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Abstract
We construct a family of cyclic extensions of number fields, in which every

finite place is unramified, from an elliptic curve with a rational torsion point. As
an application, we obtain such polynomialsF(X) of rational coefficients that have
the following property: For a rational number� chosen at random, the class number
of the field generated by the square root ofF(� ) is “often” divisible by 3, 5 or by 7.

1. Introduction

The ideal class groups of number fields have been studied for along time. One
studies the ideal class groups by using certain Diophantineequations, especially the
arithmetic theory of elliptic curves. For example, T. Honda[3] (see also [2]) used el-
liptic curves to find infinitely many real quadratic fields whose class numbers are multi-
ple of 3. The author [6] gave a geometric interpretation of Honda’s work, and showed,
e.g., that the cubic polynomial 4X3�27 has the following property:For � 2 Q chosen

at random, the class number of the fieldQ(
p

4�3 � 27) is divisible by3 with “ proba-
bility ” greater than or equal to3=4.

On the other hand, J.-F. Mestre [5] used elliptic curves to findinfinitely many
imaginary and real quadratic fields whose 5-ranks or 7-ranksare at least 2. Mestre’s
work is based on scheme-theoretic argument, and the minimalmodels play an impor-
tant role in the proof.

In the present paper, we study a way to construct cyclic extensions of number
fields, in which every finite place is unramified, from an elliptic curve with a ratio-
nal torsion point. Our method is similar to Mestre’s in a certain sense. However, we
do not use scheme theory nor minimal models. Instead of thosetools, we use Vélu’s
formulas [9] (see Section 2) and the notion of “good points” on an elliptic curve with
respect to a Weierstrass equation (see Section 4).

Here we briefly state the main results. Letk be a number field of finite degree,
and let E be an elliptic curve defined overk which has ak-rational pointT0 of prime
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order l . We take a Weierstrass equation forE of the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

with

a1, a2, a3, a4, a6, x(T0), y(T0) 2 Ok

and we denote its discriminant by1. HereOk denotes the ring of integers ofk. Let

Y2 + A1XY + A3Y = X3 + A2X2 + A4X + A6

be the equation forE� = E=hT0i and � : E ! E� the isogeny of kernelhT0i which
are given by Vélu’s formulas (E� is known to be an elliptic curve defined overk).
Here hT0i denotes the subgroup ofE(k) generated byT0. With the notation and the
assumptions described above, we can state the main results as follows:

We can construct a subset4 of k ( for the definition, seeTheorem 5.1)which sat-
isfies the following two properties:
(i) (Theorem 5.1)For any Q2 E� � fOg with X(Q) 2 4, the field k(��1(Q)) is a
cyclic extension of k(Q) of degree l in which every finite place is unramified.
(ii) (Corollary 6.4) The set4 has a positive density in k:

lim
B!1 #f� 2 4; Hk(� ) � Bg

#f� 2 k; Hk(� ) � Bg =
rY

i =1

Npi

Npi + 1
,

where Hk(� ) denotes the exponential height relative to k of� . Here p1, : : : , pr denote
the distinct prime divisors of1 in k, and Npi denotes the absolute norm ofpi .

From these results, we conclude that the cubic polynomial

F(X) = 4X3 + (A2
1 + 4A2)X2 + 2(A1A3 + 2A4)X + A2

3 + 4A6

has the following property:
Assume l6= 2. Then the elements� 2 k for which the class number of K� =

k(
p

F(� )) is divisible by l have a positive density in k:

lim inf
B!1 #f� 2 k; l j hK� , Hk(� ) � Bg

#f� 2 k; Hk(� ) � Bg � rY
i =1

Npi

Npi + 1
.

We close this section with an example (see Examples 2.4 and 6.7). Let E be the
elliptic curve defined overk = Q given by

y2 � 78xy + 6241y = x3 � 79x2,
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whose discriminant is�795 �7109, which has a rational pointT0 = (0, 0) of orderl = 5.
For this case, our results imply:For � 2 Q chosen at random, the class number of

Q(
p

4�3 + 5768�2 + 8635964� + 10019781641)

is divisible by5 with “ probability” greater than or equal to

79

79 + 1
� 7109

7109 + 1
= 0.9873� � � .

2. Review of Vélu’s formulas

In this section, we briefly review Vélu’s formulas. For details, see Vélu’s original
paper [9] (cf. also [4]).

Let E be an elliptic curve defined over a perfect fieldk, and let0 be a finite sub-
group of E which is invariant under the action of Gal(k̄=k). Herek̄ denotes an algebraic
closure ofk and Gal(� ) the Galois group. Then there exist an elliptic curveE� and a
separable isogeny� : E ! E�, which are defined overk, such that Ker� = 0. Such a
pair (E�, �) is unique up tok-isomorphism, andE� is often denoted byE=0. Given
Weierstrass equation forE and the coordinates for the points in0, computing an equa-
tion for E� and an explicit form for�: E ! E� of kernel0 can be done by usingVélu’s
formulas.

Let

(2.1) y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 (ai 2 k)

be an equation forE. We definegx, gy 2 k(E) by

(2.2) gx = 3x2 + 2a2x + a4 � a1y, gy = �2y� a1x � a3.

For P 2 E � fOg, we shall write the valuesx(P), y(P), gx(P), gy(P) by xP, yP,
gx

P, gy
P, respectively, and set

tP =

�
gx

P if P 2 E[2]
2gx

P � a1gy
P otherwise

, uP = (gy
P)2.

Taking a set00 � 0 of perfect representatives for (0 � fOg)=� 1, we put

t =
X
T200

tT , w =
X
T200

(uT + xT tT ).

These two quantities are ink, and do not depend on the choice of00. Letting

A1 = a1, A2 = a2, A3 = a3, A4 = a4 � 5t , A6 = a6 � (a2
1 + 4a2)t � 7w,
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we can state the formulas as follows:
The elliptic curve E� = E=0 and the separable isogeny� : E ! E� of kernel0

are given by

(2.3) Y2 + A1XY + A3Y = X3 + A2X2 + A4X + A6

and by

(2.4)

X = x +
X
T200

�
tT

x � xT
+

uT

(x � xT )2

�
,

Y = y� X
T200

�
uT

2y + a1x + a3

(x � xT )3
+ tT

a1(x � xT ) + y� yT

(x � xT )2
+

a1uT � gx
T gy

T

(x � xT )2

�
,

respectively.

REMARK 2.1. Expressions (2.4) are derived from

X = x +
X

T20�fOg(x Æ �T � xT ), Y = y +
X

T20�fOg(y Æ �T � yT ),

or equivalently,

X +
X

T20�fOg xT =
X
T20 x Æ �T , Y +

X
T20�fOg yT =

X
T20 y Æ �T

by using the addition formulas. Here�T denotes the translation-by-T-map onE. Note
that we regardk(E�) as a subfield ofk(E):

k(E�) = f� 2 k(E); � Æ �T = � for all T 2 0g.
Thus we have
(2.5)

XQ +
X

T20�fOg xT =
X

P2��1(Q)

xP, YQ +
X

T20�fOg yT =
X

P2��1(Q)

yP for Q 2 E� � fOg,
where XQ and YQ denoteX(Q) and Y(Q), respectively.

REMARK 2.2. One verifies that the invariant differential

!(x, y) =
dx�gy

=
dy

gx

on E associated with (2.1) is equal to the one

!(X, Y) =
d X�GY

=
dY

GX
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on E� associated with (2.3). Here we defineGX, GY 2 k(E�) by

(2.6) GX = 3X2 + 2A2X + A4 � A1Y, GY = �2Y � A1X � A3.

EXAMPLE 2.3 (The case of0 �= Z=3Z). If E has ak-rational point T0 of or-
der 3, thenE has an equation of the form

y2 + axy+ by = x3 (a, b 2 k, b(a3 � 27b) 6= 0)

with T0 = (0, 0), andE� = E=hT0i is given by

Y2 + aXY + bY = X3 � 5abX� a3b� 7b2.

EXAMPLE 2.4 (The case of0 �= Z=5Z). If E has ak-rational point T0 of or-
der 5, thenE has an equation of the form

y2 + (a + b)xy + ab2y = x3 + abx2 (a, b 2 k, ab(a2 + 11ab� b2) 6= 0)

with T0 = (0, 0), andE� = E=hT0i is given by

Y2 + (a + b)XY + ab2Y = X3 + abX2 + 5(a3b� 2a2b2 � ab3)X

+ a5b� 10a4b2 � 5a3b3 � 15a2b4 � ab5.

EXAMPLE 2.5 (The case of0 �= Z=7Z). If E has ak-rational point T0 of or-
der 7, thenE has an equation of the form

y2 + (a2 + ab� b2)xy + a3b2(a� b)y = x3 + ab2(a� b)x2

(a, b 2 k, ab(a� b)(a3 + 5a2b� 8ab2 + b3) 6= 0)

with T0 = (0, 0), andE� = E=hT0i is given by

Y2 + (a2 + ab� b2)XY + a3b2(a� b)Y

= X3 + ab2(a� b)X2

+ 5ab(a� b)(a2 � ab+ b2)(a3 � 5a2b + 2ab2 + b3)X

+ ab(a� b)(a9 � 18a8b + 76a7b2 � 182a6b3 + 211a5b4

� 132a4b5 + 70a3b6 � 37a2b7 + 9ab8 + b9).

3. Consequences of the formulas

In this section, we study about the form of the isogeny�: E ! E� which is given
by Vélu’s formulas. Notation and assumptions are the same asin the previous section.



380 A. SATO

3.1. Relations amongGX, GY and gx, gy . The functionsGX, GY 2 k(E�), de-
fined by (2.6), can be written by usinggx, gy 2 k(E), defined by (2.2), as

GX = mgx + n(gy)2, GY = mgy.

Here we definem, n 2 k(E) by

m = 1� X
T200

�
tT

(x � xT )2
+

2uT

(x � xT )3

�
, n =

X
T200

�
tT

(x � xT )3
+

3uT

(x � xT )4

�
.

Thus we have

(3.1) GX
Q = mPgx

P +nP(gy
P)2, GY

Q = mPgy
P for Q 2 E��fOg and P 2 ��1(Q),

where GX
Q, GY

Q, mP, nP denoteGX(Q), GY(Q), m(P), n(P), respectively (note thatm
and n are regular onE � 0). These relations can be deduced from

dx�gy
=

dy

gx
=

d X�GY
=

dY

GX

(see Remark 2.2) combined with

d X = m dx, dY = �ngy dx + m dy.

3.2. Relation betweenX and x. We can rewrite the former expression of
(2.4) into

X =
I (x)

J(x)

with

I (x) = xl �
0
� X

T20�fOg xT

1
Axl�1 + � � � ,

J(x) =
Y

T20�fOg(x � xT ) = xl�1 �
0
� X

T20�fOg xT

1
Axl�2 + � � � ,

where l = #0 (= deg�). It is easy to verify that all the coefficients ofI (x) and J(x)
are ink. Moreover, since [k(x) : k(X)] is equal to [k(E) : k(E�)] = l , these polynomials
do not have any common root.

Let Q be a point onE� with [2]Q 6= O. Then, for eachP 2 ��1(Q), we have
P 6= O, J(xP) 6= 0 and I (xP)� XQ J(xP) = 0. Therefore we conclude

(3.2) I (x)� XQ J(x) =
Y

P2��1(Q)

(x � xP),
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since the assumption [2]Q 6= O implies

#fxP; P 2 ��1(Q)g = #��1(Q) = l .

3.3. The field extensions arising from�. Let Q be a point onE� with [2]Q 6=
O. We denote the fields

k(Q) = k(XQ, YQ), k(��1(Q)) = k(xP, yP; P 2 ��1(Q))

by K , K 0, respectively. Since the isogeny� is defined overk, we haveK � K 0.
Now, we assume that the the fieldk is not of characteristic 2. Then we have

K = k
�
XQ, GY

Q

�
, K 0 = k(xP, gy

P; P 2 ��1(Q)).

Here, it follows from (3.1) and the assumption [2]Q 6= O (i.e. GY
Q 6= 0) that mP 6= 0

and gy
P = m�1

P GY
Q 2 k

�
xP, GY

Q

�
. Therefore we conclude

(3.3) K 0 = K (xP; P 2 ��1(Q)).

Thus K 0 is the splitting field of the polynomialI (x)� XQ J(x) over K (see (3.2)).

4. Relation with reduction maps

In this section, we shall apply Vélu’s formulas to elliptic curves of certain type,
and study about the relation among the isogeny and the reduction maps with respect
to a non-archimedean valuation on the ground field.

Let k be a perfect field, and letv be a non-archimedean valuation onk. We de-
note the valuation ring, the valuation ideal and the residuefield by Ov, pv and by�v,
respectively. Fora 2 Ov, we sometimes denote the elementa modpv of �v by ã.

Let E be an elliptic curve defined overk which has a k-rational point T0 of prime
order l. Then we can take a Weierstrass equation forE of the form

(4.1) y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

with

(4.2) a1, a2, a3, a4, a6, xT0, yT0 2 Ov.
We fix such an equation and consider the reduction ofE modulo pv. That is, let Ẽ =
E modpv be the curve defined over�v which is given by

(4.3) y2 + ã1xy + ã3y = x3 + ã2x2 + ã4x + ã6,

and let

E(k) 3 P 7! P̃ = P modpv 2 Ẽ(�v)
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be the reduction ofE modulo pv with respect toEquation (4.1). Using the reduction
map, we define two subsets ofE(k) as

E 0(k; pv) = fP 2 E(k); P̃ 2 Ẽns(�v)g, E +(k; pv) = fP 2 E(k); P̃ = Õg.
We call P 2 E(k) is good modulopv with respect to (4.1) if it belongs toE 0(k;pv) (we
often omit the phrase “modulopv with respect to . . . ”). Similarly, we callP 2 E(k)
is bad if it does not belong toE 0(k; pv). Then clearlyfOg � E +(k; pv) � E 0(k; pv).
Moreover, it is easy to observe:

Proposition 4.1. (i) For P 2 E(k)� fOg, we have

P 2 E +(k; pv) () xP =2 Ov () yP =2 Ov.
(ii) For P 2 E(k)� E +(k; pv), we have

P =2 E 0(k; pv) () gx
P � gy

P � 0 (modpv).
REMARK 4.2. Whether a pointP 2 E(k) is good or bad is determined only by

a congruent condition for itsx-coordinate modulopv. More precisely, putting1 the
discriminant of (4.1), we have:
(i) If 1 6� 0 (modpv), then everyP 2 E(k) is good.
(ii) If 1 � 0 (modpv), then P 2 E(k) is bad if and only ifxP 2 Ov and

8<
:

f (xP) � f 0(xP) � 0 (modpv) if 2 6� 0 (modpv)
x2

P � a4 (mod pv) if 2 � a1 � 0 (modpv)
xP � a3=a1 (mod pv) if 2 � 0, a1 6� 0 (modpv)

hold. Here we define a cubic polynomialf (x) by

f (x) = 4x3 + (a2
1 + 4a2)x2 + 2(a1a3 + 2a4)x + a2

3 + 4a6.

Note the setsE 0(k; pv) and E +(k; pv) defined above are not uniquely determined
by k, v and by E. However, one can verify the following (cf., e.g., [8, Chapter VII,
Proposition 2.1]):

Proposition 4.3. The setE 0(k; pv) is a subgroup of E(k), and the map

E 0(k; pv) 3 P 7! P̃ 2 Ẽns(�v),
is a group homomorphism of kernelE +(k; pv).

Let 0 be the subgroup ofE(k) generated byT0. Then0 is of prime orderl , and
its subgroups0 \ E 0(k; pv) and 0 \ E +(k; pv) must coincide withfOg or 0. On the
other hand, the assumptionxT0, yT0 2 Ov implies T0 =2 E +(k; pv). Thus we have:
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Corollary 4.4. (i) 0 \ E 0(k; pv) coincides withfOg or 0.
(ii) 0 \ E +(k; pv) = fOg.

We note that the corollary above implies

(4.4) xT , yT , gx
T , gy

T , tT , uT 2 Ov for all T 2 0 � fOg.
Now, let

(4.5) Y2 + A1XY + A3Y = X3 + A2X2 + A4X + A6

be the equation for the elliptic curveE� = E=0 and�: E ! E� the isogeny which are
given by Vélu’s formulas. Then the assumption (4.2) together with (4.4) imply

A1, A2, A3, A4, A6 2 Ov.
Moreover, one easily observes that all the coefficients of thepolynomials I (x) and
J(x), defined in Section 3.2, are inOv. Let Ẽ� = E� modpv be the curve defined
over �v which is given by

(4.6) y2 + Ã1xy + Ã3y = x3 + Ã2x2 + Ã4x + Ã6,

and let

E�(k) 3 Q 7! Q̃ = Q modpv 2 Ẽ�(�v)
be the reduction ofE� modulo pv with respect to (4.5). Using the reduction map, we
defineE

�
0(k; pv), E

�
+(k; pv) � E�(k) in the same manner as forE. Then we can obtain

the same ones forE� as Proposition 4.1, Remark 4.2 and Proposition 4.3.
With the notation and the assumptions described above, we have the following the-

orem, which asserts that the inverse image by� of every good point contains a good
point:

Theorem 4.5. Let Q be a point inE �
0(k; pv) such that��1(Q) � E(k). Then at

least one point in��1(Q) is contained inE 0(k; pv):
��1(Q) \ E 0(k; pv) 6= ;.

Proof. Since the assertion is clear ifQ = O, we assumeQ 6= O. As mentioned
in Corollary 4.4, the set0 \ E 0(k; pv) coincides withfOg or 0.

(i) We first consider the case0 \ E 0(k; pv) = fOg, i.e. the case where every
T 2 0�fOg is bad. In that case, it follows from Proposition 4.1 that each T 2 0�fOg
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satisfiesgx
T � gy

T � 0 (modpv), and hencetT � uT � 0 (modpv). Therefore we have
t � w � 0 (modpv) and

A1 = a1, A2 = a2, A3 = a3, A4 � a4 (mod pv), A6 � a6 (mod pv).
Thus Equation (4.6) forẼ� coincides with Equation (4.3) for̃E. We also note that all
T 2 0 � fOg are reduced into the same point. That is, writing� the x-coordinate of
the (unique) singular point oñE, we havex̃T = � for all T 2 0 � fOg.

Now, suppose��1(Q) \ E 0(k; pv) = ;. Then everyP 2 ��1(Q) is bad, and hence
satisfiesx̃P = �. Consequently, it follows from (2.5) thatXQ 2 Ov and X̃Q = �. There-
fore we concludeQ =2 E

�
0(k; pv), which contradicts the assumption.

(ii) We next consider the case0\E 0(k; pv) = 0, i.e. the case where everyT 2 0
is good. In that case, we have��1(Q) � E 0(k; pv). Indeed, if��1(Q) has a bad point
P, then we havexP, yP 2 Ov and gx

P � gy
P � 0 (modpv). Moreover, the assumption0 � E 0(k; pv) implies xP 6� xT (mod pv) for all T 2 0 � fOg, and hence we obtain

XQ, YQ 2 Ov by (2.4). On the other hand, it follows from (3.1) thatGX
Q � GY

Q � 0
(mod pv). Thus we concludeQ =2 E

�
0(k; pv), which contradicts the assumption.

REMARK 4.6. From the argument in the above proof, one observes that the con-
dition 1 � 0 (modpv) implies 1� � 0 (modpv). Here1� denotes the discriminant
of (4.5).

5. Construction of unramified extensions

From now on,k denotes a number field of finite degree, and we denote its ring
of integers byOk.

Let E be an elliptic curve defined overk which has a k-rational point T0 of prime
order l. Then we can take a Weierstrass equation forE of the form

(5.1) y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

with

a1, a2, a3, a4, a6, xT0, yT0 2 Ok.

Let 0 be the subgroup ofE(k) generated byT0. Then it follows from the local argu-
ment in Section 4 that

(5.2) xT , yT , gx
T , gy

T , tT , uT 2 Ok for all T 2 0 � fOg.
Thus, letting

(5.3) Y2 + A1XY + A3Y = X3 + A2X2 + A4X + A6
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be the equation for the elliptic curveE� = E=0 and �: E ! E� the isogeny of kernel0 which are given by Vélu’s formulas, we have

A1, A2, A3, A4, A6 2 Ok.

We also note that all the coefficients of the polynomialsI (x) and J(x), defined in
Section 3.2, are inOk.

Now, we define a cubic polynomialF(X) by

F(X) = 4X3 + (A2
1 + 4A2)X2 + 2(A1A3 + 2A4)X + A2

3 + 4A6,

and put K� = k(
p

F(� )) for � 2 k. For Q 2 E� � fOg with XQ = � 2 k, it is easy to
verify that the fieldK� coincides withk(Q). We also define a polynomial3� (x) of
degreel by

3� (x) = I (x)� � J(x)

for each� 2 k. Let 1 and1� denote the discriminants of (5.1) and (5.3), respectively.
For each prime divisorp of 1 in k (it is also a prime divisor of1� by Remark 4.6),
let X bad(k; p) be the set of such� 2 Ok,p that satisfy the condition

8<
:

F(� ) � F 0(� ) � 0 (modp) if 2 6� 0 (modp)�2 � A4 (mod p) if 2 � A1 � 0 (modp)� � A3=A1 (mod p) if 2 � 0, A1 6� 0 (modp)

(cf. Remark 4.2). HereOk,p denotes the localization ofOk at p. One might call
X bad(k; p) the set ofbad X-coordinateson E� modulo p with respect to (5.3).

With the notation and the assumptions described above, we have:

Theorem 5.1. Let 4 be the set of such� 2 k that satisfy the following three
conditions:
(C0) F(� ) 6= 0.
(C1) 3� (x) is irreducible over k.
(C2) � =2 X bad(k; p) for all prime divisorsp of 1 in k.
Then, for any Q2 E� � fOg with XQ 2 4, the field k(��1(Q)) is a cyclic extension
of k(Q) of degree l in which every finite place is unramified.

Since a Galois extension of odd degree is unramified at every infinite place, by
using the class field theory, we obtain the following:

Corollary 5.2. Suppose l6= 2. Then, for any � 2 4, the class number of the field
K� is divisible by l.
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REMARK 5.3. Settinga = 0 in Example 2.3 (the case ofl = 3), we haveF(X) =
4X3 � 27b2, which the author studied in [6].

REMARK 5.4. In the case where the fieldk is totally imaginary, one has the
same result as the corollary above even ifl = 2.

Now, we give a proof of Theorem 5.1. Roughly speaking, our method to prove
the theorem is similar to the proof of the Weak Mordell-Weil Theorem (see, e.g., [8,
Chapter VIII, Section 1]). We shall use Theorem 4.5 in place of the direct calculation
in [6].

At first, we fix a point Q 2 E� � fOg with XQ = � 2 4, and put

K = k(Q) (= K� ), K 0 = k(��1(Q)).

Then:

Lemma 5.5. (i) K 0 is a cyclic extension of K of degree l.
(ii) For any P2 ��1(Q), we have K0 = K (P).
(iii) The map

� : Gal(K 0=K ) 3 � 7! P� � P 2 0
(P is a point in��1(Q)) is a group isomorphism.

Proof. It is immediate from0 � E(k) � E(K ) and Q 2 E�(K ) that K 0=K is a
Galois extension,K 0 = K (P) holds for anyP 2 ��1(Q) and that� is an injective group
homomorphism. Thus we have only to show that� is surjective.

Since the group0 is of prime orderl , its subgroup Im� must coincide withfOg or0. Moreover, the assumption (C0) implies thatK is the splitting field of3� (x) over
K (see (3.3)). Hence we conclude Im� = 0 by the assumption (C1).

Next, we fix a prime idealP in K and show thatK 0=K is unramified atP. Since
[K 0 : K ] = l is prime, we may assume thatP is not decomposed inK 0. Let P0 denote
the unique prime divisor ofP in K 0 and � 0 its residue field. Let

E(K 0) 3 P 7! P modP0 2 (E modP0)(� 0)
be the reduction ofE modulo P0 with respect to (5.1). Using the reduction map, we
define E 0(K 0; P0), E +(K 0; P0) � E(K 0) in the same manner as in Section 4. These
subsets are Gal(K 0=K )-invariant subgroups ofE(K 0), for we have assumed thatP is
not decomposed inK 0. Therefore, puttingIP0=P the inertia group forP0=P, we have
P� � P 2 E +(K 0; P0) for any P 2 E 0(K 0; P0) and any� 2 IP0=P. In particular, taking
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P from ��1(Q) \ E 0(K 0; P0), which is a nonempty set by the assumption (C2) and
Theorem 4.5, we obtain

P� � P 2 0 \ E +(K 0; P0)
for all � 2 IP0=P. However, it follows from (5.2) that0 \ E +(K 0; P0) = fOg, and
hence the pointP is invariant under the action of� 2 IP0=P. On the other hand, we
also haveK 0 = K (P). Thus we concludeIP0=P = f1g. That is, K 0=K is unramified at
P, which completes the proof of Theorem 5.1.

6. The density ofΞ

In this section, we show that the set4 defined in the previous section has a pos-
itive density ink with respect to a height function. For ak-rational pointP 2 Pd�1(k)
on (d� 1)-dimensional projective space, we denote its exponential height relative tok
by Hk(P) (for the definition and the basic properties of heights, see, e.g., [1, Part B]).
Then, as was shown by Schanuel [7], one has

(6.1) #fP 2 Pd�1(k); Hk(P) � Bg � Cd,k Bd

as B ! 1. Here Cd,k is a positive constant depending only ond and k which can
be written in an explicit form. We regardP1(k) as k [ f1g, and study the asymptotic
behavior of the counting function #f� 2 4; Hk(� ) � Bg.

Recall that the set4 is defined by using three conditions (C0)–(C2). Among
them, the condition (C0) holds for all but finitely many� 2 k (there are at most three
exceptions). Thus we may omit the condition (C0). On the other hand, we can esti-
mate the number of such� 2 k that do not satisfy the condition (C1) as follows:

Lemma 6.1. We have

#f� 2 k;3� (x) is reducible over k, Hk(� ) � Bg � B2=l
as B!1.

Proof. We first show that, for� 2 k with F(� ) 6= 0, the following conditions are
equivalent:
(a) 3� (x) is reducible overk.
(b) 3� (x) has a root ink.
(b)0 � = I (� )=J(� ) holds for some� 2 k satisfying J(� ) 6= 0.
Clearly, (b) implies (a). It is also immediate to see the equivalence between (b) and
(b)0. Thus we have only to show that (a) implies (b). The assertionis obvious in the
case wherel = 2, and we shall assumel 6= 2 for the time being. Then, for� 2 k
with F(� ) 6= 0, one can show that the following conditions are equivalent in a similar
fashion to the proof of Lemma 5.5:
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(A) 3� (x) is reducible overK� .
(B) 3� (x) is decomposed into linear factors overK� .
Here, clearly (a) implies (A). Moreover, sincel is assumed to be odd, it follows from
[K� : k] � 2 that (B) implies (b). Consequently, for� 2 k with F(� ) 6= 0, the five
conditions described above are equivalent (under the assumption l 6= 2).

By the equivalence between (a) and (b)0, we obtain

#f� 2 k;3� (x) is reducible overk, Hk(� ) � Bg � #f� 2 k; Hk(I (� )=J(� )) � Bg.
On the other hand, sinceI (x)=J(x) is a rational function of degreel , we observe

Hk(I ( � )=J( � )) � Hk( � )l

on k. Hence we conclude the assertion by the asymptotic formula (6.1).

Now, we study about the condition (C2). Recall that the setsX bad(k; p) are de-
fined for prime divisorsp of 1 in k. It follows from the definition that, for eachp,
there exists a point�p 2 P1(Ok=p)� f1g such that

X bad(k; p) = f� 2 P1(k); � modp = �pg.
The distribution of rational points on a projective space with such conditions on reduc-
tions as above can be estimated as follows:

Lemma 6.2. Let p1, : : : , pr be distinct prime ideals in a number field k of finite
degree. Then, for every (P1, : : : , Pr ) 2Qr

i =1 Pd�1(Ok=pi ), we have

#fP 2 Pd�1(k); P modpi = Pi for all i , Hk(P) � Bg �
 

rY
i =1

Npi � 1

Npd
i � 1

!
Cd,k Bd

as B!1. Here Npi denotes the absolute norm ofpi .

The lemma above can be shown in a similar (but more complicated) way to
Schanuel’s original proof (see also Watanabe [10, Example 1], which treats a modi-
fied height function).

Summing up the asymptotic formulas described above, we obtain:

Theorem 6.3. We have

#f� 2 4; Hk(� ) � Bg �
 

rY
i =1

Npi

Npi + 1

!
C2,k B2

as B!1. Here p1, : : : , pr denote the distinct prime divisors of1 in k.
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Corollary 6.4. The set4 has a positive density in k in the following sense:

lim
B!1 #f� 2 4; Hk(� ) � Bg

#f� 2 k; Hk(� ) � Bg =
rY

i =1

Npi

Npi + 1
.

REMARK 6.5. For an extensionK of k, one can show that

#f� 2 4; K� = K , Hk(� ) � Bg � (log B)r =2
holds for somer 2 Z�0. Thus the familyfK� g�24 of (at most quadratic) extensions of
k, parametrized by4, consists of infinitely many fields.

Now, we assumel 6= 2. Then it follows from Corollaries 5.2 and 6.4 that the
elements� 2 k for which the class number ofK� = k(

p
F(� )) is divisible by l have a

positive density ink:

lim inf
B!1 #f� 2 k; l j hK� , Hk(� ) � Bg

#f� 2 k; Hk(� ) � Bg � rY
i =1

Npi

Npi + 1
.

Thus one might say:For � 2 k chosen at random, the class number of the field K� is
divisible by l with “ probability” greater than or equal to

Q
i Npi =(Npi + 1).

EXAMPLE 6.6. Puttingk = Q, a = 98 andb = �1 in Example 2.3, we obtain

F(X) = 4X3 + 9604X2 + 1764X + 3764741, 1 = �101� 9319.

Thus, for � 2 Q, the class number ofQ(
p

F(� )) is divisible by 3 with “probability”
greater than or equal to

101

101 + 1
� 9319

9319 + 1
= 0.9900� � � .

EXAMPLE 6.7. Puttingk = Q, a = 1 andb = �79 in Example 2.4, we obtain

F(X) = 4X3 + 5768X2 + 8635964X + 10019781641, 1 = �795 � 7109.

Thus, for � 2 Q, the class number ofQ(
p

F(� )) is divisible by 5 with “probability”
greater than or equal to

79

79 + 1
� 7109

7109 + 1
= 0.9873� � � .
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EXAMPLE 6.8. Puttingk = Q, a = 4 andb = �97 in Example 2.5, we obtain

F(X) = 4X3 + 110872905X2 + 6379117545341648X + 66809139857632818992656,

1 = �214 � 977 � 1017 � 1221457.

Thus, for � 2 Q, the class number ofQ(
p

F(� )) is divisible by 7 with “probability”
greater than or equal to

2

2 + 1
� 97

97 + 1
� 101

101 + 1
� 1221457

1221457 + 1
= 0.6533� � � .
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