.
Therefore we have i).

Next we shall prove ii). Toda defined the element ¢’ €x,,(S°) which is
of order 2 and satisfies S“¢’”=8c (see p. 48 of [6]). By use of o, we can
define an element af E ;. (S°) for s=1 as follows:

(5.7 at=0c" and aie{ai-y, 2, 8¢} for s=2.
Clealy, a} is of order 2 and we can choose a; such that
(5.8) S=a! = a,.
Now J(B)a,=]J(BS* *al)=0 since BS™° o] E mysrp-_o(SO)=0.
By use of i) of this lemma,

(5.9) ne€n, 2, a}Sn, ay, 2} mod 2G,,,,+1G, .

Therefore, we have
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(5.10) 24°=ipp mod in Gyp .

By use of ii) of Lemma 5.1, we define an element p,&(Gyir;2)N
J(7es+:(SO)) as follows:

(5.11) po=0c and p,={p, ., 80,2} mod 2G,,,  fors=1.

We can take p, in the J-image since J{/3’, 8o, 2} S {p,-,, 8o, 2} if J(B')=p;-1
for B’ Emy,-, (SO).

We note the following: Since p,oc=0 for s=1, we have, by the facts
that o*n=0€=0 and {70, 2, 8c}={¢, 2, 87},

(5.12) pE=pon=0  for s=0.

Lemma 5.2.

D) ipee=atp, and p,i,p=p,a,.
ii) Ps+tE{Ps: Oy, 2} mod psG8t+2'Gs(s+t)+7-
This is obvious by use of (5.3), (5.11) and (5.12).

By (5.5) and i) of Lemma 5.2, we have
(5.13) NPs+:= psps mod 7p .Gy, .
We can take, by use of i) of Lemma 5.2 and a) of ii) of Prop. 1.8,
(5.14) a,4° = Coext (p,p) -
By (5.6), we have
(5.15) 7, A°=5p, mod 5G,.7 .
It is clear that
(5.16) 20,4° = inp,p and 2m,A°=in’u, mod i’G,.5 .
By use of Example 12.15 of [1] and (5.13), we can take
(5.17) Jos = ps—1 and  Joo=p,7®  for s=1.

Lemma 5.3.

i) te=vandt,={,, 8, 20S{¢,-,, 80, 2} mod 2G,,,+ R, for s=1,

i) Cop= Cs&_t— mod R.,p,

111) Cs re= {é‘s’ Oy, 2} mod 2Gs(s+t> |»3+Rs 1¥7)

iv) £,={2, », 7’p,-,} mod 2G,; ,+ R, for s=1,
where R consists of the elements ot &(Gys.4; 2) which have the following properties :
er(a)=0, 8a=0 and nap=0.
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Proof. By use of Theo. 11.1 of [1], ek({Ls-, 8, 20})=—8ek(20)ek({s-1)
=—}mod 1 since ex(c)=ec(0c)=3% mod 1 and ex({,_,)=4 mod 1. By use of
Prop. 3.2. (c) and Prop. 7.1 of [1], &,-,Gy+20G,,_,Zker ek. So, by Theo. 1.5
of [1], we have —{,={{,_,, 8, 20} mod kere},. We have 8¢,=0 and
8{ls-1, 8,20}={8, {51, 8}20=0 by use of Cor. 3.7 of [6]. Since n{,= pl,-,
= J(75+,(SO))=0 (cf. p. 39 and p. 56 of [6]), we have 7{20, 8, {,—.}=
{n, 20, 8}¢,-,=0. This leads us to i).

We shall prove that R,o, &R, ,,p. By i) of Lemma 5.1, Ba,E4{B, ay, 2}p=
(B, 8, ta,}p for BER,. By use of Cor. 3.7 of [6], 8{B, 8, a,}=1{8, B, 8};a,=0.
By use of Theo. 11.1 of [1]., we have ex({8, 8, +a,})=0. Since 7@ is divisible
by 2, we have 7{g, 8, la) p=nBa,=0. Therefore we obtain {B, 8, ta,} S R,.,.

Now we obtain ii) by use of this fact and i).

iii) forllows from ii).

We shall prove iv). First we note that we can define {2, 7, %° p,_,} since
7 e s € J(pa14(SO))=0.

Since ¢,=¢={2,7, 7’0} mod 2G,,, we have, by use of ii), {,p=
Cotyoy=1{2, n, o} a,_,mod R;p. By use of i) of Lemma 5.2, we have {,p=
2, n, "o, ={2, 1, 7°ps_,p} mod R, p+2m..4(2). By Theo. A and Prop. 1.1
of [5] and by Theo. 1.5 of [1], it is clear that 27z, (2)SR;p. Therefore we
have iv).

By use of ii) of this lemma and a) of ii) of Prop. 1.8, we can take

(5.18) v,A°=Coext ({;p) mod Ceoxt (R,p)+imy4(2) .

Since 7,0,= 4707 by vi) of Prop. 2.2, we can take, by (5.6) and (5.13),
(5.19) 7,0, 4°=7pn mod 5o G+ 7Gysrop -

By use of Lemma 5.3, we have
(5.20) 20, A4°=0 and 27n,0,A°=il,.,p modiR.,p.

Now we have been ready for improving Theo. 5.1 of [5].

Theorem 5.4. 7,(2), z¥(2) and =, contain direct summands which are
isomorphic to the corresponding groups in the following tables (k>2):

i) k= 8s 8541 8s4-2 8s+3 8s+4 8s+7
7(2) D 247,  Z4Z, ZAZ, 2 Z, Z, 7,
Generators Qg Mpssp ps—iTly HsD  Mhsr Po-i™ Tiisy EsP Tls  PsD
QD Z4+Z, ZA7, Z4Z,  Zo4Z, Z, 7

Generators s,y i’iPs -1 Tps-uv ill's sy TMPs—1 sy zé‘s l“snz lps
Relations:  2pm=pmn’p, 2p=npp,
277Ps:i’729s» le‘s:inﬂ‘r



i)

(1]
(2]

(31
(4]
(5]
(6]
(71
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k= 8s 8s+1

7e D Z 4247, 24 Z 47,4+ 7,

Generators A%, 1,0, A%, 10 A 9Re A7, nie, A0, 1,45, 1, A°

k= 85142 8s+3 8s+4 8s+6 8s+7
Z 42,47, Z4z,  Z, Z ZA4Z,

Generators n,0,A°7", 72A°, n3A° n,A°, v, A° 9, A° 80,4° o, A°, SA
Relations: 2A4°=ipp mod inGyp, 29,0, A° =1+, p mod iR, P,
20, 4° =in*p, mod i°Gym, 20, A°=inp,p.
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