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0. Introduction

For a closed curve 7(s) in a riemannian manifold M we define its energy
E(7) by ||7|>. The first variation formula of E is given by —2<8v, D;¥>.
Therefore, its Euler-Lagrange equation is D;¥=0, the equation of geodesics.
We consider the corresponding parabolic equation

d

(EP) V= D;y, .

This is locally expressed as
8 i _ 0% _; ; 0 ;0
eyt — L i LTyl Y k s
ot o) i "

which is a semi-linear heat equation.

This equation was studied by Eells and Sampson [ES], in higher dimen-
sional case. They proved that if the manifold (M, g) is compact and has non-
positive sectional curvature, then a solution v, exists for all time, and a subse-
quence 7v,, converges to a geodesic. And it is not so difficult to show that if
the manifold (M, g) has negative sectional curvature, then the solution v, itself
converges to the geodesic.

Physically, equation (EP) represents the equation of motion of a rubber
band in high viscous liquid. Therefore, it seems that the above curvature
restriction is not necessary. More precisely, we have the following

Conjecture A. If the manifold M is compact then Cauchy problem (EP)
has a unique solution v, for all time.
Conjecture B. The solution vy, converges to a geodesic when t— oo,

In this paper we will show that this conjecture holds ‘‘almost always”, with
“a few” exceptions.

Theorem A. If the manifold M is compact then Cauchy problem (EP)
with C= initial data has a unique solution v, for all time.
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Theorem B. Moreover, if the riemannian manifold (M, g) is real analytic,
then the solution <y, converges to a geodesic when t—oo.

Thoerem C. There exists a compact riemannian manifold (M, g) such that
for certain C* initial data the solution v, of Cauchy problem (EP) does not con-
verge.

1. Preliminaries

Throughout in this paper, we use the following notations. The parameter
of a curve v is denoted by s and the velocity vector dy/ds is denoted by ¥ or v.
We treat curves v, depending on time ¢ and denote by ¥, or v, their velocity vec-
tors. But we usually omit the subscript # in them.

The riemannian covariant derivation is denoted by D. The norm |[*|,
the L, norm [|*|| and the L, inner product <{x, *> are defined by [#*|?=g(x, %),
Ck, 3y=§g(*, *)ds and ||*|[P=Cx, *.

We start from results in [ES].

Theorem 1.1. [ES, Theorem 10A, 10B] For any closed C' curve «,,

there is a positive constant T depending only on the energy density |v,|? such that
(EP) has a unique solution v, on 0<t<T.

Let T be the largest number such that a solution with initial data v, exists
on 0<t<T, and suppose that the energy density |v,|? is bounded on {(s,t)}=
S'x [0, T). Then by Theorem 1.1 there exists a positive number T; such
that any v, can be continued as a solution onto the interval (¢, ¢4 T;). This
implise that T is infinite. Therefore, the proof of Theorem A is reduced to the
following

Proposition 1.2. Let v, be a solution of (EP) on 0<t<T, where T is a
finite positive number. Then the energy density |v,|? is bounded from above by
a constant C on {(s, t)} =S'X[0, T'). Here, the constant C dependends only on
the initial data vy, and the time T.

To prove this, we need some basic inequalities. As usual, we use symbols
D,=D,;, and D,=D,,,. First, for a solution 7, on 0<¢t<<T we see

2ol = 2<v, D> = 2w, DLy ) = 2o, Di> = 2|yl

It implies that [|v|| is non-increasing. Therefore, we have a positive constant
C, such that ||v]|]<C, on 0<t<T.

Lemma 1.3. For any vecotr field & along 7y, we have

max | &[*<2[IE|[(IIEII+IIDW£l)
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Proof.

max [£|*<min £+ § |d €]’

ds_<_?1—ll’éllz+2<l"3l, IDE>
T
<2(EIP-HIIEN ID.£)
Q.E.D.

Lemma 1.4. For any positive integers p<gq, we have a constant C, de-
pending only on (the constant C, and) p and q such that

|1 Dfo]| < Cyl| Diwl e .
Proof. Since
D20l = —<Di~to, Doy <IDs"ol| 1Dl
we see that the function log || DJv|| is concave with respect to p>0. Therefore,
|| Dol <|lol -/} Dio|[#e < C}-/0| | Dot

Q.ED.

Lemma 1.5. For any non-negative integers p<<q, we have a constant C,
depending only on (C, and) p and q such that

max | Djv| < Cy(1+ || Div]|®+0/¢E0) .
Proof. From Lemma 1.3, we know
max | Djo| </2||Dio| (|| Dio||+|| D5 o] |)2 .
By Lemma 1.4, the right hand side

< const- || Do|[#/¢0(|| Do /et || Dio||#+/a)2
< const+ (1+ || Div||@+1/Ea)
QED.

2. Proof of Theorem A

Now we have to see more closely equation (EP). For the solution ¢, on
0<t<T, we see

D,Dy = R(%')', v)o+D,Dw = D}v+R(D,w, v)v .

Therefore, by induction, we get for n>2,
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DD o — R(%v, )Di-%+D,D, Dt
= Ditly+-3M A4, ].,,,(D,’;R) (Djv, Dtv)Div,
where A’s are universal constants and the sum 3}4 is taken over all Z, k, [ >0,
j=1 with i4j+k+I=n—1. This holds also for n=1, taking A=0. Thus,
we get
7;1? Do) = <D0, D,Di"'s>
= <Dy, Do+ 334 A, (DI R) (Div, Div)Dyv) .

1
2

Here the term D;R is expanded into
B B:;.pl...pm(DmR) (D‘:vz)’ e, ng.v) ,

where B’s are universal constants and the sum 3>3? is taken over all m, p,, -+, p,,
>0 with m+ > 1<o<mPa=1.

Lemma 2.1. There is a positive constant C, depending only on C, and
non-negative integer n such that

d npe
m [I1D}o]P<C,

Proof. Let n be a positive integer. From the above equality and Lemmas
1.4, 1.5, we see

1d
2 2 Dr-ly)?
]
= —|| Dio|[P+3° <D, ,‘;,,,lu.pm(D"‘R)(Dgw, +, Dtnp)(Dlv, D¥v)Div)
< —||D%|[*+const - 3¢ (II max | Div | )|| Div|| || D2~
q s
< —IIDiolf+const- 52¢ (IT (1-+ ]| Diel|eren)) | Dio] | Dzef|x-»
q

_ ||D;‘v||2+const .3 (1 + llD:.UI|((quq)+m+2+2i+2(n—l))/(Zn))
— |1 D50l[*4-const- I (1-+ | Dip]|¢»-Dr@m)

const ,

AN IA

where 3¢ denotes 334(31%x) and ¢ runs in the set {py, -+, p, &, I}. Q.E.D.

Proof of Theorem A. Lemma 2.1 and Lemma 1.3 imply that we can es-
timate each C" norm of the solution @, only by the initial data ¢,. This com-
pletes the proof of Proposition 1.2, hence Theorem A holds by the remark
above Proposition 1.2. Q.E.D.

Before proceeding to Theorem B and C, we derive the following
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Lemma 2.2. For any positive integer n, the integral (5 ||Div|[dt is finite,
and || D}v||—0 when t— oo.

Proof. Since % %Ilz)lIz:—l]D,sz, we see

[ Dol de = — - [lolPls < le< oo

Combining it with Lemma 2.1, we get the result for n=1. Suppose that the
assertion holds for any positive integer less than n. Note that g<#—2 in the
third line of the inequality in the proof of Lemma 2.1. Therefore, by Lemma
1.3, all max, | Div| are already bounded by a constant. Thus,

% % || Di-t][*< — || Dio| P+ const- 33 || Dio|| || D2 ]| ,

where the sum is taken for 1<j<n—1. By integration, we see

Dol <= 1DtolPdt+conse- 52 [T 1Dl 12wl at

) o0 3 oo 12
s—g | D202 dt—{—const-z(g ||ng”2dt$ | D22 dt) .

0 0 0
Thus, [3 ||Djol||? dt is finite by the assumption of induction. Combining it
with Lemma 2.1, we get the result for =. Q.E.D.

3. Proof of Theorem B

The pext Lemma is a direct consequence of a result of [S, Theorem 3].

Lemma 3.1. Let (M,g) be a real analytic riemannian manifold and n a
closed geodesic. Then there are positive constants p<(0,1), 6€(0,1/2), and a
C*** neighbourhood U of 7 such that if a closed curve vy is in U, then

| Doll = | E(r)—E(z) '~ .

Again, let 7 be a solution of equation (EP) . If the manifold M is compact,
then vy, are C° bounded and Lemma 2.2 implies that v, are C* bounded, and so
has a C® convergent subsequence. Let 7. be its limiting closed curve. Since
[| D, v,]|=0, ¥ is a closed geodesic. We apply Lemma 3.1 to y=%.. Fix a
geodesic coordinate system around a point ¥.(s,). Take sufficiently large 7 so
that D,,v, is sufficiently small for any ¢>7. If £,>T and v, (s) is close to v(s,),

then (g—)"y,l(s) is sufficiently small in the coordinate. It means that if #>T
s

and v, is close to 7. in L, topology, then they are close in C® toplogy. Thus,
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Lemma 3.1 can be rewritten as the following

Lemma 3.2. Let (M, g) and .. be as above. Then there are positive con-
stants §<(0, 1/2), T and an L, neighbourhood V of <. such that if t>T and
v, EV, then

1Dyl Z (Il P —lloa| P .

Proof of Theorem B. Suppose that on a time interval (¢,2,), v, is in V
and satisfies the above inequality. Then, for 7,,

d

2L lIolP = —IIDelf = —[|D,ol

Ly
dt

2 2\1— d
< — (el leulpy= | G|

Therefore,

_H%"’H > — (ol llowP)- L (ol lo-IF)

_ 1 4d 2 2\0
oo o (lelP—lo-IF)
Thus, we get
20| d 1
< 2___ » 2\0 :1 .
{1 G =g WP —teuiryn:

Let B, be the L, ball in V" centered at .. with radius ». If ¥, enters in B,,,
at t=t, and leaves from B, at t=#,, we have [;?||dy/dt||dt>r/2. Thus, if ¥,
repeats entering and leaving infinitely many times, we get [, ||dv/dt||dt= oo,
where I={t;v,€B,}. This contradicts to the above inequality. Therefore,
there exists a time 7" so that 7y, stays in B, on ¢>T. Since r can be taken arbi-
trarily small, we conclude that v, converges to 7. in L, topology. Thus, v, con-
verges to 7. in C= topology by the remark below Lemma 3.1. Q.E.D.

4. A counter example

We recall Theorem 1.1. The uniqueness of the solution implies that if all
initial data are invariant under a group action, then so is the solution v,.
Let f be a C* function on R? defined by the polar coordinate (7, §) as

0 (r<1)
f(r’a)z{(r—1)<2—i—sin( Loto))eren (>

r—1

We take a point 4, outside the circle r=1. Then the integral curve %, of the
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gradient vector field —grad f closes to the circle 7=1 when #— oo, but does not
converge. This example is suggested by Professor O. Kobayashi.
We define a C* riemannian metric g on the manifold S*x R*={(u, x,y)} as

8y, 05) = £(0,, 9,) = £(9:,0,) = 0,

£(0,,0:) =¢(0,0,) =1,

804 0,) = 1+¢(x,y) (d(x,5) =f(r,0)).
We solve equation (EP) with initial data ¢(s)=(s, a, b), where a and b are con-
stants satisfying a®>+b°>1. Since the initial data are S! invariant, so is the

solution 7,. It means that the solution 7, behaves like the integral curve 4,.
In fact we easily compute that the solution ¢,(s)=(s, 2(t), ¥(¢)) is given by a solu-

tion of the equation: %(x, y)=—% grad ¢. We can easily relpace the mani-

fold S'X R? by a compact manifold, say S*x T%.
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