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1. Introduction

Let (C,W) be the d-dimensional Wiener space; C is the space of R?-valued con-
tinuous functions on [0, 0o) starting at 0, and W is the Wiener measure on C. For w €
C, w(t) = (w'(t),...,w?(t)) € R? denotes its position at t. Take Vo, Vi,...,Vy €
CP(RN;RY) (= the space of RN-valued C*°-functions on R" which and whose
derivatives of all orders are bounded), and consider a stochastic differential equation
(SDE in abbreviation) on R";

d
.1 dX(t) =Z=? (X (1) dw® (8) + Vo(X (1))dt,

X(0) ==,

where each dw*(t), a = 1,...,d, stands for the It integral with respect to w®(t) un-
der W. Let X (t,z,w) be the solution to the SDE. Most studies on the stochastic flows
given by z — X (t,z,w) have been made in the C™ category, not in the analytic cat-
egory. See [3, 4] and the references therein. Recently Malliavin and the second author
[7] introduced a concept of analytic functions on C and gave several applications of
it. There an example of analytic functions on C was given via SDE with linear coeffi-
cients. It is well known (cf. [3]) that, for a solution to an SDE, its Malliavin gradient
and the Jacobian of the associated stochastic flow obey similar SDE’s, and that the
infinite differentiability of the solution in the sense of the Malliavin calculus relates
deeply to the smoothness of the stochastic flow. Now a question arises if the solution
to an SDE governed by real analytic vector fields determines a stochastic flow of ana-
lytic functions. In this paper, we shall give an affirmative answer to this question. See
Theorem 2.1.

After the above observation, one may ask about the radius of convergence of the
analytic function z — X (¢, z,w). As is easily seen (see Remark 3.7), if every V,’s are
linear, then the Hessian 82X (t,z,w)/8%z vanishes, and the mapping = — X (t,z,w)
is also linear, and hence extends to an entire function on C». Thus a naive question
is if the mapping z — X (t,z,w) prolongs to an entire function on CN = RN x RV,
We shall make a negative observation on this question in the case of 1-dimensional
SDE’s in Section 3; we shall see that the stochastic flow X (¢, z,w) determined by a
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Stratonovich SDE on R governed by one vector field V' (for the SDE, see (3.2)) does
not extend to an entire function W-a.e. if V(z) = e4(*) for some real polynomial ¢ or
V(z) = sin2z. See Theorem 3.1 and Example 3.15.

2. Analyticity of solutions

We prepare two classes of functions to state our result. We denote by C% ([0, 00)
xRN;RN) (resp. C%*([0,00) x RN;RN)) the space of continuous functions f :
[0,00) x RN — R such that f(t,*) is analytic (resp. C™) for every t € [0, 00).
Our goal will be

Theorem 2.1. Let V, € C2(RN;RN), a = 0,...,d. Assume that every V,,
a = 0,...,d, is real analytic. Then there exists a C%([0,00) x RN;RN)-valued
Wiener functional ® on C such that X (t,z,w) = ®(w)[t, z] solves the SDE (1.1).

For the proof of Theorem 2.1, we remember the following approximation of the
solution to SDE (see [3]).

Lemma 2.2. Let Wy, Wy,...,Wy€ C®(RP;RP). Define Y (™) (t,y,w), (t,y,w)
€[0,00) x RP x C, by

d
23) dy ™ (t) = Zl Wa (Y™ ([274]/27))dw® (t) + Wo (Y™ ([27]/2"))dt,

Y™M(©0) =y,
Then

sup sup IY("’)(t, Y, w) — Y(")(t,y,w)l =0 in LP(W) as m,n = oo
tef0,T] ly|<R

forany R > 0, T > 0 and p € (1,00). Moreover, the limit determines a
C%>([0,00) x RP; RP)-valued Wiener functional Y (e, *,w) which solves the SDE

d
dY (t) = Y Wa(Y ())dw® () + Wo(Y (1))dt,
a=1

Y(0)=y.

We now proceed to the proof of the theorem.

Proof of Theorem 2.1.  We shall show the assertion, following the idea due to
Kusuoka [5]'. Identify CN with RN x RY", and, for z € C", denote z = (z,y) with

1The argument here is much simpler than his.
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z, y € RV. Let B(r) = {x € RV : |z| < r}. Because of the analyticity of V,’s, for
each M € N, there exists a (M) > 0 such that §(M) > 6(M +1), and V,’s prolong
holomorphically to B(M) x B(6(M)). For each M € N, fix a V, pr € C3°(CV;CN)
such that

2.4) VG,M((z,O)) = V,(z) forevery z € B(M+1) and
' Van is holomorphic on B(M) x B(6(M + 1)/2)
for « = 0,...,d. Define X("(t z,w) and ZI(J})(t,z,w) in the same manner as

Y(")(t,,y,w) in Lemma 22 with y = 2z € RN, W, = V, and y = z € CV,
Wy = Vo, m, respectively. Then the limits X (¢, z,w) and Z,(t, z,w) enjoy that

X (o, %,w) € C**>([0,00) x RV;RN)
(2.5) and  Zy(e,x,w) € CO([0,00) x CV; CN)

for W-a.e. w € C. Moreover, taking a subsequence if necessary, we may and will as-
sume that

(26) sup sup |X(")(t, T, w) — X(t,w,w)| — 0,
te[0,T] € B(R)

27) sup sup IZI(\,';)(t,z,w) - ZM(t,z,w)I -0
te[0,T) ze B(R) x B(R)

forany T >0, R> 0, and M € N for W-ae. w € C.
Set
Co = {w € C:(2.5), (2.6) and (2.7) hold for any T >0, R >0 and M € N}.
Obviously
W(Co) = 1.
Fix T >0, R> 0, and w € Cp. By (2.5), we can find M (w) € N such that

(2.8) sup  sup 'X(t,x,w)l < M(w).
t€[0,T) z€ B(R)

Then there is an n;(w) € N such that

sup  sup IX(")(t,a:,w)| < M(w)+1 for any n > ny(w).
te[0,T) z€B(R)

It then follows from (2.4) that

zM (¢, (z,0),w) = X™(¢,z,w) for any t < T,z € B(R), and n > ny(w).

M(w)+2
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Hence, by (2.6) and (2.7), we have that
29  Zmw)+2(t, (z,0),w) = X(t,z,w) forany t <T and z € B(R).

Due to (2.8), (2.9), and the uniform continuity of the mapping (t,2) = Zpz(w)+2(t,
z,w) on compacts, we see the existence of (w) > 0 such that

ReZp(w)+2(t, 2, w) € B(M(w) + 1) and ImZps(y)42(t, 2, w) € B(6(M (w) + 3)/4)
for any z € B(R) x B(e(w)) and t < T.

By virtue of (2.7), there exists an ny(w) € N such that
ReZ{pl,) 1ot 2,w) € B(M(w) +2) and InZ3;), ., (t, 2,w) € B(S(M (w) + 3)/2)
for any z € B(R) x B(e(w)),t <T, and n > ny(w).
(n)

Combining this with (2.4) after observing that Z M(w) +2(t,z,w) is constructed succes-
sively by

Zf;gw)“(t, zZ,w)
d
= 22 (g 200) + 2 Vorrsa (205012 (2 0) ) {oo ) = 0 (5}

a=1
+ VoM (w)+2 (me)w(;n’ “ "’)) {t B Ek'T} for ¢ € [2% k; 1],

we see that the mapping

B(R) x B(e(w)) 3 z — Zl(\fl'gw)“(t,z,w)
is holomorphic for every t < T and n > ny(w). By (2.7), so is the mapping
B(R) x B(e(w)) 3 z = Zpp(w)+2(t, 2, w).
Thus (2.9) implies that the mapping
B(R)>zm+ X(t,z,w)
is analytic. O

3. One dimensional SDE

We shall study two cases where the stochastic low RN 3 z — X(t,z,w) € RN
does not extend to an entire function on C. In both cases, we shall deal with the
situation where d = 1. In such a case, we shall write just dw(t) for dw!(t).
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Our first case is

Theorem 3.1. Let V € C°(R : R), a € R, and X(e,*,w) be the stochastic
flow associated with the SDE

(3.2) dX(t) =V(X(t)) odw(t) +aV(z(t))dt, X(0) =z € R,

where o stands for the Stratonovich integral. Assume that there exists a polynomial q :
R — R such that q is not a constant function and enjoys that V = e%. Then

W({w :x + X(t,z,w) prolongs to an entire function on C}) =0 for any t > 0.

ReMARk 3.3. V =e? as above is Cy° if and only if ¢(z) = Zi:o an,x™ satisfies
that k£ is even and a; < 0.

For the proof, we shall prepare the following sufficient condition so that z +—»
X(t,z,w) is not a polynomial.

Lemma 34. Let Vj,...,Vy € C(RN;RN) and Y (t,y,w) be the stochastic
flow associated with the Stratonovich SDE

d
3.5) ay (t) = a}:l Va (Y (1)) 0 dw®(t) + Vo(Y (¢))dt,

Y(0) =y € RV,

If 8?VE/0y' 0y’ (y) # O for some 1 < a < d, 1 <i,j,k <N, and y € RN, where
Vo= (V3,...,VN), then

(3.6) W({w :y = Yi(t,y,w) is a polynomial for any 1 <i < N}) =0,

where Y'(t,y,w) is the i-th component of Y (t,y, w).

RemARK 3.7. If 8%VF/8yi0yi(y) =0 forevery 1 < a < d, 1 <i,j,k < N, and
y € RY, then, by (3.9) below, we see that

W({w :y + Yi(t,y,w) is a polynomial

of order at most 1 for any 1 < i < N}) =1.
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Proof of Lemma 3.4. It is known (cf. [4, p.163]) that

Y (t,y,w)|
im —2——— =0 for W-ae. w €C.
lyl—oo (1 + |y[)3/2 v

We therefore have that

W({w :y = Y*(t,y,w) is a polynomial for any 1 < k < N})
= W({w :y — Y*(t,y,w) is a polynomial
of order at most 1 for any 1 < k < N})
2yk
=W({w: g—a—ysf,’;;y—l = 0 for any lgi,j,ng}).

Thus it suffices to show that

0?Yk(t, *,w)
. P ———— = <i,7,k< =0.
3.8) W({w By 0y 0 for any 1 <i,5,k < N}) 0

To see (3.8), set

J(t,y,w =(J? t,y, ( il ) ,
(t,y,w) +(t, Yy, w 1<”<N ay] L<ii<N

.

J(t,y,w) = (J}(t,y, w)

I

)1<1,]<N J(t,y,w)™?

Y’“(t Y, w)
K(t = (K% = —=1=- .
(ty,w) ( Y (t’y’w))lsi,j,kSN ( Oyidy’ )1<u k<N

It is easily seen (cf. [3, 4]) that

dJi(t,y) = Zzaw Y (t,9))J7 (t,y) 0 dw®(2),

2
dJi(t,y) = —ZZJ’ (Y (t,)) o dwe(2),
a=0r=1
d k
LTOED ) ‘Z,V L )K(ty) 0 du? (1)

d N 2Vk
ZZ o (VBT (49) T3 (1) 0 dwe (),

and

J(0,y) = J(0,y) = I and K(0,y) =0,
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where we have used the convention that dw®(t) = dt, and I and 0 denote the unit
element of RN ®@ R and the zero element of RN ® (RN ® RY), respectively. Then
it follows that

N

(3.9 Kf(ty,w) = Y JF(t,y,w)Li(t,y,w),
r=1
where
d N t__
v =Y 3 [ Fevw
a=0 p,q,r=1 0

62V q T o
8yqa r( (Sa y7w))’]z (31 y,'UJ)J] (S,y,’U)) odw (S)

Since

~

W({w 2 J(t,y,w)J(t,y,w) = I for any y € R}) =

we have that

21k
W({w:%zOfcrany 1§i,j,k§N})

= W({w : L (t,%,w) =0 for any 1< 4,5,k < N})
Hence, to see (3.8), it suffices to show that
(3.10) w({w L LE(ty,w) = 0}) —0 for some 1<i,j,k<N and y € RV.

To this end, set R = RY x(RV@RY) x (RVN@RN) x (RN @(RV®RY)), and denote
its coordinate by (y, J, J, L) = ((yi)lﬁiSNa (Jz'])lsi,jSN’ (Ji])lsi,jSN’ (ij)lfi,jykSN)‘
Define V, € C®(R;R), a =0,...,d, by

Vallw, j’L)) B (( y))1<1<N (z oz W)/ r)1<l JSN
N

~ V] — §*Vp .
(_ Z I oy’ (y))lsi,jsN’ (p qz;zl .]1'; Oy10y” (y)J’”j)lgi,j,ng)'

r=1

Then &(t,y,w) = (Y (t,y,w), J(t,y,w), J(t,y,w), L(t,y,w)) obeys an SDE

B(t,y) =Y Va )) odw®(t), &(0,y) = (y,1,1,0).

a=0
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Choose 1 < a <d,1<i,j,k<N,andy € R" so that (82V}/0y'0y’)(y) # 0.
Define the projection 7 : R — R by n((y,J,J, L)) = L¥;. Then 7(Va(y, I1,1,0)) =
(8%VE /0yidy?)(y) # 0. Taking an advantage of the partial hypoellipticity argument
(cf. [6, 9]), we see that the law of ij(t, y) on R is absolutely continuous with respect
to the Lebesgue measure, and hence that (3.10) holds. |

Proof of Theorem 3.1. Set
F(z) =/ e”Wdy, zeR.
0

Since V' = e? is bounded, F' is bounded from below by positive constant, and hence
F is a strictly increasing function with lim,_,4., F'(z) = *oo. Thus F admits an
inverse function F~! : R — R. It is then an easy matter to see that

@G.11)  X(t,z,w)=F ' (F(z) + w(t) +at), t€[0,00),z€R,weC.

We shall show the assertion of the theorem by reductio ad absurdum. Hence sup-
pose that

W({’w : 2~ X(t,z,w) extends to an entire function}) > 0.

Choose w € C such that x — X(t,z,w) extends to an entire function, and we shall
write the extension by X(t,z,w), z € C. Observe that F' also extends to an entire
function, say F' again. Then (3.11) implies that

(3.12) F(X(t,z,w)) = F(z) + w(t) + at for every z € C.
The order p(f) of entire function f : C — C is given (cf. [1]) by

nlogn

o(f) = lim sup log log max .| [/ (2)] _ lim sup
00 logr nooo log(1/|anl)’
where f(z) = Y oo oa,2™. As is easily seen, p(f) = p(f'). Moreover, if we repre-
sent as ¢(z) = Z:q:o b,z™, where by, # 0, then it is also straightforward to see that
p(e™7) = ky. Hence we have that

(3.13) p(F) = kg < o0.

Remember Pélya’s theorem ([2, 8]) ; if f and g are entire functions and p(fog) < oo,
then either g is a polynomial or p(f) = 0. Due to (3.6) in Lemma 3.4 with d = N =
1, Vi =V, and Vy = aV, we see that X(¢,2,w) is not a polynomial. Hence, by
(3.12) and (3.13), we obtain that k, = 0, which contradicts to that ¢ is not a constant
function. O
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Remark 3.14. In [7], an analytic function u on C was defined so that R 3 £ —
u(w + €h) extends to an entire function for any w € C and h € H, H being the
Cameron-Martin subspace of C. Consider the same situation as described in Theorem
3.1. Then the expression (3.11) implies that £ — X (t,z,w + &h) does not extend to
an entire function for any t € [0,00), z € R, w € C, and h € H. Namely, if it did,
F~1 should prolong to an entire function. Then F should extend to an injective entire
function, which would yield a contradiction since F' extends to a transcendental entire
function by definition.

We shall give another example where X (¢, *,w) does not extend to an entire func-
tion W-a.e., to which Theorem 3.1 is not applicable.

ExampLE 3.15. Consider an SDE on R
3.16) dX(t) =sin(2X(t)) o dw(t), X(0)=z.
It is straightforward to see that

™
if '/
T, 1x€2 ,

X(t,z,w) = - -
Arctan((tan x)e2w(t)) + km, if — 3 +kr<z< 5+ km,k € Z,

solves the SDE (3.16). Then, by a direct computation, we obtain that

OX(t,z,w) e2w(t)

Ox 1+ (et»®) — 1) sin®z’

which does not extends to an entire function, and hence z — X (t,z,w) does not pro-
long to an entire function.
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