

Title	Complex powers of hypoelliptic pseudo-differential operators with applications
Author(s)	Kumano-go, Hitoshi; Tsutsumi, Chisato
Citation	Osaka Journal of Mathematics. 1973, 10(1), p. 147-174
Version Type	VoR
URL	https://doi.org/10.18910/4079
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kumano-go, H. and Tsutsumi, C.
Osaka J. Math.
10 (1973), 147-174

COMPLEX POWERS OF HYPOELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS WITH APPLICATIONS

Dedicated to Professor Yukinari Tōki on his 60th birthday

HITOSHI KUMANO-GO AND CHISATO TSUTSUMI

(Received April 5, 1972)

Introduction.

Complex powers of a pseudo-differential operator have been defined by Seeley [15] and Burak [2] for the elliptic case, and defined by Nagase-Shinkai [12] and Hayakawa-Kumano-go [5] for a more general case containing semi-elliptic operators.

In the present paper we shall construct complex powers of a hypoelliptic system of pseudo-differential operators, and apply those powers to the generalized Dirichlet problem and the index theory.

The plan of the paper is as follows. In Section 1 we describe well-known results on the theory of pseudo-differential operators which has been developed in Hörmander [6], [7], Kumano-go [9] and Grushin [4]. In Section 2 the strong (or uniform) continuity and the analyticity of pseudo-differential operators with respect to a parameter are examined by means of their symbols. In Section 3 we construct complex powers P_z of a hypoelliptic system P which belongs to a subclass of Hörmander's in [6], p. 164 (c.f. also Šubin [16]).

Section 4 treats the generalized Dirichlet problem for an operator P which admits complex powers P_z . The Sobolev space $H_{s,P}$ associated with P is defined, and a subspace V of $H_{s,P}$ is defined as the completion of $C_0^\infty(\Omega)$ in the norm of $H_{s,P}$ for an open set Ω of R^n . We seek the solution of $Pu=f$ for $f \in L^2(\Omega)$ in the space V . Then, the Lax-Milgram theorem can be applied effectively.

Finally Section 5 is the supplement to the first author's paper [10] where the vanishing theorem of the index is proved when an operator P is slowly varying in the sense of [4] and has complex powers.

We try here to reduce the index theory of a hypoelliptic operator Q of order m to an elliptic operator of order 0 (studied in [4]) when the symbol $\sigma(Q)(x, \xi)$ is equally strong to the symbol $\sigma(P)(x, \xi)$ of an operator P which admits complex powers.

Throughout the present paper we shall treat strict algebras of pseudo-differential operators, and investigate the topology of the symbol class precisely

in Sections 2 and 3. The analyticity of complex powers P_z with respect to z is used essentially in order to determine the domain of the adjoint operator P_z^* . The symbols of complex powers are defined by the Dunford integral for the symbols of parametrices $R(\zeta)$ for $P - \zeta I$. We have to note that for a scalar operator P we can give complex powers of P in the concrete form as in [12], if the argument of the symbol $\sigma(P)(x, \xi)$ is well defined. This fact is interesting when we recall the proof of the vanishing theorem of the index by Seely [14] and Nirenberg [13] for an elliptic operator on a compact manifold.

1. Notation and definitions

Let $x = (x_1, \dots, x_n)$ be a point of the n -dimensional Euclidean space R_x^n , and let \mathcal{S} denote the space of C^∞ -functions which together with all their derivatives decrease faster than any power of $|x| = (\sum_{j=1}^n x_j^2)^{1/2}$ as $|x| \rightarrow \infty$. By $S_{\rho, \delta}^m$ ($0 \leq \delta < \rho \leq 1$) we denote the set of all C^∞ -symbols $p(x, \xi)$ in $R_x^n \times R_\xi^n$ satisfying, for any multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$,

$$(1.1) \quad |p_{(\beta)}^{(\alpha)}(x, \xi)| \leq C_{\alpha, \beta} \langle \xi \rangle^{m - \rho|\alpha| + \delta|\beta|} \text{ on } R_x^n \times R_\xi^n$$

for a constant $C_{\alpha, \beta}$, we have

$$\begin{aligned} p_{(\beta)}^{(\alpha)}(x, \xi) &= \partial_\xi^\alpha D_x^\beta p(x, \xi), \quad \partial_\xi^\alpha = \partial_{\xi_1}^{\alpha_1} \cdots \partial_{\xi_n}^{\alpha_n}, \\ D_x^\beta &= (-i \partial/\partial x_1)^{\beta_1} \cdots (-i \partial/\partial x_n)^{\beta_n}, \quad \langle \xi \rangle = (1 + \sum_{j=1}^n \xi_j^2)^{1/2}, \end{aligned}$$

and for a $p(x, \xi) \in S_{\rho, \delta}^m$ we define a pseudo-differential operator $P = p(x, D_x)$, denoted also by $P \in S_{\rho, \delta}^m$, with the symbol $\sigma(P)(x, \xi) = p(x, \xi)$ by

$$Pu(x) = \int e^{ix \cdot \xi} p(x, \xi) \hat{u}(\xi) d\xi, \quad u \in \mathcal{S} \quad (x \cdot \xi = x_1 \xi_1 + \cdots + x_n \xi_n),$$

where $\hat{u}(\xi)$ denotes the Fourier transform of $u(x)$ which is defined by $\hat{u}(\xi) = \int e^{-ix \cdot \xi} u(x) dx$, and $d\xi = (2\pi)^{-n} d\xi$. We set

$$S^{-\infty} = \bigcap_m S_{1,0}^m (= \bigcap_m S_{\rho, \delta}^m), \quad S_{\rho, \delta}^\infty = \bigcup_m S_{\rho, \delta}^m.$$

For two pseudo-differential operators P and Q , $P \equiv Q \pmod{S^{-\infty}}$ means that

$$\sigma(P)(x, \xi) - \sigma(Q)(x, \xi) \in S_{\rho, \delta}^{-\infty}.$$

For any real number s , we define a continuous operator $\wedge^s: \mathcal{S} \rightarrow \mathcal{S}$ by

$$\wedge^s u(x) = \int e^{ix \cdot \xi} \langle \xi \rangle^s \hat{u}(\xi) d\xi.$$

It is easy to see that \wedge^s belongs to $S_{1,0}^s$ and can be extended uniquely to an operator of \mathcal{S}' into itself by the relation

$$\langle \wedge^s u, v \rangle = \langle u, \wedge^s v \rangle \quad \text{for } u \in \mathcal{S}', v \in \mathcal{S}.$$

Let $H_s = \{u \in \mathcal{S}' ; \wedge^s u \in L^2(\mathbb{R}_x^n)\}$ be a Hilbert space provided with the s -norm $\|u\|_s = \|\wedge^s u\|_{L^2}$ for $u \in H_s$, where $\|\cdot\|_{L^2}$ denotes the L^2 -norm. We set

$$H_{-\infty} = \bigcup_s H_s, \quad H_\infty = \bigcap_s H_s.$$

For a $p(x, \xi) \in S_{\rho, \delta}^m$, we define semi-norms $|p|_{m, k}$ by

$$(1.2) \quad |p|_{m, k} = \max_{|\alpha + \beta| \leq k} \sup_{(x, \xi)} \{ |p_{(\beta)}^{(\alpha)}(x, \xi)| \langle \xi \rangle^{-(m - \rho|\alpha| + \delta|\beta|)} \},$$

then, $S_{\rho, \delta}^m$ makes a Fréchet space with these semi-norms.

DEFINITION 1.1. We say that a sequence $\{p_j(x, \xi)\}_{j=1}^\infty$ of $S_{\rho, \delta}^m$ converges to a $p(x, \xi)$ of $S_{\rho, \delta}^m$ in $S_{\rho, \delta}^m$ weakly, if $\{p_j(x, \xi)\}_{j=1}^\infty$ is a bounded set of $S_{\rho, \delta}^m$ and

$$(1.3) \quad p_{j(\beta)}^{(\alpha)}(x, \xi) \rightarrow p_{(\beta)}^{(\alpha)}(x, \xi) \text{ as } j \rightarrow \infty \text{ uniformly on } \mathbb{R}_x^n \times K$$

for any α, β and any compact set K of \mathbb{R}_ξ^n . We denote it by

$$p_j(x, \xi) \xrightarrow[\text{(weak)}]{} p(x, \xi) \quad \text{in } S_{\rho, \delta}^m \quad \text{as } j \rightarrow \infty.$$

REMARK. If (1.3) holds for $\alpha = \beta = 0$, then, we have (1.3) for any α and β . In fact, if we use a well-known inequality

$$(1.4) \quad |f'(t_0)|^2 \leq C \max_{t \in [0, 1]} (|f(t)|) \{ \max_{t \in [0, 1]} (|f(t)|) + \max_{t \in [0, 1]} (|f''(t)|) \} \quad (t_0 \in [0, 1])$$

for any C^2 -function $f(t)$ on $[0, 1]$, then, setting $f(t) = p_j(x, \xi + t\alpha) - p(x, \xi + t\alpha)$ for $|\alpha| = 1$, we get

$$p_{j(\beta)}^{(\alpha)}(x, \xi) \rightarrow p^{(\alpha)}(x, \xi) \quad \text{as } j \rightarrow \infty \text{ uniformly on } \mathbb{R}_x^n \times K,$$

and so we get

$$p_{j(\beta)}^{(\alpha)}(x, \xi) \rightarrow p_{(\beta)}^{(\alpha)}(x, \xi) \quad \text{as } j \rightarrow \infty \text{ uniformly on } \mathbb{R}_x^n \times K$$

for any α and β .

Lemma 1.2 (c.f. [7], p. 88). *If a sequence $\{p_j(x, \xi)\}_{j=1}^\infty$ of $S_{\rho, \delta}^m$ converges to a $p(x, \xi)$ of $S_{\rho, \delta}^m$ in $S_{\rho, \delta}^m$ weakly, then, $p_j(x, \xi) \rightarrow p(x, \xi)$ as $j \rightarrow \infty$ in the topology of $S_{\rho, \delta}^{m'}$ for any $m' > m$.*

Proof. We may assume $p(x, \xi) = 0$. Then, the statement is clear from the inequality

$$\begin{aligned} & \max_{|\alpha + \beta| \leq k} \sup_{(x, \xi)} \{ |p_{j(\beta)}^{(\alpha)}(x, \xi)| \langle \xi \rangle^{-(m' - \rho|\alpha| + \delta|\beta|)} \} \\ & \leq \max_{|\alpha + \beta| \leq k} \sup_{(x, \xi) \in \mathbb{R}_x^n \times K} \{ |p_{j(\beta)}^{(\alpha)}(x, \xi)| \langle \xi \rangle^{-(m' - \rho|\alpha| + \delta|\beta|)} \} \\ & + \max_{|\alpha + \beta| \leq k} \sup_{(x, \xi) \in \mathbb{R}_x^n \times (\mathbb{R}_\xi^n \setminus K)} \{ |p_{j(\beta)}^{(\alpha)}(x, \xi)| \langle \xi \rangle^{-(m' - \rho|\alpha| + \delta|\beta|)} \} \max_{\xi \in (\mathbb{R}_\xi^n \setminus K)} \langle \xi \rangle^{-(m' - m)}. \end{aligned}$$

DEFINITION 1.3. i) By $\overset{\circ}{S}_{\rho, \delta}^m$ we denote the set of all symbols $p(x, \xi)$ for which (1.1) holds for bounded functions $C_{\alpha, \beta}(x)$, instead of constants $C_{\alpha, \beta}$, such that

$$(1.5) \quad C_{\alpha, \beta}(x) \rightarrow 0 \quad \text{as } |x| \rightarrow \infty.$$

(We denote it also by $p(x, D_x) \in \overset{\circ}{S}_{\rho, \delta}^m$).

ii) We say that a symbol $p(x, \xi) (\in \overset{\circ}{S}_{\rho, \delta}^m)$ is slowly varying, when $p_{(\beta)}(x, \xi) \in \overset{\circ}{S}_{\rho, \delta}^{m+\delta|\beta|}$ for any $\beta \neq 0$.

REMARK. In the inequality (1.4) we set $f(t) = p(x, \xi + 2^{-1}t \langle \xi \rangle^\rho \alpha)$ for $|\alpha| = 1$ (resp. $p(x + 2^{-1}t \langle \xi \rangle^{-\delta} \beta, \xi)$ for $|\beta| = 1$). Then, we have (1.5) for $|\alpha| = 1$ (resp. $|\beta| = 1$) and so for any α and β , if (1.5) holds only for $\alpha = \beta = 0$.

Lemma 1.4. For any $p(x, \xi) \in \overset{\circ}{S}_{\rho, \delta}^m$ and real s we have

$$(1.6) \quad \|p(x, D_x)u\|_s \leq C \|p\|_{m, k} \|u\|_{s+m} \quad \text{for } u \in H_{s+m},$$

where C and k are constants independent of $p(x, \xi)$ and u .

Proof is omitted (c.f. Theorem 3.5 of [6] and Corollary 1 of Theorem 5.2 of [9]).

Lemma 1.5 (Grushin [4]). i) Let $P \in \overset{\circ}{S}_{\rho, \delta}^m$ and $Q \in \overset{\circ}{S}_{\rho, \delta}^m$. Then, we have

$$PQ \in \overset{\circ}{S}_{\rho, \delta}^{m+m'} \text{ and } QP \in \overset{\circ}{S}_{\rho, \delta}^{m+m'}.$$

ii) Let $P \in \overset{\circ}{S}_{\rho, \delta}^m$ and $Q \in \overset{\circ}{S}_{\rho, \delta}^m$. Assume that P and Q are slowly varying. Then, we have that $PQ (\in \overset{\circ}{S}_{\rho, \delta}^{m+m'})$ is slowly varying. Moreover, if we write $PQ = R_N + R'_N$ with

$$\sigma(R_N)(x, \xi) = \sum_{|\alpha| \leq N} \frac{1}{\alpha!} \sigma(P)^{(\alpha)}(x, \xi) \sigma(Q)_{(\alpha)}(x, \xi),$$

then we have

$$(1.7) \quad R'_N \in \overset{\circ}{S}_{\rho, \delta}^{m+m'-(\rho-\delta)N}.$$

Proof. i) By Theorem 1.1 in [9] we have

$$(1.8) \quad \sigma(PQ)(x, \xi) = \int \langle D_\eta \rangle^{n_0} \sigma(P)(x, \xi + \eta) \left(\int e^{-iw \cdot \eta} \langle w \rangle^{-n_0} \sigma(Q)(x + w, \xi) dw \right) d\eta$$

for any even integer $n_0 \leq n+1$. Then, writing for large $R > 0$

$$\begin{aligned} & \int e^{-iw \cdot \eta} \langle w \rangle^{-n_0} \sigma(Q)(x + w, \xi) dw \\ &= \int_{|w| \leq R} e^{-iw \cdot \eta} \langle w \rangle^{-n_0} \sigma(Q)(x + w, \xi) dw + \int_{|w| \geq R} e^{-iw \cdot \eta} \langle w \rangle^{-n_0} \sigma(Q)(x + w, \xi) dw, \end{aligned}$$

we can easily see that $PQ \in \overset{\circ}{S}_{\rho, \delta}^{m+m'}$, and also get $QP \in \overset{\circ}{S}_{\rho, \delta}^{m+m'}$ in the same way.

ii) By the similar way to i) we can see by (1.8) that PQ is slowly varying. If we write

$$\sigma(Q)(x+w, \xi) = \sigma(Q)(x, \xi) + \sum_{j=1}^n w_j \int_0^1 \sigma(Q)_{(j)}(x+tw, \xi) dt,$$

then, from (1.8) we have

$$\begin{aligned} & \sigma(R'_1)(x, \xi) \\ &= \int \langle D_\eta \rangle^{n_0} \sigma(P)(x, \xi + \eta) \left(\int e^{-i w \cdot \eta} \langle w \rangle^{-n_0} \left(\sum_{j=1}^n w_j \int_0^1 \sigma(Q)_{(j)}(x+tw, \xi) dt \right) dw \right) d\eta \\ &= \sum_{j=1}^n \int \langle D_\eta \rangle^{n_0} (i \partial_{\eta_j}) \sigma(P)(x, \xi + \eta) \left(\int e^{-i w \cdot \eta} \langle w \rangle^{-n_0} \int_0^1 \sigma(Q)_{(j)}(x+tw, \xi) dt dw \right) d\eta. \end{aligned}$$

Since $\sigma(Q)_{(j)}(x+tw, \xi) \rightarrow 0$ as $|x| \rightarrow \infty$ together with all their derivatives, we see that $R'_1 \in \dot{S}_{\rho, \delta}^{m+m'-(\rho-\delta)}$. If we use Taylor's expansion of order N for $\sigma(Q)(x+w, \xi)$, we get (1.7) for any N . Q.E.D.

Lemma 1.6. *Let P belong to $\dot{S}_{\rho, \delta}^m$. Then, P is compact from H_{s+m} into H_s' for any $s > s'$.*

Proof. We write $\|Pu\|_{s'} = \|\wedge^s Pu\|_{-(s-s')}$. Then, by Lemma 1.5, we have $Q = \wedge^s P \in \dot{S}_{\rho, \delta}^{s+m}$. Take a C_0^∞ -function $a(x)$ such that $a(x) = 1$ ($|x| \leq 1$) and $a(x) = 0$ ($|x| \geq 2$), and set $Q_\varepsilon = a(\varepsilon x)Q$ for $0 < \varepsilon < 1$. Then, noting $|D_x^s a(\varepsilon x)| \leq C_a \langle x \rangle^{-1+s}$ for a constant C_a independent of ε , we see that $\{\sigma(Q_\varepsilon)(x, \xi)\}_{0 < \varepsilon < 1}$ makes a bounded set in $S_{\rho, \delta}^{s+m}$ and $\sigma(Q_\varepsilon)(x, \xi) \rightarrow \sigma(Q)(x, \xi)$ in the topology of $S_{\rho, \delta}^{s+m}$ because of $Q \in \dot{S}_{\rho, \delta}^{s+m}$. Hence, we have

$$\sigma(\wedge^{-(s-s')} Q_\varepsilon)(x, \xi) \rightarrow \sigma(\wedge^{s'} P)(x, \xi) \text{ in the topology of } S_{\rho, \delta}^{s'+m}.$$

Since $\wedge^{-(s-s')} Q_\varepsilon: H_{s+m} \rightarrow H_0$ is compact, we get by Lemma 1.4 that $P: H_{s+m} \rightarrow H_s'$ is compact. Q.E.D.

2. Topology of symbol class

Throughout what follows we shall often use a C_0^∞ -function $\psi(\xi)$ such that

$$(2.1) \quad 0 \leq \psi(\xi) \leq 1 \text{ and } \psi(\xi) = \begin{cases} 1 & (|\xi| \leq 1) \\ 0 & (|\xi| \geq 2) \end{cases}$$

Consider $\{\psi(\varepsilon \xi)\}$, $0 \leq \varepsilon \leq 1$. Then we have

$$(2.2) \quad \begin{cases} 0 \leq \psi(\varepsilon \xi) \leq 1 \text{ and } \psi(\varepsilon \xi) = \begin{cases} 1 & (|\xi| \leq \varepsilon^{-1}) \\ 0 & (|\xi| \geq 2\varepsilon^{-1}) \end{cases} \\ |\partial_\xi^\alpha \psi(\varepsilon \xi)| \leq C_\alpha \langle \xi \rangle^{-|\alpha|} \end{cases}$$

for a constant C_α independent of ε , which means that

$$(2.3) \quad \psi(\varepsilon \xi) \xrightarrow{\text{(weak)}} 1 \text{ in } S_{1,0}^0 \text{ as } \varepsilon \rightarrow 0.$$

Lemma 2.1 *Let $P_j \in S_{\rho, \delta}^m$, $j = 1, 2, \dots$, and $Q \in S_{\rho, \delta}^{m'}$.*

Suppose that for a $P \in S_{\rho, \delta}^m$

$$(2.4) \quad \sigma(P_j)(x, \xi) \xrightarrow{(\text{weak})} \sigma(P)(x, \xi) \quad \text{in } S_{\rho, \delta}^m.$$

Then we have

$$(2.5) \quad \begin{cases} \sigma(P_j Q)(x, \xi) \xrightarrow{(\text{weak})} \sigma(PQ)(x, \xi) & \text{in } S_{\rho, \delta}^{m+m'} \\ \sigma(QP_j)(x, \xi) \xrightarrow{(\text{weak})} \sigma(QP)(x, \xi) & \text{in } S_{\rho, \delta}^{m+m'} \end{cases}$$

and

$$(2.6) \quad \sigma(P_j^{(*)})(x, \xi) \xrightarrow{(\text{weak})} \sigma(P^{(*)})(x, \xi) \quad \text{in } S_{\rho, \delta}^m,$$

where $P^{(*)}$ is defined by

$$(2.7) \quad (Pu, v) = (u, P^{(*)}v) \quad \text{for } u, v \in \mathcal{S} \text{ (c.f. [9], p. 36).}$$

Proof. From Corollary 2 of Theorem 4.1 in [9] we see that $\sigma(P_j Q)(x, \xi)$ and $\sigma(QP_j)(x, \xi)$ are bounded in $S_{\rho, \delta}^{m+m'}$ and that $\sigma(P_j^{(*)})(x, \xi)$ is bounded in $S_{\rho, \delta}^m$. By means of Theorem 1.1 in [9] we have

$$\begin{aligned} & \sigma(P_j Q)(x, \xi) \\ &= \int \langle D_\eta \rangle^{n_0} \sigma(P_j)(x, \xi + \eta) \left(\int e^{-iw \cdot \eta} \langle w \rangle^{-n_0} \sigma(Q)(x + w, \xi) dw \right) d\eta \end{aligned}$$

for any even integer $n_0 \geq n+1$. We write

$$\begin{aligned} & \sigma(P_j Q)(x, \xi) \\ &= \int_{|\eta| \leq R} \langle D_\eta \rangle^{n_0} \sigma(P_j)(x, \xi + \eta) \left(\int e^{-iw \cdot \eta} \langle w \rangle^{-n_0} \sigma(Q)(x + w, \xi) dw \right) d\eta \\ &+ \int_{|\eta| \geq R} \langle D_\eta \rangle^{n_0} \sigma(P_j)(x, \xi + \eta) \langle \eta \rangle^{-2l} \left(\int e^{-iw \cdot \eta} \langle D_w \rangle^{2l} \langle w \rangle^{-n_0} \right. \\ &\quad \left. \cdot \sigma(Q)(x + w, \xi) dw \right) d\eta. \end{aligned}$$

Then, if we take a large l such that the second term is absolutely integrable and fix a large R , we see that

$$\sigma(P_j Q)(x, \xi) \rightarrow \sigma(PQ)(x, \xi) \text{ on } R_x^n \times K \text{ uniformly}$$

for any compact set K of R_ξ^n . Hence we get the half part of (2.5). For $\sigma(QP_j)(x, \xi)$ we get the assertion in the same way. For $\sigma(P_j^{(*)})(x, \xi)$ we use the formula in [9];

$$\sigma(P_j^{(*)})(x, \xi) = \int \left(\int e^{-iw \cdot \eta} \langle w \rangle^{-n_0} \langle D_\eta \rangle^{n_0} \sigma(P_j)(x + w, \xi + \eta) dw \right) d\eta,$$

and get (2.6).

Lemma 2.2. *Let $P_j \in S_{\rho, \delta}^m$, $j=1, 2, \dots$. Suppose that*

$$\sigma(P_j)(x, \xi) \xrightarrow[\text{(weak)}]{} \sigma(P)(x, \xi) \text{ in } S_{\rho, \delta}^m \text{ for a } P \in S_{\rho, \delta}^m.$$

Then, for any s , we have

$$(2.8) \quad \|P_j u - P u\|_s \rightarrow 0 \text{ as } (j \rightarrow \infty) \text{ for } u \in H_{s+m}.$$

Proof. By Lemma 2.1 we have

$$\sigma(\wedge^s(P_j - P))(x, \xi) \xrightarrow[\text{(weak)}]{} 0 \text{ in } S_{\rho, \delta}^{s+m}.$$

Then, using a function $\psi(\xi)$ of (2.1), we have

$$\begin{aligned} \|P_j u - P u\|_s &= \|\wedge^s(P_j - P)u\|_0 \\ &\leq \|\wedge^s(P_j - P)\psi(\varepsilon D_x)u\|_0 + \|\wedge^s(P_j - P)(1 - \psi(\varepsilon D_x))u\|_0. \end{aligned}$$

By Lemma 1.4 we have

$$\|\wedge^s(P_j - P)\psi(\varepsilon D_x)u\|_0 \leq C \|\sigma(\wedge^s(P_j - P))(x, \xi) \cdot \psi(\varepsilon \xi)\|_{s+m, l} \|u\|_{s+m}$$

and

$$\|\wedge^s(P_j - P)(1 - \psi(\varepsilon D_x))u\|_0 \leq C \|\sigma(\wedge^s(P_j - P))(x, \xi)\|_{s+m, l} \|(1 - \psi(\varepsilon D_x))u\|_{s+m}.$$

Then, noting $\|\sigma(\wedge^s(P_j - P))(x, \xi) \cdot \psi(\varepsilon \xi)\|_{s+m, l} \rightarrow 0$ as $j \rightarrow \infty$ for any fixed $\varepsilon > 0$, and

$$\begin{aligned} \|(1 - \psi(\varepsilon D_x))u\|_{s+m}^2 &= \int |(1 - \psi(\varepsilon \xi))|^2 (\langle \xi \rangle^{s+m} |\hat{u}(\xi)|)^2 d\xi \\ &\leq \int_{|\xi| \geq \varepsilon^{-1}} \langle \xi \rangle^{2(s+m)} |\hat{u}(\xi)|^2 d\xi \rightarrow 0 \quad (\varepsilon \rightarrow 0), \end{aligned}$$

we get (2.8). Q.E.D.

Lemma 2.3. *Let $P_z \in S_{\rho, \delta}^m$ for $z \in \Omega$ (an open set of \mathbf{C}). Suppose that $\sigma(P_z)(x, \xi)$ is an analytic function of z in Ω in the topology of $S_{\rho, \delta}^m$.*

Then we have, for any $Q \in S_{\rho, \delta}^{m'}$,

- i) $\sigma(P_z Q)(x, \xi)$ and $\sigma(Q P_z)(x, \xi)$ are analytic functions of z in Ω in the topology of $S_{\rho, \delta}^{m+m'}$ for any $Q \in S_{\rho, \delta}^{m'}$.
- ii) For $u \in H_{s+m}$, $P_z u$ is an analytic function of z in Ω in the topology of H_s .

Proof is omitted.

3. Complex powers

DEFINITION 3.1. For an $l \times l$ matrix $P \in S_{\rho, \delta}^m$ ($m > 0$) we say that operators P_z , $z \in \mathbf{C}$, ($\in S_{\rho, \delta}^m$) are complex powers of P , when P_z satisfy the following conditions (c.f. [10]):

- i) For a monotone increasing function $m(s)$ such that

$$m(s) \rightarrow -\infty \text{ as } (s \rightarrow -\infty), \quad m(0) = 0, \quad m(s) \rightarrow \infty \text{ as } (s \rightarrow \infty),$$

we have $P_z \in S_{\rho, \delta}^{m(\text{Re } z)}$, where $\text{Re } z$ denotes the real part of z .

- ii) $P_0 = I$ (identity operator), $P_1 = P$ (original operator).
- iii) For any real s_0 $\sigma(P_z)(x, \xi)$ is an analytic function of z ($\text{Re } z < s_0$) in the topology of $S_{\rho, \delta}^{m(s_0)}$.
- iv) For any real s_0

$$\sigma(P_s)(x, \xi) \xrightarrow{(\text{weak})} \sigma(P_{s_0})(x, \xi) \text{ in } S_{\rho, \delta}^{m(s_0)}$$

as $s \uparrow s_0$ along the real axis.

- v) $P_{z_1}P_{z_2} \equiv P_{z_1+z_2}$ (mod $S^{-\infty}$) in the sense:
 $\sigma(P_{z_1}P_{z_2} - P_{z_1+z_2})(x, \xi)$ is an analytic function of z_1 and z_2 in the topology of $S_{\rho, \delta}^{s_0}$ for any real s_0 .

First we state a result obtained by Nagase-Shinkai [12] in a modified form for our aim.

Theorem 3.2°. *Let $P = p(x, D_x)$ be a single operator of class $S_{\rho, \delta}^m$. Assume that the symbol $p(x, \xi)$ satisfies conditions:*

A) $|p(x, \xi)| \geq c_0 \langle \xi \rangle^{\tau m}$ for constant $c_0 > 0$ and $\tau (0 < \tau \leq 1)$,

B) $|p_{(\beta)}(x, \xi) p(x, \xi)^{-1}| \leq c_{\alpha, \beta} \langle \xi \rangle^{-\rho |\alpha| + \delta |\beta|}$

and

C) $\arg p(x, \xi)$ (the argument of $p(x, \xi)$) is well-defined for large $|\xi|$. Then, for $m(s) = \tau ms (s < 0)$ and $= ms (s \geq 0)$, we can define complex powers P_z of P by

$$\begin{aligned} & \sigma(P_z)(x, \xi) \\ &= p(x, \xi)^z \left\{ 1 + \sum_{|\alpha|=|\beta|=k \geq 2} C_{k, \alpha, \beta}(z) p(x, \xi)^{-k} p_{(\beta^1)}(x, \xi) \cdots p_{(\beta^k)}(x, \xi) \right\}, \end{aligned}$$

where $p(x, \xi)^z = e^{z \log p(x, \xi)}$, $\alpha = (\alpha^1, \dots, \alpha^k)$, $\beta = (\beta^1, \dots, \beta^k)$ and $C_{k, \alpha, \beta}(z)$ are polynomials in z .

Proof is given in [12] for, so called, λ -elliptic operators. But, we can see that the discussion there works in our case, if we note

$$|\partial_x^\alpha D_x^\beta p(x, \xi)^z \cdot p(x, \xi)^{-z}| \leq C_{z, \alpha, \beta} \langle \xi \rangle^{-\rho |\alpha| + \delta |\beta|}$$

and

$$|p(x, \xi)^{-1} p_{(\beta^j)}(x, \xi)| \leq C_{\alpha^j, \beta^j} \langle \xi \rangle^{-\rho |\alpha^j| + \delta |\beta^j|}, j = 1, \dots, k,$$

for large $|\xi|$.

Our main theorem of this section is stated as follows.

Theorem 3.2. *Let $p(x, \xi) = (p_{jk}(x, \xi))$ be an $l \times l$ matrix of symbols $p_{jk}(x, \xi)$ of class $S_{\rho, \delta}^m$, $m > 0$, such that for some positive constants $C_0, c_0, C_{0, \alpha, \beta}$ and $\tau (0 < \tau \leq 1)$*

$$(3.1) \quad \|(p(x, \xi) - \zeta I)^{-1}\| \leq C_0 \langle \xi \rangle^{-\tau m}$$

and

$$(3.2) \quad ||p_{\langle \beta \rangle}^{(\alpha)}(x, \xi)(p(x, \xi) - \zeta I)^{-1}|| \leq C_{0, \alpha, \beta} \langle \xi \rangle^{-\rho|\alpha| + \delta|\beta|}$$

for large $|\xi|$ uniformly on Ξ_0 , where $||\cdot||$ denotes a matrix norm and $\Xi_0 = \{\zeta \in \mathbf{C}; \text{dis}(\zeta, (-\infty, 0]) \leq c_0\}$. Then, we can construct complex powers $P_z = p_z(x, D_x)$ of $P = p(x, D_x)$ such that

$$(3.3) \quad P_z \in S_{\rho, \delta}^{m \operatorname{Re} z} \text{ for } \operatorname{Re} z < 0, \quad S_{\rho, \delta}^{m \operatorname{Re} z} \text{ for } \operatorname{Re} z \geq 0,$$

that is, $m(s) = \tau m s$ for $s < 0$, $= m s$ for $s \geq 0$.

REMARK. We may assume that $p(x, \xi)$ satisfies conditions (3.1) and (3.2) for every ξ . In fact, if we set $p_\varepsilon(x, \xi) = p(x, \xi) + \varepsilon^{-1}\psi(\varepsilon\xi)I$ for a C_0^∞ -function $\psi(\xi)$ of (2.1), then, for a small fixed $\varepsilon_0 > 0$, $p_{\varepsilon_0}(x, \xi)$ satisfies (3.1) and (3.2) uniformly on Ξ_0 for any ξ , and we have complex powers $P_{\varepsilon_0, z}$ of P_{ε_0} . Set $P_z = P_{\varepsilon_0, z} + z(P - P_{\varepsilon_0, 1})$. Then, noting $P \equiv P_{\varepsilon_0} = P_{\varepsilon_0, 1}$, we get required powers of P .

For the proof of Theorem 3.2 we need several lemmas.

Lemma 3.3. *Let $\zeta_1(x, \xi), \dots, \zeta_l(x, \xi)$ be eigen-values of $p(x, \xi)$ which satisfies (3.1) for $\zeta = 0$. Then, there exists a positive constant C_1 such that*

$$(3.4) \quad C_1^{-1} \langle \xi \rangle^{\tau m} \leq |\zeta_j(x, \xi)| \leq C_1 \langle \xi \rangle^m, \quad j = 1, \dots, l.$$

Proof. We write

$$\det(p(x, \xi) - \zeta I) = (-1)^l \{ \zeta^l + \dots + q_j(x, \xi) \zeta^{l-j} + \dots + q_l(x, \xi) \}.$$

Then, noting $|q_j(x, \xi)| \leq C \langle \xi \rangle^{jm}$, $j = 1, \dots, l$, for a constant C , we get easily the right half of (3.4). The left half is proved in the same way, if we use $\det(\zeta_j^{-1}I - p(x, \xi)^{-1}) = 0$, $j = 1, \dots, l$, and $\|p(x, \xi)^{-1}\| \leq C_0 \langle \xi \rangle^{-\tau m}$. Q.E.D.

Lemma 3.4. *Let $p(x, \xi) (\in S_{\rho, \delta}^m)$ satisfy conditions (3.1) and (3.2). Then, for any $A (> C_1)$ we have*

$$(3.5) \quad \begin{aligned} & \|(p(x, \xi) - \zeta I)^{-1}\| \leq B |\zeta|^{-1} \\ & \text{on } \Xi_{\xi, A} = \{\zeta \in \mathbf{C}; |\zeta| \leq A^{-1} \langle \xi \rangle^{\tau m} \text{ or } |\zeta| \geq A \langle \xi \rangle^m\}, \end{aligned}$$

for a constant B , where C_1 is a constant of Lemma 3.3.

Proof. We write

$$\det(p(x, \xi) - \zeta I) = (-1)^l \prod_{j=1}^l (\zeta - \zeta_j(x, \xi)).$$

By Lemma 3.3 we have

$$\begin{aligned} & |\zeta - \zeta_j(x, \xi)| \\ & \geq \begin{cases} |\zeta_j(x, \xi)| - |\zeta| \geq C_1^{-1} \langle \xi \rangle^{\tau m} - |\zeta| \geq (A/C_1 - 1) |\zeta| & \text{for } |\zeta| \leq A^{-1} \langle \xi \rangle^{\tau m} \\ |\zeta| - |\zeta_j(x, \xi)| \geq |\zeta| - C_1 \langle \xi \rangle^m \geq (1 - C_1/A) |\zeta| & \text{for } |\zeta| \geq A \langle \xi \rangle^m. \end{cases} \end{aligned}$$

Hence, we have

$$|\det(p(x, \xi) - \xi I)| \geq C |\xi|^\ell \text{ on } \Xi_{\xi, A}.$$

Noting $\|(p(x, \xi) - \xi I)\| \leq \text{const. } |\xi|$ for $|\xi| \geq A \langle \xi \rangle^m$, we get $\|(p(x, \xi) - \xi I)^{-1}\| \leq B' |\xi|^{-1}$ for $|\xi| \geq A \langle \xi \rangle^m$.

Using

$$\xi(p(x, \xi) - \xi I)^{-1} = p(x, \xi)^{-1}(\xi^{-1} - p(x, \xi)^{-1})^{-1},$$

we have in the same way

$$\begin{aligned} \|(p(x, \xi) - \xi I)^{-1}\| &\leq \|(p(x, \xi)^{-1})\| \|\xi^{-1} - p(x, \xi)^{-1}\| |\xi|^{-1} \\ &\leq C_0 \langle \xi \rangle^{-\tau m} |\xi|^{-1} |\xi|^{-1} \leq B'' |\xi|^{-1} \text{ for } |\xi| \leq A^{-1} \langle \xi \rangle^{\tau m}. \end{aligned}$$

Hence, we have proved (3.5) Q.E.D.

Now following Hörmander [6], p. 165, we shall construct a parametrix for $p(x, \xi) - \xi I$. We define $q_j(\xi; x, \xi), j=0, 1, \dots$, inductively by

$$(3.6) \quad q_0(\xi; x, \xi) = (p(x, \xi) - \xi I)^{-1},$$

$$(3.7) \quad q_N(\xi; x, \xi) = - \left\{ \sum_{j=0}^{N-1} \sum_{|\alpha|=N-j} \frac{1}{\alpha!} \partial_\xi^\alpha q_j(\xi; x, \xi) D_x^\alpha (p(x, \xi) - \xi I) \right\} q_0(\xi; x, \xi).$$

Lemma 3.5. *Let $p(x, \xi) \in S_{p, \delta}^m (m > 0)$ satisfy conditions (3.1) and (3.2). Then, $q_j(\xi; x, \xi), j=0, 1, \dots$, defined by (3.6) and (3.7) are analytic functions of ξ on $\Xi_0 \cup \Xi_{\xi, A}$ and belong to $S_{p, \delta}^{-\tau m - (\rho - \delta)j}$ for any fixed $\xi \in \Xi_0$, moreover satisfy*

$$(3.8) \quad \|q_0(\xi; x, \xi)\| \leq C_0 \langle \xi \rangle^{-\tau m},$$

$$(3.9) \quad \|q_j(\xi; x, \xi)\| \leq C_{j, \alpha, \beta} \langle \xi \rangle^{-\tau m - \rho|\alpha| + \delta|\beta| - (\rho - \delta)j} \quad (j=0, 1, \dots)$$

uniformly on Ξ_0 , and

$$(3.10) \quad \|q_0(\xi; x, \xi)\| \leq C'_0 |\xi|^{-1},$$

$$(3.11) \quad \|q_j(\xi; x, \xi)\| \leq C'_{j, \alpha, \beta} |\xi|^{-1} \langle \xi \rangle^{-\rho|\alpha| + \delta|\beta| - (\rho - \delta)j} \quad (j=0, 1, \dots),$$

$$(3.12) \quad \|q_j(\xi; x, \xi)\| \leq C''_{j, \alpha, \beta} |\xi|^{-2} \langle \xi \rangle^{m - \rho|\alpha| + \delta|\beta| - (\rho - \delta)j} \quad (j + |\alpha + \beta| \neq 0),$$

$$(3.13) \quad \|q_j(\xi; x, \xi)\| \leq C'''_{j, \alpha, \beta} |\xi|^{-3} \langle \xi \rangle^{2m - \rho|\alpha| + \delta|\beta| - (\rho - \delta)j} \quad (j \geq 1)$$

uniformly on $\Xi_0 \cup \Xi_{\xi, A}$.

Proof. The estimate (3.8) is clear by (3.1), and (3.9) is proved by induction in view of (3.2). We write

$$(p(x, \xi) - \xi I)^{-1} = \xi^{-1} \{ p(x, \xi) (p(x, \xi) - \xi I)^{-1} - I \}.$$

Then, from (3.1) and (3.2) we get (3.10) on Ξ_0 , and by Lemma 3.4 we get on $\Xi_{\xi, A}$. For $|\alpha|=1$ we have

$$\partial_\xi^\alpha q_0 = -q_0 \partial_\xi^\alpha p \cdot q, \quad D_x^\alpha q_0 = -q_0 D_x^\alpha p \cdot q_0$$

and so

$$(3.14) \quad q_{0(\beta)}^{(\alpha)} = \sum C_{\alpha, \beta}^{\alpha_1, \dots, \alpha_k} q_0 p_{(\beta)}^{(\alpha_1)} q_0 \cdots q_0 p_{(\beta)}^{(\alpha_k)} q_0,$$

where the summation is taken under the condition

$$1 \leq k \leq |\alpha + \beta|, \quad \alpha^1 + \cdots + \alpha^k = \alpha, \quad \beta^1 + \cdots + \beta^k = \beta.$$

Hence, using (3.1) we have (3.9), (3.11) and (3.12) for $j=0$. From (3.7) we can see that $q_{j(\beta)}^{(\alpha)}$ also have the form (3.14) and get (3.9), (3.11)–(3.13) in general.

Q.E.D.

Now we construct a parametrix $r(\zeta; x, D_x) (\in S_{\rho, \delta}^{-\tau m})$ of $p(x, D_x) - \zeta I$ as follows: Let $\varphi(\xi)$ be a C_0^∞ -function in R_ξ^n such that

$$(3.15) \quad \varphi(\xi) = 0 \quad (|\xi| \leq 1) \quad \text{and} \quad \varphi(\xi) = 1 \quad (|\xi| \geq 2),$$

and set as in Theorem 2.7 of [6]

$$(3.16) \quad r(\zeta; x, \xi) = q_0(\zeta; x, \xi) + \sum_{j=1}^{\infty} \varphi(t_j^{-1} \xi) q_j(\zeta; x, \xi)$$

for an appropriate increasing sequence $t_j \rightarrow \infty$. Then, by Lemma 3.5, we have

$$(3.17) \quad r(\zeta; x, \xi) \in S_{\rho, \delta}^{-\tau m} \text{ for } \zeta \in \Xi_0,$$

and moreover we have

$$(3.18) \quad |r_{(\beta)}^{(\alpha)}(\zeta; x, \xi)| \leq C_{\alpha, \beta} \langle \xi \rangle^{-\tau m - \rho|\alpha| + \delta|\beta|} \text{ uniformly on } \Xi_0,$$

and

$$(3.19) \quad |r_{(\beta)}^{(\alpha)}(\zeta; x, \xi)| \leq C'_{\alpha, \beta} |\zeta|^{-1} \langle \xi \rangle^{-\rho|\alpha| + \delta|\beta|},$$

$$(3.20) \quad |r_{(\beta)}^{(\alpha)}(\zeta; x, \xi)| \leq C''_{\alpha, \beta} |\zeta|^{-2} \langle \xi \rangle^{m - \rho|\alpha| + \delta|\beta|}, \quad |\alpha + \beta| \neq 0,$$

$$(3.21) \quad |r_{(\beta)}^{(\alpha)}(\zeta; x, \xi) - q_{0(\beta)}^{(\alpha)}(\zeta; x, \xi)| \leq C'''_{\alpha, \beta} |\zeta|^{-3} \langle \xi \rangle^{2m - (\rho - \delta) - \rho|\alpha| + \delta|\beta|}$$

uniformly on $\Xi_0 \cup \Xi_{\xi, \mathbf{A}}$.

Let A be a positive number of Lemma 3.4 such that $A^{-1} < c_0$ for a constant c_0 of Theorem 3.2, and let $\Gamma_{\xi, \mathbf{A}}$ be a counterclockwisely oriented curve defined by

$$(3.22) \quad \begin{aligned} \Gamma_{\xi, \mathbf{A}} = & \{ \zeta \in \mathbf{C}; |\zeta| = A \langle \xi \rangle^m \text{ or } = A^{-1} \langle \xi \rangle^{-m}, \text{dis}(\zeta; (-\infty, 0]) \geq A^{-1} \} \\ & \cup \{ \zeta = \zeta_1 \pm iA^{-1}; -R_1 \leq \zeta_1 \leq -R_2 \}, \end{aligned}$$

where R_1 and R_2 are positive numbers satisfying

$$|-R_1 + iA^{-1}| = A \langle \xi \rangle^m \text{ and } |-R_2 + iA^{-1}| = A^{-1} \langle \xi \rangle^{-m}$$

respectively. Then, we have

Lemma 3.6. *For a complex number z we define symbols $p_z(x, \xi)$ by*

$$(3.23) \quad p_z(x, \xi) = \frac{1}{2\pi i} \int_{\Gamma_{\xi, \mathbf{A}}} \zeta^z r(\zeta; x, \xi) d\zeta.$$

Then, for a function $m(s)=\tau ms(s<0)$ and $=ms(s\geq 0)$, we have i)–iv) of Definition 3.1 for $p_z(x, \xi)$.

Proof. Since

$$p_z^{(\alpha)}(x, \xi) = \frac{1}{2\pi i} \int_{\Gamma_{\xi, \mathbf{A}}} \zeta^z r_{(\beta)}^{(\alpha)}(\zeta; x, \xi) d\zeta,$$

we have by (3.19)

$$\|p_z^{(\alpha)}(x, \xi)\| \leq \frac{C'_{\alpha, \beta}}{2\pi} e^{2\pi |\operatorname{Im} z|} \int_{\Gamma_{\xi, \mathbf{A}}} |\zeta|^{\operatorname{Re} z-1} \langle \xi \rangle^{-\rho|\alpha|+\delta|\beta|} |d\zeta|.$$

Then, estimating the cases: $\operatorname{Re} z<0$ and $\operatorname{Re} z\geq 0$ separately, and noting

$$p_s(x, \xi) \rightarrow p_{s_0}(x, \xi) \text{ uniformly on } R_\xi^n \times K \text{ as } s \uparrow s_0$$

for any compact set K of R_ξ^n , we have i) and iv). Next, we write

$$p_z(x, \xi) = \frac{1}{2\pi i} \int_{\Gamma_{\xi, \mathbf{A}}} \zeta^z q_0(\zeta) d\zeta + \frac{1}{2\pi i} \int_{\Gamma_{\xi, \mathbf{A}}} \zeta^z (r(\zeta) - q_0(\zeta)) d\zeta.$$

Then, by (3.21) we see that the second term can be deformed to

$$\frac{1}{2\pi i} \int_{\Gamma_0} \zeta^z (r(\zeta) - q_0(\zeta)) d\zeta \quad \text{when } \operatorname{Re} z < 2,$$

and vanishes for $z=0$ and $=1$, where

$$(3.24) \quad \Gamma_0 = \{\zeta \in \mathbf{C}; \operatorname{dis}(\zeta; (-\infty, 0]) = A^{-1}\}.$$

Hence, noting that the first term defines $p(x, \xi)^z$ we get ii) of Definition 3.1. Since

$$\frac{d}{dz} p_z^{(\alpha)}(x, \xi) = \frac{1}{2\pi i} \int_{\Gamma_{\xi, \mathbf{A}}} \log \zeta \cdot \zeta^z r_{(\beta)}^{(\alpha)}(\zeta; x, \xi) d\zeta,$$

we get the last assertion in the same way. Q.E.D.

Lemma 3.7. Let $R(\zeta) = r(\zeta; x, D_x)$ ($\zeta \in \Xi_0$) be the parametrix of $P = p(x, D_x)$ defined by (3.16). Then we have for $\zeta_1 \neq \zeta_2$

$$(3.25) \quad R(\zeta_1)R(\zeta_2) = (\zeta_2 - \zeta_1)^{-1}(R(\zeta_2) - R(\zeta_1)) + (\zeta_2 - \zeta_1)^{-1}K(\zeta_1, \zeta_2),$$

where $K(\zeta_1, \zeta_2) \in S^{-\infty}$ is a pseudo-differential operator with the symbol $k(\zeta_1, \zeta_2; x, \xi)$ which satisfies, for any real number s and multi-index α, β ,

$$(3.26) \quad \|k_{(\beta)}^{(\alpha)}(\zeta_1, \zeta_2; x, \xi)\| \leq C_{\alpha, \beta, s} |\zeta_1|^{-1} |\zeta_2|^{-1} \langle \xi \rangle^s.$$

Proof. For some $K_1(\zeta_1), K_2(\zeta_2)$ of class $S^{-\infty}$ we have

$$R(\zeta_1)(P - \zeta_1 I) = I + K_1(\zeta_1) \text{ and } (P - \zeta_2 I)R(\zeta_2) = I + K_2(\zeta_2).$$

Then, we have

$$R(\zeta_1)R(\zeta_2)(\zeta_2 - \zeta_1) = R(\zeta_2) - R(\zeta_1) + K(\zeta_1, \zeta_2),$$

where $K(\zeta_1, \zeta_2) = K_1(\zeta_1)R(\zeta_2) - R(\zeta_1)K_2(\zeta_2)$. Hence, by (3.19) we have only prove for symbols $k_j(\zeta_j; x, \xi)$ of $K_j(\zeta_j)$, $j=1, 2$,

$$(3.27) \quad ||k_j(\zeta_j; x, \xi)|| \leq C_{j, \alpha, \beta, s} |\zeta_j|^{-1} \langle \xi \rangle^s \text{ for any } \alpha, \beta, s.$$

By Theorem 1.1 of [9] we can write for any integer N

$$(3.28) \quad \begin{aligned} k_1(\zeta_1; x, \xi) &= \sigma(R(\zeta_1)(P - \zeta_1 I))(x, \xi) - I \\ &= \sum_{|\alpha| < N} \frac{1}{\alpha!} \partial_\xi^\alpha r(\zeta_1; x, \xi) D_x^\alpha (p(x, \xi) - \zeta_1 I) + R_N(\zeta_1; x, \xi) - I \\ &\equiv I_N(\zeta_1; x, \xi) + R_N(\zeta_1; x, \xi), \end{aligned}$$

where

$$(3.29) \quad \begin{aligned} R_N(\zeta_1; x, \xi) &= \int \langle D_\eta \rangle^{n_0} N \sum_{|\gamma| = N} \frac{\eta^\gamma}{\gamma!} \left(\int_0^1 (1-t)^{N-1} \partial_\xi^\gamma r(\zeta_1; z, \xi + t\eta) dt \right) \\ &\quad \cdot \left(\int e^{-i w \cdot \eta} \langle w \rangle^{-n_0} (p(x+w, \xi) - \zeta_1 I) dw \right) d\eta \end{aligned}$$

for any even number $n_0 \geq n+1$. Using (3.16) and interchanging the order of summation, we can write

$$(3.30) \quad \begin{aligned} I_N &= \sum_{|\alpha| < N} \sum_{j+|\alpha| < N} \frac{1}{\alpha!} \partial_\xi^\alpha q_j D_x^\alpha (p - \zeta_1 I) - I \\ &\quad + \sum_{|\alpha| < N} \sum_{j+|\alpha| < N} \frac{1}{\alpha!} \partial_\xi^\alpha ((\varphi_j(\xi) - 1) q_j) D_x^\alpha (p - \zeta_1 I) \\ &\quad + \sum_{|\alpha| < N} \sum_{\substack{j+|\alpha| \geq N \\ N > j \geq 1}} \frac{1}{\alpha!} \partial_\xi^\alpha (\varphi_j(\xi) q_j) D_x^\alpha (p - \zeta_1 I) \\ &\quad + \sum_{|\alpha| < N} \sum_{j=N}^{\infty} \frac{1}{\alpha!} \partial_\xi^\alpha (\varphi_j(\xi) q_j) D_x^\alpha (p - \zeta_1 I) \equiv I_1 + I_2 + I_3 + I_4. \end{aligned}$$

From (3.6) and (3.7) we have

$$(3.31) \quad I_1 = 0.$$

Using (3.12), we have

$$(3.32) \quad ||\partial_\xi^\alpha D_x^\beta I_2|| \leq \text{const. } \langle \xi \rangle^s |\zeta_1|^{-2} (\langle \xi \rangle^m + |\zeta_1|) \leq \text{const. } |\zeta_1|^{-1} \langle \xi \rangle^{m+s}$$

for any real number s , and

$$(3.33) \quad \begin{aligned} ||\partial_\xi^\alpha D_x^\beta I_3|| &\leq \text{const. } |\zeta_1|^{-2} \langle \xi \rangle^{-(\rho-\delta)N} (\langle \xi \rangle^m + |\zeta_1| \langle \xi \rangle^{m-\rho|\alpha|+\delta|\beta|}) \\ &\leq \text{const. } |\zeta_1|^{-1} \langle \xi \rangle^{2m-(\rho-\delta)N-\rho|\alpha|+\delta|\beta|}. \end{aligned}$$

Similarly we have

$$(3.34) \quad ||\partial_\xi^\alpha D_x^\beta I_4|| \leq \text{const. } |\zeta_1|^{-1} \langle \xi \rangle^{2m-(\rho-\delta)N-\rho|\alpha|+\delta|\beta|}.$$

Finally we have to estimate $R_N(\zeta_1; x, \xi)$.

Since

$$\langle D_\eta \rangle^{\alpha_0} (\eta^\gamma \partial_\xi^\gamma r(\zeta_1; x, \xi + t\eta)) = \sum_{|\beta_1 + \beta_2| \leq \alpha_0} C_{\beta_1, \beta_2} t^{|\beta_2|} \eta^{\gamma - |\beta_1|} \partial_\xi^{|\beta_2|} r(\zeta_1; x, \xi + t\eta)$$

and

$$\eta^{\gamma - |\beta_1|} e^{-i w \cdot \eta} = (i \partial_w)^{\gamma - |\beta_1|} e^{-i w \cdot \eta},$$

integrating by parts we have only to estimate

$$\begin{aligned} & \int \{ \partial_\xi^{|\beta_2|} r(\zeta_1; x, \xi + t\eta) \left(\int e^{-i w \cdot \eta} \partial_w^{\gamma - |\beta_1|} (\langle w \rangle^{-\alpha_0} (p(x+w, \xi) - \zeta_1 I)) dw \right) \} d\eta \\ &= \int_{|\eta| \leq \langle \xi \rangle / 2} \{ \partial_\xi^{|\beta_2|} r(\zeta_1; x, \xi + t\eta) \left(\int e^{-i w \cdot \eta} \partial_w^{\gamma - |\beta_1|} (\langle w \rangle^{-\alpha_0} (p(x+w, \xi) - \zeta_1 I)) dw \right) \} d\eta \\ &+ \int_{|\eta| \geq \langle \xi \rangle / 2} \{ \langle \eta \rangle^{-2l} \partial_\xi^{|\beta_2|} r(\zeta_1; x, \xi + t\eta) \\ &\cdot \left(\int e^{-i w \cdot \eta} \langle D_w \rangle^{2l} \partial_w^{\gamma - |\beta_1|} (\langle w \rangle^{-\alpha_0} (p(x+w, \xi) - \zeta_1 I)) dw \right) \} d\eta \equiv J_1 + J_2. \end{aligned}$$

Then, noting $C^{-1} \langle \xi \rangle \leq \langle \xi + t\eta \rangle \leq C \langle \xi \rangle$ for a constant $C > 0$ when $|\eta| \leq \langle \xi \rangle / 2$ and $0 \leq t \leq 1$, we have by (3.20)

$$\begin{aligned} \|J_1(\zeta_1; x, \xi)\| &\leq \text{const.} |\zeta_1|^{-2} \langle \xi \rangle^{m - \rho(N + |\alpha|) + \alpha} (\langle \xi \rangle^{m + \delta N} + |\zeta_1|) \\ &\leq \text{const.} |\zeta_1|^{-1} \langle \xi \rangle^{2m + \alpha - (\rho - \delta)N}. \end{aligned}$$

Taking a large integer l we have

$$\begin{aligned} \|J_2(\zeta_1; x, \xi)\| &\leq \text{const.} |\zeta_1|^{-2} \langle \xi \rangle^{m - 2l + \alpha} (\langle \xi \rangle^{2l\delta + N} + |\zeta_1|) \\ &\leq \text{const.} |\zeta_1|^{-1} \langle \xi \rangle^{m - 2l(1 - \delta) + \alpha + N}. \end{aligned}$$

Hence, fixing l such as $m - 2l(1 - \delta) + N \leq 2m - (\rho - \delta)N$, we have

$$\|R_N(\zeta_1; x, \xi)\| \leq \text{const.} |\zeta_1|^{-1} \langle \xi \rangle^{2m + \alpha - (\rho - \delta)N}$$

and also have

$$(3.35) \quad \|R_N(\zeta_1; x, \xi)\| \leq \text{const.} |\zeta_1|^{-1} \langle \xi \rangle^{2m + \alpha - (\rho - \delta)N - \rho|\alpha| + \delta|\beta|}.$$

Consequently from (3.28)–(3.35) we have (3.27) for $j=1$ for a large N , and for $j=2$ analogously, which completes the proof. Q.E.D.

Proof of Theorem 3.2. Let $P_z = p_z(x, D_x)$ be operators defined by (3.23). Then, by Lemma 3.6 we have i)–iv) of Definition 3.1. For the proof of v) we consider the case: $\operatorname{Re} z_j < 0$, $j=1, 2$.

Set

$$\begin{aligned} \Gamma_1 &= \{\zeta \in C; \operatorname{dis}(\zeta, (-\infty, 0]) = c_0/2\}, \\ \Gamma_2 &= \{\zeta \in C; \operatorname{dis}(\zeta, (-\infty, 0]) = c_0/3\}. \end{aligned}$$

Then, by means of (3.19) and Lemma 3.7 we have

$$P_{z_1} P_{z_2} u(x)$$

$$\begin{aligned}
&= \int e^{ix \cdot \xi} \left\{ \frac{1}{2\pi i} \int_{\Gamma_1} \xi_1^{z_1} r(\xi_1; x, \xi) d\xi_1 \right\} P_{z_2} u(\xi) d\xi \\
&= \frac{1}{2\pi i} \int_{\Gamma_1} \xi_1^{z_1} R(\xi_1) P_{z_2} u(x) d\xi_1 \\
&= \left(\frac{1}{2\pi i} \right)^2 \int_{\Gamma_1} \int_{\Gamma_2} \xi_1^{z_1} \xi_2^{z_2} R(\xi_1) R(\xi_2) u(x) d\xi_2 d\xi_1 \\
&= \frac{1}{2\pi i} \int_{\Gamma_2} \xi_2^{z_1+z_2} R(\xi_2) u(x) d\xi_2 \\
&\quad + \left(\frac{1}{2\pi i} \right)^2 \int_{\Gamma_1} \int_{\Gamma_2} \xi_1^{z_1} \xi_2^{z_2} \frac{K(\xi_1, \xi_2) u(x)}{\xi_2 - \xi_1} d\xi_2 d\xi_1 \\
&= P_{z_1+z_2} u(x) + \left(\frac{1}{2\pi i} \right)^2 \int_{\Gamma_1} \int_{\Gamma_2} \xi_1^{z_1} \xi_2^{z_2} \frac{K(\xi_1, \xi_2) u(x)}{\xi_2 - \xi_1} d\xi_2 d\xi_1.
\end{aligned}$$

Hence, we get iv) when $\operatorname{Re} z_j < 0$, $j=1, 2$.

Next we consider $P_z P - P_{z+1}$. For any N , using (3.16), we write

$$\begin{aligned}
\sigma(P_z P)(x, \xi) &= \sum_{|\alpha| \leq N} \frac{1}{\alpha!} p_z^{(\alpha)}(x, \xi) p_{(\alpha)}(x, \xi) + r_{z, N}(x, \xi) \\
&= \frac{1}{2\pi i} \left\{ \sum_{|\alpha| \leq N} \sum_{j+|\alpha| \leq N} \frac{1}{\alpha!} \int_{\Gamma_{\xi, A}} \xi^z q_j^{(\alpha)} p_{(\alpha)} d\xi \right. \\
&\quad + \sum_{|\alpha| \leq N} \sum_{j+|\alpha| \leq N} \frac{1}{\alpha!} \int_{\Gamma_{\xi, A}} \xi^z \partial_{\xi}^{\alpha} ((\varphi_j(\xi) - 1) q_j) p_{(\alpha)} d\xi \\
&\quad + \sum_{|\alpha| \leq N} \sum_{\substack{j+|\alpha| \geq N \\ N > j \geq 1}} \frac{1}{\alpha!} \int_{\Gamma_{\xi, A}} \xi^z \partial_{\xi}^{\alpha} (\varphi_j(\xi) q_j) p_{(\alpha)} d\xi \\
&\quad \left. + \sum_{|\alpha| \leq N} \sum_{j=N}^{\infty} \frac{1}{\alpha!} \int_{\Gamma_{\xi, A}} \xi^z \partial_{\xi}^{\alpha} (\varphi_j(\xi) q_j) p_{(\alpha)} d\xi \right\} + r_{z, N} \\
&\equiv \frac{1}{2\pi i} \int_{\Gamma_{\xi, A}} \xi^z (I_1 + I_2 + I_3 + I_4) d\xi + r_{z, N},
\end{aligned}$$

where $r_{z, A} \in S_{\rho, \delta}^{m(\operatorname{Re} z) + m - (\rho - \delta)N}$ and, by the similar way to the estimation of $R_N(\xi_1; x, \xi)$ in the proof of Lemma 3.7, is an analytic function of z ($\operatorname{Re} z < s_0$) in the topology of $S_{\rho, \delta}^{m(s_0) + m - (\rho - \delta)N}$ for any s_0 . Using (3.7) we have

$$\begin{aligned}
I_1 &= \sum_{\mu=0}^{N-1} \sum_{j=0}^{\mu} \sum_{|\alpha|=\mu-j} \frac{1}{\alpha!} q_j^{(\alpha)} p_{(\alpha)} \\
&= \sum_{\mu=0}^{N-1} \left\{ \sum_{j=1}^{\mu-1} \sum_{|\alpha|=\mu-j} \frac{1}{\alpha!} q_j^{(\alpha)} p_{(\alpha)} + q_{\mu} (p - \mu I) + \zeta q_{\mu} \right\} \\
&= \sum_{\mu=0}^{N-1} \zeta q_{\mu}.
\end{aligned}$$

It is clear that $\int_{\Gamma_{\xi, A}} I_2 d\xi \in S^{-\infty}$, and is an analytic function of z in the topology of $S_{\rho, \delta}^{s_0}$ for any s_0 . By the similar way to the proof of Lemma 3.6, we see that

$\int_{\Gamma_{\xi, A}} \xi^z I_3 d\xi$ and $\int_{\Gamma_{\xi, A}} \xi^z I_4 d\xi$ belong to $S_{\rho, \delta}^{m(\operatorname{Re} z) + m - (\rho - \delta)N}$ and are analytic in z ($\operatorname{Re} z < s_0$) in $S_{\rho, \delta}^{m(s_0) + m - (\rho - \delta)N}$ for any s_0 . Now we write

$$p_{z+1}(x, \xi) = \frac{1}{2\pi i} \int_{\Gamma_{\xi, A}} \sum_{j=0}^{N-1} \xi^{z+1} q_j d\xi + r'_{z+1, N}(x, \xi).$$

Then, by (3.11) we see that $r'_{z+1, N}(x, \xi)$ belongs to $S_{\rho, \delta}^{m(\operatorname{Re} z+1) - (\rho - \delta)N}$ and is analytic in z ($\operatorname{Re} z < s_0$) in $S_{\rho, \delta}^{m(s_0+1) - (\rho - \delta)N}$ for any s_0 . Consequently we see, by taking large N , that $\sigma(P_z P - P_{z+1})(x, \xi)$ is analytic in z in the topology of $S_{\rho, \delta}^{s_0}$ for any s_0 . Then, we see that, for any positive integer k ,

$$\begin{aligned} & \sigma(P_z P^k - P_{z+k})(x, \xi) \\ &= \sigma((P_z P - P_{z+1})P^{k-1})(x, \xi) + \cdots + \sigma(P_{z+k-1}P - P_{z+k})(x, \xi) \end{aligned}$$

is analytic in z in the topology of $S_{\rho, \delta}^{s_0}$ for any s_0 . Hence, for any z_1 and z_2 , if we fix a positive integer k such that $\operatorname{Re} z_j - k < 0$, $j = 1, 2$, then writing

$$\begin{aligned} P_{z_1} P_{z_2} - P_{z_1+z_2} &= P_{z_1}(P_{z_2} - P_{z_2-2k} P^{2k}) + (P_{z_1} - P_{z_1-k} P^k) P_{z_2-2k} P^{2k} \\ &+ P_{z_1-k} P^k (P_{z_2-2k} - P_{-k} P_{z_2-k}) P^{2k} + P_{z_1-k} (P^k P_{-k} - I) P_{z_2-k} P^{2k} \\ &+ (P_{z_1-k} P_{z_2-k} - P_{z_1+z_2-2k}) P^{2k} + (P_{z_1+z_2-2k} P^{2k} - P_{z_1+z_2}) \end{aligned}$$

we see that $\sigma(P_{z_1} P_{z_2} - P_{z_1+z_2})(x, \xi)$ is analytic in z_1 and z_2 in the topology of $S_{\rho, \delta}^{s_0}$ for any s_0 . Thus the proof is complete. Q.E.D.

4. Generalized Dirichlet problem

Let $p(x, \xi)$ be an $l \times l$ matrix of symbols $p_{jk}(x, \xi)$ which satisfies the assumption of Theorem 3.2, and let $P_z = p_z(x, D_x)$ be complex powers of P defined there.

We define a Hilbert space $H_{s, P}$ by

$$H_{s, P} = \{u \in H_{-\infty}; P_s u \in L^2\}$$

provided with the norm: $\|u\|_{s, P} = \{\|P_s u\|_0^2 + \|\Phi(D_x)u\|_0^2\}^{1/2}$, where $\Phi(\xi)$ is a fixed function of \mathcal{S} such that $\Phi(\xi) > 0$ in R_ξ^n .

Then we have

Theorem 4.1. *For any real number s , there exist constants C_s and C'_s such that*

$$(4.1) \quad \begin{cases} C'_s \|u\|_{\tau ms} \leq \|u\|_{s, P} \leq C_s \|u\|_{ms} \text{ for } s \geq 0, \\ C'_s \|u\|_{ms} \leq \|u\|_{s, P} \leq C_s \|u\|_{\tau ms} \text{ for } s < 0. \end{cases}$$

Proof. Noting $P_s \in S_{\rho, \delta}^{ms}$ ($s \geq 0$), $P_s \in S_{\rho, \delta}^{ms}$ ($s < 0$) and $\Phi(D_x) \in S^{-\infty}$, we have the right halves of (4.1) by means of Lemma 1.4. For $s \geq 0$ we write

$$\|u\|_{\tau ms} = \|\wedge^{\tau ms} u\|_0 = \|\wedge^{\tau ms} (P_{-s} P_s - K_s) u\|_0,$$

where $K_s \in S^{-\infty}$ which is defined by $P_{-s}P_s = I + K_s$. Then noting $\wedge^{\tau ms} P_{-s} \in S_{\rho, \delta}^0$ and $\wedge^{\tau ms} K_s \in S^{-\infty}$, we have by Lemma 1.4

$$\|u\|_{\tau ms} \leq \|\wedge^{\tau ms} P_{-s}(P_s u)\|_0 + \|\wedge^{\tau ms} K_s u\|_0 \leq C_s'' (\|P_s u\|_0 + \|u\|_{\tau ms-1}).$$

On the other hand, for any $\varepsilon > 0$, there exists a constant C_ε such that

$$\|u\|_{\tau ms-1} \leq \varepsilon \|u\|_{\tau ms} + C_\varepsilon \|\Phi(D_x) u\|_0,$$

so, if we fix $\varepsilon_0 > 0$ such that $C_s'' \varepsilon_0 < 1/2$, we have

$$\frac{1}{2} \|u\|_{\tau ms} \leq C_s'' (\|P_s u\|_0 + C_{\varepsilon_0} \|\Phi(D_x) u\|_0).$$

Hence, we have $C_s' \|u\|_{\tau ms} \leq \|u\|_{s, P}$ for $s \geq 0$. Writing $\|u\|_{ms} = \|\wedge^ms(P_{-s}P_s - K_s) u\|_0$, we can also prove the statement for $s < 0$ in this manner. Q.E.D.

Lemma 4.2. *Let $P (\in S_{\rho, \delta}^m)$ be a formally self-adjoint in the sense*

$$(Pu, v) = (u, Pv) \quad \text{for } u, v \in \mathcal{S},$$

and satisfy the condition of Theorem 3.2, and let P_z be complex powers of P defined there. Then, we have

$$(4.2) \quad P_z^{(*)} \equiv P_{\bar{z}} \pmod{S^{-\infty}},$$

where $P_z^{()} (\in S_{\rho, \delta}^m)$ is defined by*

$$(P_z u, v) = (u, P_z^{(*)} v) \quad \text{for } u, v \in \mathcal{S}.$$

Proof. By the assumption it is clear that $(P^k)^{(*)} = P^k$ for any positive integer k . If we can prove

$$(4.3) \quad P_z^{(*)} \equiv P_{\bar{z}} \text{ for } \operatorname{Re} z < 0,$$

then, by v) of Definition 3.1, it follows that for $k (\operatorname{Re} z < k)$

$$\begin{aligned} P_z^{(*)} &\equiv (P_k P_{z-k})^{(*)} = P_{z-k}^{(*)} P_k^{(*)} \equiv P_{\bar{z}-k} P_k^{(*)} \\ &\equiv P_{\bar{z}-k} (P^k)^{(*)} = P_{\bar{z}-k} P^k \equiv P_{\bar{z}-k} P_k \equiv P_{\bar{z}} \pmod{S^{-\infty}}. \end{aligned}$$

Hence, we have only to prove (4.3). Let $R(\zeta) = r(\zeta; x, D_x)$ be the parametrix of $P - \zeta I$. Since $I \equiv ((P - \zeta I)R(\zeta))^{(*)} = R(\zeta)^{(*)}(P - \bar{\zeta} I)$, $R(\zeta)^{(*)}$ is the parametrix of $P - \bar{\zeta} I$. Now, using the path Γ_0 of (3.24), we have for $u, v \in \mathcal{S}$

$$\begin{aligned} (P_z u, v) &= \left(\int_{\Gamma_0} e^{ix \cdot \xi} \left(\frac{1}{2\pi i} \int_{\Gamma_0} \zeta^z r(\zeta; x, \xi) d\zeta \right) u(\xi) d\xi, v \right) \\ &= \frac{1}{2\pi i} \int_{\Gamma_0} \zeta^z (R(\zeta) u, v) d\zeta = \frac{1}{2\pi i} \int_{\Gamma_0} \zeta^z (u, R(\zeta)^{(*)} v) d\zeta \end{aligned}$$

$$= \int u(x) \left(\frac{1}{2\pi i} \int_{\Gamma_0} \zeta^z \bar{R}(\zeta)^{(*)} v(\bar{x}) d\zeta \right) dx.$$

Then we get

$$\begin{aligned} P_z^{(*)} v &= \overline{\frac{1}{2\pi i} \left(\int_{\Gamma_0} \zeta^z \bar{R}(\zeta)^{(*)} v(x) d\zeta \right)} \\ &= -\frac{1}{2\pi i} \overline{\int e^{ix \cdot \xi} \hat{v}(\xi) \left(\int_{\Gamma_0} \zeta^z \bar{r}^{(*)}(\zeta; x, \xi) d\zeta \right) d\xi}, \end{aligned}$$

so that we have

$$\sigma(P_z^{(*)}) = -\frac{1}{2\pi i} \overline{\left(\int_{\Gamma_0} \zeta^z \bar{r}^{(*)}(\zeta; x, \xi) d\zeta \right)} = \frac{1}{2\pi i} \int_{\Gamma_0} \zeta^z \bar{r}^{(*)}(\zeta; x, \xi) d\zeta.$$

Noting $r^{(*)}(\xi; x, \xi)$ is a parametrix of $P - \zeta I$, we have (4.3). Q.E.D.

Theorem 4.3. *Let L be an $l \times l$ matrix of pseudo-differential operators of class $S_{\rho, \delta}^m$ ($m > 0$), and set*

$$P = (L + L^{(*)})/2, \quad Q = (L - L^{(*)})/2.$$

Assume that $\sigma(P)(x, \xi)$ satisfies the assumption of Theorem 3.2 and $P_{-\frac{1}{2}} Q P_{-\frac{1}{2}} \in S_{\rho, \delta}^0$, where P_z is complex powers defined by Theorem 3.2. Then, there exist constants C and λ_0 such that

$$(4.4) \quad |(Lu, v)| \leq C \|u\|_{\frac{1}{2}, P} \|v\|_{\frac{1}{2}, P} \quad \text{for } u, v \in \mathcal{S}$$

and

$$(4.5) \quad \operatorname{Re} (Lu, u) \geq \|u\|_{\frac{1}{2}, P}^2 - \lambda_0 \|u\|_0^2 \quad \text{for } u \in \mathcal{S}.$$

REMARK 1°. i) Assume that $Q \in S_{\rho, \delta}^m$. Then, we have

$$P_{-\frac{1}{2}} Q P_{-\frac{1}{2}} \in S_{\rho, \delta}^0, \quad \text{since } P_{-\frac{1}{2}} \in S_{\rho, \delta}^{-m/2}.$$

ii) For the single case we assume that $\operatorname{Re} \sigma(L)(x, \xi)$ satisfies

$$A)' \quad \operatorname{Re} \sigma(L)(x, \xi) \geq c_0 \langle \xi \rangle^{-m},$$

$$B)' \quad |\partial_\xi^\alpha D_x^\beta \sigma(L)(x, \xi) \cdot (\operatorname{Re} \sigma(L)(x, \xi))^{-1}| \leq c_{\alpha, \beta} \langle \xi \rangle^{-\rho|\alpha| + \delta|\beta|}$$

and

C') are $\operatorname{Re} \sigma(L)(x, \xi)$ is well-defined

for large $|\xi|$ instead of conditions A)–B) of Theorem 3.2°. Then, by using the asymptotic expansion formula of $\sigma(P_z)(x, \xi)$, we can see that the operator L satisfies the conditions of Theorem 4.3.

REMARK 2°. The inequality (5.4) is a generalization of Gårding's inequality to hypoelliptic operators, which is different from [3], [9], [11], [17] where the positivity as in A)' is not assumed, but the space is limited to the usual Sobolev space.

Proof of Theorem 4.3. We can write for $u, v \in \mathcal{S}$

$$(4.6) \quad \begin{aligned} (Lu, v) &= (Pu, v) + (Qu, v) \\ &= (P_{\frac{1}{2}}u, P_{\frac{1}{2}}^{(*)}v) + (P_{-\frac{1}{2}}QP_{-\frac{1}{2}}(P_{\frac{1}{2}}u), P_{\frac{1}{2}}^{(*)}v) + (Ku, v) \end{aligned}$$

for some $K \in S^{-\infty}$. Then, from Lemma 4.2 and the assumption $P_{-\frac{1}{2}}QP_{-\frac{1}{2}} \in S_{\rho, \delta}^0$, we have

$$(4.7) \quad |(Lu, v)| \leq C\|u\|_{\frac{1}{2}, P}\|v\|_{\frac{1}{2}, P} \text{ for } u, v \in \mathcal{S}$$

for a constant C . On the other hand, using Lemma 4.2 again and noting $\operatorname{Re}(Qu, u) = 0$, we have

$$(4.8) \quad \operatorname{Re}(Lu, u) = (Pu, u) \geq \|u\|_{\frac{1}{2}, P}^2 - \lambda_0\|u\|_0^2$$

for a constant λ_0 .

Q.E.D.

Now, let V be the closure of $C_0^\infty(\Omega)$ in $H_{\frac{1}{2}, P}$ for an open set Ω of \mathbb{R}_x^n , and set

$$(4.9) \quad B_\lambda[u, v] = (P_{\frac{1}{2}}u, P_{\frac{1}{2}}^{(*)}v) + (P_{-\frac{1}{2}}QP_{-\frac{1}{2}}(P_{\frac{1}{2}}u), P_{\frac{1}{2}}^{(*)}v) + (Ku, v) + \lambda(u, v) \quad \text{for } u, v \in V.$$

Then, we have

Theorem 4.4 (Generalized Dirichlet problem). *Let L be a matrix of operators of class $S_{\rho, \delta}^m$ ($m > 0$) which satisfies conditions of Theorem 4.3. Then, for any $f \in L^2(\Omega)$, we can find a unique element $u \in V$ such that*

$$(L + \lambda)u = f \quad \text{in } \Omega$$

for any $\lambda \geq \lambda_0$, where λ_0 is a constant determined in Theorem 4.3.

Proof. Consider $B_\lambda[u, v]$ for $u, v \in V$. Then, from (4.6)–(4.9) we have

$$(4.10) \quad \begin{cases} |B_\lambda[u, v]| \leq C_\lambda\|u\|_{\frac{1}{2}, P}\|v\|_{\frac{1}{2}, P}, \\ \operatorname{Re} B_\lambda[u, u] \geq \|u\|_{\frac{1}{2}, P}^2 \quad \text{for } u, v \in V. \end{cases}$$

Then, by means of the Lax-Milgram theorem (see, for example, [1], p. 98), we have a unique element $u \in V$ such that

$$B_\lambda[u, v] = (f, v) \quad \text{for any } v \in V.$$

In particular for $v \in C_0^\infty(\Omega)$ we have from (4.6) and (4.9)

$$B_\lambda[u, v] = (Lu, v) + \lambda(u, v)$$

Hence, we have $(L + \lambda)u = f$ in Ω .

Q.E.D.

REMARK. Consider a neighborhood $U(x_0)$ of a point x_0 on the boundary $\partial\Omega$ of Ω . Assume that $\partial\Omega$ is smooth and P is elliptic of order m_0 (> 0) in $U(x_0)$ in the sense

$$(4.11) \quad \begin{cases} |\sigma(P)(x, \xi)| \geq C_0 \langle \xi \rangle^{m_0}, \\ |\sigma(P)_{\langle \beta \rangle}^{\alpha}(x, \xi)| \leq C_{\alpha, \beta} \langle \xi \rangle^{m_0 - \rho|\alpha| + \delta|\beta|} \end{cases} \quad \text{in } U(x_0)$$

for large $|\xi|$. Then, for any $a(x) \in C_0^\infty(U(x_0))$, we have

$$(4.12) \quad au \in H_{\frac{1}{2}m_0}$$

and concerning the trace of au , we have

$$(4.13) \quad \partial_n^j(au)|_{\partial\Omega} = 0, \quad 0 \leq j < (m_0 - 1)/2,$$

where ∂_n denotes the normal derivative for $\partial\Omega$. In fact, we can write for some $K \in S^{-\infty}$

$$au = aP_{-\frac{1}{2}}(P_{\frac{1}{2}}u) + aKu = (aP_{-\frac{1}{2}} \wedge \wedge^{m_0})(\wedge^{-\frac{1}{2}m_0} P_{\frac{1}{2}}u) + aKu.$$

Then, noting $P_{\frac{1}{2}}u \in L^2$ we have $\wedge^{-\frac{1}{2}m_0} P_{\frac{1}{2}}u \in H_{\frac{1}{2}m_0}$, and in view of (4.11) we have $aP_{-\frac{1}{2}} \wedge \wedge^{m_0} \in S_{\rho, \delta}^0$. Consequently we have (4.12), and noting $\text{supp } u \subset \bar{\Omega}$, we get (4.13).

EXAMPLE. Consider a single operator

$$L = a(x) \wedge^m + (1 - a(x)) \wedge^{m'},$$

where $m, m' (m > m')$ are positive number and $a(x)$ is a C^∞ -function such that

$$a(x) = 0(|x| \leq 1/2), \quad = 1(|x| \geq 1), \quad 0 < a(x) < 1 (1/2 < |x| < 1)$$

and for a fixed $\sigma \geq 1$

$$|D_x^\alpha a(x)/a(x)| \leq C_\alpha |x|^{-\frac{1}{2} - \sigma|\alpha|} \quad \text{for any } \alpha.$$

Then, setting $\tau = m'/m$, we can see that $\sigma(L)(x, \xi)$ satisfies A) and B) of Definition 3.2° for any $0 < \delta < 1$ and $\rho = 1$, so that Theorem 4.3 is applied to this operator L .

5. Index theory

First we describe results obtained in [10] with complete proofs. Let P be a system of pseudo-differential operators of class $S_{\rho, \delta}^m$, which maps $H_{-\infty}$ into itself, more precisely H_{s+m} into H_s boundedly for any real s .

Consider P as the closed operator of $L^2 (= H_0)$ into itself with the domain $\mathcal{D}(P)$ defined by

$$(5.1) \quad \mathcal{D}(P) = \{u \in L^2; Pu \in L^2\}.$$

Then, the adjoint operator $P^*: L^2 \rightarrow L^2$ is defined as follows. For a $v \in L^2$, if there exists $g \in L^2$ such that

$$(5.2) \quad (Pu, v) = (u, g) \quad \text{for any } u \in \mathcal{D}(P),$$

we say that v belongs to the domain $\mathcal{D}(P^*)$ of P^* and define $P^*v=g$. On the other hand we have defined the formal adjoint $P^{(*)}$ of class $S_{\rho,\delta}^m$ by

$$(5.3) \quad (Pu, v) = (u, P^{(*)}v) \quad \text{for any } u, v \in \mathcal{S}.$$

Then, considering $P^{(*)}$ as the closed operator L^2 into itself as above, we have

$$(5.4) \quad \mathcal{D}(P^{(*)}) = \{v \in L^2; P^{(*)}v \in L^2\}.$$

Concerning P^* and $P^{(*)}$ we have

Lemma 5.1. *Let P be a system of operators of class $S_{\rho,\delta}^m$. Then, as the operator of L^2 into itself, the operator $P^{(*)}$ is an extension of P^* , so that we have*

$$(5.5) \quad \mathcal{D}(P^*) \subset \mathcal{D}(P^{(*)}).$$

Proof. Assume $v \in \mathcal{D}(P^*)$. Then, noting $\mathcal{D}(P) \supset \mathcal{S}$, we have

$$(u, P^*v) = (Pu, v) = (u, P^{(*)}v).$$

In the above the right half is guaranteed, if we take a sequence $v_j (\in \mathcal{S}) \rightarrow v$ in L^2 and, considering u as an element of H_m , apply Lemma 1.4. Then, we have $P^*v = P^{(*)}v \in L^2$, which means that $v \in \mathcal{D}(P^{(*)})$. Q.E.D.

Lemma 5.2. *Let $P (\in S_{\rho,\delta}^m)$ have complex powers P_z in the sense of Definition 3.1. Then, we have, for any $z_0 \in \mathbb{C}$, $P_{z_0}^{(*)} = P_{z_0}^*$ as the operator of L^2 into itself.*

Proof. By means of Lemma 5.1 we have only to prove

$$(5.6) \quad (P_{z_0}u, v) = (u, P_{z_0}^{(*)}v) \text{ for } u \in \mathcal{D}(P_{z_0}), v \in \mathcal{D}(P_{z_0}^{(*)}).$$

By i) of Definition 3.1 for a large N we have $P_z u \in H_{m(\operatorname{Re} z)}$ for $u \in \mathcal{D}(P_{z_0})$ so, using Lemma 1.4, we have

$$(5.7) \quad \begin{aligned} (P_z u, P_{z_0}^{(*)}v) &= (P_{z_0} P_z u, v) = (P_z P_{z_0} u, v) \\ &+ ((P_{z_0} P_z - P_z P_{z_0})u, v) \text{ for } u \in \mathcal{D}(P_{z_0}), v \in \mathcal{D}(P_{z_0}^{(*)}) \text{ (Re } z < -N\text{).} \end{aligned}$$

From Lemma 2.3 and iii) of Definition 3.1 we have $(P_z u, P_{z_0}^{(*)}v)$ is analytic in z when $\operatorname{Re} z < 0$, and from Lemma 2.2 and iv) of Definition 3.1 we have $\lim_{s \rightarrow -0} (P_s u, P_{z_0}^{(*)}v) = (u, P_{z_0}^{(*)}v)$. Since $P_{z_0} u \in L^2$, we also have that $(P_z P_{z_0} u, v)$ is analytic in z when $\operatorname{Re} z < 0$ and $\lim_{s \rightarrow -0} (P_s P_{z_0} u, v) = (P_{z_0} u, v)$. Setting $s_0 = 0$ in v) of Definition 3.1 and writing $P_{z_0} P_z - P_z P_{z_0} = (P_{z_0} P_z - P_{z_0+z}) + (P_{z_0+z} - P_z P_{z_0})$, we can see that $((P_{z_0} P_z - P_z P_{z_0})u, v)$ is analytic in z and $\lim_{s \rightarrow -0} ((P_{z_0} P_s - P_s P_{z_0})u, v) = 0$. Then, letting $z \rightarrow -0$ on the real line in (5.7), we get (5.6). Q.E.D.

Lemma 5.3. *Let $p_j(x, \xi)$, $j = 0, 1, 2, \dots$, be a sequence of slowly varying*

symbols of class $S_{\rho, \delta}^{m_j}$ (resp. $\dot{S}_{\rho, \delta}^{m_j}$) such that $m_j \downarrow -\infty$ as $j \rightarrow \infty$. Then we can construct a slowly varying symbol $p(x, \xi) \in S_{\rho, \delta}^m$ (resp. $\dot{S}_{\rho, \delta}^m$) such that

$$(5.8) \quad p(x, \xi) - \sum_{j=1}^{N-1} p_j(x, \xi) \in S_{\rho, \delta}^{m_N}, \text{ (resp. } \dot{S}_{\rho, \delta}^{m_N})$$

and is slowly varying for any N (c.f. [4]).

Proof. Take C^∞ -functions $\varphi(\xi)$ and $\psi(x, \xi)$ such that

$$(5.9) \quad \begin{cases} \varphi(\xi) = 0(|\xi| \leq 1), = 1(|\xi| \geq 2), \\ \psi(x, \xi) = 0(|x| + |\xi| \leq 1), = 1(|x| + |\xi| \geq 2). \end{cases}$$

Then, setting $p(x, \xi) = p_0(x, \xi) + \sum_{j=1}^{\infty} \varphi(t_j^{-1} \xi) \psi(t_j^{-1} x, t_j^{-1} \xi) p_j(x, \xi)$ for an appropriate $t_j \rightarrow \infty$ ($j \rightarrow \infty$), we get a required symbol. Q.E.D.

Lemma 5.4 (c.f. Prop. 2.1 of [8]). *Let $\{P_t\}_{t \in [0, 1]}$ be a family of operators of class $S_{\rho, \delta}^m$ such that $\sigma(P_t)(x, \xi)$ is a continuous function of t in $S_{\rho, \delta}^m$. Suppose there exist two families $\{Q_t\}_{t \in [0, 1]}$ and $\{K_t\}_{t \in [0, 1]}$ in $S_{\rho, \delta}^0$ such that $Q_t P_t = I + K_t$, Q_t is strongly continuous in t , and K_t is uniformly continuous in t and compact as operators from L^2 into itself. Then, it follows that*

$$\dim \ker P_t < \infty \text{ and } \operatorname{Re} P_t \text{ is closed}$$

and that

$$\operatorname{index} P_t \equiv \dim \ker P_t - \operatorname{codim} \operatorname{Re} P_t$$

is upper semi-continuous in t , where $\ker P_t$ denotes the kernel of P_t and $\operatorname{Re} P_t$ denotes the range of P_t .

Proof. For $u \in \ker P_t$ we have

$$0 = Q_t P_t u = u + K_t u.$$

Then, we can easily see that $\dim \ker P_t < \infty$, since K_t is compact. If we write $L^2 = \ker P_t \oplus (\ker P_t)^\perp$, then, for the closedness of $\operatorname{Re} P_t$ we have only to prove

$$(5.10) \quad \|u\|_0 \leq C_t \|P_t u\|_0 \text{ for } u \in \mathcal{D}(P_t) \cap (\ker P_t)^\perp$$

for a constant C_t .

Assume that there exists a sequence $\{u_\nu\}_{\nu=1}^\infty$ of $\mathcal{D}(P_t) \cap (\ker P_t)^\perp$ such that $1 = \|u_\nu\|_0 \geq \nu \|P_t u_\nu\|_0$. Then, we have

$$0 \leftarrow Q_t P_t u_\nu = u_\nu + K_t u_\nu.$$

Since K_t is compact, by taking a subsequence we may assume that

$$K_t u_\nu \rightarrow v \text{ in } L^2 \text{ for a } v \in L^2.$$

Then we have $v \in \ker P_t$ and consequently $0 = (v, u_\nu) \rightarrow \|v\|^2 = 1$, which derives

the contradiction.

For the proof of the upper semi-continuity of index P_t we first get the statement:

(5.11) If $t_v \rightarrow t_0 \in [0, 1]$, $u_v \rightarrow u_0$ in L^2 , $P_{t_v}u_v \rightarrow f_0$ in L^2 , then, $P_{t_0}u_0 = f_0$,

which means that the graph $\{(t, u, P_t u); t \in I, u \in \mathcal{D}(P_t)\}$ is closed. For any $v \in H_m$ we have

$$(P_{t_0}u_0, v) = (u_0, P_{t_0}^{(*)}v) = \lim_{v \rightarrow \infty} (u_v, P_{t_v}^{(*)}v) = \lim_{v \rightarrow \infty} (P_{t_v}u_v, v) = (f_0, v),$$

since $u_v \rightarrow u_0$ in L^2 and $P_{t_v}^{(*)}v \rightarrow P_{t_0}^{(*)}v$ in $L^2 = H_0$ by Lemma 1.4 and the continuity of $\sigma(P_t)(x, \xi)$ in $S_{\rho, \delta}^m$. Hence we get (5.11).

Now let W be a finite dimensional subspace of L^2 and set $\Delta_t = \{u \in \mathcal{D}(P_t); P_t u \in W\}$. Then we can easily get

(5.12) $\|P_t u\|_0 \leq C \|u\|_0$ for $u \in \Delta_t$

for a constant C independent of $t \in [0, 1]$.

Assume there exist sequences $\{t_v\}_{v=1}^\infty$ and orthonormal systems $\{u_1^{(v)}, \dots, u_l^{(v)}\}$ of Δ_{t_v} for a fixed l such that $t_v \rightarrow t_0 \in [0, 1]$. Then, writing $Q_{t_v}P_{t_v}u_j^{(v)} = u_j^{(v)} + (K_{t_v} - K_{t_0})u_j^{(v)} + K_{t_0}u_j^{(v)}$, $j = 1, \dots, l$, we may assume that $K_{t_0}u_j^{(v)} \rightarrow v_j$ and $P_{t_v}u_j^{(v)} \rightarrow w_j \in W$ for $j = 1, \dots, l$ by taking a subsequence, since K_{t_0} is compact and $P_{t_v}u_j^{(v)} \in W$ (finite dimensional) with (5.12). Hence from (5.11) we have $P_{t_0}u_j = w_j$ for $u_j = -v_j + Q_{t_0}w_j$. It is clear that u_1, \dots, u_l is orthonormal, which means that $\dim \Delta_t$ is upper semi-continuous in t . Then, for any $W_0 \subset (\text{Re } P_{t_0})^\perp$, we have

$$\begin{aligned} \dim \Delta_{t_0} &\geq \overline{\lim}_{t \rightarrow t_0} \dim \Delta_t = \overline{\lim}_{t \rightarrow t_0} \{\dim \ker P_t + \dim (\text{Re } P_t) \cap W_0\} \\ &\geq \overline{\lim}_{t \rightarrow t_0} \{\dim \ker P_t + \dim W_0 - \dim (\text{Re } P_t)^\perp\}. \end{aligned}$$

Since $\dim \Delta_{t_0} = \dim \ker P_{t_0}$, this means that $\text{index } P_{t_0} \geq \overline{\lim}_{t \rightarrow t_0} \text{index } P_t$. Q.E.D.

Theorem 5.5. *Let P be an $l \times l$ matrix of operators of class $S_{\rho, \delta}^m$ ($m > 0$) such that $\sigma(P)(x, \xi)$ satisfies conditions (3.1) and (3.2) for large $|x| + |\xi|$ uniformly on Ξ_0 . Assume that $\sigma(P)(x, \xi)$ is slowly varying and that, for $\beta \neq 0$, (3.2) holds with a bounded function $C_{0, \alpha, \beta}(x)$ such as $C_{0, \alpha, \beta}(x) \rightarrow 0$ ($|x| \rightarrow \infty$). Then, we can construct complex powers P_z such that $\sigma(P_z)(x, \xi)$ is slowly varying and*

(5.13) $\sigma(P_{z_1}P_{z_2} - P_{z_1+z_2})(x, \xi) \in \mathring{S}^{-\infty} (\cap \mathring{S}_{\rho, \delta}^s)$.

REMARK. We may assume that $\sigma(P)(x, \xi)$ satisfies (3.1) and (3.2) for every x and ξ . In fact, for a C_0^∞ -function $\gamma(x, \xi)$ such that $0 \leq \gamma(x, \xi) \leq 1$, and $\gamma(x, \xi) = 1$ ($|x| + |\xi| \geq 1$), $= 0$ ($|x| + |\xi| \leq 2$), We set $P_\varepsilon = P + \varepsilon^{-1}\gamma(\varepsilon x, \varepsilon D_x)I$, Then, for a small fixed $\varepsilon_0 > 0$, $\sigma(P_{\varepsilon_0})(x, \xi)$ satisfy conditions (3.1) and (3.2) for every x and ξ , and has complex powers $P_{\varepsilon_0, z}$. We set $P_z = P_{\varepsilon_0, z} + z(P - P_{\varepsilon_0, 1})$. Then, noting

$P - P_{\varepsilon_0,1} = P - P_{\varepsilon_0} = \varepsilon_0^{-1} \gamma(\varepsilon_0 x, \varepsilon_0 D_x) I \in \overset{\circ}{S}{}^{-\infty}$, we see that P_z are required powers.

Proof. Instead $r(\zeta; x, \xi)$ of (3.16) we consider, using functions $\varphi(\xi)$ and $\psi(x, \xi)$ of (5.9),

$$(5.14) \quad r(\zeta; x, \xi) = q_0(\zeta; x, \xi) + \sum_{j=1}^{\infty} \varphi(t_j^{-1} \xi) \psi(t_j^{-1} x, t_j^{-1} \xi) q_j(\zeta; x, \xi)$$

for an appropriate increasing sequence $\{t_j\}_{j=1}^{\infty}$. Then, we may assume that $p_z(x, \xi)$ defined by (3.23) is slowly varying and that

$$(5.15) \quad \sigma(P_z)(x, \xi) - \sigma(P)(x, \xi)^z \in \overset{\circ}{S}{}_{\rho, \delta}^{m(\operatorname{Re} z) - (\rho - \delta)}.$$

Now, for any N , we define $R_{z_1, z_2, N} \in S_{\rho, \delta}^{m(\operatorname{Re} z_1) + m(\operatorname{Re} z_2)}$

by $(R_{z_1, z_2, N})(x, \xi) = \sum_{|\alpha| < N} \frac{1}{\alpha!} \sigma(P_{z_1})^{(\alpha)}(x, \xi) \sigma(P_{z_2})^{(\alpha)}(x, \xi)$. Then, by ii) of

Lemma 1.5, we have

$$(5.16) \quad P_{z_1} P_{z_2} - R_{z_1, z_2, N} \in \overset{\circ}{S}{}_{\rho, \delta}^{m(\operatorname{Re} z_1) + m(\operatorname{Re} z_2) - (\rho - \sigma)N}.$$

Noting $\sigma(P)(x, \xi)^{z_1} \sigma(P)(x, \xi)^{z_2} = \sigma(P)(x, \xi)^{z_1 + z_2}$, we have

$$(5.17) \quad \sigma(R_{z_1, z_2, N})(x, \xi) - \sigma(P)(x, \xi)^{z_1 + z_2} \in \overset{\circ}{S}{}_{\rho, \delta}^{m(\operatorname{Re} z_1) + m(\operatorname{Re} z_2) - (\rho - \delta)}.$$

Hence, if we write

$$(S^{-\infty} \ni) P_{z_1} P_{z_2} - P_{z_1 + z_2} = (P_{z_1} P_{z_2} - R_{z_1, z_2, N}) + (R_{z_1, z_2, N} - P_{z_1 + z_2}),$$

then, using (5.16), (5.17) and (5.15) for $z = z_1 + z_2$, we get (5.13). Q.E.D.

Theorem 5.6. *Let P be an $l \times l$ matrix of operators of class $S_{\rho, \delta}^m$, $m > 0$, which are slowly varying. Assume that the symbol $\sigma(P)(x, \xi)$ satisfies conditions (3.1) and (3.2) for large $|x| + |\xi|$ uniformly on Ξ_0 . Then, the operator P as the map from L^2 into itself with the domain $\mathcal{D}(P) = \{u \in L^2; Pu \in L^2\}$ is Fredholm type and we have*

$$(5.18) \quad \text{index } P \equiv \dim \ker P - \operatorname{codim} \operatorname{Re} P = 0.$$

Proof. Let P_z be complex powers of P defined in Theorem 5.5. For $t \in [0, 1]$, consider $\{P_t\}_{t \in I}$ and set $Q_t = P_{-t}$. Then, by iv) of Definition 3.1, Q_t is strongly continuous in t as L^2 -operators. Moreover, if we write $Q_t P_t = P_{-t} P_t = I + K_t$, then, by means of (5.13), $K_t \in \overset{\circ}{S}{}^{-\infty}$ and consequently, by Lemma 1.4 and Lemma 1.6, K_t is uniformly continuous in t and compact as operators from L^2 into itself. Hence, we can apply Lemma 5.4 and we have that $\text{index } P_t$ is upper semi-continuous in t . Now, using Lemma 5.2, we note that $\ker P_t = (\operatorname{Re} P_t^*)^\perp = (\operatorname{Re} P_t^{(*)})^\perp$, $(\operatorname{Re} P_t)^\perp = \ker P_t^* = \ker P_t^{(*)}$, so that $\text{index } P_t = -\text{index } P_t^{(*)}$. Since $(P_t P_{-t})^{(*)} = P_{-t}^{(*)} P_t^{(*)}$, setting $Q_t = P_{-t}^{(*)}$, we have also that $\text{index } P_t^{(*)}$ is upper semi-continuous in t . Hence we get that $\text{index } P_t$ is continuous,

so is constant in $[0, 1]$. Then, $\text{index } P = \text{index } P_t, t \in [0, 1], = \text{index } I = 0$.

Q.E.D.

Lemma 5.7. *Let P and Q be $l \times l$ matrices of operators of class $S_{\rho, \delta}^m$ such that P has complex powers P_z and Q has the parametrix Q_{-1} . Assume that QP_{-1} and PQ_{-1} are of class $S_{\rho, \delta}^0$. Then, for $P_z' = QP_{-1+z}$, we have*

$$(5.19) \quad P_z'^* = P_z'^{(*)}.$$

Proof. We write

$$P_z \equiv PP_{-1+z} \equiv (PQ_{-1})P_z' \pmod{S^{-\infty}} \quad \text{and} \quad P_z' \equiv (QP_{-1})P_z \pmod{S^{-\infty}},$$

then we can see that

$$(5.20) \quad P_z u \in L^2 \text{ if and only if } P_z' u \in L^2 \text{ for } u \in H_{-\infty}.$$

If we write, for some $K \in S^{-\infty}$, $P_z' = (QP_{-1})P_z + K$, then we have

$$(5.21) \quad P_z'^{(*)} = P_z^{(*)}(QP_{-1})^{(*)} + K^{(*)}.$$

Now we assume that $v \in \mathcal{D}(P_z'^{(*)})$, i.e., $v \in L^2$ and $P_z'^{(*)}v \in L^2$. Since $\sigma(QP_{-1})^{(*)} \in S_{\rho, \delta}^0$, by means of (5.21) we have

$$(QP_{-1})^{(*)}v \in L^2 \text{ and } P_z^{(*)}(QP_{-1})^{(*)}v \in L^2.$$

Then, noting $P_z'^{(*)} = P_z^*$ by Lemma 5.2, we have $(QP_{-1})^{(*)}v \in \mathcal{D}(P_z^*)$, so that, for any $u \in \mathcal{D}(P_z')$, we have, noting $u \in \mathcal{D}(P_z)$ by (5.20),

$$\begin{aligned} (u, P_z'^{(*)}v) &= (u, P_z^{(*)}(QP_{-1})^{(*)}v) + (u, K^{(*)}v) \\ &= (P_z u, (QP_{-1})^{(*)}v) + (u, K^{(*)}v) \\ &= (QP_{-1}P_z u, v) + (Ku, v) = (P_z' u, v), \end{aligned}$$

which means that $v \in \mathcal{D}(P_z'^*)$. Hence, by Lemma 5.1 we have

$$P_z'^{(*)} = P_z'^*.$$

Q.E.D.

DEFINITION 5.8. For $l \times l$ matrices P and Q of class $S_{\rho, \delta}^m$ we say that $\sigma(P)(x, \xi)$ and $\sigma(Q)(x, \xi)$ are equally strong, when they satisfy with each other

$$(5.22) \quad \|\sigma(Q)^{(\alpha)}_{(\beta)}(x, \xi)\sigma(P)(x, \xi)^{-1}\| \leq C_{\alpha, \beta}(x) \langle \xi \rangle^{-\rho|\alpha| + \delta|\beta|}$$

and

$$(5.23) \quad \|\sigma(P)^{(\alpha)}_{(\beta)}(x, \xi)\sigma(Q)(x, \xi)^{-1}\| \leq C'_{\alpha, \beta}(x) \langle \xi \rangle^{-\rho|\alpha| + \delta|\beta|}$$

for large $|x| + |\xi|$, where we assume that, for $\beta \neq 0$, $C_{\alpha, \beta}(x) \rightarrow 0$ and $C'_{\alpha, \beta}(x) \rightarrow 0$ as $|x| \rightarrow \infty$.

Then we have

Lemma 5.9. *Let P and Q be $l \times l$ matrices of class $S_{\rho, \delta}^m$ ($m > 0$). Assume that $\sigma(P)(x, \xi)$ and $\sigma(Q)(x, \xi)$ satisfy conditions (3.1) and (3.2) for $\zeta = 0$ and are equally strong. Then, for parametrices P_{-1} of P and Q_{-1} of Q (which can be defined by (3.6), (3.7) and (3.16) by setting $\zeta = 0$, c.f. also [6]), we have that $\sigma(P_{-1})(x, \xi)$ and $\sigma(Q_{-1})(x, \xi)$ are slowly varying and that*

$$QP_{-1} \in S_{\rho, \delta}^0 \text{ and } PQ_{-1} \in S_{\rho, \delta}^0.$$

Proof. We expand for large N

$$\sigma(QP_{-1})(x, \xi) = \sum_{|\alpha| < N} \frac{1}{\alpha!} \sigma(Q)^{(\alpha)}(x, \xi) \sigma(P_{-1})_{(\alpha)}(x, \xi) + R_N(x, \xi)$$

such that $R_N(x, \xi) \in S_{\rho, \delta}^0$. Then, noting the form (3.14) and using (5.22) we see that $\sigma(QP_{-1})(x, \xi) \in S_{\rho, \delta}^0$. Analogously, using (5.13), we get $\sigma(PQ_{-1})(x, \xi) \in S_{\rho, \delta}^0$. Q.E.D.

Theorem 5.10. *Let P and Q be $l \times l$ matrices of class $S_{\rho, \delta}^m$ ($m > 0$). Assume that $\sigma(P)(x, \xi)$ and $\sigma(Q)(x, \xi)$ are slowly varying and equally strong, and that P has complex powers P_z . Then, QP_{-1+t} ($0 \leq t \leq 1$) is Fredholm type as the L^2 -operator, and we have*

$$(5.24) \quad \text{index } Q = \text{index } QP_{-1+t} = \text{index } QP_{-1}.$$

Moreover we have

$$(5.25) \quad \text{index } Q = \text{index } Q_0,$$

where Q_0 is defined by

$$\sigma(Q_0)(x, \xi) = \psi(c^{-1}x, c^{-1}\xi) \sigma(Q) \left(\frac{cx}{\langle x \rangle}, \frac{c\xi}{\langle \xi \rangle} \right) \sigma(P) \left(\frac{cx}{\langle x \rangle}, \frac{c\xi}{\langle \xi \rangle} \right)^{-1}$$

with the function $\psi(x, \xi)$ of (5.9) and a large fixed constant $c > 0$, which is an elliptic operator of class $S_{1,0}^0$ and is slowly varying (c.f. [4]).

Proof. Set $P_t' = QP_{-1+t}$ and let Q_{-1} be a parametrix of Q . Then, $Q_t' = P_{1-t}Q_{-1}$ is a parametrix of P_t' and belongs to $S_{\rho, \delta}^0$. If we write $Q_t'P_t' = I + K_t'$, then by Lemma 1.6 we have $K_t' \in S^{-\infty}$. By Lemma 5.7 we have $P_t'^* = P_t'^{(*)} = P_{-1+t}^{(*)}Q^{(*)}$ and $Q_t'^{(*)} = Q_{-1}^{(*)}P_{1-t}^{(*)}$ is a parametrix of $P_t'^{(*)}$. Then, in the same way to the proof of Theorem 5.6, we get (5.24). By means of Lemma 1.5 we can write for large N

$$\sigma(QP_{-1})(x, \xi) = \sum_{|\alpha| < N} \frac{1}{\alpha!} \sigma(Q)^{(\alpha)}(x, \xi) \sigma(P_{-1})_{(\alpha)}(x, \xi) + r_N(x, \xi)$$

such that $r_N(x, \xi) \in \overset{\circ}{S}_{\rho, \delta}^{-(\rho-\delta)}$. Then, noting that

$$\sigma(Q)(x, \xi)(\sigma(P_{-1})(x, \xi) - \psi(c^{-1}x, c^{-1}\xi)\sigma(P)(x, \xi)^{-1}) \in \dot{S}_{\rho, \delta}^{-(\rho-\delta)}$$

and

$$\sigma(Q)^{(\alpha)}(x, \xi)\sigma(P_{-1})^{(\alpha)}(x, \xi) \in \dot{S}_{\rho, \delta}^{-(\rho-\delta)} \quad \text{for } |\alpha| \geq 1,$$

we have

$$\sigma(QP_{-1})(x, \xi) = \psi(c^{-1}x, c^{-1}\xi)\sigma(Q)(x, \xi)\sigma(P)(x, \xi)^{-1} + R_0(x, \xi),$$

where $R_0(x, \xi) \in \dot{S}_{\rho, \delta}^{-(\rho-\delta)}$. Since by Lemma 1.6 $R_0(x, D_x)$ is compact on L^2 , we have $\text{index } QP_{-1} = \text{index } P_0'$, where P_0' is defined by

$$\sigma(P_0')(x, \xi) = \psi(c^{-1}x, c^{-1}\xi)\sigma(Q)(x, \xi)\sigma(P)(x, \xi)^{-1}.$$

Now consider a family of symbols

$$\begin{aligned} \sigma(Q_\varepsilon)(x, \xi) &= \psi(c^{-1}x, c^{-1}\xi)\sigma(Q)\left(\left(\frac{c}{\langle x \rangle}\right)^{1-\varepsilon} x, \left(\frac{c}{\langle \xi \rangle}\right)^{1-\varepsilon} \xi\right)\sigma(P) \\ &\quad \left(\left(\frac{c}{\langle x \rangle}\right)^{1-\varepsilon} x, \left(\frac{c}{\langle \xi \rangle}\right)^{1-\varepsilon} \xi\right). \end{aligned}$$

It is easy to see that $\{\sigma(Q_\varepsilon)(x, \xi)\}_{0 \leq \varepsilon \leq 1}$ makes a bounded set in $S_{\rho, \delta}^0$ and $Q_1 = P_0'$. Furthermore we have with a constant $C > 0$

$$C^{-1} \leq |\det \sigma(Q_\varepsilon)(x, \xi)| \leq C \quad \text{for large } |x| + |\xi|.$$

As the regularizers for Q_ε we adopt operators $Q_{-\varepsilon}$ defined by $\sigma(Q_{-\varepsilon})(x, \xi) = \psi(c_1^{-1}x, c_1^{-1}\xi)\sigma(Q_\varepsilon)(x, \xi)^{-1} (\in S_{\rho, \delta}^0)$ for a large constant $c_1 > 0$. For a fixed $u \in L^2$ we write

$$\begin{aligned} Q_{-\varepsilon}u - Q_{-\varepsilon_0}u &= Q_{-\varepsilon}(1 - \psi_\delta)u + (Q_{-\varepsilon}\psi_\delta u - \psi_\delta Q_{-\varepsilon}u) \\ &\quad + \psi_\delta(Q_{-\varepsilon} - Q_{-\varepsilon_0})u + (\psi_\delta Q_{-\varepsilon_0}u - Q_{-\varepsilon_0}\psi_\delta u) + Q_{-\varepsilon_0}(\psi_\delta - 1)u, \end{aligned}$$

where $\psi_\delta(x) = \psi(\delta x)$, $\delta > 0$, with a function $\psi(\xi)$ of (2.1). Then by Lemma 2.2 we have for any fixed $\delta > 0$

$$\|\psi_\delta(Q_{-\varepsilon} - Q_{-\varepsilon_0})u\|_0 \rightarrow 0 \quad \text{as } \varepsilon \rightarrow \varepsilon_0,$$

and other terms tend to zero in L^2 as $\delta \downarrow 0$ uniformly in ε . Hence we see that $Q_{-\varepsilon}$ is strongly continuous in L^2 and by Lemma 5.4 we have

$$\text{index } P_0' = \text{index } Q_\varepsilon = \text{index } Q_0.$$

Q.E.D.

OSAKA UNIVERSITY

Bibliography

- [1] S. Agmon: *Lectures on Elliptic Boundary Value Problems*, Van Nostrand Mathematical Studies, Princeton, N. J., 1965.
- [2] T. Burak: *Fractional powers of elliptic differential operators*, Ann. Scuola Norm. Sup. Pisa **22** (1968), 113–132.

- [3] K.O. Friedrichs: *Pseudo-differential Operators. An Introduction*, Lecture Notes, Courant Institute, New York University, 1968.
- [4] V.V. Grushin: *Pseudo-differential operators on R^n with bounded symbols*, Functional Anal. Appl. **4** (1970), 202–212.
- [5] K. Hayakawa and H. Kumano-go: *Complex powers of a system of pseudo-differential operators*, Proc. Japan Acad. **47** (1971), 359–364.
- [6] L. Hörmander: *Pseudo-differential operators and hypoelliptic equations*, Singular Integrals, Proc. Symposia Pure Math. **10** (1976), 138–183.
- [7] L. Hörmander: *Fourier integral operators. I*, Acta Math. **127** (1971), 79–183.
- [8] L. Hörmander: *On the index of pseudo-differential operators*, Elliptische Differentialgleichungen, Vol. II, Akademie-Verlag, Berlin (1971), 127–146.
- [9] H. Kumano-go: *Algebras of pseudo-differential operators*, J. Fac. Sci. Univ. Tokyo **17** (1970), 31–50.
- [10] H. Kumano-go: *On the index of hypoelliptic pseudo-differential operators on R^n* , Proc. Japan Acad. **48** (1972), 402–407.
- [11] P.D. Lax and L. Nirenberg: *On stability for difference schemes; a sharp form of Gårding's inequality*, Comm. Pure Appl. Math. **19** (1966), 473–492.
- [12] M. Nagase and K. Shinkai: *Complex powers of non-elliptic operators*, Proc. Japan Acad. **46** (1970), 779–783.
- [13] L. Nirenberg: *Pseudo-differential operators*, Global Analysis, Proc. Symposia Pure Math. **16** (1968), 149–167.
- [14] R.T. Seeley: *Regularization of singular integral operators on compact manifolds*, Amer. J. Math. **83** (1961), 265–275.
- [15] R.T. Seeley: *Complex powers of an elliptic operator*, Singular Integrals, Proc. Symposia Pure Math. **10** (1967), 288–307.
- [16] M.A. Šubin: *Pseudo-differential operators in R^n* , Soviet Math. Dokl. **12** (1971), 147–151.
- [17] R. Vaillancourt: *A simple proof of Lax-Nirenberg theorems*, Comm. Pure Appl. Math. **23** (1970), 151–163.