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Fig. 1.1 Vicker’s hardness versus d~!/? for nanocrystalline materials
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(a)Taylor model (b)modified Sachs model

Fig. 1.2 Deformation patterns according to (a) the Taylor model and (b) the modified Sachs model
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Table 1.1 History of study on nanocrystalline materials by using molecular dynamics method

year author material potential grain size nm  total atoms  type
1994 3 Iwasaki®® Al Morse“ 2 3a
4 Chen#®-47) Fe FS? 0.9~1.7 3c
12 Wolf#2 Cu L-J 0.8~2.7 16,328 3c
1995 2 Inoue®®-69 Fe Morse* 2 7,948 2
2 Phillpot'7® Cu L) 4.3 55,296 3c
1996 5 Kalia®!-62 SizsN;  3-body? 6 1,085,616 3c
6 Keblinski'”> Si Swe 3.8~7.3 3c
7 Schigtz6V Cu EMT/ 361,568 3b
; Tajima(® L-J 1,839 2
- Heinisch®®? Ni EAMS 2.5 1,534 3b
- Wolf® Si Swe 0.8~2.7 3c
1997 4 Ogawa">¥ ZrO, Born-Mayer” 5 3a
7 Van Swygenhoven'®”©®®  Nj FS' 3-5.5 100,000 3¢
9 Chen®" a-Fe  Johnson/ 7.62~12.78 17,923 3a
11 Tsuruta®® SizNy  3-body? 5.6 1,131,732 3c
- Sasajime'*®) L-J 2
1998 2 Schigtz6>) Cu EMT/ 3.28~6.56 100,000 3c
- Nakatani‘6® bee-Fe FS? 2.8~5.16 12,036  3a, 3c
1999 3 Nakatani‘®? Al EMT/ 5.8 551,011 3c
4 Szpunar®®® Ni EAM* 1,040 3b
4 Keblinski'’® Pd EAM! 6 3c
4 Van Swygenhoven'’”  Ni,Cu SMA-TB' 3~12 1,200,000 3c
10 Heino'*¥ Cus EMT/ 1.8~13 200,000 3c
11 Schigtz® Cu EMT/ 3.28~13.2 1,000,000 3c
2000 4  Van Swygenhoven'”®  Cu,Ni EAM™" 5.2~12 1,000,000 3c
2001 4 Yamakov!’? Al EAM?° 20~70 1,021,000 3a
- Shimokawa(present study) Al EAM",EMT/ 5 1,403,169 3c

3 ¥ Lxw o~ TR A [, a .

type | 2 3a 3b 3c

Stohnham, A. M., et al., Handbook of Interaction Potential, Vol. 2 Metals, (1981).
Finnis, M. W,, et al., Philos. Mag., 50-1(1984), 45-55.

Ishida, Y., et al., Sur. Sci., 144(1984), 253-266.

Vashishta, P, et al., Phys. Rev. Lett., 75(1995), 858.

Stillinger, F. H., et al., Phys. Rev. B, 31(1985), 5262.

Jacobsen, K. W., et al., Phys. Rev. B, 35(1987), 7423-7442.

Daw, M. S, et al., Phys. Rev. B, 29(1984), 6443-6453.

Dwivedi, A., et al., J. Solid State Chem., 79(1989), 218.

Cleri, F,, et al., Phys. Rev. B, 48(1993), 22.

Johnson, R. A., Phys. Rev., A134(1964), 1329.

Foiles, S. M., et al., Phys. Rev. B, 33(1986), 7983.

Foiles, S. M., et al., Phys. Rev. B, 40(1986), 5909.

Baskes, M. 1, et al., Modell. Simul. Mater. Sci. Eng., 5(1997), 651.
Mishin, Y., et al., Phys. Rev. B, 59(1999), 5.

Ercolessi, F., et al., Europhys. Lett., 26(1994), 583.




14 00O0O0OODOO 11

goobboooobbboooobobbooobbbdoobobboooubbboooo
gooboobooooboboooobobboooobobboooooboboooubobooon
goobobooooboboooobobboooobobboooooboboooubobooon
gogobboooobboooobbbooobbboooobbobdooonoobooon
ggobobooooboboooobobbooobbboooobobuooooobooon
ggobbooooboboooobobbooobbboooooobooooobooon
ggobboooooboboooobobbooobboooooobooooobooon
ggobooogbobbooooooboboooobbooan

1.4 0J00004Odog

00000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
000000000000000Al000000000000000000000000
00000 (embedded atom method; EAM)®Y0 00000000 AlDOODOOO0OOODO
000000000000000000 (effective medium theory; EMT)®0 0 0 O

000000000000000000000000000000000

020000000000000000000000000000000000000
0000000000000000000000000000000000000000
000000000000000000000000

030000AlI00000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
00000000000000000D0000000000000D0000000000
0000000000000000000000000000000000000000
0000000000000 00000

0400000000000000000000000000000000000O0O0
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
000000000000 000000000000000000000000 (5.8nm)



12 o110 O O

gooboboooobbbooooobboooobbuoooobbbooobDbboood
gooboboooobobbooooobbooooboboooobobboooobobooog
gooboboooobobobooooobbooooboboooobobboooobobooon
guobobbbooououo-gogoubobbbooooobobooooobobboood
ggoboboooobobboooboboboooboboboooooboboooobbooog
ggobboooobobboooboobbooobobobooooboboooobobooog
ggoboboogobobbooooboobboooobbobooooboboooobbooog
ggobboogobobooooboboooobobobooooboboooobbooog
ggoboboogoboboooooboboooboboboooobobboooobobooog
gobboboooodouooobbooouoobboobooooobbbooooobobonboa
gogoboboooobobuooooboboooboboooad

OsSO0000b0ob0oooboobogoboobooboobDoboooooooboboobooog
gobboboobodooooobbodouoobbbooooooobbboooooboboobog
gogodoo-0boooobooooooooobotbdoddd0ddiddUUuUUuOog
ggoboboooobobboooooboboooboboboooobbboooobLbooog
ggoboboooobobbooooobobooooboboboooobbboooobbooog
gogobboooobobuoooobobuoooobboooobbooon

o60000030000S0O00000O0DOODOODOODODOODODODOO
ggobobooooboboooooboo



13

[ 2 [

Jooooboooobobooddd
HRERERE

21 0O @O

000000000000000000000000000000000000000
0000000000000000000000000000000000000000Q
00000000000000000000000000000000000000004d
0000000000000000000Q0®)67D.68),6900,00.02.09.00 000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
000 Verlet 00000 Gear 0000000000000 0D0ODOO0O0DDOOODODOO
0000000000000000000000000000000000000000
00000000000000

000000000000000000000000000000000000000
0000000000000000000000000000000000000000
000000000000 000000000000000000000000000
0000000000000000000000000000000000000000
0D000000000000000000000000000000000000000
0D000000000000000000



14 020 0O0O0OO0OOOOOODOODOOOODODO

22 000000
221 0D00000DDOOOOODOOOOOOODOO

O0ONOOODODDOOOOOODODODOOoOOoOoOooobOoeNODDODDDODOOOOOOr
000000000000 000O00O0WDODLOOoODDLOOoOooDDbOoooDooo 2.1)0
goobooodogoboibooog oo ooooooo
IO 000000000 DOO000O0OD0D00OO00ODOOoOoDOO

1 Tobs
Agps = @ iime = ( AT'(®) Yime = lim — fo a(l'(r))dt 2.1

Tobs —0 obs
O000GbbsDDODO0D0OD0DO0DODOO0ODODOOODOD (ensembleyJ0O0D0OOO
goooobbobboooooooouooobob b b oo oooooooo
0000000 T0000000000000 pe(D) 00000

%[obs =(Q)ens =(0a |pens )= Z a(r)pens(r) (22)
r

0000000 D0O0DO0O0ODO0O0O0O0D00O0D0ODp(MOOOOO0ODOOODOOD
O000DOO0O0O0O00O0DbO0oO0oOobO (NNE)ODOOODOOoDbooog (NPDHOODODO
Oo0oooO0oOoooooooo0oO0obbo0ooooooooboOoOoDn (Monte Calro method)
ggobboboooobobobooon

Hamiltlon D00 O0O0OO0O0COONewton DO OOO0O0OOO00OOO0D0OOODDOO pave O
goooboooorooooboooooboooOoboooOOoboobOoDbOooboOoon
godooooroooooboobo0ooobobOO0oboOoDODOobOoooOOoDbDoooboOoon
gogoboboooobbtbooobobbooobobbuoooobbbooubbbUoog
AODODD0O0D0D00OO000O0DO0DOD0mMOobOOo0oDOooDOoboooDO

Tobs

Zhw@» (2.3)
Tobs 75

QIobs = < a >ens =

0000000000000 000000000000000000000000000
023)0000 «lfx)0000000000000000000000

222 00000 ODO0ODDOODOOOO

O00D00O0Parrinello-Rahman OO0 000000000000 OODOOODOOOOO
ggoboboogoboboooooboboooboboboooobobboooobobooog



22 0OO0OODOO 15

0000000000000 0000Parrinello-Rahman 00 000000000000
Ooo00000d

Parrinello 0 Rahman 0 0 0000000000000 0000000000O00O00O0
Andersen 00 0®000000000000000000000000000O00OO0
0000000000000 00%e®nooooo00000000ooonoon
000000 a,a,a; 0000 3x300 AO0000000000000000 VO

V =detlh| = a; - (a; X as) 2.4)

0000000 ddde0d00U00 r003x300 00000 10o00ooooooog
¢° 00000

r* = hq* (2.5)
DDDDDDDDDDW:hanDDDDDDDDD hq“DDDDDDDDDDDDG
RN

G=h"h (2.6)
0000000000000 (r%)?0

") = (¢" - ¢")'G(q" - ¢°) (2.7)

0000000000 00000ONewton 000000000 NVEOOODOOOOO
000000000000000000000 AOOOOO Hamilton 00 Hyyg 000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
00 p 00000000000 Hamilton DO A/ 00000000000000000
0¢(rO0000000

N N

W T
D, )+ Teh )+ poV 2.8)
a=1p=1, fta

H =

| =
| =

N
Z maanan +
a=1

0000000000 OWOOOOOD0OO0O000D000O000000000000000
0000 ¢*0 hODODDOO0OO0O0OO p¥, LOOOODODO
Y =mGq® (2.9)
L=Wh (2.10)

O00000g*0 pYOO0ODODOO0ODOOO0ODOOOODOOO

1
q*=—G 'p” @2.11)

m&’

(2.12)

o i d9(rP) G(g" - ¢°)
P arB o
B=1, B+«



16 020 0O0O0OO0OOOOOODOODOOOODODO

000000 Q1)00000000000000 (2.12)0000000000 (2.13)0
00000000000 00000000

G 'Gq® (2.13)

o1 i P g* - ¢

me =, oreB b

OO0000O0OAOOODOOOODOOOODOOODDOOODDOOO

hz%@—m@o (2.14)
O0000c0O POO
o=VHhH! (2.15)
(S o Ixn s 3P) h(g” - ¢)(h(g” — ¢#))
P= ;m hqo(hqo)T — E;ﬁ:;;m s e (2.16)

000000 D0OO0O0O0O0O0OODDODOODO0ODOODUODDODPODOOOODUOOODDOD
000000000 bOO0bO0DO0DO0DO0DO00O00DO0DOO0ODO0ODOoDODOAROODOD
goooooon

gobobogoobobboooobboooobbobooooboboooobboood
0000000000000%o00000000000000000000000000
ggoooboboboooogoob e ogoobbbbbooooooboboobobobod
oooo rydboobooboobooboobboboobobobboob (. bOooo
oooooOroo0oo0ob 17)oooobooooooo

i
Ty\2
W =y = 2.17
Vi Vi (T) ( )

223 000O0O0OOODODOO

22200 00000000000 0D0ODOOO0ODO0ODOODOODOOOODObObOOD
O000O0OONVEOODODOODOOOOOODO (2189000 NewtonOO OO OO
gogoobooooooouooon

o0 4y
o =" ap

fo= (2.18)

gootboUUobOoboObO0oObOOobOo0bOOoD0ObObOODODOn VerletDOODOODO
ooooboboboOd Gear oo



22 0OO0OODOO 17

gooog

Verlet [
00000 rt+xAn0 Taylor OO0 OO0OOO0OO0O

dri (1) 1d2r ()

3a/
F(t £ AL) = 1) £ At—— mo _4mﬁ [ oﬁmﬂ (2.19)

dr 2 de 3 an
oodooooooooooo y)yoooooooooooao
ro(t + Ar) = 2r“(t)—r“(t—At)+(At)2f © +0((an?) (2.20)
Oooo0o0o0ooo
zf“()

ri(t+ A =2r (@) — ri(t — Ar) + (A1) (2.21)

O000O0000DbO0000bOoboOoOoDbOonoO VerletOD (Verletmethod) DO OO OO
00000000000 (An*0000Verlet DO0O0ODD0O0O0O009NODODOOOOO
ooo0obOoobooboo euooooobooooooboboooo

vﬂﬂzzi{ﬁa+A0—ﬂa—Aﬂ (2.22)

000000000000 (Ap?0000000

00O Verlet O

022000000 Verlet 00 0000000000000 rf¢-AnpDOOO0O
(At)zfl."(t)/m"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
goooooooo

“@+An—rwn+mwamwmff() (2.23)
¢W+A0:ﬁm+A%ﬁ(+§Zfﬁa) (2.24)

0 (223),224)000000000000ODODODODODODDODO Verlet O (velocity Verlet
method) 0000 (224) 00100 Adams-Moulton 0 OO0 OO0O0O0O0OO0O Verlet O
0000000 2no00000fd0o00o00o0oo0ooU0oUooUooooooooo
000000O00ooo00ood0bDoO00ooo0ooooooooooDoOooooo
0000000000000 v(e+A/2)000000
J@®

s (2.25)

At
v (t+ ?) Vi) + At—

At
ri(t+ At) = ri(t) + Anv? (t + 7) (2.26)



18 020 0O0O0OO0OOOOOODOODOOOODODO

oooooooooooo Rec+Ap00000r+At0000000O0O0O0OOOO0
goooo

At @(t+ At
Vit + At =Vt + — +AtL (2.27)
2 2m<
gooooooood
Gear O
00000 ri@+ Ar) O Taylor O O
dri (1) , 12 ()
ri(t + At = i (1) + At—— + (A1) - —
(1 +A0) = () L (A s
KE 4
“(t) 14 @)

000000000000000000000000000000000000000
00d&rn/de, d(n/d 000000000000 000000000000000
00000000000000000000

N-ODO OO 223)000b00oobgor0oobobobobbooooboboboonog
goood

ggoooooooo

C-00DnOgonr-AnLt-2At,---0000000DO0ODOOOCOOCOOOODODO
gooood

F-OO0 000 (00000000000 0D0OD00O0 t=At=2At,---000000
gooooo

gogobboooobobboooobbooan
oooOoooobobbooobobooo TOhOboooobboUooobobboooo
O0OO0ON-DOO Gear O0O0OODOOOOFOODOODOODOODODODOO
OO0O000 (00 eOD0O0Oi0D00OO0O0ODOOOO

oo — [y A LED L 1EHO
Yi(t) =|ri (D), At—— ” , (A1) T

3l SQ(I) , (At )4iw ..
3! 4! d#

(A7) (2.29)



22 0OO0OODOO 19

ONOOOOOOOOOOOoOoOoooObo0o0o R30)0ooooooooD r+Ar000
ogooon

X

Y, (t+ At) = BY!(?) (2.30)
00000 ¥;¢+An000000 (218)000 f0000000000000000
ogoooooad

YOt + Af) = Y (t + At)

FUY (@t +A)) A7+ At
1% - dtZ

' b%(At)z[ (2.31)

0(2300023H)0000000 N-OO0 Gear 000000000 Y OO0OO pO0OO
O0Op-ON-UODO GearDOOOODOODOONyOOODOODOO

V(i + Ap) = (Y}(z FAD, TN (4 At)) (2.32)

O0000D000D0O00ON-OO0 GearOOOOOOp=4,5,6000000000000
BOODODOOODOOOOPOODODO

p B b
T 1 1 1 )
y 01 2 3 151
00 1 3 6'6” '3
00 0 1
T 1 1 11
012 3 4 T
5 00136 (%%1%%)
000 1 4
0000 1
T 1 1 1 1 1
012 3 4 5
s|| 00136 10 iEILlLT
000 1 4 0 20°360° " 18° 6 60
00001 5
00000 1
O00FO00000000000
X0 = | (), A w() L
-|" 27 d?
1 &2 (1 — AD) L& —-200 )
A= —i T AR T 2.
(Mrp 5 —E = (AP } (233)



20 020 0O0O0OO0OOOOOODOODOOOODODO

00000000000 +00000 Xy(»nOOoOO0O0 r-Art-2A¢000000000
00o00o0oO0o00ooooooo0oooo0@mY/mn)oo0X!(noooooooo
gooooboboboooo

xa =y (2.34)
00000000 TOO
100 0 0 0
010 0 0 O
001 0 0 0 -
T=10 01 -3 6 -10 - (2.35)
001 -6 24 -8 ---
0 01 -9 54 -270

gooo
BOp000000OO0 A0 aODO

A =TBT' (2.36)

a=Tb (2.37)
00000000000000000000X%)00000000000000

X/ (t+ A0 =AXY () (2.38)

X(t + At) = X (t + Ar)

1 oA X+ An) &+ A
+a§(At)( — -— ]

(2.39)

O0D00OFO00 Ger O0O000C0D0O0O0D0DDOXY(nOOO0O0D0DOOO0OD pOOO
O0p-0F00 Gear 00000000000

X(t+ Ap) = (X}(r S AN, XN At)) (2.40)

goooogo

00000 Gear J (Gear method)JGear 0 0 00000000 (Gear’s predictor-corrector
method) 00O OO0 (238)0R39) 0000000000 O0OOO0O0OOOODOODOO
O00O0OFO00 Gear OO0 O0Op=4,56000000000000 A000O0DO0O
oot edddgg



22 0OO0OODOO 21

p A a
é }% _% 15 T
4 00 2 -1 (aahﬂ
00 1 0
19 5 1
o B T1d
© T3 &6 19 3 T
5 0 0 3 -3 1 (ER?LQ®
00 1 0 0
00 0 1 0
1 1 2 22 3 _D
o1 ¥ L9y
00 4 -6 4 -l 3 251 T
oo 1 0o o o G&ﬁ@Laaﬂ
00 0 1 0 0
00 0 0 1 0

gooooooo
000000000000000000000000000000000®9Q

ggobboooobobuoooooboboa

o0o0obOOoooobO ar00O0D0ODODOOODOO
ggoboboooobbboooon
gogoboboooobbboooobbuoooobbboooobobo
goobbboooobbboooobboooooboo

O0O0O0OVerlet 0000000000000 000 Gear DO0D0DOOODODOO
Verlet 0000 Verlet 0050000 Gear 0000000000000 DDOON, 9N,
ISNOOOOO0O0D0OOVerlet 00000 Gear 1000000000000 0DODODOO
00000000000000000 500 Gear 00000000000 DOOOOOO
D00000000000000000O0Gear 00 0000000000000 OO0O
000000000000000000000000000000000000000
O000000000000000Verlet 00000000000000000O0O00O0O
D00000000000000000000 Hamilton 00000 Verlet 000000
Hamilton 0 000000000000 0000000020000000000000
00000000000000000000000004g®-dm.dagnnoo VerletOd
0000000000000000000000000000000000000000



22 020 0O0O0OO0OOOOOODOODOOOODODO

00000000000Gear 0000000000000 Verlet 00000000000
000000000000000000 Velet0ODOOO0O000O0000O000000O
0oooooooon

00000000 (213)00000000000000000000000 £2(t+Af)/m®
0000000 WE+A) 00000000000 Verlet 0000000000000
00000000000000000000000050000 Gear0OOOODO0O
00000000000000000000000000 Vellet0OOOODOOOO
fAG+A)/m*00000000000000000000000 VerletODOOD0000
0000V (E+A/2) 000000000

224 0O00000O0O0OOO

00000000000 00o0o00ooo0oooooooooooooooooon
OO0000000o0o0o0o0ooooooDodooo0ooooooooogooooooog
obooOo0o0OO0bO0o0O0O0obOooOOooOO0oOoooOboOobDOobobOOoboDbobooOo pyboo
000000 Maxwell-Boltzmann OO0 0 0000

g(v) = (%)y2 exp (- 5P (2.41)

O0O0O0g(w)D vOOOOOOO0OO0ODD0DO0OO0O0O00O0TO0O0000000000000
00000000000 x0y0z00 wOWOw O0DOOO000000000®T/m")!Y?
0000000000000000000000000000000000 Box-Muller
000000000000000020000000000000000020(&T/m%Y?20
w; 0w, 00200([0,)0000000 ;0w 0000000000000

kT 1/2
Wj:(;;) (—2Inu;) *cos(2mujy 1) (2.42)
kT 1/2
Wil = (%) (=2Inu;)'?sinnu jy1) (2.43)

ooooobobooodbooooooooooooyy0oobooooo

Wit W Wil Wiz Wi3
a—1 (0% 1% 1% a+1
VZ Vy Vy VZ Vy

00000000 Maxwell-Bolzmann OO0 000000000000 OODOOOOO



22 0OO0OODOO 23

gogooobobbbbbooooooououoooobbbbbboooooooooooo
gogooobobbbbbooooooououooobobbbbbbooooooooooo
gooooobbobobon

1 N
W= - = (2.44)

gooood

godobbooobobobdooouobbuoooobboooobOboooubbboooo
2100 000000Db0000bO0obO0bOO0bOO0oOobOobOOo0obDOoDoOobOobobOoOoDO
gogobboooobboooobbbooobbboooobbobdooonoobooon
gogobboooobboooobbbooobbboooobbobdooonoobooon
ggobobooooboboooobobbooobbboooobobuooooobooon
ggoboooooood

o o o

@) Q| O o | © @) ® ]

e ®olq ®olg %o % unit cell
Yo ‘e Yo

© o|® e|° o o

o “ole ®elo “ e ”.7image cells
Yo ‘e Yo

@ ®© o0 o
o ®olg ®olqg ®e
R < N

Fig. 2.1 Periodic boundary condition

225 U00O0O0O0OO0OOOOODOODODODOO

gooooood

gogobbooobboboooobobuooobobboooobboooobbooon
ggobboooobboooobbbooobbboooobobuooooobooon
ggobobooooboboooobobbooobbboooobobuooooobooon
ggoo



24 020 0O0O0OO0OOOOOODOODOOOODODO

gooboboooon
ggobob :0obbboooobbooooboboooobbbodooooboboood
goooouoooooogooooooooooobbbbobbbobob 0000000
ggobboooobbboooobbbooobboboooobobboooobboood
ggoboboooobobboooobobbooobboboooooboooobbooog
000000000000 (bookkeeping method) O 0 0 O
gooouoooooooooobbobbbobobobbbobobooobobbbobonbn e O
oooopoobo R O0O0OD00ODO0ODOOOOOR. OO0ODODOODODRArODOODOODO
ggbobooooobbooobbbuooobbioodbb v oo boog
O0nAt0D00ODODOODOOO R -r.OO000O00OO0ODOODODODODODODODO
ggoboboogoboboooobobobooooboboboooobbboooobbooog
ggoboboooobobboooobobobooooboboboooobobboooobbooog
oooobobobobooobUuUo R O0OD00O0OkrO00OOODOODOODOO
n00000O0OO0DODOOO0O0OOOOO0O0O0OU0bDbLOO nOUDbbbOOOoooLoO
00000000000000000000000N?000000000000000
o0oonNOODOODODOooNDDOODOOODbOoObooooboo

Fig. 2.2 Bookkeeping method

ooboboo0o :0boobobbo0obobooobobo NUODbODbOOOobDDbOoOooDbDo
000000 N?0000000000000000000 000000000000
yjoddoooooooooooooobbobooboboobbbbb OO OO0OO0



23 000000000 25

oot e 000000 ooooooo
000o0o00ooo0bOooDooooooooDoooooooDooooooooog (block
decomposition method), 0 00 0 0 O (sub-cell method) O 0 0O O

gooooooooobbboobodddoodoooooobobob RROODUOOOO
000000000000 0OnArD00D00O00ODODO0OD r.00DO00O00OODODO0OOR
000000000 oooooooooDoOooonoR 0000000000 DOOO0O0n
0000000000000N?0000000000000000000O0000O000
gogooooooooboboboouooooo

23 U0D0O0OOoOoooond

ggobbobooouoooboooooobboooooooobobboooooooon
ubdoboooboboobooodoboboboboboobobbooobooboboon
00000000000 Schrodinger 00O O0DOODODOOOOODODOOODODOODO
ubobodooobooboboobooboboobbouoboobbuoobbobobOoo
Born-Oppenheimer O 0 0000000000000 OODODOOOOOOOOODOODO
ggobboooobboooobbbooobbboooobbboooobLboooo
ggobobbodoouoobbodooouobbbooodooubobbbbooLoobLbbo
ggobbbodooogoobtboooouobbboooobbbbbooLoobLbbo
0000000000000 CarO Parrinello 00 00000D0OOO0OOODOOOODOODO
1030

gogobbdooobobboooobbuoooobbuoooobboooobboboooo
ggoboboooobboooobbtbooobbbdoobDbboooubbboooo
godobboooobboooobbbooobbbdoobobOboooubboooo
godobboooobboooobbbooobbbdoobobOboooubboooo
godobboooobboooobbbooobbbdoobobOboooubboooo
gooboooon

231 0D00O0OD0OO0OOOODODOOODOOO

ggobobooobooboooobobuoooobobooooboboooobobooaon
ggoboboodoobobooooboobbooobbbooooboobooooobobooon
ugobooooooo



26 020 0O0O0OO0OOOOOODOODOOOODODO

0o0o0o0ooooboboooobooooobooooon
gboboboooobobuoooobboooobbbooobbbooobboood

0000000000000 0b0o000b0oDoobLOD 30%000000000
gogodooooobbbbboboooooooououooooobobobooo

gobobooooobuooooboboooobboooobbbooooboboood

goo

dODO0000o0OOobOOoboooooooboon

OO0 vanderWaals 00 00000000000 Cauchy 000 Cpp = Cyy™000

Cawcchy 0000000000000 D00D0OO0O0DOOO0DOODOOODOOOOOO
00 EP"opooooo0oonooooood

tot

Epair _

tot

Cijkl =

Iy

1 =1, B+«

\S}

N
a=

1 PF 1 PEY

| =

tot

V d,0sy  V 0s,0sn

e 1 e
{¢ (Fﬁ)—ﬁ¢(rﬁ)}

N N
2, 2, 4
a=1 p=1, f#a

o000 OO0 4600000000000

y B b ap

(P

B
F

i ] Tk

(2.45)

(2.46)

O00O0F O HelmholtzOOOOOOOODOODODODODODODOODOODOODOODOODOOOO
ﬁmDDDDDDDDDDDDDDCWMJ%WDDDDDDDDDDDCwmyDDD

tot

0000000000000 0000000000000000000000oooon
Oo0000000ooooooooooodYYypoooooooooooooooon
0000000 o0oooooooooooooooooooogouesg

“O00000000000000000000000000000 ¢»000 ;0 (/000000000
O0o00dde0ldooooono cy0DDODOOODOD VoigtODODOODDO

i(ork) j(orl) | I(orJ)
X X 1
y y 2
z z 3
y Y/ 4
z X 5
X y 6




23 ODO0OO0OOOODOO 27

0000000000 00000 (effective medium theory; EMT)!106):(107),(85). (108),(109), (1100
0000000 (embedded atom method; EAM)!!D:U2.0B3 0 000ooo0o0ooon
0020000000000000000 (Finnis-Sinclair 0 0 O 404150160y 000
0000000000000000 247)000000000000000000000
000000 1002000000000020 FOp*00000000p*00 (2.48)
00000000000 00000000000D0D0D0D0D000000O0O0 20000
ooooog

N N N
man 1 (04 (03
Etoty:§Z Z P(r B)"‘ZF(P) (2.47)
=1 p=1, B+« a=1
p° = Z PP (2.48)
B=1, B*a

00D00000000000000e00000000:i0000 FOODODO o;,00
000 ¢uOO00oodoo 24902500 @sHiooooooogoooon

0Emany N I”Q'B
F? = at:t - Z [¢'(raﬂ) +5 () {F'(p™) + F’(pﬂ)}]r@Tﬁ (2.49)
i B=1, p+a

1oF  10E™™

7ij = V (98,']‘ V (981]
1 N N raﬁ aﬁ
=5y [as’(r“ﬁ) + 20 (FP)F (p° )] (2.50)
a=1 B=1, f+a
1 *F  16EL"”
Cijkl = =

V 88,‘j88}d V asuaé‘kl

7 ZF”(p ){ Z G

B=1, B#a

aﬁ raﬂ

y=1 7#0

ap raﬁ rl(:ﬁ 7/3

{ﬁ”(r”ﬁ) - ”ﬁ)} L

raﬁraﬁraﬁraﬁ

al

1 < k'l

WZ Z {¢"< rF) - ﬂﬁm”ﬁ)}w (2.51)
00000000000 DO0000D000DO00bO0OnD Feyoohooooooooo
0000000000000 0D0D0O0000DO0o000 25100 Cauchy OODOOODO
goddobdoooooodoooooooooooonoooooooooooogad
goddobdooooooodoooooooooooonoooooooooooogad
gooooooooooood

+
M
=
s
3
1=



28 020 0O0O0OO0OOOOOODOODOOOODODO

o JIUIUI0O0O0O0O0O0OOOOODODODLODLODODOODDLDOODbObObObObObObObObObODODOO

efccOOD hepOOOODDODOODOODDDOOODDDOOODDDODOOODODOOO
ggd

edJID00O0O0DOOOOODODOOODDOODDOUOUODOUOODDOOODO

0000000000000 0Baskes 0000000000000 O0DOOO0OOO
O00oooooooMYi®onpoooo00000000 (modified embedded atom
method; MEAM)'® 000000000

232 0000O0O0O0OOODOOOO

O000D0O0O00DO00O000O0DO0O0ObO0DOO0ODbOOOOJacobsenD 00 O0OOOOO
ooooooob00o0O0bO00oDOOb0OO0DOEMTII OO D O0O0ODO OO0 D OO0 dMishin
ggobobooooboboooobobboooobobbuoooobbboooobbbooog
o0oo0O0oODdobO0oO0EAM-MOOOO0ODOOOOOODOOOODOODOODOOOOOD

oooooog

00oo0oo"ooo00000000000000O0o0No0NOoo0NOoO0ononooonag
0000000000000 000000000000000000000000000
000000000000000000000000000 (hest)J0000000OO
0000000000000 000000000000000000000000000
0000000000000 000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000 000000000000000000000000000
0 @5200o0o0o00M9g

N
ENT = 3 [Ec(A) + AERY (R, 0)] + AE1q (2.52)

a=1
OOOU0OE QOO0 AR*0000C0O0O0O0DO0ODO0 eODO0ODOOODOOOOOODODO
O0DAEG 0D00000DOO00O00ODO0O0DOO000ODO0O0bOO0O0O0ODOO0O00
fecOOODDOOODODODOOODOO C400D0D0O0OODOODOOODOOODOUOODOOODO
00000000D0000D0O AEg O 10000000 (the one-electron energy) O [
g00dO0o0oO0OoOoo0o0oooOoOooDoOdU0oo0oU0ooOOooOooogUoDoUOooDoo
0000o00oOoo00oooO0OoDo00oo0o0ooOoOooooOooDoOoOooDoo
Oo00ooooooooooo



23 000000000 29

00000 Jacobsen 0O OOO0O0OO0D (253)0000®0000000000
0000000 1000000000000000000

N
EQ = ) [E(i) + AET (7, 09)] (2.53)

a=1

OO0o00obOob0 1g002000 254)000 ee0)obooooooo

aY\2 Ay
E4W3:E0+E4—-—Q +E4———q (2.54)
no no
_ 0"1’ P
n® = ngexp(1so) (2.55)
12‘)/1
N N
o= > explmr ety = Y o) (2.56)
B=1, B+a B=1, B+a
1
0(rPy = 2.57
v 1+ exp{Z(reMT = rof)) 27
AESS (7, 09) = ER® — A" (a})) (2.58)
—fcc, _a O-g
°“(03) = no exp(nso) —— (2.59)
12y,
& U
@ _ ap af
o5 = exp| ——r |6(r'") (2.60)
i= (X )

00000 (257)0 «0000000000 A 00000 ¢%00000000000
Doo0 AMY 00000000000 00000000 2.10 Jacobsen 000000
O000000000000000000000000000000000000000
0000000000000000000000000000000000000000
00000000000000000000000 AMY 0 5743A0000 30000
0000000000000

oooooogo

Daw 0 Baskes 0000000000 OO0OOOWHAILA.03000000000
000000 61)000000 200 ¢ M 000 o,p0000 000000
00 Fe** MO OO 000000000 pEAMO0O00000000000oon
0000000000000000000000000000000000000000
0000o0oOoooond2azg



30 020 0O0O0OO0OOOOOODOODOOOODODO

Table 2.1 Parameters of EMT interatomic potential for aluminum'®>

parameter | value unit
no 0.007 bohr™3
50 3.000 bohr
n 2.000 bohr™!
7 1.270 bohr™!
£ 1280  eV/bohr™?
Ey -3.28 eV
E; 1.12 eV
E; —-0.35 eV
Y1 1.0416
0%} 1.0664
yEMT=I 10.13 bohr
X 1.809
4 -15.0

1 bohr=0.52918%x10"1%m, 1 eV=1.60219%x10"1°J

N N N
EE;?M — % Z Z ¢EAM(raﬂ) + Z FEAM(pa,EAM) 2.61)
a=1 B=1, f+a a=1
N
pa,EAM _ Z ﬁEAM(ra,B) (2.62)
B=1, p#£a
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Fig. 2.10 An extended dislocation moving with velocity v. w is the width of extended
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moving partials and f;', and f7| are the forces on by, b,, respectively, because
of the applied stress.
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Table 3.1 Elastic constants for aluminium

C]] GPa C12 GPa C44 GPa

EAM-M 111.9 61.2 31.8
EMT-J 104.8 80.3 42.6
Experiment!>? 114 61.9 31.6
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Table 3.2 Macroscopic elastic moduli of EAM-M and EMT-J
A EVY  ER GV GR YR
GPa GPa GPa GPa
EAM-M 125 779 77.1 292 289 033 0.34
EMT-J 348 820 594 305 214 035 0.39




33 0000000000000000 49

33 ODOOboobooobooboon
331 00DOO0OODOOOOOOO

OOOOODEAM-M O EMTIJOOUOOO0O0OOOO0OO0OO0O0OOOOOO0O0oooooO
ggobooooooogd

0D000o00o0ooon

029000 x00yOOzOOODOODO [110],[112],[111]00000000000O0
O 28 V2/2ay, 35V6/6ay, 45V3/3a¢o 00000 000000000000000000O0
q000000000x00y0000000000000000000000000
000000000000 fece0DO [110100000000000 211000000
0000z00000000000000000000000000000000000
0D000000000z<00000000000000xy0000000000O

3 1
uﬁ¥§m@%:§m 3.1)

0000000000000000000000000000000000000000
D000000A«O [211]00000000000001/V6a, 0000

oooo

0310 EMTEJOO0O0O0O00 EAMMMOOOOO000000000000000
0000000000000 00000000Hartford 0000000000000
oBgoooooo®™UB¥oooooo00o0do0n 3.)ODooooooooooo
0D0000000000000000 ;0000000000000000000000
D00000000000000 33000000000EAM-MO000O00O0000O
ys¢ 0000000000000 00D0O0O00DODOO00ODOO0O0OOO0O0O0O0000O0
EMT-JO AIDDODOO0O000000000000000000000000EMT-JOO
00000000000 v9y,,000 EAMMMOOOOOO000000000000000
0D000000000000000000000

00000000000 EAM-MO EMT-JO0000000000000000000
0D0000000000000000000000000000000000 hepO00O
000000000000 feeOOOOO0OO0ODODDOOO0DO0O0O0O0OO0ODOOOOOOOO
0D000000020000000000000000000 A0000



50 030 0OO0DO0O0OOODOODbOOOOoOoOoDOoOood
250 [ [ ! !
o
200 ° i
=
% y
E 150 |
g 2
< % e
S 100 -
s | /S EMT-J -
c g ° .
L /" EAM-M(relaxed) O S
50 - EMT-J(relaxed) < I
DFT(relaxed) O]
Exper. 1 A
Exper. 2 v
O | | |
0.0 0.2 0.4 0.6 0.8 1.0

Displacement A u/(1/V6a,)

Fig. 3.1 GSF (Generalized Stacking Fault) energy curve

Table 3.3 Unstable stacking fault energy and intrinsic stacking fault energy for EAM-M,
EMT-J and DFT (Density Functional Theory) of aluminium

Yus MJ/m>  ygp mJ/m>  ygg (relaxed) mJ/m?

EAM-M 188 158 147
EMT-J 110 54 31
Hartford et al. (DFT)!1>D 213 153 142

Experiment - - 135152 166153
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Table 3.4 Distances between the partials of a screw or a edge dislocation

\% R \% R AE
edge wedge Woerew  Wserew  Wiscrew
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EMT-J 379 300 155 10.1 8.8
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Fig. 3.4 Atomistic configuration of extended dislocations moving toward surface
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Table 3.5 Cases of (100) tilt grain boundary
O[deg] | 369 22.6 28.1 163 43.6 189 12.7

z 5 13 17 25 29 37 41

Table 3.6 Cases of (110) tilt grain boundary
O [deg] | 109.5 70.5 140.1 38.9 50.5 129.5

)y 3A 3B 9A 98B 11A 11B
O[deg] | 8.6 934 1535 265 31.6 1484
)y 17A 17B I9A  19B 27A 27B

O [deg] | 59.0 121.0 160.0 20.1
x 33A 33B 33C 33D

Table 3.7 Cases of (111) tilt grain boundary
Oldeg] | 21.8 322 132 382 42.1

z 7 13 19 21 31
Oldeg] | 94 278 448 164 46.8
x 37 39 43 49 57
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Fig. 3.12 Mean square displacement of a model with one vacancy

Table 3.8 Diffusion coefficient of a model with one vacancy

Diffusion coeflicient 600K 800K 1000K
DEAM-M 132 /g 551x1071%  3.01x10713  2.23x107'?
DEMT-T 2 3.28x107*  6.35x10713  3.20x1071?
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Table 3.9 Number of jump
600K 800K 1000K
EAM-M 2 21 277
EMT-J 4 55 279
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Fig. 3.13 Mean square displacement of a model with X5 grain boundary

Table 3.10 Diffusion coefficient of 5 tilt grain boundary

Diffusion coefficient 600K 800K 1000K
DEAM-M ;m2s | 524%10713 7.57x10711 4.72x107°
DEMT- 125 245x10712 1.88x10710  1.21x107°
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Table 3.11 Vacancy formation energy, vacancy migration energy and activation energy for
> 5 tilt grain boundary

E, | EY, E¥ EY. | Ocs
EAM-M | 0.66 | 0.69 0.79 0.62 | 0.88

EMT-] | 1.12 | 0.58 0.62 0.54 | 0.80
(unit : eV)
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Table 3.12 Lattice constant, cohesive energy, elastic constants, anisotropy factor, vacancy
formation energy, vacancy migration energy, surface energy and stacking fault
energy compared with experimental values

Interatomic  ay Ey B Ch Cop Cu A
potential A eV GPa GPa GPa GPa

EAM-M 4.050 -3.36 78.1 111.9  61.2 31.8 1.25
EMT-] 4.026 -3.28 88.5 104.8  80.3 42.6 3.48

Experiment ~ 4.05160 336161 79(130) 11401500 61 91130) 37 6(130) 1 21

Interatomic E £ EY vs(110)  y4(100)  y(111) VSF
potential eV eV mJ/m? mJ/m? mJ/m? mJ/m?
EAM-M 0.66 0.69 1006 943 870 147
EMT-] 1.12 0.58 974 906 848 31

Experiment 0.68(_162) 0.65(163) 980(_164) 980(‘164) 980(164) 135’(152) 166(‘153')
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Fig. 4.1 Shape of crystal grain by using a Voronoi construction in the case of two dimension
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Table 4.1

Specimens of nanopolycrystal

Specimen

Model

Interatomic potential

Specimen 1A
Specimen 1B
Specimen 2A
Specimen 2B
Specimen 3A
Specimen 3B

Model 1
Model 1
Model 2
Model 2
Model 3
Model 3

EAM-M
EMT-]
EAM-M
EMT-]
EAM-M
EMT-]

4.3 DOOOO
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Table 4.2 Condition of tensile load

increment of strain Ae  strain rate 1/s

Condition 1
Condition II
Condition III

4%x1073 1.250 x 100
1x1073 3.125 x 10°
4x10™* 1.250 x 10°
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Table 4.3 Properties of relaxed models

Specimen 1A 2A 3A 1B 2B 3B
Mean cell length /, A 211 216 215 209 215 213
Mean grain size dg, nm 5.8 4.3 3.6 5.8 4.3 3.6

Pro. of defect atoms fgg 0.312  0.407 0486 0.329 0436 0515

Pro. of hcp atoms f,,, 0.004  0.008  0.016 0.008 0.016 0.026

Elastic modulus E,, GPa 74.1 72.4 71.7 71.5 67.1 67.0
(ES, ED) (75.3, 71.5) (74.0, 70.0) (74.0, 69.3) (73.2, 68.1) (68.4, 65.3) (68.5, 65.6)

Elastic modulus E, GPa  74.5 73.8 73.2 72.8 71.0 71.2
(Ef, E]y)) (75.6,71.9) (75.5,71.3) (75.6, 70.6) (74.6, 69.2) (73.3, 67.9) (74.2, 68.4)

Elastic modulus E,, GPa  74.2 74.0 73.0 71.8 71.3 70.2
(Eg, E?) (75.3,71.7) (75.7,71.5) (75.2,70.6) (73.4, 68.6) (73.8, 68.1) (72.7, 67.8)
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(e) Specimen 3A (f) Specimen 3B

Fig. 4.3 Atomic configuration obtained by relaxation computation
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Table 4.4 Number of grain boundaries which consist of over 20 atoms
Specimen 1A 2A 3A 1B 2B 3B
Number of g. b. 323 861 2099 325 863 2093
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(f) Specimen 3B, £=0.18

Fig. 4.21 Atomic configuration in cross sections of specimen 3A and 3B in £=0.00, 0.08
and 0.16 on the condition III



96 040 0OUODOOOOODODOOOOODODOOOOOD

0.30

0.00

0.30

0.00

(c) Specimen 1A, & : 0.00 ~ 0.18 (d) Specimen 1B, & : 0.00 ~ 0.18

Fig. 4.22 Atomic configuration colored by equivalent strain between £:0.000 0.08 in
cross sections of Model 1 and 3 on the condition III
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Fig. 4.23 Atomic configuration colored by equivalent strain between £:0.000 0.08 in
cross sections of Model 1 and 3 on the condition III
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Fig. 4.25 Atomic configuration colored by two tone lateral stripes in cross sections of
specimen 1A, 1B ,3A and 3B on the condition III
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(a) Specimen 1A, & = 0.00 (b) Specimen 1A, € = 0.08 (c) Specimen 1A, € = 0.18

(d) Specimen 1B, € = 0.00 (e) Specimen 1B, & = 0.08

(g) Specimen 3A, & = 0.00 (h) Specimen 3A, & = 0.08 (1) Specimen 3A, € = 0.18

(j) Specimen 3B, £ = 0.00 (k) Specimen 3B, £ = 0.08 (1) Specimen 3B, € = 0.18

Fig. 4.26 Distribution of tensile axis in the unit triangle of each specimen on the condition III
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(c) e=0.15 (d) e=0.25
Fig. 429 Switching of neighbor grains in the region (S)
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Fig. 430 Switching mechanism of Ashby and Verrall
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Fig. 4.34 Stress—strain curves and distributions of tensile axis in unit triangle. Values of
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Fig. 4.38 Relation between stress-strain curve of specimen 1A and the movement of the
dislocation of D, in Fig. 4.37
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(a) € =0.00 (b) e =0.03 (c) equivalent strain
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Fig. 4.55 Movement of the dislocation in the grain G at the view point from Q (Fig. 4.53(a))
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Fig. 5.5 Relation between true stress and nominal stress of Specimen 4A and 4B as a

function of nominal strain
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Fig. 5.6 True stress of Specimen 4A and 4B as a function of decrease rate of minimum

area of cross sections of each specimen
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Fig. 5.7 Atomic arrangement of Specimen 4A in v=50m/s
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Fig. 5.8 Atomic arrangement of Specimen 4B in v=50m/s
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Fig. 5.9 Change of minimum section area of each specimen as a function of nominal

strain, v=50m/s, 100m/s

1.2

1.0 |

0.8

0.6

0.4

0.2t

O.o 1 1 1 1 1 1 1 1 1
-50 -40 -30 -20 -10 O 10 20 30 40

50
Position of the specimen nm
(a) Speciman 4A, v=100m/s
1.2 T
L\ 8= 0.00  0.05
1.0 N ;
0.8 1
0.6 1
0.4 1
0.2 1
0.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
-50 -40 -30 -20 -10 0 10 20 30 40 50

Position of the specimen nm

(c) Speciman 4A, v=50m/s

Normalized section area

Normalized section area

12
10 |
08 |
06 |
04 |
0.2 | SO '. ]
0.40

0.0 1 1 1 1 1 1 1 1 1

50 -40 -30 20 -10 0 10 20 30 40 50

Position of the specimen nm

(b) Speciman 4B, v=100m/s

1.2

ARRIN £=0.00 0.05
1.0  °

0.8

04 r
0.2 r

L L L el L L

0.0 !
-50-40-30-20-10 0 10 20 30 40 50

Position of the specimen nm

(d) Speciman 4B, v=50m/s

Fig. 5.10 Normalized area of a cross section of each specimen



142 0SS0 0OO0bOOobOobooooobOobooobooboob

(a)e=0.00 (b)e=0.05 (c)e=0.10 (d)e=0.15 (e)e=0.20

Fig. 5.11 Change of atomic configuration in cross sections of Specimen 4A and distri-
bution of tensile axis in the unit triangle at v=50m/s
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(a)e=0.05 (b)e=0.10 (c)e=0.15 (d)e=0.20 (e)e=0.25

Fig. 5.12 Atomic configuration in cross sections of Specimen 4A colored by equivalent
strain for Ae=0.05 at v=50m/s
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(2)e=0.00 (b)e=0.05 (c)e=0.10 (d)e=0.15 (e)e=0.20

Fig. 5.13 Change of atomic configuration in cross sections of Specimen 4B and distribu-
tion of tensile axis in the unit triangle at v=50m/s

(a)e=0.05 (b)e=0.10 (c)e=0.15 (d)e=0.20 (e)e=0.25

Fig. 5.14 Atomic configuration in cross sections of Specimen 4B colored by equivalent
strain for Ae=0.05 at v=50m/s
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(a)e=0.25 (b)e=0.45

Fig. 5.17 Stacking faults consisting of hcp atoms in the Specimen 4B
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Fig. 5.21 Stress-strain curve of Specimen 1B
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Table A.1 Vectors connecting atom centers r;, their magnitudes, and the equivalent bond
energy in FCC

Bond r;(X6) Ir;[(x6/ay) Bond Ene. EAM-MeV  EMT-J eV Morse eV

ri (033) V18 b1 —42.9 X107 _737.8x107  _1g] 4x107
r {006 ) V36 b ~55.0 -62.8 ~171.5
7 (444) V48 ¢, ~40.2 -17.1 ~93.2
r3 (336) V54 b3 -20.3 -9.5 -67.8
ry (741) V66 ¢y 4.2 -0.2 -28.9
rs (660 ) V72 b4 3.7 - -15.0
rs (039) V90 s _ _ _

r,  (11(10)) V102 A - - -
re (666 ) V108 b6 - - -

v (T74) o ¢ - E -

g (24(10) V120 ¢ - - -
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Table A.2 Intrinsic stacking fault energy by central-force model

ysr—2 mJ/m*  ysp mJ/m?
EAM-M 157 158
EMT-J 72 54
Morse -82 —
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