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Abstract 

In an embedded system area, application specific instruction set processors (ASIPs) 

provide better performance, lower power consumption and a smaller chip area than 

general purpose processors. However, the design time of ASIPs becomes longer with 

the growth of the design scale. Higher abstraction level processor design method 

is required more than a traditional register transfer level (RTL) processor design 

method. The processor designs at RTL require a long design time because the deｭ

signer has to design datapath and controller structures while considering the assignｭ

ment of registers, functional units, interconnects among them, and the organization 

of the finite state machine of the controller. Designing processor organization at RTL 

台om instruction set architecture level processor specification is an error-prone and 

time-consuming task. In addition, the modification of 七he processor specification 

requires a long time for re-design of datapath and controller at RT level. Thereforeヲ

comparing with several design candidates for specific application in a short design 

time is di伍cult.

In this thesis ヲ micro-operation level pipelined processor specification and a proｭ

cessor sy瓜hesis method from a micrかoperation level processor description are prcト

posed for the improvement of design productivity of the ASIP development. The 

higher abstraction level than RTL contributes to the easiness of design and design 

modification for ASIP design. The ease of specification and modification of prか

cessor architecture enables architectural exploration of a large design space in a 

short design time. The designer only spec泊ed clock based instruction behavior in 

micrかoperation level specifications. Datapath and controller of the processor are 

synthesized from the behavioral description of instructions. 

The design space of micrかoperation level processor specification is large enough 
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for practical straightforward pipelined processors. Exploration of larger design space 

enables the designer to select a more suitable architecture for the target application. 

The target architecture of micrかoperation level processor speci五cation includes the 

following features: user-defined pipeline organization in terms of the number of 

pipeline stages, the number of delayed branch slots and the role of each pipeline 

stage; clock based behavioral representation of instructions and interrupts; utiｭ

lization of parameterized hardware modules; and user-defined instruction format , 

processor interface ports and external interrupt conditions. 

Processor synthesis from the micrかoperation level processor speci白cation inｭ

cludes datapath synthesis and controller synthesis. The synthesis of datapath and 

controller allows the designer to concentrate on instruction set design and evaluate 

various arcmtecture candidates in a short time. In datapath synthesis, data fiow 

graph generation 仕om micro-operation description, signal confiicts resolution and 

insertion of pipeline registers are performed. In controller synthesis, instruction deｭ

coder) pipeline control logic such as pipeline stall and pipeline fiush , and external 

interrupt control are synthesized. 

From experimental resultsう the effectiveness and feasibility of the proposed proｭ

cessor synthesis method were evaluated. Examples in experiments are a MIPS R3000 

compatible processor, DLX, PEAS-I core, a sirnple RISC controller, and a cusｭ

tomized MIPS R3000 processor for DSP application. The amounts of processor 

design time and design modification time were drastically reduced compared with 

that of conventional RT level manual design. Processor synthesis time was about 

two minutes for the processor, which has 52 instructions. The design space of pracｭ

tical processors was explored at an architecture level in a short design time. In the 

design quality of synthesized processors and manually design processors, the clock 

frequencies are almost the same. The area of synthesized processors is about 20% 

larger than that of manually designed processors. Though the area is inferior to 

manual design, the advantage of e紅白tive design space exploration has an impact 

on the total design quality. The effectiveness of the micro-operation level processor 

specification and processor synthesis for architectural design space exploration is 

con五rmed.

vl 

The proposed processor synthesis method enables the designer to explore a large 

design space at an architectural level. By the architectural exploration of a large 

design space, design productivity for application specific processors is drastically 

improved. 
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Chapter 1 

Introduction 

1.1 Background 

With advancements in semiconductor technology, chip complexityう that is, the numｭ

ber of transistors on a silicon chip, is doubling every three years. In the ne訂 future ，

it is estimated that over 10 million transistor circuits will be realized on a silicon 

chip of only 1 cm2. From the technology innovation, System-on-a-Chip (SoC) with 

compound functionalities integrated on a single chip tends to be widely used in 

electronic equipment [1]. Figure 1.1 shows a typical orga凶zation of SoC. SoC usuｭ

ally consists of a combination of the following components: processors such as CPU 

core, digital signal processor (DSP) and specific processors; A81Cs such as signal 

processing hardware, control hardware and other specific hardware; memories like 

flash and DRAM; and analog circuits. L81 designs are moved 仕om the individual 

design of microprocessors and application-specific integrated circuits (A8ICs) to a 

whole system design on a chip. 

In SoC design, design productivity is a key issue. The roadmap of SEMATｭ

ECH [2] indicates the growing productivity gap between available transistors and 

those that can be designed in microprocessors. The growth of transistor density is 

58% per year. On the other hand, the growth of design productivity is only 21 % per 

year. 1n addition, the rapidly changing technological environment shrinks product 
life cycles and shortens time-tかm紅ket .

l 
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Figure 1.1: Typical Organization of System-On-a-Chip. 

1.2 ASIP Development 

Focusing on the design of application specific instruction set processors (ASIPs) 

that are integrated to the SoC, HardwarejSoftware 時design [3] environment with 

architectural design space exploration is considered to be key to design productivity 

improvement. For the ASIP design, it is important to explore suitable processor 

architecture for the tぽget application. The HW  jSW cかdesign environment enｭ

ables the designer to design and evaluate the processor while considering target 

application and suggests the direction for design improvement. Using the HW  jSW 

co-design environment, the designer is able to design and evaluate various architecｭ

ture candidates at instruction set architecture level easily. As a consequence, the 

designer is able to choose the most suitable architecture for the target application 

in a short design time. 

Figure 1.2 shows one HW  jSW cかdesign 台amework for effective design space 

exploration. The designer speci五es processor architecture with entry system at inｭ

struction set architecture level. Processor components such as registers う memory

access units, functional units and so on are instantiated from a module library. The 

module library provides instances at various abstraction levels. A processor synｭ

thesizer generates a simulation model and a synthesizable model of the designed 
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Figure 1.2: HW  jSW Cかdesign Framewor k 

processor. The processor synthesizer receives instances used in the processor 仕om

the database manager of the library. Software development tools such as a compiler 

and an assembler are also generated 仕om the same processor description as processor 

synthesis. The synthesized instruction set simulation model and SW development 

tools enable co-verification and performance evaluation of the designed processor. 

A generated RT level processor model is used to estimate area, clock 台equencyand

power consumption. Estimation and veri五cation results suggest the direction for 

improvement of the processor design. Using a HW  jSW cかdesign 仕amework like 

this , exploration of large design space becomes possible because the turn-around 

time of the ASIP is drastically reduced. 

The following techniques 紅e required to implement a HW  jSW co-design 仕ame­

work: instruction set level processor specification, processor synthesis and software 

development tool synthesis method 企om the same processor description, and fast 

estimation of designed processor. The processor synthesis method of the HW  jSW 

co-design system often limits the design space of the system. In the recent research, 

several HW  jSW cかdesign methods and processor synthesis methods are proposed, 

but their design space is veηT small in regard to pipeline orga凶zation .
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1.3 Objective 

The aim of this research is an investigation of a processor synthesis method for 

exploration of a large design space for ASIPs. Because processor synthesis methods 

usually limit the design space of the HW  jSW co--design environment, processor 

synthesis methods should support various other architecture candidates of the ASIPs 

for architectural design exploration. 

To explore a large design space, two requirements must be satisfied: a short turnｭ

around time for evaluation of various candidates, and a large design space. Even if 

the design space is large enough, the design space cannot be fully explored in the 

restricted design time if the turn-around time for the design is too long. There is 

a tradeoff between the easiness of the processor specification and the design space. 

An appropriate abstraction level for processor specification should be considered. 

1.4 Approach 

Considering the tradeoff between the easiness of the processor speci五cation and the 

design space of the specification language, micrかoperation level processor specificaｭ

tion for processor synthesis and a processor synthesis method for micro--operation 

level speci五cation are proposed in this thesis. 

Micro--operation level processor specification is based on a clock base behavｭ

ioral description of instructions. With the abstraction level processor specification 

higher than the RT level, the design time and design modi五cation time of the ASIPs 

紅e drastically reduced. Despite the easiness of the specification, the design space of 

micro-operation level processor specification enables the designer to specify practical 

straightforward pipelined processors. The designer can specify the pipeline organiｭ

zation, hardware module configuration and external interrupts. From these points, 

a Illlcrかoperation level is appropriate for a straightforward pipelined processor in 

terms of the easiness of the design and design space. 

At a micrかoperation level processor design, datapath structure and controller 

紅e synthesized 仕om behavioral description of instructions and hardware module 

con五guration. The designer is free 丘om tedious, eロor-pronedatapath and controller 

4 

design. Therefore the designer can design various ASIPs in a short design time. 

The target processor architecture is straightforward pipelined architecture that 

includes basic functionality of embedded microprocessors [4. 5: 6: 7 、 8 ぅ 9] such as 

multi-cycle operation, delayed branch and external interrupts. Micro--operation level 

processor speci五cation includes: the number of pipeline stages and the number of 

delayed branch slots; utilization of parameterized hardware modules; user-defined 

instruction format , processor interface ports and external interrupt conditions; and 

clock-based behavioral representation of instructions and interrupts. Operations of 

each pipeline stage are speci白ed by the designer wi th micrかoperation description of 

instructions. The pipeline depth, role of each pipeline stage and hardware modules 

have an impact on clock frequency and area. The number of delayed branch slots 

affects code size and execution cycles. Therefore, fiexibility in the processor archiｭ

tecture , such as the number of pipeline stages and delayed branch slot and the role 

of pipeline stagesう and in the con五guration of hardware modules, allows exploration 

of a large design space. 

For the processor synthesis method from a micro-operation level processor speciｭ

fication , datapath and controller synthesis is required for user-de五ned pipeline orgaｭ

nization in terms of the number of pipeline stages, the number of delayed branch slot 

and role of each pipeline stage. The controller synthesis includes pipeline control 

logic synthesis for pipeline hazards う interrupt controller synthesis, and instruction 

decoder synthesis. Structural hazards are caused by multi-cycle operations and reｭ

source confiicts 仕om multiple stages. Hence generation of the hazard detection logic 

and pipeline interlock logic is required. To deal with the specified number of delayed 

branch slots, generation of branch control and pipeline fiush control logic are also 
required. 

In this thesis, to deal with user-defined pipeline organization, a fiexible pipelined 

processor model is proposed. The model has fiexibility regarding the number of 

pipeline stages and pipeline controllogic. The model consists of datapath and conｭ

troller of each pipeline stage, instruction decoder and external interrupt controller. 
The pipeline control rnechanism using the model for pipeline interlock and pipeline 

fiush is discussed. The processor model and pipeline control rnechanism supports 
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the processor synthesis from the micro-operation level processor specification. 

Finally, the processor synthesis method based on the processor model is proposed. 

Processor synthesis from the micro-operation level processor specification includes 

datapath structure synthesis and controller synthesis. Synthesis of datapath and 

controller allows the designer to concentraもe on instruction set design and evaluate 

various architecture candidates in a short time. In datapath synthesis, data fiow 

graph generation 仕om micro-operation description , signal confiicts resolution and 

insertion of pipeline registers are performed. In controller synthesis, instruction 

decoder, pipeline controllogic such as pipeline stall and pipeline fiush , and external 

interrupt control are syn七hesized .

1.5 Contribution of the Research 

The e旺ectiveness of architectural design space exploration using the proposed proｭ

cessor design method and synthesis method is known from the experimental results. 

Design and design modification time is reduced compared with the RT level prか

cessor design. Processor design space was successfully explored at an architecture 

level in a short design time. Processor synthesis time was about two m匤utes for the 

processor, which has 52 instructions. 

In the design quality of synthesized processors and manually design processors, 

the clock 丘equencies are almost the same. The area of synthesized processors is 

about 20% larger than those of manually designed processors. Though the area is 

inferior to manual design, the advantage of effective design space exploration has an 

impact on the total design quality. 

Consequently, the effectiveness of the micrかoperation level processor specificaｭ

tion and processor synthesis for architectural design space exploration is con五rmed.

By the architectural exploration of a large design space, design productivity for 

application specific processors is improved drastically. 

1.6 Organization of the Thesis 

This thesis is organized as follows. 

6 

In Chapter 2, ex﨎ting HW  / SV.,r cかdesign environments, customizable processor 

cores and processor sy凶hesis methods are reviewed. Problems of existing methods 

are discussed. 

Chapter 3 describes micrかoperation level processor specification and processor 

design environment PEAS-III. To determine parameters and user-de五nable parts 

of target processors, the characteristics of processor architecture are classi五ed and 

evaluated in view of their impacts on performance and area on the processor. 

In Chapter 4 ヲ thepipel匤ed processor model for processor synthesis is illustrated. 

The model consists of datapath, an instruction decoder, a pipeline controller and 

an external 匤terrupt controller. The conditions of pipeline interlock and pipel匤e 

fiush are considered. The pipeline controller mechanism using these conditions 﨎 

expla匤ed. 

Chapter 5 is devoted to the processor synthesis method. The datapath and 

controller synthesis methods are described. The datapath synthesis includes data 

fiow graph generationぅ signal confiicts resolution, and pipeline register insertion. 
The controller synthesis includes instruction decoder synthesis, pipeline controllogic 

synthesis and interrupt controller synthesis. 

In Chapter 6, the effectiveness of the method is evaluated through several exｭ

periments and architectural design space exploration is demonstrated. Examples 

in experiments are a MIPS R3000 compatible processor, DLX, a simple RISC conｭ

troller, PEAS-I core, and a customized MIPS R3000 processor for DSP application. 

The amount of processor design time was drastically reduced compared with that 

of conventional RT level manual design in HDL. The processor design space was 

successfully explored at an architecture level 匤 a short des刕n time. 

Chapter 7 presents the discussion of this thesis. The design space, design producｭ

tivity and design quality of the proposed processor synthesis method are evaluated. 

The direction of further expansion of des刕n space, reduct卲n of turn-around time 

and improvement of the design quality are discussed. 

The last chapter discusses the research results and concludes with future work. 
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Chapter 2 

Related Work 

In this chapter, related work for application specific instruction set processors (ASIPs) 

design is reviewed. 

2.1 HW  jSW co-design in early years 

HW  jSW co-design systems in early years 訂e closely connected to the base prか

cessor of the system. The system adopts parameterized processor cores. Howeverヲ

datapath structure and pipeline organization are almost restricted. PEAS-I [10] ヲ

Sat叫 [11] and ARC [12] are clωsified to this approach. In these systems, the 

glven con五gurable arcrutecture is tuned to specific application by chang匤g some 

arcrutectural parameters such as bit w冝th of hardware functional blocks, register 

file síze, memory size, etc. The super set of instructions that can be executed on 

adopted processor arcrutecture for the system is restricted. The system does not 

allow the user-defined extension instructions, so that the system cannot always fully 

satisfy the demand of diverse applications. User-defined instructions for extension 

are required to gain high performance. 

2.2 Recent ASIP Development System 

In the recent research, several ASIP development systemsぅ whichpermit user-defined 

application specific instructions to be equipped with the target processor, have been 

proposed. These systems use their original processor description language to deｭ

scribe the target processor's instruction set and the hardware structure. From the 
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processor description, a code generator, an instruction set simulator and HDL deｭ

scription of the targe七 processor are generated. 

ISPS [13] is a common processor description for code generation, simulation and 

processor synthesis in 1980's. While it incorporates a rich set of control mechanisms 

to describe parallelism and synchronization of processes ヲ the synchronization mechｭ

anisms are inadequate to model pipeline operations and hazards for modern pipeline 

processors. 

The other processor description based ASIP design systems for pipelined procesｭ

sors are classified into three types. 

1. Adding several dedicated instructions to already designed processors. This 

approach includes FLEXWARE [14], Xtensa [15]， τTimaran [16], CASTLE [17] 

and MetaCore [18]. 

2. Software development tool generation and performance evaluation system for 

its original processor speci五cationlanguage. This approach includes ISDL [19] 

based system, Expression [20] b脱d system and LISA [21] based system. 

3. RT level processor HDL description synthesis system for its original processor 

specification language. This approach includes MIMOLA [22] based system, 

nML [23] based system, AIDL [24] based system, and [25]. 

2.2.1 Prepared Processor based Approach 

Processor descriptions in the first approach describe instruction set and portion of 

the datapath structure. In the approach, their pipeline organizations are fixed , so 

that modification of pipeline control does not allowed. 

In the FLEXWARE [14], user-defined instructions can be described by the combiｭ

nation of generic instructions. The generic instructions are supported by instruction 

set simulator model of the FLEXWARE in VHDL. The designer can specify exeｭ

cution cycles for each instruction, but cannot specify pipeline organization. 羽1hile

FLEXWARE supports the retargetable code generator CodeSyn and the instruction 

set simulator Insulin, i七 doesn ' t suppo口 processor synthesis. 

10 
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Xtensa [15] uses a customizable processor core. Xtensa permits some user-defined 

instructions using 百nsilica Instruction Extension Language (TIE). While Xtensa 

supports both processor synthesis and software development tool generation , userｭ

defined instructions must be executed in restricted cycles. The designer can only 

describe behavior of the instructions and the structure of “execut ion" stage, but 

he/she cannot change the number of pipeline stages and other pipeline stages. 

τ'rimaran uses processor description language MDes [26], which describes both 

behavior/structure of the target processor. Trimaran allows only a restricted retarｭ

getability of the simulator to the HPL-PD [27] processor family. 

CASTLE [17] specifies target processor's datapath in block diagram and generｭ

ates VHDL description of a processor. The target arcrutecture of CASTLE is VLIW. 

The feature of CASTLE includes: instantiation of VHDL descriptions for functional 

units 仕om a module library, automatic input signal confl.ict resolution by selector 

insertion, and generation of VLIW control word for speci白ed datapath. However, 

CASTLE assumes a basic VLIW architecture and cannot change pipeline stages. 

MetaCore [18] is an application specific DSP development system. MetaCore 

prep紅白 basic and extended instruction set , and additional user-defined instructions 

are permitted. Net-list level description of the datapath structure and behavioral 

description of instructions 紅e described as a specification of a target processor. 

From these descriptions, software development tools and an HDL description of the 

target processor are synthesized. Howeverぅ additional execution units are specified 

only for the “execution" stage. Additional execution units for other stages and 

changing the number of pipeline stages are not permitted. 

2.2.2 Software Development Tool Generation Systems 

Processor descriptions in the second approach describe an instruction set and strucｭ

ture of datapath. The designer can define pipeline structure of the target processor 

� terms of the nurnber of pipeline stages and operations in each pipeline stage. 

ISDL [19] [28] is one of such approach that describes an instruction set and 

datapath structure. In ISDL う constraintsof pipeline execution are explicitly specified 

through illegal operation groupings. This is tedious for complex arcrutectures like 
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DSPs that permit operation parallelism. 

EXPRESSION [20] specifies an instruction set and datapath structure. A Pipeline 

description provides a mechanism to specify the order of pipeline stages. Accurate 

reservation tables can be generated 台omthe description. While EXPRESSION supｭ

ports cycle-accurate instruction set simulation by SIMPLESS [29], processor synｭ

thesis has not been su pported. 

LISA [21] [30] describes the datapath structure and operation-level description of 

the pipeline. LISA describes activation relationship among pipeline stages, pipeline 

stalls and pipeline fiushes. However, LISA is used for retargetable simulators [31]. 

Processor synthesis has not been supported, either. Furthermoreう description of 

pipeline control is tedious 七o design and to modify branch instructions and multiｭ

cycle operations. 

2.2.3 Processor Synthesis Systems 

In the last approach, both behavior and datapath structure of the target processor 

are described. Synthesizable processor HDL descriptions are generated. 

MIMOLA [22] describes behavior and structure of the target processor and genｭ

erates RT level processor description. However, pipeline control is not supported 

since MIMOLA is micro-code based approach. 

nML [23] describes behavior of instructions and datapath structure. From nML 

description , an instruction set simulator is generated [32]. nML is used by the retarｭ

getable code generation environment CHESS [33] to describe DSPs and ASIPs. Prか

cessor synthesis tool "Go" is also developed for nML processor description. However, 

nML does not directly support complex pipeline control such as pipeline interlock. 

AIDL [24] specifies operations of each pipeline stage and timing relations and 

causejeffect relations among pipeline stages. Using AIDL, various kinds of procesｭ

sors can be represented including processors with out-of-order completion. However, 

the modi五cation of the design is di伍cult for complicated architecture because the 

designer have to consider various kinds of dependency in the inter-instruction beｭ

havior. 

Hamabe, et al. [25] proposed a description of clock based instruction behavior 
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and pipeline stage information includes the correspondence of hardware units to the 

stage that contains their operations. However, designers must describe instruction 

behaviors considering with pipeline registers. Furthermore 、 pipeline control is not 

directly described. 

2.3 Problems of Existing Processor Descriptions 

Existing processor development systems have some problems. 

1. Existing processor development systems need both structural and behavior 

description of the target processor in order to generate the processor. Describｭ

ing a datapath structure wastes design time. Furthermore , for design space 

exploration it is tedious to describe datapath structure in consideration of 

consistency between behaviorjstructural descriptions 

2. Most systems do not support specification of pipeline organization. The 

pipeline model of such languages is restricted. The designer cannot change 

the number of pipeline stages and role of each stage. Several systems supｭ

port pipeline control synthesis, but explicit de五nition of the pipeline control 

is needed. Pipeline control definition is error-prone task and design of it takes 

long design time. 

For the more effective architectural design space exploration, synthesis of datｭ

apath 仕om behavioral description of instructions and pipeline control logic synｭ

thesis for user-defined pipeline organization are required. The ability of dealing 

with the user-defined pipeline organization is essential to evaluate various pipelined 

processor architectures. Datapath synthesis and pipeline controllogic synthesis for 

user-defined pipeline organization and instructions can reduce the design time and 

design modification time drastically. Consequently, large design space for ASIPs can 

be explored in a short design time. 
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Chapter 3 

PEAS-III: Processor Design 

Environrnent 

This chapter describes micrかoperation level processor specification and application 

specific instruction set processor (ASIP) design environment PEAS-III based on 

micro-operation level processor specification. First of all, characteristics of processor 

architecture 紅e classified. Then, their impacts on performance and cost on the 

processor are evaluated for decision of fiexibility on micrかoperation level processor 

specification. 

3.1 Characteristics of Modern Processor Archiｭ

tecture 

Architectural characteristics of modern processors are classified into the following 

po匤ts: 

• instruction set architecture: Instruction set architecture is an interface beｭ

tween software and hardware. Instruction set is in且uenced by many other 

architectural features described below. 

• configuration of functional units: Performance of the functional unit affects 

execution time of application program. Hardware cost of the function unit 

affects total chip area. The functionality of the units and connectivity among 

them, in other words “datapath structure," restricts instruction set. The numｭ

ber of functional units determines how many operations are executed at the 
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same time. 

• storage units' organization: Storage units' organization includes location of 

operands, the number of operands, size of register-file and memory, memory 

hierarchy and so on. 

The operands can be located in accumulators, special registers , general-purpose 

registers and memories. When operands are located in the accumulators or 

special registers , location of them are implicitly appointed by an instruction. 

Using implicit operandsう the designer can reduce the instruction word length. 

However, load and store overhead from memory or register to accumulator or 

special registers makes execution time long. On the other hand, locations of 

operands are explicitly declared in an instruction when operands are located 

in a general-purpose register or in a memory. 

Furthermore, the processor architecture is classified to register-register arｭ

chitectur民 register-memory architecture and memory-memory architecture 

whether operands ぽe located in a general-purpose register or memory. Adｭ

dressing modes for operands affect various 五elds such as instruction bit width, 

execution cycles, the number of address generation units and memory access 

units, pipeline orga凶zation and structural hazards. 

In general, register-register architecture and harvard architecture are preferred 

for the design of general purpose RISC processor. Complex memory architecｭ

ture and memory-accumulator architecture are often preferred for data inｭ

tensive digital signal processor design. For ASIP design, decision of suitable 

memory organization for applications is required. 

• pipeline organization and pipeline hazard resolution policy: Clock f民quency

and pi peline hazard occurrence 訂einfluenced by pipeline organization in terms 

of the number of pipeline stages and role of each pipeline stage. The deep 

pipeline makes clock 企equency high, but hardware cost of it also increases. 

Scheduled operations of each pipeline stage decide clock frequency of the prか

cessor. SpeciちTing the operations of each pipeline stage also decides clock 

frequency, area, and condition of pipeline hazard occurrence and penalties of 
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them. 

The penalty of pipeline hazards increases execution time of application prか

gram. Several techniques to decrease penalty of pipeline hazards are proposed. 

Data forwarding , re-order buffer reduces data hazards. Delayed branch, branch 

prediction and non-overhead loop reduce the penalty of control hazards. Addiｭ

tional functional units for the division of the operations of conflicted resource 

resolve structural hazards. Selection of those techniques makes trade-off beｭ

tween performance and hardware cost. 

• instruction issue and completion policy: The policies of instruction issue and 

completion are classified into in-order and out-of-order. Complex issue and 

completion mechanism make processor performance high but hardware cost 

becomes high, too. 

• exception and interrupts: Exception and interrupt handling manner has some 

variations especially for architectures with out-of-order instruction completion. 

One of the exception mechanisms is to use history file or future file to keep 

original register values. Another approach is to store status of each pipeline 

stage in detail and let the interrupt handling routine to recover the pipeline 

status. The other is a technique that stops the instruction issue while it is 

uncertain that all the execution instructions will complete without causing an 

exception. 

These characteristics are not orthogonal and influenced each other. The designer 

has to decide processor architecture in considering with these architecture characterｭ

istics and feature of target applications. To overcome the di伍culty of architecture 

exploration, pipeline stage level processor design system is indispensable. PEAS-III 

is proposed as one of pipeline stage level processor design system. 

For the architectural design space exploration in consideration of target appliｭ

cation, micro-operation level processor specification and design system PEAS-III is 

proposed [34 ぅ 35]. PEAS-III enables the designer to do architectural design space 

exploration in a short design time. The designer can try various architecture candiｭ

dates including following architecture variations: configuration of hardware modules, 

17 



specification of application speci五cinstructions which include multi-cycle operations, 

user-defined external interrupts, the number of branch delay slots , and the number 

of pipeline stages. 

Figure 3.1 shows the organization of PEAS-III. The designer entries processor 

specification using GUI,“Architecture Design Entry System ," and processor syntheｭ

sis system generates micrかoperation level simulation model and RT level processor 

description for logic synthesis in VHDL [36]. The designer selects resources 台om

fiexible hardware model database (FHM-DB) [37] and the processor synthesis sysｭ

tem receives HDL descriptions of selected resources 企om FHM-DBMS. Estimation 

is also performed at each design step, architecture design phase and micro-operation 

specification phase. Estimation system also accesses to FHM-DBMS to get estimaｭ

tion results of selected resources. This thesis describes architecture level processor 

specification and processor synthesis. 

Figure 3.1: PEAS-III System. 

3.2 Design Methodology 

Fi思rre 3.2 shows a design fiow of PEAS-III. With PEAS-III, processor is designed 

design step by step. Firstly, design goal and processor architecture type are set. 

Secondly, outline of the processor is specified. Specification in the second step 

includes declarations of resources , which are used in the processor, definition of inｭ

struction format and conditions of external interrupts, and definition of interface 
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Figure 3.2: PEAS-III Design Flow. 
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ports. In the resource declaration, hardware modules are selected with appropriate 

parameters from parameterized hardware library FHM-DB. The designer can specｭ

ify application speci五c interface between the processor core and other modules on 

SoC by specifying the external interrupt condition and specific processor interface 

ports. Then, area, clock 台equency and power consumption of designed processor 

are estimated at the first cut estimation . 明司len the estimation results do not satisfy 

the design goal, the designer changes archltecture parameters, resources, instruction 

formats and so on to satisfy design constraint. 

3.2.1 Flexible Hardware Model 

After the estimation results satisfy the design goal, clock based micro-operation 

description of instructions and interrupts is defined. Simula七ion model and syn七he­

sizable model of the processor are generated from the processor description. The 

functionality of the designed processor can be validated using the generated simuｭ

lation model. The simulation model consists of behavior level instances in VHDL. 

The simulation model can also be used for evaluation of execution cycles of appliｭ

cation programs, and for cycle based cφveri五cation. The area, clock frequency and 

power consumption of the designed processor are evaluated from synthesized datｭ

apath and controller. When estimation results do not satisちT the design goalう the

designer improves the processor design by re-scheduling operations of instructions 

to the pipeline stages or changing the number of pipeline stages. Re-scheduling may 

improve clock 台equency and the number of pipeline stages improve area and clock 

frequency. 

For architectural design space exploration, effective design reuse of hardware modｭ

ules and frequent cut and try of them are required. For that purpose, fiexible 

hardware model [38] is utilized. FHM is parameterized with various characteristics 

such as bi七 width ， algorithm of the operation, etc. , and various design instances 

can be generated according to the given parameter values. Since instances can be 

generated with various combinations of parameter values , the designer is able to 

evaluate many kinds of resources only by changing parameter values of FHM. 

Several instances of different abstraction levels can be generated from an FHM. 

The processor synthesis system uses behavioral level instances to synthesis micrcト

operation level simulation model and gate level instances to generate RT level proｭ

cessor HDL description for logic synthesis. FHM provides estimation results of 

ms七ances for various combinations of parame七er values. The estimation results of 

FHMs are also used for estima七ion of 七he designed processor. 
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Description and modificaもiontime of micro-opera七ionlevel processor specification 

is shorter than other existing processor description for synthesis because datapath 

and pipeline control logic are automatically generated. To generate datapath of 

designed processor,“Processor Synthesis System" inserts selectors for signal confiicts 

and pipeline registers for pipeline execution. The pipeline hazard detection and 

pipeline control logic for pipeline interlock and pipeline fiush are also synthesized. 

The designer can concentrate on instruction set design. 
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Figure 3.3 shows an FHM browser. FHMs in FHM-DB are displayed in the 

left box. FHM parameters are shown in the upper-central box and the designer 

can select candidates of parameter values from the pull down menu on the right. 

Functionality of the selected FHM is shown in the central box. Estimation results 

of the FHM with selected parameters are shown at the bottom of the window. An 

FHM "alu" has a two parameters "biLwidth" and "algorithm.η “32" and “carry 

look ahead (cla)ηare selected for the parameter value of "alu" respectively. 

3.3 Micro-operation Level Processor Specification 

The micrかoperationlevel processor description consists of six major parts as follows: 

1. Design Goal and Architecture Parameter Setting 

2. Resource Declarations 

3. Instruction Format Def�ition 

4. Interrupt Condition Definitions 

5. Interface Definitions 

6. Micro-operation Descriptions of instructions and interrupts 

In this section, details of each part 紅e described. 

3.3.1 Design Goal and Architecture Parameter Setting 

Figure 3.4 shows a portion of design goal and architecture parameter setting window. 

In this step, the designer speci五es design goal of area, clock 仕equency， execution 

cycle count and power consumption. Then, architecture p訂ameters for pipelined 

processors are speci五ed.

The number of pipeline stages and the number of delayed branch slots 泣e supｭ

ported, currently. Pipeline interlock logic for multi-cycle operation is synthesized. 

Pipeline interlock logic for data hazard, register bypass and memory bypass 紅e not 

synthesized. These parameters are prepared for future extension of PEAS-III. Figｭ

ure 3.5 shows a portion of processor description, which is output 仕om architecture 
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entry system (GU1). 1n the example the number of pipeline stages is 日veand delayed 

branch architecture is selected. The number of delayed branch slots is speci五ed to 

'1'. 1t indicates that synthesized execute one succeeding instruction to the branch 

instruction whether branch is taken or not. 

FI{e 邸'i1 J)J蝉鳩

αw凶e

鎗苦'Ip

Figure 3.5: Example of Architecture Parameter Settings. 
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Figure 3.6 shows a resource declaration window. Flexible hardware models are seｭ

lected fro皿 FHM-DB ， and instance names and parameter values for them are speciｭ

fied. Abstraction levels of resources are specified for micrかoperation level simulation 

model and for RT level synthesizable model, respectively. To synthesize simulation 

model，“Behaviorη is more preferable than "RT" and “Gate" for simulation. On the 

other hand,“Gate" level is frequently used for synthesizable model generation. 

Figure 3.7 shows a portion of a resource declaration description. The processor 

synthesis system instantiates HDL descriptions of declared resources from resource 

declarations. 

1n an example shown in Fig. 3.7, instruction register “1R" is declared. “1R" 

is a positive edge trigger type register and its bit width is "32." “Behavior" level 

instance is used for micrかoperation level simulation model generation and “Gate" 

level instance is used for logic synthesizable model generation. 

t年減置t事 、 IBv紛繍øer

Figure 3.6: Resource Declaration Window. 

Resource{ 
"IR"{ 

class{η regi悦r"} ，

classpath {"" } , 
parameter{ 
abstraction_jevel { 
for _simulation {" Behavior" } , 
for _synthesis{" Gateづ} ，

biLwidth{ワ2" } う
edge_trigger{" positive"} } } 

3.3.3 Instruction Format Definitions 

Figure 3.8 shows an instruction format definition window. Bit fields ， 五eld type, field 

name , and binary value of it are de五ned for each instruction type. Field type is 

Figure 3.7: Example of Resource Declarations. 
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selected among “op-code," "operand" and "reserved." "op-code" means operation 

code and “reserved" indicates that the field is reserved for extension in the future. 

Operation code value is specified when the value is constant for all instructions 

belongs to that type, and the value for reserved field is also specified. 

Then, for each instruction, instruction type is selected among defined insもruction

types and operation code value is decided. 

Instruction_type{ 
"Rltype"{ 

"OP-code" {"binary" {司00000"} ，width{" 31" ," 26"}} , 
" Operand" {" name" {" rsづ ，width{"25" ,"21"}} , 
" Operand" {" name" {川" } ，width{" 20ぺ" 16" } }, 
"Operand" {" name'う { " rd" },width{" 15" ," 11づ}，
" Reserved" {" binary" {" 00∞O∞O∞0"づ} ，川川Wlほdtぬh{" l叩0
"う OP-code"{"name" {"rfunct" },width{" 5" ， " 0円}}} }

Instruction { 

"ADD" {type{" Rltype円 } ，"0 P -code" {" binary" {" 000000" }, width {" 31" ," 26づ} ，
" Operand'ヲ { "name" { "が}ヲwidth{"25" ,"21"}} , 
" Operand" {" name" {川円 } ，width{"20" ," 16"}} , 
"Operand" {"name" {"rd" },width{" 15" ," 11 " }} ヲ
円 Reserved"{"binary" {" OOOOO"} ,width {" 10" ," 6"} } , 
"OP-code" {"binary" {円 100000" } ， width{"5" ， " 0づ}}

Figure 3.9: Example of Instruction Format Definitions. 

In micrかoperation descriptions, bit field of the instruction is referred by the field 

name that is de:fined in instruction format definition phase. Modification of instrucｭ

tion format which includes varying instruction bit width, re-ordering instruction 

fields, changing operation code and so on do not require modification of micrか

operation description of instructions. When bit width, name and role of the field 

are not changed, there is no need to modify micrかoperation description. Instrucｭ

tion code definition is used to generate instruction decoder, which is mentioned in 

Section 4.4.1 and Section 5.2.4. 

In an example shown in Fig. 3.9, an instruction type "Rltype" and an instruction 

“ADD" which belongs to “R1type" are defined. The instruction type “R1type" has 
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six instruction fields. The range of the first field is 仕om “31" to “26." The type of 

the first 白eld is “OP-codeηand its value is constant “000000." The second and the 

third fields indicate register address of source oper叩ds and the forth field indicates 

destination register address. The 五fth field is reserved for future extension. The last 

filed is an operation code for Rltype instructions. The operation code for "ADD" 

is "100000." 

3.3.4 Interrupt Condition Definitions 

Figure 3.10 shows an interrupt condition de五nition window. Interrupt definitions 

include interrupt conditions and the number of execution cycles of the interrupt. In 

the example of interrupt “intO." Processor receives interrupt “intOηwhen external 

input port "INTηreceived '1', and needs one cycle to process the interrupt “intO." 
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Figure 3.10: Interrupt Condition Definition Window. 

3.3.5 Interface Definitions 

Figure 3.11 shows an interface definition window. In an interface definition , an 

entity name, and input and output ports of target processor are defined. Port 

name , direction, type and attribute of processor interface ports are also de五ned. For 

the standard processor, memory interface port, clock port, reset port and external 
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Figure 3.11: Interface Definition Window. 

interrupt ports are usually de五ned. Furthermore special purpose interface port can 

be declared. 

Figure 3.12 shows a portion of interface definition description. In the example, 

clock port "clk" of which type is “std_logic" is de五ned. “stdJogic" is a bit type that 

is generally used in VHDL. 

3.3.6 Micro Operation Descriptions 

Figure 3.13 shows a micro-operation description window. In the micrかoperation

description phase, the designer defines clock based instruction behavior and interｭ

rupt behavior. In the micrかoperation description of interrupts, operations of the 

processor such as setting specific values to special registers and jumping to the inｭ

terrupt handler routine, are described. Micro-operation consists of three kinds of 

statements: (i) Operations which are executed by resources, e.g. arithmetic and logic 

operation, readぅ register write う (ii) Data transfers between resources , and (iii) Conｭ

ditional execution of (i) and (ii). 
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Port_declaration { 

e凶ty_name{" CPU" } 1 
Port{ 

九lk"{ 

directio吋円 iIf}?

signaLtype{" stdJogic"} , 
signaLatt巾ute{ηclock"} }, 
"instAB" { 

directio吋"outη} ，

signal 一tげyp戸州e吋{"、S削t吋札dι一Jog伊i比C一V刊附e舵Cωt加O町r市(仰3但1 dωowntω00町)"
signal一a州t此t巾u凶1比巾te吋{"ins計tru削lctior山悶n∞Oωry_addむress岱S一b凶usぜ?η'}}}}

Figure 3.12: Example of Interface Definitions. 
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Figure 3.13: Micrかoperation Description Window. 
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梅lp

MOT{ 
mnemonic{ 
"BEQ"{ 

c比(l){"IR := IMEM[PC]; 

PC.incO; 
$pc:=PC;つ ?

clk(2){" DECODE(IR); 

$rt:=GPR.read1 (rt); 
$rs:=GPR.readO(rs); 

$imm := EXTO.sign(offset);"} , 
clk(3){可offset := $imm(29 downto 0) 判明\";
$target := ADDO.add($pc, $offset); 
$flag:=ALUO.cmp($rs,$rt) ; 
if($flag(2)='1 ') then PC:=$target; end if;"} , 

clk( 4){""} , 
clk(5){""} } } } 

Figure 3.14: Micrcトoperation Description of instruction BEQ. 

Figure 3.14 shows an extracted description of Figure 3.13. In the example, 

a m.icro-operation description of an instruction “Branch on Equal (BEQ)" is de-

scribed. The instruction “BEQ" jumps to “PC + offset * 4円 when register values 

of "rs" and “rt" 訂e the same. Capitalized identi五ers ， such as “IR" and "ALUO" 

denote resources declared in the resource declaration phase. Symbol “:=" denotes 

assignment. Identifiers which begin with '$' are temporal variables. An identifier 

surrounded by symbols “[" and “]" specifies address to memory or register file. The 

expression “DECODE(IR)" in the second stage denotes that an instruction code is 

decoded in the second stage, where “IR" is an instruction register. The expression 

"$flag := ALUO.cmp($rs, $rt)" in the third stage denotes that values stored in “$rs" 

and "$rt" are compared using resource “AL UO" and the result wiII stored in "$flag." 

The “if' statement in the third stage is an example of conditional execution. 

Definition and modification of micrかoperation description are easy because de-

signer does not need to take care of selectors, pipeline registers and pipeline con-

trollogic. PEAS-III generates HDL description of ASIPs from user-defined micro-

operations of instructions and interrupts by inserting selectors and pipeline registers 
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automatically, and generating control logic for pipeline interlock and pipeline fiush. 

Exception{ 
円 reset"{ 

Condi tion f' rstこう 1 "'}, 
Type{円 External"} , 
Cycles{"l"} , 
MOD{ 

clk(l){"PC.resetO; GPR.resetO; 

EPC.resetO; HI.resetO; 
LO.resetO; IR.resetO ;" }}} , 

"iniO" { 

Co吋ition{"int =γand intn = \可OO\""} , 
Type{官xternal" } , 
Cycles{" 1づ?
MOD{ 

clk(l){"EPC := PC; 

PC:=\勺0000000000000000000000010000000\";" }}}} 

Figure 3.15: Example of Interrupt Definitions. 

Figure 3.15 shows an example of interrupt de五nition description. Defined interｭ

rupt condi七ions and micro-operation description of interrupts are combined in the 

description. In the example, the processor detects the interrupt "intO" when input 

port “intO" receives '1' and value of program counter (PC) is stored in exception 

program counter (EPC) and PC is updated to "Ox800080." 
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Chapter 4 

Processor Model 

In this chapter, processor model for processor synthesis is described. In Section 4.1 , 

limitation of target processor is discussed. In Section 4.2, requirements of the prか

cessor model is described and proposed processor organization are described. In 

Section 4.3, organization of datapath and controller are described. Processor conｭ

trol mechanism which includes pipeline interlock and pipeline fiush is demonstrated. 

4.1 Processor Class 

Feature of the t訂get architecture of processor synthesis includes: 

• single phase straightforward pipelined processor. PEAS-III assumes pipeline 

architecture, but the number of pipeline stages and operations assigned to each 

pipeline stage are fiexible. Each pipeline stage is proceeded synchronously with 

positive edge of a clock. 

• delayed branch with predict-not-taken policy. The designer can speciちT the 

number of delayed branch slot. The processor executes succeeding specified 

number of instructions whether branch is taken or not , and nullifies other 

fetched instructions when branch is taken. 

• multi-cycle operation. PEAS-III is able to deal with multi-cycle units such as 

sequential multiplier, memoηr access units and so on. The processor syntheｭ

sized by PEAS-III stalls succeeding instructions until multi-cycle operation is 

completed. 
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Out-of-order completion • in-order instruction issue and in-order completion. 

and out-of-order instruction issue are not supported. 
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On the User-defined external interrupts are supported. 

other hand, internal exceptions are not supported. 

• external interrupt. 

• flexible addressing modes, storage organization. The designer is able to design 

addressing modes freely in micr<roperation description of instructions. Multi 

port memory and multiple memor冾s can be used. 

• single word instruction. The width of instruct卲n word is user-defined constant. 

Mult�-word instruct卲n is not d叝ectly supported. 

The designer can specify data forwarding in micrかoperation description of in-

structions. Data hazard detection and data forwarding logic are not automat兤ally 

generated from micrかoperation description of instructions. 

Processor organization 4.2 

Since the number of pipeline stages is parameterized and micrかoperations of each 

stage is defined by the designer, fiexible processor model is required. 

Figure 4.1 shows an example of a pipelined processor organization [39]. This prか

cessor consists of five stages, instruction fetch (IF) , instruction decode and operand 
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口
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fetch (ID) , execution (EXE) , memory access (MEM) and register write back (WB) 

In general , operations in a pipeline stage complete in one clock cycle and stage. 

The operation results are referred from the store the result to pipeline registers. 

nest stage at the next clock cycle. 

To deal with flexibility in pipeline depth of target processor, datapath and con・
troller is divided into pipeline stages like Fig. 4.2. Specified number of datapath and 

controller sets for each pipeline stage are arranged and connected together. A set of 

datapath and controller is added or deleted when the number of pipeline stages is 
Figure 4.1: Example of Datapath and Controller of Pipelined Processor. 

changed. 

Fi思rre 4.3 shows a processor model for five stage pipelined processor. The model 
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cons﨎ts of 五vesets of datapath and pipeline stage controller, instruction decoder and 
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Figure 4.3: Processor Model. 
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Figure 4.2: Example of Pipelined Processor Divided into Pipeline Stages. 
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interrupt controller. Instruction decoder is arranged to the instruction decode stage 

indicated by keyword “DECODE" in micrかoperation description. The term "stage 

controller" is used to indicate a controller arranged to each pipeline stage. The stage 

controller sends control signals to resources in the datapath and manages pipeline 

flush and interlock. The stage controllers and the interrupt controller communicate 

each other. The stage controller determines the pipeline stall and the next state 

from the output of controller of next and previous stage. Since the load of pipeline 

controllogic is distributed to each stage controllers, controller synthesis is simplified. 

The rest of this chapter describes datapath model of pipeline stages う instruction

decoder, stage controllers and interrupt controller. Section 4.3 describes datapｭ

ath model and Section 4.4 describes controller model. The organization of stage 

controller is described. Pipeline interlock and pipeline flush using proposed stage 

controller are demonstrated. In Section 4.4 .3, the organization of interrupt controller 

and how to handle interrupts are described. 

4.3 Datapath Model 

The datapath model is illustrated in Fig. 4.4. The datapath model consists of 

resources, selectors, pipeline registers and connections among them. From micrか

operations that are described by the designerう datapath and controller are impleｭ

mented using this model. Resource operations in micrかoperations are executed by 

resources, and assignments 紅e implemented as connections between resources. Seｭ

lectors are used to resolve signal conflicts. Operation results are transferred to the 

next stage via pipeline registers. 

4.4 Controller Model 

Controller consists of three major ports, such as instruction decoder, stage conｭ

tr叫lers ， and inteηupt controller. 
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control signals 合omstage controller 

口口口 Decl鉱山…s
図仰向炉問日記lector

Figure 4.4: Datapath Model. 

4.4.1 Instruction Decoder 

There are two ideas of instruction decode shown in Fig. 4.5. The one is to execute 

instruction decode in the instruction decode stage. The other is to send instruction 

code to pipeline stage step by step and decode the code in each pipeline stage. 

The former method leads to shorter critical path of pipeline stage than the latter 

method because the latter method makes additional delay of instruction decode 

for each pipeline stage. The latter one, however, makes decoding logic simple. In 

this thesis ヲ the former type instruction decoder is adopted to generate high-speed 

processor. 

Instruction decoder in this thesis identifies which instruction is fetched and genｭ

erates two types of control signals in the instruction decode stage: control signals 

for resources and instruction identification signals for stage controllers. The latter is 

used to judge whether executing instruction in the pipeline stage belongs to a certain 

set of instructions or not. Generated signals are transferred to the stage' controllers 
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Datapath 

Datapath 

Figure 4.5: Example of Two Types of Instruction Decoder. 

40 

step by step synchronously with pipeline execution. The behavior of stage controller 

is described in Section 4.4.2 and usage of instruction decode result are explained. 

4.4.2 Pipeline Stage Controller 

The stage controller generates control signals for resources , pipel匤e registers, and 

selectors. The controller assigns control signals to resources to execute described 

micro-operations. The controller also manages pipeline registers to transfer the data 

to next stage as usual, and to keep the operation results in the case of pipeline interｭ

lock. The stage controller also regulates pipeline execution in the sense of pipeline 

interlock and pipeline flush. The controller stalls the pipeline to wait for completion 

of multi-cycle operation and resolution of resource conflicts. The controller flushes 

the pipeline by nulliちring executing instructions when branch is taken. 

Control IDodel of the stage controller is based on the pipeline control model 

published in [40]. In [40], pipeline controller synthesis for pipeline interlock 仕om

usage information of resources is discussed. In this thesis, instead of usage informaｭ

tion of resources, structural hazard detection method is proposed. Furthermore, the 

pipeline controller is extended to pipeline flush and suspension of instruction fetch. 

The controller model is common to all pipeline stages. Decision of next state 

and generation of control signal are distributed to each pipeline stage. Distributed 

control logic makes controller organization and synthesis method simple. 

Suppose n is the number of pipeli田 stages and k(l 三 k 三 n) is the stage number, 

the controller of each stage k is represented by finite state machine 

Mk = (qk, h , Ok, 6k, Pk ， ηop) 

and datapath control signal generator. Each item of Mk is defined as follows: 

states variable: qk ε{ηop， exec} 

input signals: h 全 {brαηch ， lockk , gOk-l , gOk+l , validk- 1, validk+1} 

output signals: Ok 全 {vαlidk ，gOk} 

next-state function: 

ふ(qk ， brαnch ， lockk , gOk-l , gOk+l ， υαlidk- 1 ， validk+1) 
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when (brαnch+ ωηcel( k)) ・ (validk_ 1 ・ gOk-1+ 

(qk = exec) ・ (lockk 十叩lidk+ 1+ gOk+l)) 
The function cαncel (k) holds if and only if the k-th stage has to nulliか current

instruction when branch is taken. Detail of cαηcel (k) is described in the following 

sect卲n. 
otherwise 

output functions: Pk 全 {p叩lidk ，Pgok} The interrupt controller outputs true for goo , as usual. However it output false 

when interrupt is occurred and suspension of instruction fetch is required. When 

goo = f alse and gOl = true , next state qt becomes nop, and operations of the 五ISt

stage will be stopped. If the instruction in the first stage does not stay, execution 

of the first stage will be stopped at next clock. 

Output signal gOk becomes f alse if and only if at least one of the following 

conditions is satisfied. 

P叫dk (qk) 全 (qk 二 exec)

ρgOk (qk , lockk, validk+1, gOk+l) 全 (qk ニ exec) . lockk . (υαlidk+ 1 + gOk+I) 

The status variable qk indicates whether executable instruction exists in the k-th 

stage or not. When qk = exec, an instruction exists in the k-th stage. The value of 

qk becomes ηop when pipeline is stalled and valid ins七ruction is not moved to the 

k-th stage or pipeline flush is executed, etc. qk = ηop means there is "no operation" 

in the k-th stage. The initial of value qk is nop. 

Values of input signals are specified as follows: 

initial status:ηop 

brαηch -
fαlse 

lockk 
fαlse 

gOk 
fαlse 

validk = 
fαlse 

• The k-th stage causes pipeline interlock 

• An instruction in the (k + l)-th stage does not move to the (k + 2)-th stage. 

when branch is taken 

when branch is not taken 

when an instruction in the k-th stage causes pipeline interlock 
otherwise 

when an instruction in the k-th stage is transfered to the next stage 
when an instruction in the k-th stage stays 

when valid instruction exists in the k-th stage 
when no instruction exists in the k-th stage 

When the k-th stage causes pipeline interlock by multi-cycle operations or resource 

confl.icts, gOk becomes f alse and the instructions in the succeeding 1 三 t 三 (k-l)-th

stages are also stalled. 

Control signals to datapath resources are generated 仕om output signals Ok of 

stage controller Mk ぅ results of instruction decoder and output signal of interrupt 

controller. Stage controller outputs control signal for described micrかoperation of 

executing instruction in the k-th stage as usual. The controller outputs the control 

signal to hold the status of resources when the pipeline is stalled (gok = fαlse ). 

Pipeline hazards are classi五ed as follows: 

The values of gOn+l , Vαlidn+ 1 are de五ned as goπ+1 = true , Vαlidn+ 1 = false. An 

input signal goo is an output signal of interrupt controller. 

Next-state function 6k outputs exec if and only if the following conditions are 

satisfied. 

• structural hazard う which is caused by multi-cycle operations and resource conｭ

自icts ，

• and control, hazard which is caused by branch. 

• branch is not taken or the k-th stage does not need to nullify instruction when 

branch is t叫cen.
For the structural hazard, pipeline is interlocked until the multi-cycle operations 

are completed and resource conflicts are resolved. For the control hazard, some 

instructions in the pipeline stages are flushed when branched. 1n the following secｭ

tion, pipeline control mechanism and the controllogic of lockkl brαnch and function 

• An instruction in the (k -l)-th stage will reach or current instruction in the 

k-th stage stays. 
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cαηcel (k) are described. Pipeline interlock sigr叫 lockk is described as follows: 

lockk = lock_mk + lock_Tk 

lock_mk is a pipeline interlock signal for multi-cycle operations and lock一九 lS a 

pipeline interlock signal for resource conflicts. 

Pipeline Interlock caused by 乱1ulti-cycle Operations 

When multi-cycle operation is executed in the k-th stage, instruction transfer from 

stage j (1 三 3 く k) to stage j + 1 is suspended to stall succeeding instructions. 

Time 

T-l 

T 

T+l 

T+2 

T+m 

T+m+l 

2nd stage 3rd stage 4th stage 5出 stage

Instruction D execute m cycle operation 匤 the 3rd stage 
...__、 Instructionis transferred to 出enext stage 
-ø..二 Instructionis not transferred to 出en側 stage

Figure 4.6: Example of Multi-cycle Operation. 

Figure 4.6 shows an example of pipeline interlock caused by multi-cycle operｭ

ation. Suppose instruction D executes m cycle operation at the third stage from 

time T. The instructions in the first , second and third stages are not transferred 

to the next stage while multi-cycle operation is executed. The state of fourth stage 

becomes "ncトoperation" because instruction in the third stage is not transferred. At 

time T + m , multi-cycle operation is completed and then instructions in the first , 

second and third stage are transferred to the next stage at time T + m + 1. 
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In the case of pipeline stall, the j-th stage controller assigns control signals to 

storage resources to disable write back while instruction transfer is suspended. 

CLK 

Star ヒ

Fl.n 

Sig_To_Module 

Sig_From_Modul 

Figure 4.7: Timing Interface Between Controller and Multi-cycle Resource. 

Figure 4.7 shows a timing interface between the controller and mult�-cycle reｭ

sources. The controller makes start signal “Start" active for one cycle and then the 

resource starts operation. After the multi-cycle operation is finished , the resource 

outputs the result and changes the value of the fiag “Fin" active to inform the comｭ

pletion of the operation. When multiple multi-cycle operations are executed in the 

same stage and the same instructionヲ the stage controller stalls the pipeline until all 

multi-cycle operations are finished. The operation results and completion fiag must 

be kept until other multi-cycle operations are finished. Because the resources keep 

operation results and fiag values until next operation starts, additional structure for 

saving the results and fiags 征e not required. The interface information that includes 

start signal input port, fiag output port, and active value of them can be obtained 

仕om FHM-DB. 

Suppose Uk爪叩 = {(exp , inst) I exp ε Exp， ir凶 ε I} is a set of conditional 

expression exp and instruction inst pairs, which represent execution conditions of 

operation op of resource T in the k-th stage. In another words, an operation op of 

resource T in the k-th stage is executed if and only if one of the executing instrucｭ

tions is inst and condition exp holds. The control logic of lock_mk for multi-cycle 

operations is represented as follows: 
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where 

lock_mk V V 
Tモ li_ (exp ，ins t) モUk.r.o'Prn 

OPm. モ OFm 「ー

(instk = inst) . exp . fin叩m

R: a set of resources 
OPm: a set of multi-cycle operations in the k-th stage 
instk: indicates executing instruction name in the k-th stage 

after multi-cycle operation OPm is completed 

during multi-cycle operation OPm is executing 

(4.1 ) 

Equation (4.1) means that lock_mk holds if and only if at least one multi-cycle 

operation is not completed. lock_mk becomes false after all the multi-cycle operaｭ

tions are completed. 

The start signal of the multi-cycle operation is activated at 七he first cycle, and 

then negated 仕om the second cycle to the start of the next multi-cycle operation. 

In the example, control signal for multiplier is activated at time T and then negated 

at time T + 1. Suppose Vactive for the active value of control signal stα付ぅ control

logic of stαrt is as follows: 

st叫 L・= [Vactive when f切 V叩mεOPmV (exp， inst)εUKTOM(tηsh = inst) 仰
1 , "- I 可ctive otherwise 

(4.2) 

flαgt - gOk-l (4.3) 

flαgk is a register, which indicates whether it is the first cycle of multi-cycle operｭ

ation or not. The value flαgk becomes true when new instruction is transferred to 

the k-th stage and becomes ηop when execution instruction stays in the k-th stage. 

Pipeline Interlock caused by Resource Conflict 

When resource conflict is occurred between stage k and stage j (k < j) , the k-th 

stage is stalled until completion of the j-th stage ヲs operation. 

Figure 4.8 shows an example of resource conflict. An example processor sh紅白

a single-memory for data and instructions. The first stage is the instruction fetch 
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Time 1st stage 2nd stage 3rd stage 4th stage 5th stage 

T-1 

T 

T+1 

T+2 

Instruction C accesses to memoηin the 4出 stage.

?、もInstructionis transferred to the n側 stage
可ι可... Instruction is not transfeπed to 出enext stage 

Figure 4.8: Example of Resource Confiict. 

stage and the fourth stage is the memory access stage. Suppose an instruction C is a 

memory access instruction. The first stage is stalled at time T. After the instruction 

C completes memory access operation and moves to the fifth stage, memory access 

in the first stage is executed at time T + 1. 

Suppose Vr,k = {inst I inst ε I} is a set of ir凶ructions ぅ which represents the 

instructions that use the resource r in the k-th stage. To put it in another way, a 

resource r is accessed 仕om instruction inst in the k-th stage. Suppose ηis the numｭ

ber of pipeline stages. The controllogic of lock一九回 forresource con丑ict is represented 

as follows: 

lock_Tk v ( V ( V (instj = ij) . validj ) ・
γモRkく3壬n tjEミ Vr.j

( V (instk = 九) • Vαlidk ) ) 
ik ε Vr ， k 

(4.4) 

Equation (4.4) means that lockk ,r holds if and only if at least one resource r is 

accessed 仕om the k-stage and from at least one stage j where k < j ::;η. 

Control signals for conflicted resources are generated 台om multiple stage conｭ

trollers. Suppose ctrlr is a control signal for resource r and ctrlr,k is a control signal 

generated by stage controller of the k-th stage. The control signal is selected as 

follows: 
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ctrlr = V ctr lゅ sel吠 (4.5)
l くたくη

se lr、k = (( V (instk = 九). validk). V V ((instj= ω .vαlidj ) ) 
ik EVr ,k k くj三n ljEミ VγJ

(4.6) 

Equation (4.6) means that control signal ctrl哨 frorn the k-th stage controller 

is selected when selM=tTue.selT k becomes tT1Le when resouceTis not accessed 

frorn any stage j (k < j 三 η) and is accessed 企om stage k. Figure.4.9 shows an 

block diagrarn of interlock si伊al generation logic represented in Equation (4.4) and 

control signal selection represented in Equation (4.6). 

atapa出 ofstage k datapath of stage j 

loc~ ctrl r 

S凶ge con甘ollerfor stage k stage controller for stage j 

Figure 4.9: Exarnple of Control Signal Selection for Confiicted Resource. 

Pipeline Flush 

Branch control is based on a predict-not-taken policy and delayed branch. In PEASｭ

III system, the number of delayed branch slots d is parameterized. The processor 
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executes succeeding d instructions whether branch is taken or not , and ftushes the 

pipeline by nulliちring other fetched instructions. When d = 0, the architecture of 

the processor is pure predict-not-taken architecture. 明乃len branch is taken at stage 

b, the controller of stage k (1 < k :::; b -d) nullifies transferred instruction and makes 

its state "nかoperation円 at the next clock cycle. 

Time 

T-l 

T 

T+l 

T十2

1st stage 2nd stage 3rd stage 

The number of delayed branch slots d =1 
The branch stage number b =3 

4th stage 

Figure 4.10: Exarnple of Branch. 

5出 stage

In the exarnple shown in Fig. 4.10, the branch stage b is the third stage and 

the number of delayed branch slots d is one. In this example, branch is taken at 

time T and instruction E that is succeeding to the branch instruc七ion D is executed 

continuously and the instruction F that is succeeding to instruction E is canceled 

by stage controller in the second stage at tirne T + 1. 

The function cαncel (k) is as follows: 

f true when (1 < k 三 b -d) 
cαncel(k) _ ~ v;~~:~ ~.~~::~~ 

1 f alse otherwise 
(4.7) 

Suppose Br = {( exp , inst) I exp ε Exp， irぱ ε I} is a set of conditional exｭ

pression exp and instruction inst pairs, which represent branch condition. The pair 

(exp , inst) εBγrepresents that branch is taken when executing instruction in the 

かth stage is inst and conditional expression exp holds. The logic of control signal 

brαηch is represented as follows: 

brαηch = ωlidb .( V (instb=inst).exp) 
(exp，仇st)ε Br
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Limitations of the proposed branch control method are as follows: 

• Branch stage b must be unique. 

• Instructions that change the statuses of resources such as register write and 

so on, in the k-th ( 1 三 k < b -d) stage should not be scheduled within d + 1 

to b slot after branch instruction. If these instructions are scheduled within 

d + 1 to b slot after branch instructionう those instructions change the statuses 

before branch. Restoring mechanisms such as buffers are needed to cancel the 

effects of 七he canceled instruction completely. Since the proposed method does 

not synthesis such a mechanism, instructions that change machine statuses in 

early stages have to be scheduled within d+ 1 to b slot after branch instruction. 

• Instruction that executes a multi-cycle operation in the j-th (b -d 三 j < b) 

stage must be scheduled after d instructions from branch. When the multiｭ

cycle instruction is scheduled within d instructions from branch instruction, 
some stages becomes empty between branch stage and stage which includes 

multi-cycle operations. The empty stages push out instructions in the delayed 

branch slots. Pushed out instructions are fiushed by the con七roller.

4.4.3 Interrupt Controller 

The interrupt controller suspends instruction fetch and executes described interrupt 

operations. The interrupt controller consists of the following finite state machine 

Mintr and control signals generator. 

Mintr - (qintr , I intr , Ointn 6intr ， ρmか)

Each item of Mintr is de:fined as follows: 

status variable: qintr ε{iηtr， exe ， ωit} 

input signals: Ii附全 {ir山T問pt ， restαrt ， complete} 

output signals: 。的tr 全 {goo ，int} 
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next-state function: 

6intr ( qintr , interrupt , restαrt ， complete) 

( iηtr 

ム J exe 
l ωαit 

when (qintr = ωαit) . complete 
when (qintr = iηtr) . restαγt 

when (qintr = cxe) . interr叩t
otherwise ~ qiηtr 

output functions:ρintr 全 {Pvαlido 1 ρint} 

initial status: intr 

Pvalido ( qintr ) 全 (qintr 二 exe)

ρint (qintr) 全 (qir昨= intr) 

States “intr ," "exe" and "wait ," of qiηtr are execution state of interrupts, exe-

cution state of instructions and waiting state for completion of all already fetched 

instructions, respectively. The initial state of qintr is "intr ," because the processor 

has to begin with reset interrupt. 

Input signal interrupt indicates the processor receives an interrupt. Input signal 

complete signal indicates execution of all fetched instructions is competed. restαrt 

signal indicates interrupt handling is completed and instruction fetch can be started. 

羽市en an external interrupt occursう the state of the controller changes the state from 

“exe" to "wait." Then, the controller suspends i:pstruc七ion fetch by forcing the 900 

to false. It makes the state of the 五rst stage “nかoperation. " After all fetched 

instructions are completed, the states of all stages become “nかoperation." Then, 

the state of the controller becomes "intr." An equation below is an control logic of 

complete signal. 

complete = V validn (4.9) 
l<k<n 

The controller begins to execute interrupt operations described in micrかoperation

description of interrupts. When the interrupt is completed, the state of the controller 

becomes “exe" and the output signal 900 becomes true to execute the first stage of 

the pipeline and to restart instruction fetch. 

The following items of interrupt controller that depend on processor specification 

description and have to be synthesized. 
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1. logic of restαrt ， 

Suppose 1 ntr is a set of defined interrupts, Si is a defined execution cycle 

count of interrupt i and Cnt is a counter which counts execution steps from 

the status variable qintr becomes intr. The control logic for signal γestart is 

represented as follows. 

restαrt = V (Si > Cnt) 

2. logic of interrupt , 

n山rrupt= V ( speci五ed condition of interrupt i) 
zε Intr・

3. and datapath control signal generator. 
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( 4.10) 

( 4.11) 

Chapter 5 

Processor Synthesis 

In this chapter the processor synthesis method is explained. The processor synthes�s 

method consists of two major parts: datapath synthesis and controller synthes�s. 

In this chapter datapath synthes�s method is described first , and then controller 

synthesis method �s described. 

5.1 Datapath Synthesis 

In datapath synthesis, data-flow graph is generated 仕om mlcrかoperation descripｭ

tions of instructions and interrupts at first. Then , techniques in high-level synｭ

thesis area [41] are utilized for datapath synthesis. Since the designer performs 

micro-operation scheduling to the pipel匤e stages and resource allocations 匤 micrcト

operation descriptions, 匤terconnect卲n generation and pipeline register insertion are 

performed 匤 datapath synthesis. 

F�gure 5.1 shows the datapath synthesis flow. Data-flow graphs (DFGs) of inｭ

structions and interrupts are generated 台om mlcrかoperatíon descr厓t卲ns (MODs). 

Then, DFGs of instructions are merged together to get required data-flow and conｭ

dition of it. DFGs of interrupts are also merged together. For the resolution of 

signal conflicts, selectors are inserted to the both merged DFGs of ins七ructions and 

interrupts. For the pipel匤e execution, pipeline registers are inserted to the DFGs 

of instructions. DFGs of instructions and interrupts are merged and signal conflicts 

are resolved. Then, the DFG that represents the datapath of designed processor is 

synthesized. Each generation step is described in the following sections in detail. 
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MODof 
mstruc1J.ons 

MODof 
mterruots 

Figure 5.1: Datapath Synthesis Flow. 
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5.1.1 DFG generation 

By analyzing a micrかoperation description of each instruction inst , a data-fl.ow 

graph is generated. The data-fl.ow graph is represented by Ginst = (九ηst ， Ìlinst , Einst) 

where Rnst is a set of resources , ﾌlinst is a set of all resource ports う and Eiηst is a 

set of connections between ports of the resources. (s , d) ε Einst represents data 

transfer 仕om the port s ε Ìlinst to the port d ζ Ìlinst which is specified by a microｭ

operation description. conde ，i1凶 represents a conditional expression for the data 

transfer represented by eε Einst for instruction inst. If the data transfer is written 

in an if-statement of M 0 D う the conditional expression exp of the if-statement is 

extracted to conde.inst. If the data transfer is not written in if-statement , coηde ，inst 

of the transfer e becomes '1'. 

adder.add register. read 

inputO α outputO q 

input1 b reg�ter. wrlte 
outputO result inputO d 
control dη ← 0 control enb • 1 

Figure 5.2: Interface Information for Resources. 

To get input and output ports for resource operations described in the MOD , 

interface information of resources is used. This information consists of corresponｭ

dence of input/01均ut arguments of the resource operation to port names. The 

information also includes required control signals to execute the operation. This inｭ

formation is registered for each model in FHM-DB. Example of registered interfaces 

for an adder and a register 訂e shown in Fig. 5.2. In Fig. 5.2, the first argument of 

operation “add" is connected to adder's input port "a" and the second is to “b." 

The operation result is output from port “result." The controller have to provide 

control signal '0' to port “cin" to execute “a+b." 

An example of the extraction of connections is shown in Fig. 5.3. "RZ,"“RX" 

and "RY" in Fig. 5.3 denote registers and “AD DO" denotes an adder. From the 

interface information shown in Fig. 5.2 ぅ connections eo, el , e2 are extracted. Where 

eo , el and e2 denote the data transfer from port q of resource “RX" to po比 αof
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m兤ro-operatlOn : 
“RZ := ADDO.add(RX ,RY); " 

connectlOns : 

eo = (RX.qぅ ADDO.α)

e] = (RY. q, ADDO.b) 
e2 二 (ADDO.γesult ，RZ.d) 

Figure 5.3: Connection Extraction. 

resource “ADDO ," from port q of resource “RY" to port b of resource “ADDO ," and 

from port result of resource “ADDO" to port d of resource “RZ ," respectively. 

5.1.2 Basic Datapath Synthesis 

After the analysis of micrかoperation ， the data-flow graphs of instructions are merged 

into a da抗ta-白.白ow graph G = (R , V, E). It represents a basic datapath of the processor. 

R 二 U ~nst (5.1 ) 
instεI 

v = U viηst (5.2) 
instεI 

E = U Einst (5.3) 
instεI 

where 1 is a set of all instructions. C onde for each data transfer e ε E is determined 

as follows: 

Conde {(coηde ，inst ， inst) I inst ε I}. (5.4) 

(exp , inst) εC onde denotes that the data transfer eε E is executed when 

executing instruction is inst and condition exp holds. 

5.1.3 Signal Conflicts Resolution 

明乃len the same destination port d is shared by multiple connections in E , input 

signals for port d must be conflict. This section presents a selector insertion proceｭ

dureう which resolves input signal conflicts. In this section, basic selector insertion 

algor咜hm is introduced firs七， and then improvement of the algorithm is described. 
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8uppose that stαgesTC ( ε) is a stage number where the port 5 to which data 

transfer e = (5 , d) outputs data, stαgedst( e) is a stage number where port d inputs 

data, and width(p) is bit width of port p. Instructions can be executed correctlv if 

selectors are inserted at any stage 仕om stαgesバe) to stαgedst (e). For a reduction of 

pipeline registers, selectors 紅e inserted at each stage 仕om stαgesrc ( e) to stαgedst(e ) . 

Furthermore , a destination port d inputs data 仕om different ports in multiple stage, 

some selectors are inserted for each stage stαgedst( e) to resolve signal confiicts in a 

stage, first. Then, a selector is inserted to resolve inter-stage signal conflicts. 

Stage 3 

Stage 4 

Stage 5 

Figure 5.4: Example of 8elector Insertion. 

In a selector insertion example shown in Fig. 5.4, operation results of ALU , 8FT 

andDMEM 紅eselected by selectors "sel" in the third, the fourth and the 五丘h stage, 

respectively. Because selectors are inserted in each stage, data transfers over pipeline 

stage boundary are reduced. Another example shown in Fig. 5.5 is a case of signal 

confiict over stages. The example is non-harvard architecture and memory access 

unit “MEM" is accessed from both the 五rst stage and the fourth stage. Firstly, 

signal conflict in the fourth stage is resolved and then signal confiict between the 

first stage and the fourth stage, that is data transfer 仕om PC and 台om inserted 

selector, is resolved. 

Outlines of selector insertion procedure are shown in Fig. 5.6 and Fig. 5.7. 

Fig. 5.6 shows an intra-stage signal conflict resolution and Fig. 5.7 shows an interｭ

stage signal conflict resolution. For each destination port d, a set Xd of stage 

numbers in which stage the po口 dreceives data. For each member j ε Xd ， selectors 

57 



stagel stage2 

OrignaJ 
DFG 

巴
】E

3

V

A

 

凶

d
u
u

d
m
E
h
 

B
U

、

n
o

H
U

F3

m

u

ps
 

H

C

E

 

I

l

 

Inter-stage 
signaJ 
conflicts 
resolution 

Figure 5.5: Example of Selector Insertion for Inter-stage Signal Confiicts. 
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G = (R, Vう E)
G = (R, V, E) 

1 foreach(dε V) loop 

2 Xd := {stαgedst(ε) I e = (s , d) ε E} 
3 foreach(j ε Xd ) loop 

4 Ed，j:={el ε = (s , d) ε E， stαgesバe) = j} 
5 min := minimum( {stαgesrc(e) I eε Ed，j} ) 
6 for k := min to j loop 

7 Ed,j,k := {e I eξ Ed，j ， stαgesrc ( e) 三 k}
8 if( I Ed,j ,k I > 1) then 
9 zηserLselector (1 Ed,j,k 1 ， ωdth(d) ) 
10 i := 0 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

eaut := (s叫 d)
stαgesrc ( eωt) := k 
stαgedst( e叩t) := j 
foreach(e' = (s' , d) ε Ed，j ，k) loop 
ei := (s' , d叫)
C ondei : = C onde, 
stαgesrc ( ei) := stαgesバピ)
stαge白t(ei) := k 
Condeout := Condeout u Conde , 

ci .= (Psel , v叫)
C ondc := C onde, 
stαge(ci) := k 

C:= C U {Ci} 
E:= EU{町} -{e'} 
i := i + 1 
end loop 

E:= EU {eωt} 
end if 

end loop 

end loop 

end loop 

Figure 5.6: Selector Insertion Procedure. inseァLselector(x ，y) is a function to insert 
x inputs and y bit selector. 
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to resolve signal confiict in the j-th stage are inserted. Ed ,j is a set of data transfers 

that send data to the port d in the j-th stage is calculated. Thenぅ the minimum 

stage number min of data output stage of all data transfer e E Ed,j is searched. 

Selectors are inserted at each stage k from the minimum stage min to the j. 

A set Ed ,j ,k is calculated. For all e ε Ed，j ， k， the output stage of e is less than k is 

calculated. Ed,j ,k is a set of data transfer from the k-th stage or before the k-th 

stage. When the number of data transfers in Ed,j ,k is more than one, a selector is 

instantiated and inserted in the k-th stage. A feature of the selector used here is as 

follows: Input ports count is equal to the number of d叫a transfers Ed ,j ,k and the 

bit width is equal to the bit width of input data for port d. 

With the selector insertion, the data transfer e ε Ed，j ，k should be modi五ed. Each 

data transfer 仕om e' = (s' , d) ι Ed，j ， k is deleted 仕om the connection set E. A new 

data transfer ei = (s' , d叫) is added to E. ei is a data transfer 仕om the port s' to 

the i-th input port dSe1i of the selector. The condition of ei is equal to the condition 

of the 白leted data transfer (s' , d). The data input stage number for ei is equal to 

k and output stage for ei is equal to that of deleted one. The control signal value 

ci = (Psel , v叫) is added to C. Psel is control input port of the selector and v叫 1S

a value of selecting the i-th input. The condition Condc; is equal to the condition 

Condei. Addition of selector control signal is described in Section 5.2.1. 
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G = (R, V, E) 
G = (R, V, E) 

In addition, e仰t that is a data transfer from selector output port Ssel to the por七

d is added to E. The data output stage number is equal to k and input stage is equal 

to j. The condition of data transfer using (sseれ d) is a co吋unction of conditions of 

connections of Ed ,j ,k' 

After intra-stage signal confiicts are resolved う selector insertion for inter-stage 

signal confiicts resolution is executed. The procedure of inter-stage signal confiicts 

resolution is shown in Fig. 5.7. If the number of stages in Xd is more than one, a 

selector is inserted over stages. Feature of the selector used here is as follows: Input 

ports count is equal to the number of stages in Xd and the bit width is equal to 

the bit width of input data for po吋 d. Each data transfer ed,j = (Sd山 d) in the j-th 

stage is deleted 台om the connection set E. A new data transfer ei - (Sd山 d叫)

is added to E. ei represents the data transfer from the port Sd ,j to the i-th input 

1 foreach(dε V) loop 

2 Xd := {stαgedst(e) I e = (s , d) ε E} 
3 if(IXdl > 1) then 
4 inserLselector(IXdl , width(d)) 
5 i := 0 

6 eωt := (Ssel , d) 
7 foreach(jε Xd) loop 

8 ed,j := (Sd山 d) ε Enstαgedst(ed,j) = j 

9 ei := (Sd山 d叫)
10COTIdez:=CondEdJ 
11 stαges同(ι ) := stαgedst( ei) :ニ j
12 Condeωt:=COTLdEouU COTZ4423 
13 Ci := (p叫 U叫)
14 stαge( Ci) := j 
15COTEdc:=C07zdEd3 

16 C:= C U {α} 
17 E:= E u {叶- {ed ,j} 
18 i := i + 1 
19 end loop 

20 E:= EU{eωt} 
21 end if 

22 end loop 

Figure 5.7: Selector Insertion Procedure for Inter-stage Signal Confiicts. 
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port dSe1i of the selector. The condition of ei is equal to the condition of 七he deleted 

data transfer ed,j' The data input stage number and the data output stage number 

for ei are equal to j. Then, the control signal value ci = (Psel) Vseli) is added to C. 

PseZ is control input port of the selector and Vseli is a value of selecting j-th input. 

The condition C ondCi is equal to the condition C ondei. Addition of selector control 

signal is described in 8ection 5.2.1. 

Improved selector insertion algorithm 

Figure 5.8: Original DFG for 8elector 8haring Example. 

The algorithm shown in Fig. 5.6 and Fig. 5.7 inserts wasteful selectors. In an 

example data-fiow graph shown in Fig. 5.8, some input ports receive same sets of 

input signals. Resource "FWUR8" and "FWURT" are the data forwarding units. 

They receives data 丘om “ALU" and “8FT" in the third stage ， 企om “ALU，" "8FT" 

and “DMEM" in the fourth and fifth stage, respectively. Because different input 

ports of "FWUR8,"“FWURT" are used in each pipeline stage, there are no interｭ

stage signal confiicts. The conditions of data transfers 仕om each functional unit 

to forw釘ding units and general-purpose registers (GPR) are the same. Figure 5.9 

illustrates selector insertion results. The selectors in the third stage always output 

the same results and the selectors in the fourth stages, too. Therefore, improvement 

of the selector insertion algorithm is required to reduce selectors. Before line nine 
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Figure 5.9: 8elector Insertion Result without 8haring. 

of Fig. 5.6 う procedure to search a selector Tsel that have common input signals and 

select conditions. If the selector T sel exists, the data transfer sets Ed,j ,k are deleted 

仕om E and data transfer from the output port of selector Tsel to the port d is added. 

8uppose Ersel is a set of edges which represent data transfers to the selector input 

ports, the condition to use the inserted selector T sel is described as follows: 

Ve = (s , d) ε Ed，μ ヨ esel = (s , dsel ) ε Er sel C ondesel = C onde (5.5) 

The condition which is shown in Equation 5.5 becomes true if and only if data 

transfer esel exists for all data transfer e of Edふk. e and esel have the same input 

port and condition of data transfer. 

Figure 5.10 shows a selector insertion result of improved algorithm. Wast efu 1 

selectors are reduced to one for each stage. 

5.1.4 Pipelining 

羽弓len data are transferred over pipeline stage boundary, a pipeline register is reｭ

quired to transfer operation results to the next stage. A data transfer eεE 
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stage5 

Figure 5.10: Selector Insertion Result with Sharing. 
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Pipeline Register 

1 Ereg: = {e I e E E , stαge sバe) > stαgedst( e)}; 
2 if Ereg ヂゆ then
3 e:ニ (s ， d) ε Ereg; 
4 insta出ate width( s) bit register; 
5 ein := (s ぅ drω;
6 stαges陀 (ein) := stαgesrc(e); 
7 stαgedst (ein) := stαge s陀(ε ); 
9 E:= Eu {ein}; 
8 E':= {e' I e' = (s ， d') ε Er句 ， stαgesrc ( e) = stαgesrc(e')}; 
10 foreach e' := (s , d') ε E' loop 
11 eout := (Sreg , d'); 
12 stαge sバe仰t) := stαgesバε)+ 1; 
13 stαgedst(eωt) := stαge出t(e'); 
14 E:= E U {eωt}; 
15 E := E -e'; 
16 end loop; 
17 goto 1; 
18 end if; 

which satisfies stαgesrc ( e) < 5tαgedst( e) means data are transferred over pipeline 

stage boundary, so that pipeline registers are required at each stage boundary from 

stαgesrc (ε) to 5tαgedst( e). In a pipeline register insertion example in Fig. 5.11 , 

pipeline registers are inserted to each pipeline stage boundary. 

Stage 2 

Stage 3 

Stage 4 

Figure 5.11: Example of Pipeline Register Insertion. 
Figure 5.12: Pipelining Procedure. 

Pipelining procedure is illustrated in Fig. 5.12. First of all, a set of data transfer 

Ereg that is a subset of E is calculated. For all data transfer e ε Ereg satis五es

stαgesrc ( e) < stαgedst(e). Wllen the number of data transfers in Ereg is not zero, 

there are some data transfers over pipeline stage boundary. One data transfer e = 

(5ヲ d) of the Ereg is selected arbitrarily, and width( 5 )-bit pipeline register is inserted 

between the stage stαgesrc ( e) and the stage stαgeιs♂許7γバ.

i凶ns印er凶tiぬon孔， connection e向iη 仕om poぽrt s to dιreg 1詰s added tωo E where dιT陀eg and 5斗Tε句9 are 
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an input port and an output port of inserted pipeline register, respectively. Because 

t山he r閃珂吋e句矧gis伽 i回s written in the stage st α gesrc( e) , ばα gedst( ein) is 叩al to st α g らc( e). 

For all data transfer e' ( s ぅ d' ) which transfers data from port s and satisfies 

stαgesrc (ぜ)ニ stαgesrc ( e ) ， connection eout = (Sreg , d') is added to E. Because the 

register is read at one stage after it is writtenヲ stage number stαgesrc ( eout) becomes 

nstαgedst( ein) + 1. An original connec七ion e' = (s , d') is deleted 仕om E. Until 

no data transfer , which transfers data over pipeline stage boundary, exists in E , 

pipeline insertion procedure is repeated from line one. 

5.2 Controller Synthesis 

The controller synthesis is based on the controller model described in Section 4.4. 

The control logics that depend on processor specification are synthesized from proｭ

cessor specifications, mainly from micrかoperation descriptions. 

The controller synthesis procedure consists of six parts: 

1. Control Signal Extraction 仕om micro-operation descriptions , 

2. lnterlock Condition Extraction, 

3. Branch Condition Extraction, 

4. lnstruction Decoder Synthesis, 

5. Stage Controller Synthesis, 

6. and lnterrupt Controller Synthesis. 

Each synthesis procedures are described in the following sections in detail. 

5.2.1 Control Signal Extraction 

Control signals for declared resources to execute described micro-operation are exｭ

tracted in this step. By analyzing a micrかoperation description of each instruction 

inst , a set of control signal assignments Cinst is generated. A control signal assignｭ

ment cε Cinst is a 七uple (p , v) where p denotes a control input port of a resource and 
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v denotes 七he value to the port p. An expression condc.inst represents a condition 

for the control signal assignment of c for instruction inst. The extraction procedure 

of control signal c from a micrかoperation description is explained using example 

shown in Fig. 5.13 as follows. Control signal values for ciηport of “ADDO" and 

enb port of register “RZ" are induced by Fig. 5.2. As a consequence, control signal 
assignments Co and Cl are extracted. 

micro-operation : 
“RZ := ADDO.add(RX ,RY); " 

control signals: 

Co = (ADDO.cin ,O) 
Cl = (RZ.enb , 1) 

Figure 5.13: Control signal extraction. 

After the analysis of micrかoperations ， sets of control signals are merged into C. 

C is obtained as follows: 

C - U Cinst (5.6) 

where 1 is a set of all instructions. C ondc is determined as follows: 

Condc - {(cond仰st ，inst) I inst ε I}. (5.7) 

(exp , iηst) ε Cond(p，v) denotes that the value v is assigned to port p when executing 

instruction is inst and condition exp is satisfied. The stage controller assigns the 

value v to p when all the following conditions are satisfied. (1) The status variable 

qk is '1' , (2) the executing instruction of the stage is ir凶， and (3) the expression 

exp holds. The stage controller assigns control signal value for “no-operation" when 

one of the conditions above does not hold. “nかoperation" value means the resource 

of the port p do not change its status during the port p is receiving the value Vo ・

For exampleヲ the “ncトoperation" value for register write enable port is its negative 

value. 

When the selectors are inserted in datapath synthesis, control signals for selectors 

are also added to C described in Fig. 5.6 and Fig. 5.7. 
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5.2.2 Interlock Condition Extraction 

To synthesis pipeline interlock control signal lockk ぅ conditions of multi-cycle operｭ

ations and resource confiicts are extracted. In this sect ion, condition extraction 

of multi-cycle operations is described 五rst and then that of resource confiicts is 

described. 

Pipeline interlock logic for multi-cycle operation is synthesized from the Equaｭ

tion (4.1) in Section 4.4.1. Execution conditions of resource operations Uk九叩=

{ (exp, inst) I exp ε Exp ， inst ε I} are extracted 仕om the micrかoperation deｭ

scription of instructions where exp is a conditional expression and inst indicates an 

execution instruction. If operation op of resource r occurs in the micrかoperation

description of instruction inst in the k-th stage, execution condition (exp , inst) is 

added to Uk ，r ，叩 ・ Completion fiag fin叩m = (p , v) is defined for each operation op in 

FHM-DB. fin叩m = (p , v) denotes that the output signal of the port p becomes v 

after the operation OPm is finished. From extracted execution conditions Uk ，r押 and

received completion fiag expression fin叩m 仕om FH :NI-DB, interlock controllogic for 

multi-cycle operation multiJockk is synthesized. 

Suppose Fin is a set of completion fiags of all described multi-cycle operation. 

Fin {fin停m} (5.8) 

OJうin is a set of multi-cycle operations, which have the same completion fiag fin. 

。乃in = {oplfin叩m = fin} 

Then EXPk,fin and h，J仇，exp are calculated by the following equations. 

EXPk ,Jin 

h ,Jin,exp 

{exp I (exp , inst) ε Uk爪恥 op ε OJうin}

{inst I (exp ， inst) ε Uk爪叩 ， op ε01ラin}

(5.9) 

(5.10) 

(5.11) 

EXPk ,fin is a set of execution condition of operation op ε OPfin ・ h，t民自p is a set of 

instructions, which execute multi-cycle operation op εo Pfin when exp holds. 

Suppose 01卯ut(p) indicates output value of port p. Using Equation (5.8) , (5.10) 
and (5.11) multiJockk is represented as follows: 
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multi よOCkk

v ( V ((instk ε h，Jin ， exp ) . exp . validk) . (ωtput (p) チ υ))
f仇=(p，v)ε Fin expεEXPk ， fin 

(5.12) 

Signal multiJockk becomes ' 1 う when at least one of the multi-cycle operations is not 

completed. The signal multiJockk becomes ゅう when all the value of completion fiag 

output port p becomes v. 

Pipeline interlock detection logic for resource confiicts is synthesized from the 

Equation (4.4) in Section 4.4.1. A set Vr,k is calculated 仕om the set C , function 

resσurce(p) and stαge(c). A function resource(p) returns resource r of port p and 

stαge(c) returns the stage number in that stage control signal is assigned to port p. 

Suppose Cγ = {c I c = (p , v) ε C, resource(p) - ァト and Cけ = {c I c ε 

Cr, stαge(c) = k}. Usi時 Cr，k ヲ aset Vr,k is calculated. From \九 and Equation (4.4), 

lock signal for resource confiict res_conflictk is synthesized. に，k is also used to 

synthesis control signal selection for resource r. 

Vr.k {iηst I (inst , exp) εCoηdc，. . k ' 今，k ε Cr，k} (5.13) 

res_conflictk V (( V (instj ξL4J)-uαlidj ) ・ (instk ξl勺) • validk) 
7・εR k<j壬η

(5.14) 

5.2.3 Branch Condition Extraction 

By analyzing a micrかoperation description of branch instructions, branch stage 

number b and a condition Br = {( exp , inst) I exp ε Exp， inst ε I} of branch 

are extracted. The conditional expression exp is a condition for the case that the 

program counter PC is written. Suppose EXPBr is a set of conditional expression 

exp for branches and 1 Br,exp is a set of instructions, which execute branch when 

condition exp holds. 

The set EXPBr and IBr ,exp are calculated as follows: 

EXPBr - {exp I (exp , iπst) ε Br} (5.15) 
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1 Br,exp - {inst I (exp, iηst ) ε Br} (5.16) 

From an Equation (4.8) in Section 4.4 .2 , controllogic of brαnch is calculated as 

follows: 

brαnch validb . ( V (instb ξ IBr、白p) . exp) 
expεEXPBァ

5.2.4 Instruction Decoder Synthesis 

(5.17) 

Instruction decoder inputs instruction word and generates two types of signals based 

on the model described in Section 4.4.1. In this section, resource control signal 

generation is described first , and then instruction identi:fication signal is described. 

The control signals that are independent of datapath status signals are selected. 

Then the instruction decoder logics for selected control signals are generated. A set 

of instructions Ic ,exp ,k which assigns the value v to control port p in the k-th stage 

when condition exp holds is calculated as follows: 

Ic,exp,k - {inst I cεC， (exp , inst) ε Condc ， stαge(c)=k} (5.18) 

Ic,l ,k is a set of instructions which assigns control signal represented by c indeｭ

pendently of datapath status. A set of control signal assignment Cp ,k for the port p 

in the k-th stage is selected as follows: 

Cp ,k = {c I (p ， v) ε C， stαge(c)=k} (5.19) 

!p ,k (inst) is an output function of instruction decoder which generates control 

signal for the port p in the k-th stage. The decoded result !p,k(inst) is sent to each 

pipeline stage step by step via pipeline register. Suppose Zj ,Jp ,k(inst) is a pipeline 

register for !p ,k(inst) between the (j-1)-th stage to j-th stage and d is an instruction 

decode stage. The value of Zk ,Jp ,k(inst) is assigned to the port p in the k-th stage 

when k is less than instruction decode stage d. The decoded result !p,k is directly 
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assigned to the port p when k is equal to d. ! p,k and Zよ!p ，k(inst ) are represented as 

follows: 

!p ,k(inst) v v. (iηst ε IC， l ， k )) + υ0 ・八 (inst 要 Ic，l ， k ) (5.20) 
c= (p，v) εCp ， k Cε Cp， k 

Zj ,Jp ,d inst ) . g句 + Zj+l ，fp ， k ( inst) ・ gOj (d<j<k) (5.21) '7+ 
LJ j+ l ,Jp ,k (inst) 

ZLl,fM(mt)=fp,k(mst). (5.22) 

Function !p,k(inst) returns the value v when fetched instruction inst is a member 

of Ic,l ,k. If fetched instruction inst is not a member of Ic， l ， k ぅ !p ， k(inst) returns “nか

operation" value Vo ・

The other type of instruction decode, the result indicates whether fetched inｭ

struction is a member of a certain set of instructions or not. It is used to generate 

the following control signals: interlock control signal lockk , branch detection signal 

brαnch and resource control signal, which depends on daもapath status. The decoded 

result of m(I, inst) is also send to each pipeline stage step by step via pipeline regｭ

ister Zj，m(I， inst) ・ Suppose Zj ,m(I,inst) is a pipeline register for m (I , inst) between the 

(j -l)-th stage and the j-th stage. Suppose 'inst' is a fetched instruction and 1 is 

a set of instructions , function of the latter type instruction decode is described as 

follows: 

m(I , inst) 

Fア+

LJ j+ 1,m (I, inst ) 

rァ+
LJd+ l ,m (I ,inst ) 

(lwh…εf 
o otherwise (5.23) 

Zj，m(I， inst) ・ gOj+ Zj+l ,m (J,inst ) . gOj (d < j < k) (5.24) 

m (I , inst). (5.25) 

The stage controllers input decoded result Sk ,Jp ,k(inst) and Sk ,m (I ,inst ) that are 

shown in the following equations. 

S -j  ZKJK(mst) 
k ,Jp ,k (inst) - ì んバtηst)

f Zk ,m (J ,inst) 

Sk ,m(I,inst) - ~ m (I, inst) 
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(d く k)

(d = k) 

(d < k) 
(d = k) 
(k < d) 

(5.26) 

(5.27) 
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The controller of the k-th stage uses output signal of pipeline register Zk ,* when 

k is greater than dヲ which represents instruction decode stage number. The stage 

controller of instruction decode stage uses decoded result directly. 

5.2.5 Stage Control1er Synthesis 

The stage controller, which is based on a model in Section 4.4.2 , is described. The 

following items of stage controller depend on architecturallevel processor description 

and are synthesized, and items of finite state machine Mk are generated from the 

model: 

1. interlock detection signal lockk. 

lockk multiJockk + res_conflictk (5.28) 

lockk is a logical sum of multiJockk and res_conflictk. multiJockk and 

res_conflictk are defined in Equation (5.14) and (5.12). Using the result of 

instruction decode shown in Equation (5.23) , mult曻ockk and res_conflictk 
are represented as follows: 

mult曻ockk 

γes_conflíctk 

v ( V Sk ,m(h ,fin ,exp ,inst) . exp . validk ) ・ (p ヂ v))
finεFin expεEXPk ， fin 

(5.29) 

V (( V Sj ，m(昨，j ， inst) ・ validj ) . Sk ,m (Vr ,k ,inst) . validk) 
TεR k三j~η

(5.30) 

2. branch detection signal brαnch that is defined as Equation (5.17). U sing the 

result of instruction decodes shown in Equation (5.23) , brαnch is represented 

as follows: 

brαηch 叩Jμid仇b' ( V Sb，川m叫州(υI恥B酌T巾叩，占e口φz
εxpεEXPBγ 

(5.31 ) 

3. function cαncel (k) that is generated from Equation (4.7) in Section 4.4.2 and 

extracted branch stage number b. 

4. and control signal generation functions. 

Control Signal Generation Functions 

Control signal generation functions are classified into three types, 

1. control signals for resources in the k-th stage, 

2. control signals for multi-cycle operations, 

3. control signals for the resources, which are accessed 仕om multiple stages. 

Control signal of the port p in the k-th stage is generated from Cp,k shown 

in Equation (5.19) and (5.18) and Expゅ Expゅ is a set of expression exp for 

conditional control signal assignment of c. 

EXPc ,k - {exp I cεC， (exp , í)ε Condc ， stαge(c)=k} (5.32) 

Referring to Equations (5.19) , (5.18) and (5.32) , control signal Sp ,k for the port 

p in the k-th stage is represented as follows: 

Sp ,k = (V V v. αp-SK，叫ん叫川st) ・ gOk)
cε Cp ， k expεEXPc ， k 

exp手l

十九fp， k(inst) . gOk . (八 八(可+ Sk，m(Jc ， exp ，印刷))
cεCp， k expεEXPc ， k 
exp:;;il 

十吾百k. V。 (5.33) 

Control signal Sp ,k becomes the "nかoperation円 value Vo when the k-th stage is 

stalled (gOk = 0). Control signal Sp ,k becomes the value v if condition exp holds and 

executing instruction is a member of the set of instructions Ic,exp,k. If any condition 

exp of conditional signal assignrnent does not hold, the result of instruction decoder 

fp ,k( inst) , which is described in Equation (5.20) in Section 5.2.4, is assigned to the 

port p. 



Control signals for multi-cycle operations and confiicted resources are discussed 

in Section 4.4.2. 

Because control signal Sp,k becomes active value of start signal when multi-cycle 

operation should be executed, control signal for multi-cycle operation Sp,k ,start is 

described as follows: 

Sp ,k ,start = f lα9 ・ S刊十 flα9 ・苛EEZE (5.34) 

Using the result of instruction decoder, resource usage condition v;.,k , and control 

signal Sp,k of port p in the k-th stage, control si伊alSp for the port p which is accessed 

仕om multiple stages is described as follows: 

s p 

Selr,k 

V Sp,k. selr 
l<k<η 

Sk ，m(に， k ， inst) ・叫idk . V Sk，m(巧 ， k ， inst) ・叫idj
k<j壬η

5.2.6 Interrupt Controller Synthesis 

(5.35) 

(5.36) 

針。m an interrupt definition, a state machine shown in Section 4.4.3 is synthesized. 

The conditions of state transition 仕om “exe" to “wait" are logical sum of defined 

interrupt conditions. The synthesis method of data-path and control signal values 

to execute described interrupt operation is the same as that of instructions. 

interrupt V condition of defined interrupt i (5.37) 
iEミ Ii札tr

restαrt (Cη，t ~三 Si) (5.38) 

(5.39) 

where 

Si execution cycle count for interrupti 

Cnt counter for interrupts 

羽なlen one of the conditions for specified interrupt holds, the output of the signal 

interrupt becomes '1' and detects interrupts. The counter Cnt counts the number 

of execution cycles of interrupts. 
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If one of the interrupt conditions condition holds, the signal restαrt turns to '1' 

and detects interrupts. The counter S is used for interrupt control during the status 

variable keeps qiπtr = O. 

Suppose Cintr is a set of control signals assignment for interrupt intr ・ Suppose

cycle(c) is a function which returns in what stage control signal assignment c is 

executed in micrかoperation description of interrupt intr. The control signal for 

interrupts are defined as follows. 

Sp,int = v V . exp . (intr = int一name). (Cηt = cycle(c)) + 
c= (p ，v)ε Cintr 

v v . exp . (intr = inLnαme) . (Cnt = cycle(c)) . Vo (5.40) 
c=(p，v)εCintr 

If execution interrupt is intr ヲ the number of steps since interrupt processing is 

started is equal to cycle(c) and condition exp holds, the control value v is assigned 
to port p. 
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Chapter 6 

Experilllents 

In this chapter, the effectiveness of the proposed processor design method and synｭ

thesis method are evaluated through experiments. 

6.1 Objective of the Experiments 

In this chapter five kinds of experiments are described. 

1. existing RISC processor to evaluate variety of instructions that can be designed 

and synthesized by the proposed method. 

2. PEAS-I processor core to comp紅e design quality of synthesized processor to 

that of manually designed one. 

3. embedded RISC controller for comparison between conventional design method 

and proposed processor synthesis method in terms of design time and design 

quality. 

4. pipeline depth tuning. It is aimed for evaluate modification time and efｭ

fectiveness of an adjustment of the number of pipeline stages and operation 

re-scheduling to the pipeline stages 

5. architectural design space exploration for FIR filter. It is aimed for evaluate 

the design time of new instruction specification and the range of explored 

design space. 
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To evaluate the effectiveness of the proposed processor synthesis method, prcト

cessor synthesis time , design productivity and the quality of synthesized processor, 

and the largeness of explored design space are examined. Processor synthesis time is 

evaluated using prototyped processor synthesizer of the proposed synthesis method 

on Pentium III processor. Design productivity is evaluated in terms of design time 

and the amount of description. Design productivity is evaluated for both new proｭ

cessor design and architectural design space exploration. The quality of synthesized 

processor is evaluated in terms of area and clock frequency. 

6.2 Basic RISC Processor 

In the first experiment, the easiness of new processor design and its derivative proｭ

cessor design is explained. First, a MIPS R3000 [4] [42] compatible processor PEAS 

R3K was designed. Then, it was modi五edinto DLX [43] for evaluation of the easiness 

of design in micrかoperation level processor specification. 

At the first step, a subset of MIPS R3000 instruction set was implemented. The 

number of implemented instructions is 52 out of 74 instructions of all instructions 

on MIPS R3000. Coprocessor instruction and interrupt instruction were not imｭ

plemented in this experiment. Required time for design was about eight hours. 

Required time for synthesis was about two minutes. 

Table 6.1: Results of Synthesis for PEAS R3K 

component # Total Area Frequency 
(gates) (MHz) 

user specifiedresources 17 45759.22 157.48 
regIsters 20 7064.67 769.23 
selectors 10 2046.08 471.70 
controller 1 2347.18 200.00 

sum of the above 46 57217.17 157.48 
processor 1 59818.34 125.63 
using Design Compiler (0.5pm CMOS library) 

The results of synthesis are summarized in Table 6.1. The column “#" denotes 
the number of components in the processor. “Total Area" indicates the component 
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area including wiring area. "Frequency" means the maximal 仕equency of the correｭ

sponding component. "User specified resourcesう， are the resources that are explicitly 

declared by the designer. "Registers，円“selectors ，" and “controllerηare automatiｭ

cally introduced resources by the generator. “Sum of the above" means just the 

summary of all values above in the column. “Processor" is the synthesis result as a 

processor. 

From these experimental results , it is confirmed that automatically generated 

parts does not so much affect area and performance of the processor. Area of the 

generated part is about 15% of the whole processor. Frequency of the introduced 

resources including the controller is relatively highヲ hence they do not include the 

critical path individually. The critical path of PEAS R3K was zerかfiaggeneration by 

AL U and PC update. This path is synthesized from the micrかoperation description 

in the third stage of some branch instructions like "Branch on Equal (BEQ) 円 Micro­

operation description of BEQ is shown in Fig. 3.14 in Section 3.3.6. 

Table 6.2: Results of Synthesis for PEAS DLX 

component # Total Area Frequency 
(gates) (MHz) 

user specifiedresources 14 45758.01 157.48 
regIsters 23 7545.82 769.23 
selectors 15 1960.82 628.93 
controller 1790.78 200.80 

sum of the above 53 57055.39 157.48 
processor l 48469.03 116.28 
using Design Com piler (0.5μm CMOS library) 

At the second step in this experiment , a subset of DLX (called PEAS DLX) was 

implemented based on PEAS R3K. The number of implemented instructions is 51 

out of all instructions 91. Similar to the case of PEAS R3K, coprocessor instruction 

and interrupt instruction were not implemented in this experiment. The reuse ratio 

for DLX design from the description of PEAS R3K is 59% since both architectures 

have many similar instructions. Required time for modi五cation is about 3 hours. 

Table 6.2 shows a logic synthesis results of DLX. 
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The amount of descriptions for both PEAS R3K and PEAS DLX is shown in Taｭ

ble 6.3. The amount of description for micrかoperation level processor specification 

is about less than one sixth of the case of the corresponding generated HDL descripｭ

tion. It is clear that proposed processor synthesis method reduces the designer冶

load. 

Table 6.3: Comparison of the Amount of Descriptions for PEAS R3K and PEAS 

DLX 

PEAS R3K 
PEAS DLX 824 

6.3 PEAS-I Processor Core 

PEAS-I core is a processor generated by the PEAS-I system [10]. PEAS-I system 

can generate an optimal processor for a given application program 仕om predefined 

instruction set. Predefined instruction set consists of a primitive instruction set and 

optional instructions. The primitive instruction set contains basic instructions that 

most processors have. 1nstructions in the prirnitive instruction set can be categか

rized into arithmetic instructions, data transfer instructions, and execution sequence 

control instructions. 1n this experiment , the existing design and new one designed 

with PEAS-III's micrかoperation level processor specification are cornpared. First, 

a PEAS-I core from a prirnitive instruction set was designed with PEAS-III. The 

instruction set contains 85 instructions. Then, this processor was extended with 

adding multiply instructions. 

The result of the first step is shown in Table 6.4. The column “original" corｭ

responds to the case of the original design, and the column “with PEAS-III" corｭ

responds to the case of the design with PEAS-III. Workload for the design with 

PEAS-III is about one third compared to the original one. Maximum delays of each 

design area almost the same and area of the design with PEAS-III is 20 % larger 
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than original design. 

Table 6.4: Result of PEAS-1 Core Design 

" original I with PEAS-III 
work load (hour) 96 32 (札

lines in the 6431 7194 
HDL description (1038 for MOD) 
maximum delay (ns) 9.80 9.74 
# of gates 22,247 26 ,970 

(吋 ) includes learning about the system and improvement of MODs. 

Next in this experimentう this processor was extended with additional multiply 

with signedjunsigned operations using PEAS-III. The result of the logic synthesis is 

shown in Table 6.5. To implement the multiply instructions, several functional units 

for multiply operation can be selected. Using the proposed method, this selection 

is done by speci令ing the parameters for the multiplier in the resource declarations. 

Pipeline interlock logic is automatically generated and the designer has no need to 

design pipeline control logic. 

Table 6.5: Delay and Size of PEAS-I Core with Multiply Operation 

Design 11delay (ns)|Area (gate) 

under 100MHz 
SR 17.93 49567.8 
SL 9.77 49946.5 
CR 9.7"8 67905.8 
仁L 9.72 75089.6 
under 200MHz 

SR 17.69 50784.4 
SL 7.68 51828.9 
CR 6.93 69351.8 
CL 6.07 76577.2 

S: sequential circuit implementation，仁: combinational circuit implementation; R: using 
ripple carry adder, L: using carry-lookahead adder. 
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6.4 Embedded RISC Controller 
Table 6.6: Work Load for Designing a RISC Controller 

This experiment is aimed for comparison between designs with conventional method 

and designs with the proposed processor synthesis method used in PEAS-III. The 

original controller that is used for image processing was designed by manual RT -level 

description. A compatible controller was designed with PEAS-III in this experiment. 

This RISC controller has Harvard architecture. The instruction width is 24 bits. 

The number of instructions is 54. The controller consists of three-stage pipeline. It 

has synchronous interrupt facility. 

An undergraduate student designed this controller with PEAS-III. He had no 

experience of processor design with PEAS-III at the beginning of this experiment. 

Design proceeded as the following way. 

works 1l hue叩 lmodiheatlon
(hour) 1 (hour) 

selecting resourc邸 3 
determining instruction set architecture 12 8 
writing micrかoperation description 40 2 
modiちring errors 2 2 
total oo 

v
h
u
 

13 

1. He learned the usage of PEAS-III. 

Examples of instruction code assignment of both 24-bit and 32-bit are shown in 

Fig. 6.1. In this example, code assignments of ADDU (add unsigned) instruction 

are shown. Fields named like “opr1" in Fig. 6.1 is referred in the micrかoperation

description. 

An example of a portion of a micrかoperation description is shown in Fig. 6.2. 

In this exampleヲ the micro-operation description of ADDU instruction is shown. 

It consists of behavior of each stage. At the stage 2, the value of operands are 

referred using the names "opr2" and “opr3." As shown in this example, modi五ca­

tion of instruction codes can be done without modi五cation of the micro-operation 

description. 

The column “modi五cation" of the Table 6.6 shows the required time for this 

work. 

2. He designed the controller with 32 bi七s for instruction width. 

3. He modified the design to fit 24 bits for instruction width. 

The time required for learning PEAS-III is about seven hours. The learning 

includes reading manuals and trying design with a sample processor attached to 

PEAS-III. 

In the 五rst design, he designed the 32 bits instruction width for ease of the code 

assignment う because the code assignment of the original instruction set was not 

given. He implemented all 54 instruc七ions. The workload for this work is shown in 

the column “自rst design" of Table 6.6. The total required time is 58 hours. Though 

he was not familiar with PEAS-III, he designed a processor in a few days. The 

designed controller has various addressing modes and special registers and resister 

files. Because the complex addressing mode makes the micrかoperation descriptions 

difficult , design time became longer than other processors in the experiments. 

In the second design, he modified the first design concerning about the instruction 

width. The main work was 七he modification of instruction format. While some 

trivial modifications were required, the most part of the micrcトoperation description 
was reused. 

addu (24・b比)

|1001 lop什叩ロ lop市 lopr4 I 0000 ! 

31 26 25 22 21 18 17 14 13 10 9 0 

|∞00∞ lopr1 IOPr2 ! op白 !opr4 ! 0∞∞∞∞o 

Figure 6.1: Difference of Instruction Code of ADDU between 24-bit and 32-bit in 

RISC controllers. 

The design quality in terms of area and available clock 仕equency are also exam-
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stage 1 IR := IMEM[PC]; 
PC.inc(); 

stage 2 DECODE(IR); 
$sr1 := freg.readO(opr2); 
$sr2 :=台eg.read1(opr3); 

stage 3 ($result ぅ $aluflg) := ALU.addu($srl う $sr2 ， '0'); 
alufl.g := $alufig(2) & $alufig(3); 
仕eg.writeO( opr1, $result); 

The improvement includes changing the rnicro-operation scheduling to the pipeline 

stages. 

PEAS R3K-5 is an extended version of PEAS R3K for data forwarding. Design 

time for forwarding extension was about half an hour. 

6.5.1 Changing the Number of Pipeline Stages 

12.7k 
12.9k 

14.3k 
14.6k 

Changing the number of pipeline stages may lead to change the critical path and 

the number of pipeline registers. In other words , both performance and hardware 

cost can be improved by proper choice of the number of pipeline stages and micrcト

operation scheduling to the pipeline stages. 

Hardware cost is approximately linear to the number of pipeline stages. Because 

the number of pipeline registers increases in proportion to the increase of the number 

of pipeline stages. 

On the other hand, maximal frequency is more complicated. If operations in the 

critical path can be divided into di宜'erent stages by increasing the number of pipeline 

stages, the length of the critical path can be reduced. However, if operations in the 

critical path cannot be divided into different stages, the length of the critical path 

cannot be reduced. 

The critical path of PEAS R3K-5 was the path from pipeline register to program 

counter (PC) through ALU and stage controller in the third stage. ALU comp紅白

operands stored in pipeline registers and output zerかfiag ， then the stage controller 

decides whether branch is executed or not and sends control signal for PC to update 

its value. 

Figure 6.2: Micr仁トoperation Description of ADDU in RISC Controllers. 

ined in this experiment. The generated HDL description of 32-bit version of a RISC 

controller and the HDL description of real RISC processor were synthesized under 

the same condition. Table 6.7 shows the result. Two target 仕equencies 50 MHz and 

108 MHz was set up for logic synthesis. Given proper constraint for logic synthesis, 

both controllers have achieved these frequencies. N ote that the original controller 

has several instructions that were added to the original instruc七ionset for extension, 

and they were not implemented in the controller designed with PEAS-IIL Though 

rough comparison of the values for the 紅eas is not justi五ed enough, there seems no 

remarkable difference. 

Table 6.7: Comparison of the Design with PEAS-III and with Conventional Method 

for a RISC Controller 
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|I PEAS-III I conventional method 
32 24 
58 420 

(using CMOS 0.25μm library) 

To change the number of pipeline stages from five to fourヲ llllcrかoperations in 

the fourth stage and the 五fth stages were merged (PEAS R3K-4) because there 

were not critical path in these stages. The critical path of PEAS R3K-4 was the 

same as PEAS R3K-5. To change the number of pipeline stages 仕om four to three, 

arithmetic and logic operations, address calculation operations in the third stages 

紅e merged into previous stage and branch operation was merged into next stage 

(PEAS R3K-3). Because delay time of a sequential operations such as address 

calculation operation by ALU and memoηr access operation need longer time than 

6.5 Pipeline Stage Tuning 

In this experiment the number of pipeline stages of PEAS R3K-5 was varied from 

three to five. Then, the design improvement for clock frequency was described. 
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品位PS R3K-5 お任PS R3K-4 h征PSR3K-3 

Instruction Fetch ト→ Instruction Fetch ト→ Ins汀uctionFetch 

2 
Ins住uctionDecode 

ト→ 2 
Instruction Decode Instruction Decode 

Operand Fetch Operand Fetch 卜、 Operand Fetch 

Arithmetic and Logic Arithmetic 担dLogic 
2 Arithmetic and Logic 

Operation 
一一+

Operation 片J Operation 
3 
Address Calculation 

3 
Address Ca1culation Address caJculation 

Branch IRr月n c:h Branch 

4 Memory Access \、 Memory Access 3 Memory Access 
4 』・ー... Write Back 

.---'" WriteBack 5 Write Back 

Figure 6.3: Scheduling Result of Micrひoperations to the Pipeline Stages. 

other operations, scheduling these two operations into different stages is preferable. 

To keep the branch stage same as PEAS R3K-5 and PEAS R3K-4 , branch operation 

was scheduled to the third stage. Figure 6.3 shows a scheduling result of PEAS R3K-

4 and PEAS R3K-3. 

Table 6.8: Comparison of the Design that has Different number of Pipeline Stages. 

# of stages 
3 

企eq. (MHz) I # of gates (k gates) 
95.0 I 57.4 

4 11 121.1 1 60.4 

5"  119.9 1 62.3 
using Design Compiler (0.5μm CMOS library) 

The number of gates in Table 6.8 is approximately linear to the number of 

pipeline stages. The difference of clock 仕equency between four-stage processors 

and five-stage processors is caused by the difference of the logic of decoder and 

autornatically inserted selectors. 

The time of each modification for changing the number of pipeline stages is 

less than 20 minutes. In micro-operation level processor specification, changing the 

number of pipeline stages needs rewriting the micrかoperation description. 
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6.5.2 Clock Frequency Improvement 

For the improvement of clock frequency, there were two ideas for changing operation 

scheduling to the pipeline stages. 

(a) One was to move the branch stage to the next stage and divide the critical 

path into two stages as follows: comparison by AL U and zerひflag generation, 

and conditional program counter update. This modi五cation increased branch 

penalty. As a result , an execution cycle becomes increased. 

(b) The other was addition of dedicated comp訂ator to shorten the delay time of 

comp紅白on and zercトflag generation. 

Table 6.9 shows design modi五cation result for (a) and (b). Because comparison and 

branch operations were divided into different stages in the design of PEAS R3K一三

the design of R3K-3 (original) and R3K-3 (a) were the same. 

Table 6.9: Design Quality of Clock Frequency Improvement. 

original (a) (b) 
# of freq. # of gates freq. # of gates freq. # of gates 
stages (MHz) (k gates) (MHz) (k gates) (MHz) (k gates) 

3 95.0 57.4 95.0 57.4 100.7 57.3 
4 121.1 60.4 144.3 62.8 140.4 61.1 
5 119.9 62.3 141.2 64.5 131.8 62.2 

using Design Compiler (0.5jLm CMOS library) 

Frorn the result shown in Table 6.9, it is confirmed that both rnodification of (a) 

and (b) irnproved clock 仕equency. Division ofbranch stage and comparison stage (a) 

made clock 企equency higher than addition of dedicated cornparison (b). However, 

considering the branch penal ty increase of processor (a) , whether the execu tion 

time of processor (a) is less than that of (b) or not it depends on an application 

program. If an application progr出n includes rnany branch instructions which are 

taken 台equently， execution cycles of (a) becornes rnuch larger than that of (b) , and 

execution time of (a) becomes larger than that of (b). 
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On the 0七her hand, the area of (a) was increased because additional pipeline 

registers were required. The area of (b) was also increased. Add咜ional comp紅ator

made the area increase. 

The design modification time of (a) and (b) was only two or three minutes for 

each mod凬ication. For the design of (a) , micrかoperation description of branch 

and jump instructions were modified with moving branch operation to the next 

stage. For the design of (b) , resource declaration for dedicated compぽator was 

added. Moreover, micro-operation description of branch and jump instruct卲ns were 

modi五ed with replacing comparison resource 仕om AL U to added comp紅ator .

initialize ar and aj; 
while (1) { 

retrieve xr [OJ 臼d xj[OJ from input; 
yr = 0; 

yj = 0; 

for (i = M; i > = 0; iー) { 

yr +=む [M -iJ * xr [iJ -aj [M -iJ * xj [iJ ; 
yj +=む [M -iJ * xj [iJ + aj [M -iJ * xr [iJ ; 
xr[iJ = xr[i -1J; 

xj [iJ = xj [i -1J; 
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6.6 Design Space Exploration for DSP Applica田

tion Figure 6.4: Pseudo Code of an FIR Filter. 

An FIR filter is one of applications in digital signal processing area. In the second 

experiment , modules to calculate the following equation are designed as ASIPs: 

6.6.1 Customization of PEAS R3K 

M 

y[η] =乞 αi x x[N -i] (6.1) 

To improve performance, three types of new instructions are added. As another 

architectural design space exploration, the effect of changing the number of pipeline 

stages is examined. 

where α ， x , and y are complex numbers. 

Speci五cation of the filter module is as follows. Data size of inputjoutput value 

is 32 bits. It consists of two 16-bit parts. The higher 16 bits corresponds to the 

real part of the complex number and the lower 16 bits corresponds to the imaginary 

part. Both parts are fixed point representation. Input data are provided to the filter 

module at specified intervals. Output data must be produced before the next data 

input. The result of the calculation is rounded to round-もかnearest.

An algorithm of th﨎 filter 﨎 shown in Fig. 6.4. This is a stra刕htforward imｭ

plementation of Equation (6.1). Variables ar and aj correspond to real part and 

imaginary part respectively of coe白cientsαi in Equation (6.1). Variables xr, xj , yr, 

and y j follow the same manner. 

A program of the filter is coded for PEAS R3K processor in assembly language. 

The code size is 1631ines. 

Adding New Instructions 

Complex MAC Complex MAC type instructions consist of complex MAC operｭ

ation and related operations such as initialization of complex MAC operation. The 

instruction ' cmult う performs multiply, accumulatíonヲ androunding. By introducing 

instructions related to complex MAC operation, drastic improvement of execution 

cycles of the application is expected. 

To implement the Complex MAC type instructions, a complex MAC module 

was designed. A block diagram of the module is shown in Fig. 6.5. This MAC Unit 

simultaneously calculates complex multiplication and addítion, in other words , real 

part and imaginary part computation, at once. It also includes a round-tかnearest

rounding function. 

To add Complex MAC type instructions to PEAS R3K, instruction definitions 

and micrかoperation descriptions were added by the designer. The micrかoperation
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a b 

start 

fin 

load 

result 

Figure 6.5: Block Diagram of a Complex MAC Unit. 

description of 'cmult う instruction is shown in Fig. 6.6. In this description , it is 

specified that the pipeline is proceeding with instruction fetch at stage1 , decoding 

of fetched instruction at stage2, execution of complex MAC operation with complex 

MAC module 'CMACO' at stage3. As shown in this example, multi-cycle operations 

do not need supplemental description compared to single cycle operations since 

proposed processor synthesis method can detect multi-cycle operations and generates 

the controller with multi-cycle handling. 

stage1 IR := IMEM[PC]; PC.incO; 

stage2 DECODE(IR) ; 

$rs:ニ GPR.readO(rs);

$rt := GPR.read1(rt); 

stage3 ($result , $fl.ag) :二 CMACO.mac($rs ， $rt); 

stage4 

stage5 

Figure 6.6: Micrcトoperation Description of cmult (Complex MAC). 
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Modulo Addressing Modulo addressing is one of addressing modes to calculate 

address for queues. In the algorithm in Fig. 6.4, buffer x for preceding inputs has 

overhead of load/store. Using Modulo addressing, when load/store instruction is 

executed, the next address is also calculated in the instruction. By introducing 

instructions related to Modulo addressing, some improvement of execution cycles of 

the application is expected. 

Since these instructions require no special resources ぅ the designer only added 

instruction definitions and micrひoperation descriptions for introducing these inｭ

structions. 

Loop Loop instruction is one of branch instructions. The loop instruction perｭ

forms decrement of counter and branch as a single instruction. Though the imｭ

provement of the number of the execution cycles is at most one instruction per 

iteration, relatively large improvement can be expected for the iteration of short 
basic block length. 

To implement Loop instruction, the designer added instruction definitions and 

mlcrかoperation descriptions for introducing these instructions. 

6.6.2 Pipeline Stage Thning for Derivative Processors 

The number of pipeline stages of derivative processors, which are added the instrucｭ

tion described in the previous section, was varied from three to 五ve. Micrかoperation

re-scheduling that is described Section 6.5 is also done to improve clock frequency. 

6.6.3 Results of Design Space Exploration for DSP Appliｭ

cations 

Results of logic synthesis for each modification are shown in this section. Design 

times for each modi五cation 紅e also shown. 

Results of Adding Instructions 

Five derivative version processors have been designed. Let M mean the processor 

including complex MAC instructions, L mean the processor including Loop instrucｭ

tions, and A mean the processor including modulo addressing instructions. Results 
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of logic synthesis, i.e. , the number of gates and maximal clock frequencyヲ and the 

nurnber of execution cycles for calculating a single output value for M = 128 are 

summarized in Table 6.10. 

Table 6.10: Design Quality for Each Processors 

processor max frequency # of gates # of execution 
(MHz) (k gates) cycles 

original 119.9 80.0 23932 

M 
し

MA 

ML 

MAL 

101.8 71.4 3893 

104.4 64.7 23805 

100.0 92.0 

102.7 73.6 

100.7 94.8 

using Design Compiler (0.5μm CMOS library) 

M : including complex MAC instructions 

L : including Loop instructions 

A : including Modulo Addressing 

3507 

3766 

3509 

In Table 6.10, the number of execution cycles is drastically reduced by introducｭ

ing CMAC type instructions. In this case, maximal 丘equency of processor decrease 

approximately 30%. 

Table 6.11: Design Time for Each Instructions 
instructions I time (hour) 
original instructions I 8.5 
CMAC 0.8 
Mod. Addr. 
Loop 

0.5 
0.8 

Design time for each processors is shown in Table 6.11. Original PEAS R3K 

processor has been designed in eight hours. To add new instructions, less than one 

hour was required in any type of instruction in this experiment. Furthermore, any 

processor, which has any combination of already designed instruction, can be easily 

synthesized by PEAS-III. 
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Results of Pipeline Tuning 

Results of logic synthesis for each design are summarized in Table 6.12. The colｭ

umn “model" denotes the variation of instruction set addition shown in Table 6.10. 

The column “type" denotes variation of clock frequency irnprovernent shown in Secｭ

tion 6.5.2. 

As rnentioned in Section 6.5, the nurnber of gates in Table 6.12 is approxirnately 

linear to the number of pipeline stages, too. Clock frequency for three stage derivaｭ

tives is about 40 % less than that of four and five stage derivatives. Clock frequency 

of both four and five stage derivatives is alrnost the same. 

Table 6.12: Design Quality for Changing the Number of Pipeline Stages 

# of pipeline stages 

model 
# of exec. 3 stages 4 stages 5 stages 

type cycles 仕eq. area freq. area 仕eq . area 
(MHz) (k gates) (MHz) (k gates) (MHz) (k gates) 

original ong 23932 95.0 57.4 121.1 60.4 119.9 62.4 
a 24063 95.0 57.4 144.3 62.8 141.2 64.5 
b 23932 100.7 57.3 140.4 61.2 131.8 62.2 

ML ong 3766 66.3 70.9 101.9 72.6 102.7 73.6 
a 3895 66.3 70.9 102.8 75.4 100.6 75.3 
b 3766 65.8 71.4 102.6 73.2 104.0 73.8 

MA ong 3507 73.4 85.9 101.9 89.1 100.0 92.0 
a 3636 73.4 85.9 98.3 91.8 98.9 93.9 
b 3507 72.2 86.5 102.0 89.2 101.5 92.1 

MAL ong 3509 65.3 89.3 98.0 92.4 100.7 94.8 
a 3638 65.3 89.3 104.8 94.2 102.7 96.3 

b 3509 65.1 89.3 103.8 92.7 101.2 93.9 
using Design Compiler (0.5μm CMOS library) 

Relationship between area and execution time for FIR filtering application is 

plotted in Fig. 6.7.τ同de-offbetween area and execution time is plotted in Fig. 6.8. 

At various design constraint , various architecture candidates can be selected in terms 

of the number of pipeline stages, extension instruction set and so on. 

Design time of derivative processors in terms of pipeline tuning was within an 

hour per one model. Total design time of pipeline tuning for four models in Ta-
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ble 6.12 took four hours. Total design time of all derivatives, which was the addition 

design time of new instructions and design time of pipeline tuning, was about six 
hours. 
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Figure 6.7: Area and Execution Time for all Derivatives. 
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Chapter 7 

Discussion 

In this chapter, the effectiveness of the proposed processor design and synthesis 

method is discussed with the results of experiments. The effectiveness is discussed 

at the following points: 

• largeness of explored design space, 

• design and design exploration time, 

• and design quality. 

7.1 Design Space 

The proposed synthesis method supports portion of the architectural characteristics 

shown in Chapter 3. The supported items are as follows: 

• hardware module con五guration ，

• storage units organization, 

• pipeline organization that includes the number of pipeline stages and micrひ

operation assignment to the pipeline stages, 

• structural hazard detection and pipeline interlock control synthesis, 

• predict-not-take based delayed branch, 

• and external interrupt. 
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From experimental results, e百ectiveness of design space exploration with these arｭ

chitectural variations was shown. 

In the experiments, design space was explored in terms of the following points: 

Design space was explored in terms of the following points: 

• hardware module configuration. Hardware configuration includes changing 

resource parameters and addition of new resources. Changing resource paｭ

rameters for PEAS-I core, which is shown in Section. 6.3. Addition of new 

resource for clock 仕equency improvement is shown in Section 6.5.2. 

• instruction bit width. The instruction bit width of embedded RISC controller 

was changed 仕om 32-bit to 24-bit. 

• the number of pipeline stages. The number of pipeline stages for PEAS R3K 

processor and derivative processors for DSP applications were changed. It is 

shown in Section 6.5 and Section 6.6.2. 

• operation scheduling to the pipeline stages. Changing the stage of branch 

operation for PEAS R3K and DSP derivative processors is shown in Section 6.5 

and Section 6.6.2. 

• organization of storage units. Complex addressing modes for special registers 

and multiple register 五les were designed. Complex addressing modes were 

shown in Section6.4. 

Furthermore proposed synthesis method has a potential ability for designing 

complex mernory architectur弘 such as rnernory-rnernory architecture, non-harvard 

architecture, multiple port rnemory and so on. Synthesis of structural hazard deｭ

tection and pipeline interlock logic enables to design such processors. 

Proposed synthesis method can deal with rnuch larger design space than that 

of existing prepared processor based systems. Design space is enlarged in terms of 

instruction bit width, user-defined pipeline organization in terms of the number of 

pipeline stages, the number of delayed branch slot, role of each pipeline stage and 

multi-cycle operations, storage unit organizatio民 and user-defined external inter-

rupt. 
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For the further expansion of the design space, extension for out-of-order instrucｭ

tion issue and out-of-order completion, VLIW architecture, and internal exception 

are required. When target processor uses a functional unit that has long latency 

to calculate the result, the pipeline organization with out-of-order completion is efｭ

fective. The processor with out-of-order completion can execute other succeeding 

instructions while executing instructions that have long latency. For the applicaｭ

tions which requires high performance, the processor with out-of-order instruction 

issue and VLI羽T processors are suitable to execute multiple instructions at the same 

time. 

Extension for branch mechanism is also required. The synthesis method cannot 

deal with the non-overhead loop instructions which are popular in DSP application 

because branch architecture is fixed to predict-not-take base delayed branch. 

7.2 Design Time and Design Space Exploration 
Time 

7.2.1 Design Time for New Processors 

With the higher abstraction level processor specification than RT level , design tirne 

of the ASIPs are drastically reduced. Higher abstraction level processor description 

contributes the easiness of the design. 

Frorn the experimentsヲ reduction of the design tirne was shown. Design tirne 

for ASIP with proposed rnethod was about three to seven times shorter than those 

for conventional RT level design as shown in experirnents. Compared with other 

processor description language AIDL [24], AIDL needs 37 hours to design 23 inｭ

structions of PA-RISC processor. AIDL includes cornplex specification descriptions 

for complicated processors. Frorn the results, it is obvious that micrφoperation 

level processor description is effective for shortening design tirne of straightforward 

pipelined processors. 
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7.2.2 Design Time for Derivative Processors 

Proposed micro-operation level processor specification also reduces design exploｭ

ration time compared with that of RT level processor specification. Synthesis of 

datapath structure and controller reduces design and des�gn mod凬ication time of 

them and enables the designer to change the architecture in a short time. 

From the experiment s, turn around t匇e for derivative processor designs was 

shown. The derivative processor designs includes the following rnodi五cations:

• changing resource parameters. The designer change pararneters for the sake of 

the evaluation of various hardware module which has same functionality and 

different design quality in the sense of area, clock frequency and execution 

cycles. This modification needs only few seconds per one parameter. 

• addition of application speci五c user-defined instructions. The designer defines 

instruction format and describe rnicrかoperation description of new instrucｭ

tions. This rnodification takes ten to 五fteen minutes per one instruction of 

DSP ins七ructions shown in Section 6.6. 

• addition of new resource. The designer declares additional resources to gain 

performance of the design. It takes only a few rninutes. 

• changing the number of pipeline stages and changing operation scheduling 

to pipeline stages. The number of pipeline stages will be decreased for the 

reduction of the 紅白. On the other hand, the number of pipeline stages 

will be increased to reduce the delay tirne of the critical path. The designer 

also changes the stage of rnicrφoperation to reduce the delay tirne of critical 

path. Changing the nurnber of pipeline stages and operation scheduling to 

the pipeline stages requires re-scheduling of rnicro-operation to the pipeline 

stages. The changing time is within a rninutes per one instruction. From the 

experiments, pipeline tuning takes 20 minutes for the PEAS R3K processor 

that has 52 instructions. 

Large design space has been successfully explored. The trade-off of the design is 

found. The designs of 12 derivatives were tried in a day. 
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Though design and design modi五cation time is very short , evaluation and valiｭ
dation time for the designed processor makes turn around time long. Effective and 

rapid estimation and critical path analysis for synthesized processor are required. 

For more e伍cient support of design space exploration, optimization of resource 

selection , instruction format decision, the number of pipeline stages and micrか
operation assignment for pipeline stages are required. 

7.3 Design Quality 

In the design quality of synthesized processors and manually design processors, clock 

fおquencies of thern 訂e almost the same. The area of synthesized processors is about 

20% larger than those of manually designed processors. Though the area is inferior 

to manual design, the advantage of effective design space exploration has an impact 

on the total design quality. The disadvantage on the area does not affect so rnuch. 

To improve the design quality of synthesized processor, optimization of selector 

and pipeline register insertion is required. For the reduction of pipeline registerぅ

pipeline register sharing could be effective. However, sharing the register needs adｭ
ditional selectors. On the other hand, when critical path includes automatically 

inserted selectors, moving the selector to the previous pipeline stage or to the next 

pipeline stage, if possible, reduces the critical path. Pipeline register sharing and 

selector insertion stage optimization based on an RT level rapid and accurate estiｭ

mation irnprove the design quality. 
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Chapter 8 

Conclusions and Future Work 

In this thesis a micro-operation level processor specification and processor synthesis 

method is proposed for the architectural design space exploration of ASIPs. 

8.1 Conclusion 

In this thesis, micro-operation level processor specification for architectural design 

space exploration hωbeen discussed. The specification includes a parameterized 

pipeline structure in the sense of the number of pipeline stages and roles of the 

pipeline stages. Furthermore , a complex mechanism that includes pipeline control 

logic, designing a datapath structure is not needed. The easiness of the design and 

design modification and flexibility on the processor enables architectural exploration 

of a large design space in a short design time. 

For processor synthesis, a processor model has been examined. To deal with fl.exｭ

ibility in pipeline depth of target processor, datapath and controller is divided into 

pipeline stages. The sequence of datapath and controller models of each pipeline 

stage organizes the pipelined processor. The organization of each pipeline stage 

conもroller ， instruction decoder and external interrupt controller are discussed. The 

pipeline hazard detection and control mechanism that includes pipeline interlock and 

pipeline fl.ush are formalized. The pipeline control model and pipeline hazard detecｭ

tion mechanism are used to synthesize pipeline control logic 仕om mlcrcトoperation

level processor specifications. 

Processor synthesis method 台om illicrcトoperation level processor specification is 
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proposed. Each part of the datapath synthesis, such as data fiow graph generat ion, 

signal conflicts resolution and pipeline register insertion are described. Instruction 

decoder synthesis, pipeline controllogic synthesis and interrupt controller synthesis 

are also described. The synthesis method supports user-defined pipeline organization 

in the sense of the number of pipeline stages and the number of delayed branch slot , 

multi-cycle operation , structural hazards resolution, and external interrupts. The 

wide su pport for the pi pelined processor enables exploration of a large design space 

for ASIPs. 

Through the five kinds of experiments, the e旺'ectiveness of the micrcトoperation

level processor design is confirmed. The design time and the architectural design 

space exploration time are reduced while keeping the fiexibility in the pipeline organiｭ

zat ion, hardware configuration and so on. A large design space has been successfully 

explored. The trade-off of the design is found by trying 12 derivative processors. 

The designs of 12 derivatives were tried in a day. 

In this thesis , micrcトoperation level processor specification and a processor synｭ

thesis method for architectural design space exploration for ASIPs are proposed. 

It is confirmed that in using the proposed method, large design spaces ぽe easily 

explored in terms of the number of pipeline stages and delayed branch slots and 

hardware module configuration, user-defined instructions interface ports and exterｭ

nal interrupts, and operation scheduling to pipeline stages. 

8.2 Future Work 

Future work for further architectural design space exploration includes the expansion 

of design space and reduction of design exploration time. Improvement of the design 

quality of synthesized processors is also a future goal. In the following section, the 

future directions of these articles are described. 

8.2.1 Design Space Expansion 

Supports for the following characteristics described in Section 3.1 to enlarge design 

space are required. 

104 

• branch prediction mechanism and non-overhead loop , 

• out-of-order completion, 

• out-of-order instruction issue, 

• and other interrupt and exception. 

Instruction fetch module synthesis is required to extend branch mechanism beｭ

cause branch control is closely related to instruction fetch. Parameterization of 

instruction fetch module and branch architecture, and consideration of their synｭ

thesis method enable the system to deal with various branch architectures. The 

parameter seems to include instruction bit width, increment step, predict-taken or 

predict-not-taken or dynamic branch prediction with branch-prediction buffers or 

that with branch-target buffers, and parameters of buffers. 

Processor model extension for multiple pipeline sequence enables super-scalar 

and VLIW type processor synthesis. However, the extension for multiple pipeline 

sequence makes hazard detection and the resolution algorithm more complex. For 

out-of-order instruction issue, reservation station synthesis is also required. 

For the support of the precise exception, restriction of instruction speci.fication 

and exception handling should be discussed. Extension instruction fiash and restorｭ

ing the processor status mechanism for exception is also required. 

8.2.2 Design Exploration Time Reduction 

For the further red uction of the design and design modi五cation time, optimization 
of micro-operation level processor speci.fication is required. The target of the optiｭ

mization includes instruction format assignment , resource parameter selection, the 

number of pipeline stages and micro-operation assignment for pipeline stages. 

The critical path of each pipeline stage can be reduced by changing the pipeline 

stage assignment of micrかoperations and hardware module parameters. 

Data fiow graph generation from micrかoperation description and ASAP (as soon 

as possible) base scheduling with design constraint enables optimization of microｭ

operation assignment to the pipeline stages. At the same time, the parameter selecｭ

tion of resources should be done because the design qualities of the resources affect 



the delay time of the critical path. For the scheduling and resource parameter seｭ

lection, fast and accurate estimation of micrかoperation level processor specification 

is required , too. 

8.2.3 Improvement of the Design Quality 

The design quality of the synthesized processor is slightly inferior to that of manual 

design using RT level HDL description. For the improvement of the design quality, 

optimization of selector and pipeline register insertion taking into account the tradeｭ

off between clock frequency and hardware cost is required, as discussed in Section 7.3. 
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Appendix A 

Grarnrnar of Micro-operation 

Level Processor Specification 

A.l Organization of Micro-operation Level Spec四

ification 

Micrcトoperation level specification is a text file divided into eight parts: 

1. Version 

2. Design Goal and Architecture Parameter 

3. Interface Definition 

4. Instruction Type Definition 

5. Instruction Definition 

6. Resource Declaration 

7. Interrupt Definition 

8. Micro-operation Description 

General grammar of micrかoperation level specification is as follows: 

KEY := [a-zA-Z] [a-zA-ZO-9J * 
STRING : =ぺ [-"]1' \ "')*"
くdesign> := <i七em>

く item> :=くkeyvlOrd> [' { ，くitem>づっ { , " <i七回>}
くkeyword> := (KEY 1 STRING) 

“KEY" includes “clk(n)" as an exception.ηtakes integer valu四1児e
Each p戸a此 ha鉛S own s勾yn凶ta以x and keywords. Each p紅t begins with the keywords: Verｭ

sion, Port_declaration , Instruction_type, Instruction, Resource, Exception, and 
MOT. Keywords and s戸ltax for each part 訂e described in the following sections. 
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くSpecification> 'Design' ,{, 
くVersion> ',' 
くArchite cture _jコara血e七er〉 P ， P

<InterfaceJDeclara七 iozl〉 P ， P

く Ins七 _TypeJDefini七 ion〉 P ，'

く Instruc七 ionJDefinition> ' , ' 
<ResourceJDeclaration> ' , ' 
く Interrup七 JDefini七 ion> 勺 3

くMicro_OpJDescrip七 ion>

,} , 

Design goal for clock frequency, chip area, maximum delay, static power consumption 
and dyIIMI11c power consumption-Their values are represented in decimal or integer-

A.2.2 Pipeline Processor Parameters 

Architecture parameters for pipeline processor include the number of stages, the number 
ot common stages, the number of phases per stages, synthesis of pipeline interlock logic, 
data bypassing logic, and branch control logic. 

くPipeline _Arch_Parame七er>

ﾁ.2 ﾁrchitecture Parameter 

In the architecture p紅ameter part , design goal and architecture parameters are speci五ed .

<Architecture _Par祖e七er> := ' Abs七rac七...level_archi七ecture ' '{' 

くFhm_Work_Name> ',' 
くDesign_Goal> ',' 
くProcessor_Type> ',' 
くPipeline_Arch_Parame七er>

, } , 
' FhIn_-wo出担e' , { , STRING '}' 
'CPU_type' '{' 

くFhm_Work...Name>

くProcessor_Type> 

STRING 

(' "Non-pipeline'" I '"Pipeline''' I '''VLIW''') 
,} , 
" (仁 "J I '¥'" )*" 

くNumber_of .13七 ages>

くNumber_of_Common.13七ages>

くNumber_of_Phases_Per .13tage>

くMulti_Cycle_Interlock>

くData...HazardJnterlock>

<Regis七er ...Bypass>

くMemory...Bypass>

<Delayed...Branch> 

くDelayed...Branch.131ot>

Architecture p訂ameter includes login n剖ne of FHM-DB, design goal, proc田sor type 

and architecture p訂ameters for pipeline processor. Candidates of processor type 訂e

"N on-pi peline円， "Pipeline" 組d “VLIW" . Processor types "Non-pipeline" and “VLIW" 
ぽe prepared for future extension. Currentlyぅ“Pipeline" architecture is supported. 

A.2.1 Design Goal 

INT 
USAGE 

YESNO 

'Pipeline _archi七ecture' '{' 

くNumber _of .13tages>

くNumber_of _Common_S七ages>

くNumber_of _Phases_Per.13tage>

<Muユ七 i _Cycle _Interlock>

くDa七a...Hazard_In七erlock>

<Register...Bypass> 

<Memory...Bypass> 

くDelayed...Branch>

くDelayed..Branch_Slot>
,} , 
, Number _of _s七ages' , {, 1町， } , 
'Number_of_common_stages' '{' INT '}' 

'Number_of_phases_per_stages' , {, 1町 '} , 
'Multi_cycleユロterlock' , { , USAGE γ 
'Dataム臼訂d_interlock ' '{' USAGE '}' 

'Register_bypass' '{' USAGE '}' 

'Memory_bypass' '{' USAGE '}' 

, Delayed_br祖ch' '{' YESNO '}' 
'Number_of_exec _delayed_Slo七 ，{ , 
'number' '{' INT '}' 
'} , 
" [0-9J +" 

( "Use" I "Unuse" ) 
( "Yes" I "No" ) 

The number of pipeline stages takes integer value. The parameter value of delayed 

branch indicat白 whether the proc白sor adopts delayed branch architecture or not. If the 
parameter value of delayed branch is "Yes" , the number delayed branch slot should be 
specified. The number of delayed branch slot must be less than the number of branch 
stage. 

The following p紅ameters are prepared for future extension: the number of common 
stages, the number of phぉes per stages, synthesis of pipeline interlock logic and bypassing 
logic. Pipeline interlock logic for the resolution of structural hazards is automatically 
synthesized regardless of the parameter value. 

くDesign_Cons七rain七〉
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'cons七ruction' '{' 

<Goal_Frequency> ',' 
くGoaLArea> 勺'

くGoalJDelay> ',' 
くGoal_Po-wer_S七atic> 勺'

くGoal_Po-werJDynamic>

'} , 
'Goalゴrequency' ,{, V札UE ,}, 
'Goal_area' '{' Vι四，} , 
'Goal_delay' '{' V札UE '}' 

'Goal_po-wer.13' '{' VιUE ,}, 
'Goal_po-wer _j)' '{' V札UE '}' 

" [0-9J 牢[\. [0-9J 牢J"

ﾁ.3 Interface Definition 

In the interface definition part, entity name, and input and output ports of target processor 
訂e defined. 
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く InterfaceJDefinition> :=くEnti七y ..Name> 勺 3 くPortJDeclara七ions>

くEntity ..Name> := 'Entity_name' '{' STRING ,}, 
くPortJDeclara七 ions>

くPortJDeclara七 ion>

くPortJDirection>

くinout_direction>

くPor七一Type>

くPort .-Attribute>

STRING 

>
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: = <Inst_Type..N祖e> ,{, <Field> {勺 2 くField> } '}' 
:= STRING 

:= <Field_Type> '{' 

くField_Value> '.) 

くField_\hdth>
,} , 

( , "OP-code'" I '''Oper回d'" '''Reserved''') 

:= <Field_Contents_Type> ,{, <Field_Value>γ 
・_ (' "n臼e'" I '''binary''') 
:= (STRING I BINARY) 

'Port' '{' 
くPortJDeclaration> {ぺ 3 くPort J)eclaration> } 

,} , 
-くPO口..Name> '{' 

くPortJDirec七ioa>' ， P

<Port_Type> ',) 
くPort ..Attribute> ',) 
'} , 
'direction' '{' く inou七 一direc七ion> '}' 

('"in''' I '"out''' I '''inout''') 
'signalλype' '{' STRINGγ 
'signal_a七七ribu七 e' '{' S冗ING '}' 

" ( [角 "J I '¥" ')牢"
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: = "( [角 "J I '¥" ,) *" 

For each instruction type, instruction type name is defined. Then , instruction 五elds
of the instruction type are defined. For each instruction fieldヲ 五eld type, contents of 山
五eld are defined. Field type is selected むnong "OP-code,"“Operand" and "Reserved." 
'OP-code" means operation code and “Reserved" indicates that the field is reserved for 
extension in the future. 

If the type of instruction field is "OP-code" and the operation code for that field is 
common to all the instructions belongs to the instruction type7thehld contents type 

becomes “binaげ， and field value is speci五ed in binary representation. If the operation 
code is variable for the instructions that belongs to the instruction type, the 白eld contents 
type becomes “name円 組d field name of it is defined. The operation code of the field 
is specified in instruction definition part for each instruction. For the "Operand" field 、
f�ld type becom郎、ame" and field name is def�ed. For the "Reserved" fìeld, f�ld type 
becom缶、m訂y" 釦d field value is specified. 

Interface definition part consists of two parts, entity name de五nition and interface port 
declarations. For each interface p卯or爪t ，ヲ P卯or吋t name, d必ir陀ectiぬor払1 ，う 七typ戸ea叩nd a抗tt凶rib凶ut旬ea紅re d白efin訂lne吋d.

Port direction is selected 但nong “吋i凶n

in VHDL standard logic style. If the bit width of the port is one, the port type becomes 
"stdJ.ogic". If the bit width of it is more than one, the port type becomes standard logic 
vector type. 

A.4 Instruction Format Definition 

A.4.2 Instruction Definition Instruction format definition consists of two parts, instruction type definition and instrucｭ
tion definition. 

For each instruction, instruction type is selected むnong defined instruction types and 
operation code value is decided. 

A.4.1 Instruction Type Definition 

'Instructionょype' ,{, 
, sub_f ield_n祖e' '{' 

'NO一札工V くField_Width> 勺'

'type' '{' 

くIns七_Type> {勺， <Ins七_Type> } '}' 
'} , 

,} , 
, }' 
'wid七h' '{' INT ',' INT '}' 
" [0-9J +" 

くInstructionJDefinitions> := 'Instruction' '{' 

'NO_礼IW' '{' 

<Instruction> {勺 3 くInstruction> } 
'} , 
'} , 

.=くIns七ruction..N担e> '{' 

くField> { ',' <Field> } 
,} , 
:= STRING 

Instruction type definition part consists of a list of instruction type definitions. 

くInst_TypeJDefinition>
くInstruc七 ion>

くField_Width>

INT 

く Instruction_Name>

STRING := "([-"J 1' \ "') 本"

Operation code for each instruction is assigned. The syntax of instruction definition 
﨎 common to instruction type definition p訂t .

A.5 Resource Declaration 
In the instruction type definition part, bit fields ， 白eld type, field name, and binary 
value of it むe defined for each instruction type. 

In the r回ource declaration part , hardware modules are selected with appropriate p紅白L
eters 仕om parameterized hardware library FHM-DB. 
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くResource ...Declara七 ions> .= 'Resource' '{' 
くResource> {'，'くResource>}
'} , 

くResource> := <Resource_Name> '{' 

<FHM_ModeL.Name> ',' 
くClass .J>ath> 勺 3

くParame七ers>

,} , 
くResource_Name> := STRING 

くFHM_Model_N祖e> := 'class' '{' STRING '}' 

くClass _Fa七h> := 'classpath' '{' STRING '}' 

STRING := "([-"JI'\"') 寧 H

Resource declaration part consists of a list of resources. For each resourceぅ resource
name, FHM model name and its parameter values are speci五ed. The class pa七h field is 
prep征ed for future extension. 

くPar日e七ers> := 'parameter' '{' 
くAbstraction_Level>

{' , 'くFHM.J>arame七er>}
'} , 

くAbs七rac七 ion_Level> := 'abstrac七 ion _level' , { , 
'for _s ilI叫ation' '{'くLevel> '}' ',' 
'for_synthesis' '{'くLevel> '}' 

,} , 
<Level> : = ( '"Behavior''' 1 '"RT''' 1 '"Gate''' ) 

くFHM .J>ar阻e七er> .=くPar担e七er_N祖e> '{'くParameter_Value> '}' 

<Parameter _Name> : = NAME 
<Parameter_Value> := STRING 
NAME := [a-zA-ZJ [a-zA-ZO-9J * 
STRING " ( [向 "J 1 '¥" ') *11 

Resource Par出neter includes abstraction level for synthesized simulation model and 
logic synthesizable modeL Abstraction level must be selected among “Behavior" , "RT" 
and "Gate". After the abstraction level, parameters, which are specific to the model，町e
specified. 

A.6 Interrupt Definition 

1n the interrupt definition part, interrupt condition definitions 出ld micrかoperation deｭ

scription of interrupts are combined. 
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くInterruptJDefinition> := 'Excep七ion' '{' 

[くInterrupt> { '，'くInterrupt> } J 
'} , 

く Interrup七> .=くinterrupt _Name> '{' 

く Interrup七一Condユ七102〉 P , P 

く In七errupt_Type> ',' 
<Interrupt_Cycles> ',' 
<Behavior_ofよ2七errup七〉勺 3

くAssertion_of_Interrupt> ',' 
くComment ...f or_Interrup七>勺 3

くMOD_of_Interrupt>

'} , 

Interrupt definition includes interrupt name, conditionぅ type ， execution cycle count う

behavior, assertion, comments and micrかoperation description. Interrupt type, behavior 
and ぉsertion are prepared for future extension. 

くInterrupt_Condition> := 'Condi七 ion' ，{，くCondi七 ion> ,}, 
く Interrup七_Type> : = 'Type' '{'く Interrupt_Types> '}' 
くInterrupt_Types> : = ( '" Internal'" 1 '"External''' ) 
くInterrupt_Cycles> := 'Cycles' '{' 1町，} , 
くBehavior_of_Interrup七〉 := 'Behavior' ,{, S冗ING '}' 

くAsser七 ion_of_In七errupt> := 'Assert' '{' STRING '}' 

くCommen七...f or_In七errupt> := 'Comment' ,{, STRING ,}, 
くMOD_of_Interrupt> := 'MOD' '{' <MOD> '}' 
INT : = "[0-9J +" 

Execution cycle count for the interrupt is defined. In the micro-operation description of 
ínterrupts, 匤terrupt handl匤g operat卲ns of the processor such as sett匤g specific values to 
special registers and jump匤g to the interrupt handler routine, are described. The s戸ltax

of Interrupt condition <Condi tion> and micro operation description くMOD are explained 

in Appendix A.7. 

A.7 Micro-operation Description 

Micrかoperation description is used to describe clock based behav卲r of instructions and 

interrupts. Micrかoperation description of ηclock 匤struction (or interrupt) is described 

as follows: 

clk(1) {"くMicro-Op>"} ，
clk(2){" くMicro-Op>"} ，

clk(k){" くMicro-Op>"} ，

clk(n){n くMicro-Op>n}

Behav卲r of the instruction (or interrupt) in the k-th clock is described with "clk(k)". 

Micrφoperation of each clock consists of the following elements: 

• Variable, 
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• Constant) 

• Storage, 

• Operand, 

. Function, 

• Assignment statement う

. If-statement, 

• Decode designation. 

くMicro-Op> : =くAssignment ..s七a七emen七>F;3

くFunction ';' 

く If ..s七日ement> };' 

くDecode ..sta七ement> ';' 

A.7.1 Variable 

|〈V訂ゆle〉 :=m | 
VAR : = $ [a-zA-Z] [a-zA-ZO-9J * I 

Variables are declared implicitly in assignment statements. The scope of variable is an 

instruction in which the variable is d白cribed. Assignment for a variable is allowed only 

once. Right value of the assignment can be referred in the s出回 stage 釦d in the following 

stages. The variab1e is imp1emented with net when the variab1e is referred in the sむne

stage. The variable is imp1emented with pipeline register when the variab1e is referred in 

the following stage. 

A.7.2 Constant 

<Constant> := SignalBit I BitVector 
SingleBi七 : = ¥'0¥' I ¥'1¥' 
BitVector := "[01J+" 

Constant in binary expression is used in the micrcトoperation description. Single bit 

constant is quoted by single quote. P1ura1 bits constant is quoted by double quote. Conｭ

stant value is referred in ぉsignment statement, conditional expression of if-statement , 
resource operations and index of addressed storage. 

A. 7.3 Storage 

くS七orage> .-くResource ....Name> [くAddress> J 

くResource_Name> := NAME 

くAddress>

NM伝

-くRight_Fart>

[a-zA-Z] [a-zA-ZO-9J 本
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Declared registers) memory access units, register files and so on in the resource decｭ
laration part , are referred as storage units. For an addressed storage unit) location is 
referred by an index. An index is quoted by “[ ])). The contents value of storage unit 
is referred when it is in a parameter of resource operation) right pむt of the assignment 
statement and conditiona1 expression of if-statement. The contents value of storage unit 

is changed to ぉsigned value when it is in a 1eft part of assignment statement. The value 
of the storage unit is replaced synchronously with the transition timing of the stage. 

A.7.4 Operands 

くOperand> :=くField....Name>

くField....Name> := NAME 

NAME := [a-zA-Z] [a-zA-ZO-9J 牢

Certain bit field of the instruction register is referred by an operand fie1d name, which 
is specified in instruction format definition part. The field name and bit fie1d of an operand 

are defined in instruction type definition p紅t .

A.7.5 Function 

くFunction> -くResource ....Name> '.' <Function....Name> '('くParame七er_List> ,), 
くResource ....Name> : = NAME 
<Func七ion....Name> : = NAME 
<Par祖e七er_List> : = [くPar祖e七er> { ',' <Parameter> } ] 
くParameter> : = <Right_Fart> 
NAME := [a-zA-Z] [a-zA-ZO-9J 牢

Functions indicate operations of resources. 1nput data of the operation are described 

出 par町田ters . Output results of the operation are assigned to variables and storage 

units with assignment statement. If the function has no output, the statement consists of 
function expression only. 

A.7.6 Assignment statement 

くAssignmen七..sta七emen七〉

<Left _Par七s>

<Left_Fart> 

くRight _Fart>

<Term>i 

-くLeft _Far七s> ':='くRight_Fart>

: = <Left_Part> I '(' <Left_Part> { ',' <lef七 一P泣七> } ')' 
-くS七orage> I くVariab1e>

-くTerm> {'&'くTerm>}
-くS七orage> [くBit ..selec七>] I くVariable> [くBi七.Be1ect>] I 

くCons七ant> I くFunction> I くOpera且d>

1n an assignment statement う right part values are assigned to the storages and variables 

appeared in 1eft part. Right hand includes storage units, variables, operands, constant and 
function and concatenate of them. 
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A. 7. 7 If-statement 
くIf_$tatement> := 'if' ，(， くCondition> ')' くThenYhase >

[くElseYhase> ] 'end if' 
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-くEquation> I くExpressionl>

: = <Expression2> { '11' くExpression2> } 
-くExpression3> { ，銚 P くExpression3> } 

:= '('くCondition> つ， 1 'not' くExpres s ion3>

:= <RightY訂七> 1 '='くRight_Part>

' then' くMicro-Op>

'e1se' <Micro-Op> 

Appendix B 

Processor Speci:fication of PEAS 
R3K 

If the condition holds, then-phase is executed. If the condition does not hold, elsEト
phωe is executed. The condition of the if-statement is represented in boolean expression of 

equations , which compare value of variables , constants , storages, operands and functions. 

The order of priority of boolean operators is 'not ', ' &gど and '11'. 
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くDecode_$七atemen七> := 'DECODE' ' ( ' く Ins七ructionJRegister> ')' 

くInstructionJRegis七er> . =くS七orage>

、
P
J

1
・JK
 
C
 
0
 

1
4

'
 

b

}

 

，
、

I

JL' 
い
凶
?

h
Jべ

・

1
u
パ

ゴ
凶
t

b

 

t

L

 

a-
E
 

.
t
 

可
よa

比
伊
ト
パ

一

.

m
.此
〉

j

・
・

1
r

ロ
む
p
'

l
J

、
I
1
J

1
E

・

江
〉
〉
川
}
"
。

E
1
J
1
J
山
リ
刷
、
ー

・1
.

，

"
"
o
J
J
o
o

g
H
J
S
S

〉

c
'

必

3
,
,,

CCE} 

L

リ
十
十
凶
冷
山
崎
日

一
(
e
e

目
代

τ
c

、

J

d

〉
t
t

川
也
市
川

d
o

t

c

u

u

c

E

C

 

S

比
b
b
d
u
d
-

"
な

・

1
・
1

-

C
3
t

J
L
W
川
r
r
1
1
f
ν

宮

市
町k
t
t
3
1
3
r

刈

む
&
〈

t
t
r

、

q
u
f
K
3
c

y
a
a
r
f
i

、

r
b
d

t
η
4
-

-
o
r
o
c
 

一
，(
1
1
t
'
o
t
e
3

ユ

r
a
a
c
l
J
t
c
v
f
k

A団
0
2
「
苫
「e
l
J
c
e
-
z

p
t
g
g
v
"
e
'
v
c
o
 

p
u
c
-
-
・
1

一
s
v

、
I
-

-
L
t

i
e
s
s
c
u
-
-
J
c
g
c
 

s
v

，
，

.

1
b
c
"

・
1
0
e

，
一
、
，
I
、
I
σ
凸
-

・
1
4
S
F
b

，

1
-
V
-
J

-
J
C
"
"
o
s
g
u
o

下
J
-
-
1
J

1
'
f

.

p
-u
・k
l一
回h
b
-
l
-
つ
吋

'-U
r

u
-
u
}

・

1
0
g
g
d
k
-
a
d
s
s

〉

g
L

下

'
"
l
o
o
t
d
d
t
t
u
"
1
J
o
b

-
J
I
L
-
-
l
s
d
t
a
s
b
F
t
"
l
a
 

J
L

下
J
a
d
-
-
"
a
s
d
"
-
e
s
-
-

白
い

ω
比
d
d
{

に
"
に
べ

S

下
山
d
-町

g
1
j
E
t
t

児
才
f

ヴ
泊
四
s
y
b
t
­

a
"
t
"
s
s
?
r

冷

r
?

喝
℃
ー
-
s
e

f
-
c
J
L
"
"
Y
G
P
O
-
r
-
a
"
t
 

L

は

r
e

冶
F
t
f
h
u
.
2
n
m町
b
l
t
f

・1

占
帽

r
p
e
e
-
e

℃
ー
e

一
d
a
a
e
?

W
A
'

川
'
'
叫
忠
一

w
w
A
-
札
口
同
日
明
日
一

m
m

f
f
r
}
"
}
}

，
工
一
一

g
o
P
O
E
T
s
r
L
-
r

m
y
e

，

f
'
"

，

M
K
m
d
d

・
l
i
g

-
-
L
o

'

o
d
。

日
目
白
川

u
m
y
d
E
e
o
c

伊
B
R
A
d-

m
d
3
'
阻
つ
個
出
個

山
間
陶
ぽ
同

'
u
u
'
d
-
v
m

ン
崎
明
川Jm
L
mつ
m

一
凶E
一
事E
-

m
L
m
L、
九'
h
d叩s
-つ

M
M引
っ
'
L
d
-
M
1
h
h
M

凶
凶m
Mね
mねh
ね

"
U
t
E
勺

c
c
e
}
"
y
p
n
"
"
"

-l
u

--
"
d
"
d
"
d

山
ぽL

'∞
∞
つ
m
d
s
-
J
"
，

L
L
L

山
山u
u
h山
f
川
ハ
れUu
r
m
V
M
V
M
-

い
，M
-い
凶
れL

T
t
e
a

'
}
O
O
O

--
e
n
S
F
}
"
"

〉

e
e
f
u
"
d
n
u
n
f
p
M
M
M

民
-m
u
・M
M
h
u

d
-
'
h
.
ω

円
一
夕
刊
山
一

ω
叫
しm
m
m円
…
↓
川
一
川

i
y
M・m
r
L
M
c
-
m
O
M∞
∞
d
h
d
h
d凶
d
M
M
M

v
e
n
4
H
S
D
2

・工

c
c
h
1
，
;
"
'
"・
1

・

l
a
s
e
e
t
"
t

・1

・l
e

--
e

-l
e

--
e

-l
o

--

ヰ
同
庁
刑
訂
正

-
W山v
x
u
u
m
b
m
m
m

，

K
副-
w
m
m
ぷ
ぷ
m
m
Z
2
2
2
沼
町

d

山
山
町
民
ω
ω
m
m
山
田
。
-
。
由
民

h
L
?
?
?
m
d

辺
位-
b
-
u
d
-

叫
」
仙
位u
m
a
m
u
w

小
川-
m
u
w
十
日-
m
u

a
o
r
ι
d
p
p
e
y
l
r
r
f
2
3
4
4
-
h
t
y
e
r
d
y

，

f
f
A
a
p
a
A
a
D
a
d
a
 

r
w
t
-

一
-
-
一
℃

l
e
e
e
e
e
e
e

-
-
-
s
r
y
e
-
t
.
2
"
"
u
n
t
n
d
n
d
a
f
L
a

t

-
s
l
l

工

1
1
-
e
b
b
g
g
g
g
g
t
a

--
o
a
b

℃

1
t
t
t
s
g
s
F
U
P
U
F
f
p

h
h
z
z
z
記
M
M
m
m
m
m
m
M
M

同
b
M
2
3
h
W
Cぷ
芯
ぷ
伊

A.7.8 Decode statement 

Decode statement indicates instruction decode stage and instruction register. Instrucｭ

tion decode stage is the stage where the decode statement is described. The storage unit 

出 the decode statement indicates instruction register. 

Instruction_type{ 
sllb_field-:name{NQ_VLIW{width{"31" ， "16"} ， type{"Btype吋
I OP-code" {"n祖e"{"opecodeつ， "Width{ワ1" ， "26"}} ，
"Oper担d吋、担e"{lrs "} ，"Width{"25" ， "21"}} ，
"OP-code吋"ロ担e吋"bfunct つ，"Width{"20 " ， "16つ}，
"Oper担d"{川祖e"{"offset つ，"Wid七h{"15" , "O"}} 
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}, 
"Jtype"{ 
"OP-code"{"n祖e"{"opecodeづ， width{"31" , "26"}} , 
"Oper臼d"{"n祖e吋"targetつ，width{"25" ，叩'}}
}, 
"Rtype"{ 
IOP-code"{"name"{"opecode"} ,width{"31" ， "26つ}，
"Oper臼d吋"n臼e"{"rsつ，width{"25" , "21 づ}，
"Oper臼d'句、担e"{"rt"} ， width{"20" ， "16"}} ，
"Oper臼d"{、担e"{"rd"} ， width{"15" , "11'叫，
"Oper担d"{"n祖e"{" sh祖t"} ， width{"10" ， "6"}} ，
"OP-code"{"n祖e l {l rfunct l } ， width{"5 1 ， "0 つ}
}, 
"R1type"{ 
"0P-code"{"n叩e"{" opecode つ，width{"31" ， "26"日，
" Oper担dベ"n担e "{"rs " } ， width{"25" ， "21 つ}，
" Oper臼dぺ "n担e"{"rt " } ， width{"20 " ， "16り}，
"Operand吋"n祖e叩rd "} ， width{"15" ， " 11 "} } ，
"Reserved" {"binaryぺ "00000つ ，width{"10" ， " 6 つ}，
" OP-codeベ "n祖e "{ "rfunct"} ， width{ "5" ， 句" }}
}, 
"Itype"{ 
" DP-codeぺ "n祖e叩opecodeつ ， width{"31" ， "26" }} , 
" Dperand"{ "name "{" rs "} ,wi dth{ " 25" , "21 "}} , 
" Dper臼d"{"n祖e叩rt " } ， width{ "20" , "16"}} , 
rpemd'fh祖州国出ate"} ， ωth{"15" ， 明〉

"LStype"{ 
" DP- code吋百祖e" { "opecodeつ ， width{"31" , " 26つ}，
" Operandベ、祖e"{ "baseつ ， width{ " 25" ， " 21つ} ，
" Oper担d" { "n祖e"{ " rt " } ， width{"20" ， "16つ} ，
"Oper担d"{"n祖e"{"offsetり ， width{"15" ， "0つ}
} , 
"R2type" { 
"DP-codeベ"且祖eベ" opecodeつ ， width{ " 31 " ， "26つ}，
" Oper担d"{"n祖e"{"rsつ， width{"25" ， " 21"日 ，
"Oper担d"{"n祖e"{"rt"} ， width{"20" , "16"}} , 
"Reserved"{"binary"{"OOOOOOOOOO"} , wi dth{"15 " , "6 "}} , 
" OP-code"{"n祖e"{"rfunctつ，width{"5" , "O"}} 
} , 
"MFtype吋
"OP-code吋"n祖e"{"opecodeつ ， width{ワ1" ， "26"日 ，
"Reservedl{"binary"{"OOOOOOOOOOつ ， width{勺5" ， 勺6つ} ，
" Operand"{"n担eベ"rdつ ， width{"15" , "11"}} , 
" Reserved"{"binary "{勺0000つ， width{"10" ， "6"}} ，
" OP-code" { "n祖e"{"mffunct つ， width{ " 5" , "O"}} 
} , 
"MTtype" { 
勺P-code"{、祖e叩opecodeつ，width{ " 31" , "26つ}，
" Oper祖d"{"n祖e"{"rsつ，width{"25" ， "21 つ}，
"Reserved"{"binary"{IOOOOOOOOOOOOOOO"} ,width{"20" , "6"}} , 
" 0P- code " {"n祖e " {"mtfunct つ， width{"5" ， "0つ〉
}, 
"B1type"{ 
"OP-code吋団組e"{"opecodeつ，width{"31" , "26"}} , 
"Oper担dベヨ祖e"{吋s"} ， width{"25" ， "21 つ}，
" Oper祖d吋百祖e " {"rt"} ， width{つ0" ， "16"}} ，
" Oper祖d"{"n祖e " {"offsetつ ， width{ " 15" , "O"}} 
>
} }} } , 

" 0per担d吋 "n祖e"{"rtつ， width{"20" , "16つ}，
"Oper臼d" { " n祖e"{"immediateつ， width{"15" , "O"}} 
}, "ADD IU"{type{"Itype"} , "OP-code"{"binary吋吋01001"} ，width{"31" , "26つ}，
" 0per担d"{ "n祖e吋"rs"} ， width{"25" ， "21 つ}，
" 0pera且d"{ 川B祖e"{"rt"} ， width{"20" ， "16"}} ，
11 Opera且d " { "nameベ"immediateつ， width{"15" ， "0つ}
} , "ADDU" {type{"R1type"} , "OP-code"{"binary"{"000000"} ,width{"31" , "26"}} , 
"Oper臼d"{"n担eぺ"rsつ， width{"25" , "21"}} , 
" Oper日d吋 "n姐e" {" rt"} ， width{"20" , "16"}} , 
" Oper臼dベ"ロ姐e "{" rd"} ， width{"15" , "11"}} , 
"Reserved" {" binary " {勺0000" } ， width{"10" ，喝つ}，
" DP-code"{"b阻むy"{"100001つ， width{ " 5 " ， " 0つ}
上 "ANDI"{type{ " Itype"} ， "OP-code吋"binary"{ "00 1100"} ，width{"31" ， "26 つ}，
" Oper担d"{"n祖e"{" rs"} ， width{ " 25 " ， "2 1 つ} ，
" Oper担dぺ "n祖e " { " rtつ ， width{"20 " ， "16つ} ，
" Dperandベ "name" {"国脱出ateつ ， width{ " 15" ，"O"}} 
上 "BGEZ吋type{ "Btype"} ， "OP-code"{九阻むy" {"00000l" } ， width{"31" ， "26つ}，
"Dper臼dべ "n祖e叩rsつ， width{"25" , "21 "}} , 
"DP-code"{"binary"{勺0001つ ， width{ " 20" ， "16つ} ，
" Dperand"{、祖e"{"offset"} ， width{"15" , "O"}} 
}, "BGEZAL吋type{唱type"} ， "DP-code"{"binary"{"000001"} ， width{ " 31" ， 勺6 "}} ，
" Dper姐dべ、担e"{"rs " } ， width{"25" , "21 "}} , 
"OP-code吋 "bin訂yベ"10001 つ， width{"20" , "16"}} , 
"Dper臼dベ"n祖e"{" offsetつ，width{"15" , "O"}} 
}， "BGTZ " {type{"Btypeつ， "DP-code"{"binary" {勺00111つ ， width{"31 " ，勺6"}} ，
"Oper臼d"{"n祖eぺ"rs"} ， width{"25" ， "21 つ} ，
"OP-code吋 "binary"{"OOOOOつ ， width{"20" , "16"}} , 
"Op紅白d"{ "n祖eベ"offsetつ ，width{" 15" , "O"}} 
}, 11 BLEZ11 {type{"Btype" } , "DP-code " {"binary吋"000110つ ， width{"31 11 , "26"}} , 
"Oper担dぺ"n祖e"{"rs " } ， width{"25" ， " 21 つ}，
"oP-code"{"binary"{勺0000つ ， width{"20" ， "16"}} ，
"0句pe町r担d"吋'{、祖eぜ"吋'{"吋'0吋ffおseげtγ.つ，wid批th{"15" ， "0"}}
}, "BLTZ吋type{"Btype"} ， "DP-code"{"b阻むy"{"OOOOO lつ ， width{"31" ， "26"}} ，
"Oper担d"{"n祖eぺ"rsつ， width{"25" ， "21"}} , 
"OP-codeベ"b阻むy"{"OOOOO'守， wid七h{"20" , "16"}} , 
" Oper担dベ"n祖e"{"offset"} ， width{"15" , "O"}} 
}， "B口弘L"{type{唱type"} ， "OP-c od.e"{もinary"{"OOOOOlつ， width{" 31" ， 勺6"}} ，
"Oper担dぺ、担e"{吋sつ， width{"25" ， "21 つ}，
"oP-codeベ"binaryぺ"10000つ，width{"20" , "16"}} , 
"Oper祖dベ"n担e叩offsetつ ， width{"15" ， "0"}}
}, "IAND吋type{"R1typeつ， "OP-code"{"binary"{吋00000つ，width{"31" , "26"}} , 
"0句pe訂r担dべ"、n祖eぜ"べ'{II吋rs"つ}， wid批七h{"勺25
" 口句pe訂r担d"べ'{"、n祖eぜ"べt{ 1t可rt"つ' }， wid批th{勺01 , "16"}} , 
"Oper也dぺ"nameベ"rd"} ， width{"15" , "11"}} , 
IReserved"{lbinaryl{"00000"} ,width{"10" , "6"}} , 
"ロトcode"{"bin訂y"{"100100つ，width{"5" ， "0つ}
}， "INOR吋type{"R1typeつ， "OP-codeベ "binary"{吋00000つ ， width{"31" ， "26つ} ，
"Oper担d"{"n祖e"{"rsつ， width{"25" ， "21 つ}，
"Operand"{川ame"{吋七つ， width{"20" ， "16つ}，
"Oper担d"{百祖e"{"rd"} ， width{ ・' 15" ， "11"}} ，
"Reserved"{"binary"{"OOOOO"} ,width{"10" , "6"}} , 
"OP-code"{、inaryべ"100111つ， width{"5" , "O"}} 
}， "IoR"{type{"R1typeつ， "OP-code"{"bin訂y"{"000000"} ， width{"31" ， "26"日 ，
"Oper祖d"{"n祖e"{" rs つ， width{125" ， "21 つ}，
"Oper担d"{"n祖e"{" rtつ，width{"20" ， "16つ}，
"Oper祖dぺ"n祖e"{" rd"} ， width{"15
"Reserved"{lbinaryl{"OOOOOI} ， width~"勺10" , "6"}} , 
"OP-codeぺ"binary"{" 100101つ， width{"5" , "O"}} 
上 "ISUB"{type{"R1typeつ， "OP-code"{"binary"{"OOOOOOつ ， width{"31 " ， "26り} ，
"Oper臼dべ"n祖e"{"rsつ， width{"25" ， "21"}} ，
"0句pe位r担d"吋'{"、n祖e "吋{吋t"つ}， wid批th{"勺20" ， "16"つ}η} ，
" 日句pe釘r担dべ"、n祖e"べ{"可'r吋dつ ， wid批th{"勺15
"Rêserved"{"binary"{"OOOOO"} , width{"10" ， "6~'}} ， 
"OP-codeぺ"b阻むy"{"100010つ， width{"5" ，叩'}}
}， "IXOR"{type{"R1typeつ， "OP-code"{"binaryべ"000000つ ， width{"31" ， "26つ}，
"Dperandべ、祖e"{"rsつ， width{"25" ， "21 づ}，
"0句pe釘r担d'ベ"、n祖eぜ"叩'{"吋rt"つ}， wid批th{"勺20" ， "16"}} , 
"0句pe位r臼d"べ'{"、n祖e"べ{"吋'r吋d"つ}， wid批th{"吋15
"Rêserved"{"binary"{"OOOOO"} ， width{"吋10" ， "6"}} ，
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"DP-code"{"binary"{" 100110つ， width{"5" ， "0"}}
} :~， J;;{tyP~{~Jtyp~"} ， "OP-c9de ;'~"?~Il~"t?~~010"} ， width{"31" , "26"}} , 
"Dper担d吋 "n祖èÎ'{"target "}, widt~{"25" ， "0 ':日
〉，fJAL吋type{リtype"} ， "DP-codeべ"binary吋勺00011つ，width{ " 31" ， "26"日 ，
"Dper臼d"{"n祖e吋"tむget"} ， width~"25" ， "0'叫
}，tJALR" ftypef呪type"} ， "OP-c~de吋"[)~~y" {"000000"} ，..idth{" 31 " , "26つ}，
"Dper臼d吋"n祖e"{"rsつ，width{"25" ， "21 つ}，
"Oper担d"{"n祖e"{"rt"} ， width{"20" ， "16つ}，
"Dpera且d"{"name"{"はつ，width{"15" ， "11"}} ，
"Dper臼d"{"n祖e"{"sh担t"} ， width{"10" ， "6 つ}，
"OP-code"{"binary"{勺01001つ， width{"5" ， "O"}} 
} ， "JR吋type{"R1type"}!" OP-co~e吋 "binaryベ吋00000" } ， width{"31" ， "26つ}，
"Oper臼d叩B祖e "{I'rs"} ， width{"25" , "21 リ}，
"Oper祖d叩B担e"{"rt"} ， width{"20" ，"叩1日6"}} ，
"勺Opいera祖且凶d吋"、n祖e "吋{"吋'r吋d"つ}， wid批th{"l臼5
"R込らse工ved"吋{ "bi担n訂y "べ{"司明O∞O∞O∞O∞0"つ}，.. 凶id批th{"10" , "6 "}} , 
"OP-codeベ"bin泣yべ "001000つ ， .. idth{"5 " ， "0つ〉
}, " LB吋type{ "LStypeつ ， " OP-code"{"binaryべ"100000 "} ， width{ワ1" ， 勺6つ} ，
" Oper担d"{百担e"{ " baseつ ， ..idth{" 25" ， 勺1 "}} ，
"。もer担dベ "n祖e" { " rt " } ， ..idth{"20" , " 16"}} , 
"~er担d吋"n祖e "{" offsetつ ， ..idth{吐5" ， "0つ〉
}ヲ日U"{type{"LStype札 "OP-code"{"bin.ary叩 100100 " } ， ..idth{"31" , "26"}} , 
" Oper担d" {"n祖e ，， {í' base" } ，width{"25" , " 21"}} , 
勺ber臼d吋"n担e " {"rt つ， width{"20 " , "16"}} , 
" O~er臼d"{"n担e"{" offsetつ ， ..idth{"15" ， "0つ〉
〉，Zuf吋type{ " LStypeつ ， 勺P-codeぺ"binary"{ " 100001つ，width{ " 31 " ， " 26"日 ，
"OP紅白d吋"n祖e "{Î'basè " } ，width{"25" , " 21"}} , 
"ohr也d叩E祖e " {"r七"}， width{"20 " ， "16つ} ，
"。もer祖d"{百担e " {"offset" } ， ..idth{"15" ， "0つ}
〉，ru町ベtype{"LS~ypeつ ， 叩P-code"{"bin.ary吋 " 100101つ， ..idth{"31 " ， 勺6つ}，
"Oper担d"{"n祖e ，， {í'base"} ，..idth{"25" , "21 つ}，
"Oper担d"{、祖e"{吋七つ，..idth{"20" ， "16"つ}}，
"叩0吟ber祖d" {"百n祖e叩Oぱffおseげtγ'つ ， ..id批th{ "吋~5" ，"?':n 
} , "LUI"{type{"Itype"上旬P-code"{"binary"{勺01111"} ， width{"31 " ， "26つ} ，
"Qper担dベ"n祖eベi'rs"} ，..idth{"25" , "21"}} , 
"~er担d吋"n担e吋"rtつ ， ..idth{"20" ， "16 "日 ，
"0品もer担d'吋"、na祖皿eぜ"吋'{"泊血即ed色ia抗七eぜ"つ'} ， wid批th{"l臼5
}口，ヲ"L印W"ベ巾'叱〈れtype“{"明閣L凶1St抗ty伊P戸e"} ， "OP一C∞od白e"叱'{"判{'υ門"吋'もb凶in凶町a紅ryγ'叩 10∞O∞011"} ， wωiは比d批t削h{"付"ワ叶'宮31" ， " 26"}} ，
"Oper坦d"{"n祖e"{"baseつ， ..id七h{"25" , "21"}} , 
"Oper臼d"{"n祖e"{"rt勺， ..idth{"20" ， "16つ} ，
"oPerand"{"n臼e"{"offsetつ， width{"15" ， "0"日
}， 勺RI吋type{吐typeつ， "Op-éode"{lbinary"{"001101"} ， ..idth{"31" ，勺6"}} ，
"Oper祖d"{"n祖e吋"rsつ ， ..idth{"25" ， "21 つ}，
"OÎ:>er担d"{"n祖e叩rtつ， ..idth{"20" , "16"日，
"Oper担d"{"n祖e"{・'immediateつ ， width{"15" ， "0つ}
〉，hsB"ftypeftStypeH} ， "DP-code吋"binary"{" 101000つ ， width{"31" ， "26つ}，
"Qper担d"{"n祖e"t"base"} ，..idth{"25" ， "21 づ}，
"OÎ:>er担d吋"n祖e"{"rt"} ， width{"20" ， "16"}} ，
"oPerand"{、ame"{"offsetつ，width{勺5" ， "0つ〉
} ~f， SH"{type{"LStyPe"} ， "OP~éode'~{"binaÌy"~~'101001"} ,width{"31" , "26"}} , 
"Qper担d"{"n祖e"{"baseつ ， ..idth{"25" ， "21 つ}，
"Oper担d"{"n祖e"{"rtつ， width{"20" , "16"日，
"Qper組d吋"n祖e叩offset"} ， width{"15" ， "0"}}
日SLL"{type{"Rtype"γOP-code"{"bi町y叩000000"} ， ..idth{"31" ， "26つ}，
"Operand吋"ロ祖e"{"rsつ ， ..idth{"25" , "21"}} , 
" Op紅白d"{"n祖e吋"rt"} ， width{"20" , " 16 "}} , 
"Oper臼d"{"n祖e叩rd"} ,..idth{" 15" , "11"}} , 
"Oper臼d"{"n祖e"{"sh祖t"} ， width{"10" ， "6"}} , 
" OP-code吋"binary"{" 000000つ， width{"5 " ， "0"η 
}, " SLLVベtype{喰1typeつ ， "OP-codeベ"bin訂y"{勺OOOOO"} , width{ ",31" ， 日 26つ}，
"Operand吋"n祖e吋"rs l } ， width{125" ， "21"}} ，
"Oper担d"{団組e"{"rtつ， width{120" ， "16"日，
" Oper担d"{、祖e"{"rdつ ， width{勺5" ， "11"日，
I Reserved"{"binary"{"00000つ ， ..idth{"10" ， "6"日 ，
"DP-codeぺ"binary"{" 000100つ ， width{"5" ， "0つ}
じ'SLT"{type{ "Rl typeつ ， "0P-codeベ"b~~l"{勺OOOOO"} ,..i dth{" 31 " , "26 つ}，
" Oper祖d"{"n祖eぺj'rs"} ， width{"25" , "21"}} , 
11 Dper也d"{"n阻e"{ " rt " } ， width{"20" , "16"}} , 
" 。長erand"{百四e"{" rd"} ， width{勺5" ， "11 つ}，

、
炉
J

、
f
、
I
下
J

下
J

、
I
，
、
I
、
I

，

l
J
l
J
l
J
，
、

I
'
l
J
1
J
，
l
J
l
J
"
1
J

、
I
"
"
l
J

"
、
I
"
"
、
I
1
J
"
p
o
l
J

"
6
6
、

I
6
下

J

6
6
1
J
"
6
2
"

6

2

2

H

2

"

2

2

"

6

2

"

6

 

門4
"
"

に
U
"

に
u
"
"

氏
u
n
4
"
'
η
4

内
4
，

n
，ι

，
，

円
L
"
'
"
"

"

'

"

4

4

'
 

H
4

ょ

e
i

，
4

ム

'
4

よ

4

ム

'
"
4
4
q
u
"

1
3
3
"

3
"
3
3
"
1
3
"

ー

っ
d
"
"
4

ム

"
4

ム

"
"
4

ム

q
d
"
F
4

・、
q
u

H

J

4

{

3

f

3

f

I

L

3

"

r

1

h

"

 

J

L

h

h

N

h

H

h

h

"

I

L

h

t

 

h

七
七

J
k
t
r
t
t
t
r
1
h
t
d
h

t

d

d

h

d

h

d

d

h

t

d

1

 

d
i

-ユ

七
・
1

-t

-l
i
t
d
i
w

・
1
w
w

d
w
d
w
w
d
1
w

'

1

w
'
'

・
1

'

・l
'

'
・

1
v

'

l
J

首

，
、
I
1

J
w
l
J
w
l
J
1
J
W
，
l
J
"
'

-
J
"
"

'
"

'

"
"
'
、
I
"

'

o

，

、
I
，

H
4
4
n

u

、
P
J
n
u
、
ト

J

n
υ
円
U
、
P
J
"
n
u
、
P
J

ハU

、
俳
J
"
、
，
J

0
1

O
H
n
u
"
O
O
H
O
n
u
l

J

O
、
r
o
、
I

1

0

0

0

O

O

G

o

-

-

o

"

o

"

o

"

 

0

1

0

0

O

O

G

o

-

-

0

6

0

6

0

6

 

一'
1
、
I
0
1
J

O

'

o
o
'
o
o
'
o
，
0
1
、
ー
。
H
O
"
o
"

l
J
1
f
n
u
-
J
0

1
J

n
u
n
u
、
I
n
u
o
、
I
n
u
-
-
1
0
、
I
n
u

'

"
'
o
，

、
I
可
I
o
"
"
"
"

1
r
、
r
o
l
J
"
1
f
、
I
0
1
J
"
、
I
1
f
"
下
〈
I
0
0
"
"
"
、
I
J
、
"
1
r
o
"
、
f

"
1
J
"
O
J
L
O
F
t

H
1
r
o
'
l
J
r
1
"
l
J
O

，

l
J
I
L
"
、
I
，
t
"
、
I
I
'
下
J
"
O
F
1
5
1
J
"
5
1
J
"
5
1
J

6
"
イ
、
"

"
"

"

6

"

"
1
J
"
"
6
"
"
、
I
H
U
6
"

"

6
"
"
1
J
l
J
{
"
"
1
n
Y
1
"
J
L
1
"

"
0

川

'
'
'
y
'
'
'
y
'
'

J
O
J
L

'
'
'

〉

O

y
'
'

;
o
J
L
'
'
'
}
O
y
'
'
;
o
y
'

'

;
o
r
t
-
J
'
"
"
'
'
'
y
'
A
o
r
'
;
o
"

'

;
o

"
;
'
勾
日
日
V泣一け
η
v

z
日υ
日
日
"
，
H
'
f
η
日
日
U
U
J
U
日
η
竹
刀
"
，
J
f
日
日
日
m
u
J
U
日
日
日
"
;
'
訂
日
日
日
"
，
f
f
r
日
m
u
η
η
η
v
紅
一
什
竹
刀
M
"

'
m
D
D
M
J
η
η
竹
刀
M
"
，

"
a
"
"
1

n
"

"
1

E
n
"
"
O
H
X
"
"
"
"
"
E
"
"
"
o
"
r
"
"
"
"
"
n
"
"
"

。

"
n
"
"
"
o
"
r
2
"
'
a
"
"
1
2
"
"
t
"

・
1
"
"
t
"
a
"
"
t
"

1
5
2
1
6
"

・

1
1
6
H

・
1

1
6
1
1
5
a
1
6
1

'

5

・
1
1
6
1
1
5
a
1
6
1

'

5

・
1
1
6
1
1
5
1
1
6
1
1
5
a
"
6
"
E
1
6
"

・
1
1
6
d
5
b
1
6
d
5
2
1
6
d
5

"
"
1
2
1
J
k
b
2
1
f

b
2
1
1
"
"
n
2
1
1
"
"
b
2
1
1
"
"
B
2
1
1
"
"
b
2
1
1
"
"
b
2
1
1
"
"
b
'
1
5
・
工
2
1
f
b
2
1
・
1
"
"
2
1
1
"

・
工
2
1

・1
"

-
L
b
"
"
h
"
"
"
h

"

"
"

"
f
f

・
-
"
"
"
o
f
"
"
"
"
f
f

・-
"
"
"
o
f
"
"
"
"
f
J
L
"
"
"
"
f
r
t

-工
"
"
1
b
"
"
h
"
"
"
w
J
L
J
L
"
"
w
，
t
b
"
"
w
f

h
h
"
'
'
t
I
L
'
'
t
IL
'
'
'
h
h
b

'
'
'
1
h
J
L
'
'
'
h
h
b

'
'
'
1
h
f
'
'
'
h
h
{
'
'
'
h
h
b
5
;
"
'
'
t
J
L
'
'
'
h
"
'
'
'
h
"
'
'
'
h
 

"
d
H
"
"

d
H
"
H

H
t

℃

"
"
"
"
"
t
"
"
"
"
t
t
"
"
"
"
"
t
"
"
"
"
t
t
"
"
"
"
t
t
"
2
"
r
t
J
L
"
"
d
"
"
"
下
J
t
e
"
"
l
J
t
r
1
"
"
l
J
t

d
d
H
5
0

・
1
e
5
0
1

e
5
0
5
d
d
f
5
0
5
J
L
d
e
5
0
5
d
d
J
L
5
0
5
J
t
d
e
5
0
5
d
d
e
5
0
5
d
d
I
L
"
o
h
"
5
0
1
e
5
0
"
d
d
5
0
"
d
"
5
0
"

2
w
d
2
2
w

d
2
2
1
i
i
"
2
2
1
h

-
l
d
2
2
1
i
l
"
2
2
1
h
l
d
2
2
1

・
1
i
d
2
2
1
l
i
"
f
2
t
e
2
2
w
d
2
2
0

・
1

。

2
2
0
1
e
2
2
0

・
1

w
w
d
H
H
'
o
"
"

'
o
"
"
"
w
w
e
"
"
"
t
v
o
"
"
"
w
w
e
"
"
"
t
v
o
"
"
"
w
w
o
"
"
"
w
w
e
h
"
d
d
"
"

'
o
"
"
o
w
c
n
"
o
v
d
"
"
o
w
 

'

'

o
r
t
r
1
1
J
e
r
-
-
、
1
J
C

r
-
J
L
J
L
'

'

d
I
L
-
-
、
J
L
d
'
c
r
t
J
L
r
1
'
t
d
J
L
r
t
r
t
d
'
e
r
-
-
L
J
L
'
'
c
J
L
J
L
J
L
'
t
d
t
I
L

-
-
o
J
t
J
、
l
J
C
J
L
J
L
O
，
-
I
L
J
L
O
'
o
J
L
J
L
O
，

}
1
J
c
h
h
"

」

h

h
"

一

h
h
h
}

〉

o
h
h
h

・
1
}
-
h
h
h
l
J
l
J
0

・a
h
h

・

1
1
J
7
a
b
b
-
r
}

一

h
h
h

〉

1
J
o
d
h
w
c
h
h
H
-
h
h
0
1
J
p
h
h
0
1
J
c
h
h
O
}

""-ttep

t
t
epttt""ctttw"pttt""ctttv"pttt""pttt"ne

--t,-tteptto"otto"-tto" 

o
o
p
d
d

℃

c

d
d
t
o
d
d
d
o
-
-
d
d
d
'
1
0
d
d
d
o
-
-
d
d
d
'
o
o
d
d
d
O
O
D
d
d
d
o
-
-
v
d
l
J
p
d
d
t
o
d
d
o
o
"
d
d
0
1
p
d
d
0
0
 

0
1
c
i
-
-
a
"
i
i

a

"
-

1

・

1
・
1
0
1
p
i

-
-
・

1
1
I
1
"

・
l
i

-
-
0
1
p
i

-
-
・

1
1
J
1
"
1

・

1
1
0
1
"
1

・
1
1
0
1
P
?
1
"
0

・
1

・
1
a
N

・
1
1
0
0
?
1

・

1
0
0
n
u

-
-
・

1
0
1

0
0
"
w
w

-

l
'
w
w

・
ュ
，

w
w
W
O
O
O
w
w
w
"
o
，
w
w
w
0
1
0
w
w
v
"
o
'
E
W
W
0
1
'
w
w
w
O
0
0
1
J
w
t
"
w
w
I

'

w
w
o
o
-
-
w
w
o
o
"
w
v
0
0

01''t

d
>

't

dlJ

,,,

01"

'''

tol

J
,,

,OOH,

,
,t01J,,,O01J,,,oo""'e'

'
'dlJ,,01"''01'''01

0
0
1
J
l
J
1
J
e
H

1
J
1
f

e

n

-
J
1
J
、
I
O
O
J
ι
J
1
J
1
J

国

O
"
l
J
l
J
、
I
o
o
，
l
J

可
I
l
J
m
O
"
1
J
l
J
l
J
0
0
"
l
J
l
J
l
J
O
O
'
e
l
J
s
l
J
l
J

可
I
e
"
1
J
l
J
0
1
e
l
J
、
I
0
1
、
I
1
J
l
J
0
1

m
f引"
w
d
J
u

m
md
rm
m
t
u
d
小
判
刊
ゲ
川
町
山
門

m
u
r
t
L
一
円
叫
が
げ
印
如
何

mポ
ハ
ポL一
円m
vげ
ぽ
川
L
一
門
川
町
日
出
"
戸
“
ぽ
山

u
m
m
d
山u
m
L
一
円
明
日
山
山

μ小
一
門
戸
"
f
d
u
L

一
円

v
d
H
V
J
n
"
"

t

H
"

"
t
"
"
"
V

J
"

p
"
"
"
"
"
t
"
"
"
y

"

p
n
"
"
"
"
t
"
"
"
y
"

℃

"
"
H
Y
"
p
"
"
"
y
"
N
H
t
"
n
Y
H
2
"
H
Y
H
Y
"
H
V
J
"
 

r
y
t
J
L
J
L
J
L
I
J
L
I
L
J
L

1

，

t
I
L
J
L
r
y
y
J
、
I
L
J
L
I
L
Y
-
J
L
J
L
J
L
r
y
y
J
L
J
L
J
L
J
、
Y
1
J
、
J
、
J
L
r
y
1
J
、
I
L
J
L
Z
Y
Y
J

〉

t
I
L
t
J
L
J
、
J
、
2
J
L
r
t
r
y
R
J
L
J
t
r
y
t
I
L
J
L
r
y

m
u
吋
ザ
ザ
v
r
v
v
V
-
J
-
v
v
m
む
批
M
M
M
u
t
t
-
u
m
n
v
u
v
m
U

恥
ザ
M
M
M
M
M
M
訂
叩
d
u
d
-
d
H

国
むm
n
d
v
d
u
d
-
M
U

民
U
M
M
U
t
t
r
v叩u
v
u
m
u
r
t
d
u
m
u
m
v
v
m
u

M
m
d
組
組
担
戸
組
組
担
ぱ
祖
祖
U
M
m
V
組
組
担
祖

-u
d
祖
祖
組
一
回
四
日
γ
祖
担
祖
祖

・m
M
祖
担
祖
M-u
d
組
組
組
一
M
m
t
祖
祖
祖
ぱ
組
組
組
ぱ
組
担
し
m
m
戸
組
担
M

-u
υ
組
組一回
-u

p
山u
m庁
、、
HB
旬
、
唱
、
内
庁
、
川
、
?
も
戸
、
、
、
、
山
U
W
1
h
u
川
ι
h
L

叫ν
戸
川
u
h
u
h
u
~
u
山
u
m
庁
、
、
、
れ
も
も
内
庁
、
h
u
川
u
r

凡u
M
h
u
川
u
~
“
内
庁
、
~
u
h
u
m
庁
、
~
u
p

凡u
w
d
h
品
川
u
?

凡U
戸
h
u
h
u
?

凡U

"

r

1

t
J

〉

t
r
t
J
L
J
:
t
r
t
t
J
L
I
t
-
L

"

J
L
Y
J
L
I
L
-
-
、
r
1
J
L
t
i
t
J
t
J
L
"

J
L
Y
J
t
r
t
r
t
r
t
r
1
t
r
1
，
t
J
L
U
J
L
t
J
L
r
1
J
L
"
J
L
P
r
t
J
L
I
L
t
J
L
J
L
I
L
t
r
t
r
1
"
J
L
J
L
J
L
J
L
"
J
L
y
r
t
r
1
"
J
L

d
H

イ
、
"
"

"
"
"
"
"

r

t
"
"
"
d
"
t
"
"
"
"
"
r
t
"
"
"
d
"
t
"
"
"
"
"
r
1
"
"
"
d
"
J
t
"
"
"
d
"
y
"
"
"
J
L
"
"
"
J
L
"
"
d
"
"
"
"
d
"
t
"
"
d
"

e
e
"
d
d
d
u
d
d
d
H
d
d
d
e
e
f
d
d
d
d
e
"
d
d
d
e
e
Jt
d
d
d
d
e
"
d
d
d
e
e
"
d
d
d
e
e
t
d
d
d
"
d
d
d
"
d
d
e
e
u
d
d
e
e
J
t
d
d
e
e
 

お
m
m
m
m
m
m
m
m
m
m
m
m
m
m

…
m
m
m
m
叫
m
m
m
m
m
叫
即
日m
m
m川
町m
m
mお
m
m
m
m
Z判m
m
m
m
m
m
m
m
m
m
m

叫
町
立
おm
u
m
m
m
一
一

s
-
s
e
e
e
s
e
e
e
s
e
e
e
s
-
s
e
e
e
e
-
s
e
e
e
s
-
s
e
e
e
e
-
s
e
e
e
s
-
s
e
e
e
s
-
s
e
e
e
x
e
e
e
M
e
e
s
-
M
e
e
s
-
D
e
e
s
-

h
即
ノ
句
匂
句
ノ
句
句
句
ノ

句
句
句
恥
ω
J
句
句
句
句
即
ノ
句
句
句
恥
即
J
句
句
句
句
ω
f
句
句
句
L
M
m
f
h
A
句
句
L
M
即
f
h
A
句
句
"
'
h
‘
句
匂
J
h
‘
伽
4
L
M

白
f
h
‘
h
A
L
m
即
H
'
b

ゐ

h・
L
附
即

"
"
、

I
"
"
"
、

I
H

H

H

1
I
H
H
H
"
"

、
土
"

"
"
"
"
下
J
"
"
"
"
"
、
r
"
"
"
"
"
、
I
"
"
"
"
"
、
r
"
"
"
"
"
、
I
"
"
"
、
f
"
"
"
、
I
"
"
"
"
1
J
"
"
"
"
下
J
"
"
"
"

126 127 



}， ID1VU I {type{"R2typeつ， "OP-code"{もinaryl{10000001} ， width{1311 ， 126"日，
"Oper担d"{"n祖e吋 I rs l} ， width{"25 1 ， 121"}} ，
"0per祖d吋"n祖e"{"rt つ， width{"20" ， "16"}} ，
"Reserved"{"binary"{"0000000000"} ， width{"15" ， "6つ}，
"OP-code"{"binary"{"011011 つ， width{"5" , "O"}} 
}， "MFH1"{type{"町type"} ， "OP-code"{"binary"{勺00000つ，width{"31" , "26"}} , 
"Reserved"{"binむy"l"oooooOOOOO"} ，width{"25" , "16"}} , 
"Oper担d"{"n祖e"{"rdつ，width{"15" , "1!"}}, 
"Reserved"{"binary"{"00000"} ,width{"10" , "6"}} , 
"DP-code"{"binary"{"010000"} ,width{"5" , "0"}} 
}, "MFLO" {type{"MFtypeつ， "OP-code"{"binむy"{河00000つ， width{"31" ， "26つ}，
"Reserved"{"binary"{"OOOOOOOOOO"} , width{"25" , "16"}} , 
"Dperand"{'~n祖e"{"rd"} ，width{" 15" , "1!"}}, 
"Reserved"{"binary"{"OOOOOつ， width{"10" ， "6"日，
"OP-code"{"binary"{"010010つ，width{"5" ， "0"日
}， "MTH1"{type{"MTtype"} ， "OP-code"{"binaryぺ"000000つ，width{"31" ， "26つ}，
"Operand吋 "n祖e"{"rs"} ， width{"25" ， "21"}} ，
"Reserved"{"binary"{"000000000000000"} ,width{"20" , "6"}} , 
"DP-code"{"binary"{"010001つ，width{"5" ， "0つ}
}， "MTLO"{type{明Ttypeつ， "OP-code"{"bin訂y吋"000000つ，width{"31" ， "26"日，
"Dper組d吋"n祖e吋"rsつ， width{"25" , "21"}} , 
"Reserved"{"binary"{ゆ00000000000000つ，width{吃0" ， "6" 日，
"OP-code"{"binむy"{勺10011"} ,width{"5" , "0つ}
}, "BEQ"{type{"Bltypeつ， "OP-code吋"binary"{"000100"} ， width{"31" ， "26つ}，
"Oper担d"{"n祖e"{"rs"} ， width{"25" ，"勺21"つ}}，
"0句pe釘r姐d吋"、B祖eぜII{II吋rt"つ}， w凶id批th{勺O
"0句pe位r姐d吋"百n祖eザ"{"oぱffおse抗t"つ}，wid批七h{"15" , "0つ〉
}, "BNE吋type{"Bltypeづ，勺P-codeべ "binary"{勺00101 つ， width{"31" ， "26 つ}，
"Oper担d"{"n担e"{"rsつ， width{"25" ， "21"日，
"Dper担d"{、祖e"{"rt つ， width{"20" ， "16"日，
"Oper担d吋"n祖e吋"offset"} ， width{"15" ， "0"}}
}}}, 

Operation{NO一札1W{}} , 

Resource{"IR"{cl回s{"register"} ， classpath{" つ，
P訂祖eter{
abstraction_level{for_simulation{"Behavior"} , for_synthesis{"Gate"}} , 
bit_width{"32"} , 
edge_trigger{"positive"}}} 
, "iU"{class{"register"} , classpath{" "}, 
P訂祖eter{
abstraction_level{for_simulation{"Behavior"} , for_synthesis{"Gate"}} , 
bit_width{"32"} , 
edge_trigger{"posi七ive"}}}
, "LO"{class{"register"} ， cl出spath{" づ，
parameter{ 
abstraction_level{for_simulation{"Behavior"} , for_synthesis{"Gate"}} , 
bit_width{"32"} , 
edge_trigger{"posi七ive"}}}
, "CSW"{class{"工egister"} ，classpath{" "}, 
P訂祖eter{
abstraction_level{for_simulation{"Behavior"} , for_synthesis{"Gate"}} , 
bit_width{"32"} , 
edge_trigger{"positive"}}} 
, "GPR"{class{"registerfile"} , classpath{""} , 
par祖eter{
abstraction_level{for_simulatエon{"Behavior"} ， for_synthesis{"Gate"}} ，
bit_width{"32"} , 
num_register{"32つ，
num_read_port{"2つ，
num_町ite_port{"lつ}}
, "ADDO"{class{"adder"} , classpath{""} , 
parameter{ 
abstraction_level{for_simulation{"Behaviorつ， for_synthesis{"Gate"}} ，
bit_width{"32"} , 
algorithm{"cla"}}} 
, "ALUO"{class{"alu"} ,classpath{""} , 
par祖eter{
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~bstr~~t~~Il=-~~:，el{for_simulation{"Behavior"} ， for_synthesis{"Gate"}} ， 
bit_width{"32"} , 
algorithm{"cla"}}} 
, "D1VOベcそass{"divider"} ， classpath{""} ，
parameter{ 

~~str~~t~<;Il=-~~:，el{for_simulation{"Behavior"} ， for_synthesis{"Gate"}} ， 
bit_width{"32"} , 
algorithm{"seq"} , 
adder_algorithm{日la"} ，
data_tYEe{"two_complement"}}} 
， "S打O"{class{"barrelshifterつ， classpath{" つ，
parameter{ 
~bstra~t~~n-:-ley~~{for_simulation{"Behavior"} ， for_synthesis{"RT"}} ， 
bit_width{"32"}}} 
， "EXTO"{c~ass{"extender"} ， classpath{""} ， 
par祖eter{

abstracti~n_leyel{for_simulation{"Behavior"} ， for_synthesis{"Gate"}} ， 
bit_width{"16"}}} 
，"阻止O"{c~ass{"multiplierつ， classpath{" つ，
parameter{ 
abstracti~n_leyel{for_simulation{"Behavior"} ， for_synthesis{"Gateつ}，
bit_width{"32"} , 
algorithm{"seq"} , 
adder_algorithm{"cla"} , 
data_type{"two_complement"}}} 
， "PC"{class{"pcuつ， classpath{" つ，
parameter{ 
abstraction_level{for_simulation{"Behavior"} ， for_synthesis{"Ga七 e"}} ，
bit_width{"32 つ，
increment_step{"4"} , 
adder_algorithm{"cla"}}} 
， "1阻M"{class{"imcu"} ， classpath{" つ，
pむ担eter{
abstraction_level{for_simulation{"Behaviorつ， for_synthesis{"Gateつ}，
bit_width{"32"}}} 
， "DMEMベclass{"dmcuつ， classpath{" つ，
par祖eter{
abstraction_level{for_simulation{"Behavior"} ,for_synthesis{"Gate"}} , 
bit_width{"32"}}} 
, "NOTO"{class{"not"} , classpath{""} , 
par祖eter{
abstraction_level{for_simulation{"Behavior"} ， for_synthesis{"Gateつ}，
bit_width{" 1 "}}} 
}, 

Exception{"reset"{Condition{"rst=' l' つ， Type{"External"} ， Cycles{"lつ，
Behavior{"--reset behaviorつ，Assert{" つ，Comment{""} ，
MOD{clk(1) {"PC.resetO ; GPR.rese七 0;
CSW.reset(); HI.reset(); 
LO.reset(); IR.reset(); つ
}}, 
"initO"{Condition{"int = '1' 担d intn = \勺OO\""} ， Type{"External"} ， Cycles{"l"} ，
Behavior{"--1nterrupt behaviorつ， Assert{" "}， Comment{" つ，
MOD{clk(l){"CSW := PC;"} 
}} 

}, 

MOT{mnemonic{"ADD"{clk(l){"IR := 1阻M[PC] ; 
PC. inc 0 ; "} , 
clk(2){"DECODE(IR); 

$rs := GPR.readO(rs); 
$rt := GPR.read1(rt);"} , 
clk(3){" ($result , $flag) := ALUO.add($rs , $rt);"} , 
clk(4){""} , 
clk(5){"GPR[rd] := $result; "} 
} 

, "ADDI"{clk(l){"IR := 1阻M[PC] ; 
PC .incO; "}, 
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clk(2){"DECODE(IR); 

$rs:=GPR.readO(rs); 
$imm:=EXTO.sign(immediate);"} , 
clk(3){" ($result , $flag) :=ALUO.add($rs ， $imm); つ，
clk(4){""} , 
clk(5){"GPR[rt] :=$result;"} 
} 
, "ADDIU"{clk (1 ){"IR := 工阻M[PC] ; 
PC. inc 0 ; "} , 
clk(2){"DECODE(IR); 

$rs:=GPR.readO(rs); 
$imm:=EXTO.sign(immed i ate );"} , 
clk(3){" ($result , $flag):=ALUO . add ( $rs ， $ imm); つ，
clk(4){"" } , 
clk(5){"GPR[rt] :=$resu工t ; "} 
} 

, "ADDU"{clk(l){ "IR : = 1氾M [PC] ; 
PC. inc 0 ; "} , 
clk(2){"DECODE(IR); 

$rs := GPR.readO(rs); 
$rt := GPR.read1(rt); " } , 
clk(3){" ($result , $flag) := ALUO . add($rs , $rt ); "} , 
clk(4){""} , 
clk(5){"GPR[rd] := $result;"} 
} 
, "ANDI"{ clk(l){ " IR := 1阻M[PC] ; 
PC. inc() ; つ，
clk(2){"DECODE(IR); 

$rs:=GPR.readO(rs); 
$imm :=EXTO.zero(immediate) ; "} , 
clk(3){" ($result , $flag) : =ALUO.担d($rs ， $国皿); "}, 
clk(4){""} , 
clk(5){"GPR[rt] :=$result; "} 
} 

， "BGEZ吋clk(l){"IR := 1肥M[PC] ; 
PC.incO; 

$pc:=PC ; "} , 
clk(2){"DECODE(IR) ; 

$rs:=GPR.readO(rs); 
$imm := EXTO.sign(offset);"} , 
clk(3){"$offset := $imm(29 dOYllto 0) &. ¥"00¥"; 
$target := ADDO . add($pc , $offset); 
$flag := ALUO.cmpz($rs); 
if ($rs ~3 1) ='0') then PC: =$target; end if; "}, 
clk(4){""} , 
clk(5){""} 
>
, "BGEZAL"{clk (1 ){"IR := 1肥M[PC] ; 
PC.incO; 

$pc :=PC; " }, 
clk(2) {"DECODE(IR) ; 

$rs:=GPR.readO(rs); 
S四m := EXTO.sign(offset) ; つ ，
clk(3){"$offset := $imm(29 dOYllto 0) & ¥"00¥"; 
$target := ADDO . add($pc , $offset); 
~f($rs(31) = '0 ' ) then-PC:=$target; end if; 
$pc2 := PC; "}, 
clk (4){""} , 
;比(引"GPR[\"l山町] :吻山"}

, "BGTZ"{clk ( l){"IR := 1阻M[PC] ; 
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PC. incO; 

$pc : =PC ;"} , 
clk(2){"DECODE(IR) ; 

$rs:=GPR.readO(rs); 
$imm _: == EXTO. sign(offset) ;つ，
clk(3){"$offset := $imm(29 dOYllto 0) & ¥"00¥"; 
$target := ADDO.add ($pc , $offset); 
$flag:=ALUO.cmpz($rs); 
if(($rs(31) = > 0 ') 批 ($f lag(2) = '0')) then PC:= $target; end if;"} , 
clk(4){ "" } , 
clk(5){""} 
>
, "BLEZ"{clk ( l){"IR := 1阻M[PC] ; 
PC. incO; 

$pc : =PC;"} , 
clk(2){"DECODE(IR); 

$rs:=GPR.readO(rs); 
$imm := EXTO.sign(offset) ; "} , 
clk(3){"$offset := $imm(29 dOYllto 0) & ¥"00¥"; 
$target := ADDO.add($pc , $offset); 
$flag:=ALUO.cmpz($rs); 
if(~$!~(3~) = '1') II ($flag(2) =中)) then PC:= $target; end if; つ ，
clk(4){" つ，
clk (5){'"'} 
} 

， "BLTZベclk(1){"IR := lMEM[PC]; 
PC. incO; 

$pc:=PC;"} , 
clk(2){"DECODE(IR); 

$rs:=GPR.readO(rs); 
$imm := EXTO . sign(offset);"} , 
clk(3){"$offset -:= $四m(29 dOYllto 0) & ¥"00¥"; 
$target := ADDO.add($pc , $offset); 
if(~r~Ç312='1') then C゙:=$target; end if ; つ，
C工k(4){""} ，
clk(5){" "} 
} 

, "BLTZ札"{clk(l){勺R := lMEM[PC]; 
PC. incO; 

$pc:=PC;"} , 
clk(2){"DECODE(IR); 

$rs:=GPR.readO(rs); 
$imm := EXTO.sign(offset);"} , 
clk(3){"$offset := $imm(29 dOYllto 0) & \吻0\ " ; 
$target := ADDO . add($pc , $offset); 
if($rs(31)='1') then PC:=$target; end if; 
$pc2 := PC;"} , 
clk(4){川}，

;lk(訓"GPR[\"山1刊] :吻山つ

, "IAND"{clk (1 ){"IR := 1阻M[PC] ; 
PC.incO ; "}, 
clk(2){"DECODE(IR); 

$rs := GPR.readO(rs); 
$rt : = GPR. readl (rt) ; "} , 
clk(3){" ($result , $flag) := ALUO.and($rs , $rt) ; つ，
clk(4){""} , 
clk(5) {"GPR[rd] := $result;"} 
} 

, "INOR"{clk (1 ){"IR := lMEM[PC]; 
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PC.incO; "}, 
clk(2){"DECODE(IR) ; 

$rs := GPR.readO(rs); 
$rt := GPR.read1(rt); つ，
clk(3){" ($result , $flag) := ALUO.nor($rs , $r七) ; "}, 
clk(4){""} , 
clk(5){"GPR[rd] := $result;"} 
>
, "IOR"{clk (1 ){"IR ::: lMEM[PC]; 
PC.incO; "}, 
clk(2){"DECODE(IR); 

$rs ::: GPR.readO(rs); 
$rt ::: GPR.read1(rt); 
;つ，
~lk(3){"($result ， $flag) := ALUO.or($rs , $rt);"} , 
clk(4){""} , 
clk(5){"GPR[rd] := $resu工t; " 
>
, "ISUB"{clk(l){"IR := lMEM[PC]; 
PC. inc 0 ; "} , 
clk(2){"DECODE(IR); 

$rs := GPR.readO(rs); 
$rt := GPR.readl(rt) ;"} , 
clk(3){" ($result , $flag) := ALUO.sub($rs , $rt );"} , 
clk(4){""} , 
clk(5) {"GPR[rd] := $result;"} 
} 
, "IXOR"{clk(1){"IR := lMEM[PC]; 
PC. inc 0 ; "} , 
clk(2){"DECODE(IR); 

$rs := GPR.readO(rs); 
$rt := GPR.read1(玄t) ; "}, 
clk(3){" ($result , $flag) := ALUO.xor($rs , $rt); "} , 
clk(4){" つ，
clk(5){"GPR[rd] : = $result; "} 
>
, "J"{clk(l){"$pc:=PC; 

IR := 1阻M[PC] ; 
PC.incO j つ，
clk(2){"DECODE(IR) ; 
$target := $pc(31 downto 28) & IR(25 downto 0) & \吻0\" ;つ，
clk(3){"PC := $target; つ，
clk(4){" つ，
clk(5){" "} 
} 

, "JAL"{clk(l){"$pc := PC; 

IR := 1肥M[PC];
PC.incO; つ，
clk(2){"DECODE(IR)j 
$target := $pcC31 downto 28) & IR(25 downto 0) & \"OO\";"} , 
clk(3){"PC ::: $target; 
$pc2 := PC;"} , 
clk(4){""} , 
clk(5){"GPR[¥" 11111¥"] := $pc2; "} 
} 
, "JALR"{clk(l){"$pc := PC; 

IR :== lMEM[PC]; 
PC. inc 0 ; "} , 
clk(2){"DECODE(IR); 
$rs:=GPR.readO(rs);"} , 
clk(3){"PC:=$rs; 
$pc2:=PC;"} , 
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clk (4){""} , 
;出制"G則\"1山町] :吻山つ

, "JR"{clk(l){"$pc:=PC; 

IR ::: lMEM[PC]; 
PC. inc 0 ; "} , 
clk(2){"DECODE(IR); 
$rs:::GPR.readO(rs);"} , 
clk(3){"PC :=$rs;"} , 
clk(4){""} , 
clk(5){""} 
>
, "LB"{clk(1){"IR := lMEM[PC]; 
PC. incO; "}, 
clk(2){"DECODE(IR); 

$offset :=EXTO.sign(offset); 
$base:=GPR . readO(base); つ，
clk(3){ぺ$target ， $flag):=ALUO.add($base ， $offset) ; つ，
clk(4){" ($data , $addr_err):=DMEM.lb($target); つ，
clk(5){"GPR[rt] :=$data;"} 
>
, "LBU"{clk(l){"IR : = lMEM[PC]; 
PC. incO; つ，
clk(2){"DECODE(IR); 

$offset :=EXTO.sign(offset); 
$base :=GPR . readO(base);"} , 
clk(3){ぺ$target ， $flag) :=ALUO.add($base ， $offset) ; づ，
clk(4){" ($data , $addr_err):=DMEM .lbu($target) ; "} , 
clk(5) {"GPR[rt] :=$data; つ
} 
, "LH"{clk (1){勺R := 1阻M[PC] ; 
PC. incO; "}, 
clk(2){"DECODE(IR); 

$offset :=EXTO.sign(offset); 
$base : =GPR . readO(base);"} , 
clk(3){" ($target , $flag) : =ALUO.add($base ， $offs~t); づ ，
clk(4){"($data , $addr_err):=DMEM . lh($target);"} , 
clk(5){"GPR[rt] :=$data; つ
>
，"口町"{clk(l){"IR := 1阻M[PC] ; 
PC.incO; つ，
clk(2){"DECODE(IR); 

$offset :=EXTO.sign(offset); 
$base:=GPR.readO(base); つ，
clk(3){" ($target , $flag) :=ALUO. add($base , $of~se~) ; "}, 
clk(4){" ($data , $addr_err):=D虻EM . lhu($target); つ，
clk(5){"GPR[rt] :=$data; "} 
>
, "LUI"{clk (1 ){"IR := 工阻M[PC] ; 
PC.incO ;"}, 
clk(2){"DECODE(IR); 
$imm:=immediate & ¥"0000000000000000¥"; "}, 
clk(3){""} , 
clk(4){""} , 
clk(5){"GPR[rt] :=$imm; つ
>
, "LW"{clk(l){"IR := lMEM[PC]; 
PC. inc 0 ; "}, 
clk(2){"DECODE(IR); 

$offset :=EXTO.sign(offset); 
$base:=GPR.readO(己ase); つ，
clk(3){" ($target , $flag) : =ALUO.add($b~:;;e ， $off~e~~ ;"} ， 
clk�4){" ($dati , $addr_err):=DMEM.read($target) ;" } , 
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clk(5){"GPR[rt] :=$data;"} 
} 
, "ORIべclk(l){"IR := IMEM[PC]; 
PC. inc 0 ; "} , 
clk(2){"DECODE(IR) ; 

sresult : = \"0000000000000000000000000000000\H&Sflag(1);"} , 
clk(4 ){""} , 
clk(5){"GPR[rt] := $result; つ
>
, "SLTIU"{clk (1 ){"IR := 1阻M[PC] ; 
PC. incO ; つ ，
clk(2){"DECODE(IR); 
$rs:=GPR.readO(rs); 
$i~ :~~TO. s ign (泊mediate);"} ，
~lk(3 ) {"$flag :=ALUO .cmp( $rs ，. $imm); 
szeslilt :=\'10000000000000000000000000000000\H&NOT0.nt(Sflag(3));">,
clk(4){" つ，
;比(5){"GPR[rt] := $re叫t; つ

， "SLTU吋clk ( l){ " IR := IMEM[PC]; 
PC. incO; " } , 
clk(2){"DECODE(工R) ; 
$rs:=GPR.readO(rs); 
$rt:=GPR.readl(rt);"} , 
clk(3){"$flag:=ALUO.cmpu($rs ，$口); 
sreS111t:=\"0000000000000000000000000000000\"&NOT0 . 2t(Sflag(3) ); ">,
clk(4){""} , 
:比(引"GPR[rd] := $re叫t; つ

, "SRA"{clk(l){"IR := IMEM[PC]; 
PC. inc 0 ; "} , 
clk(2){"DECODE(IR) ; 

$rs:=GPR.readO(rs); 
$imm:=EXTO.zero(immediate); つ，
clk(3){" ($result , $flag):=ALUO.or($rs ， $imm); つ，
clk(4){" "}, 
clk(5){"GPR[rt] :=$result;"} 
} 

， "SBベclk (1){勺R := 1阻M [PC] ; 
PC.incO ;"}, 
clk(2){"DECODE(IR); 

$offset :=EXTO.sign(offset); 
$base:=GPR.readO(base); 
$rt :=GPR.read1(rt); "} , 
clk(3){" ($target , $flag): =ALUO . add($base ， $offset) ; つ ，
clk(4){"$addr_err :=DMEM . sb($target ， $rt ); つ ，
clk (5){ " つ
} 

, "SH"{clk (1 ){"IR := 1阻M[PC] ; 
PC. inc 0 ; "} , 
clk(2){"DECODE(IR); 

$offset :=EXTO.sign(offset); 
$base:=GPR.readO(base); 
$rt : =GPR .readl(rt ); "} , 
clk(3){べ$target ， $flag) :=ALUO.add($base ,$offset);"} , 
clk(4){"$addr_err : =DMEM . sh($target ， $rt) ; つ ，
clk(5){""} 
} 

, "SLL"{clk (1 ){"IR : = 1阻M[PC] ; 
PC.inc() ; "} , 
clk(2){"DECODE(IR); 

$rt:=GPR . readl(rt);"} , 
clk(3){"$result:=SFTO.sra($rt ， sh祖t) ; "} , 
clk(4){" "}, 
clk(5){"GPR[rd] :=$result; "} 
>
, "SRAV"{clk(l){"IR := IMEM[PC]; 
PC. inc 0 ; "} , 
clk(2){"DECODE(IR); 

$rt :=GPR .readl(rt) ; "} , 
clk(3){"$result : =SF・I・O . sll($rt ， sh祖t);"} ，
clk (4) {'"'} , 
clk(5){"GPR[rd] :=$result; "} 
} 
, "SLLV"{clk(l){"IR := 1阻M[PC] ; 
PC. inc 0 ; "}, 
clk(2){"DECODE(IR); 

$sh祖t : =GPR.readO(rs);
$rt:=GPR.readl(rt);"} , 
c~kÇ3?~"$!esult:=SFTO.sra($rt ， $shamt(4 dOYD.to 0)); つ，
clk(4){""} , 
clk(5){"GPR[rd] :=$result; "} 
} 

, "SRL"{clk(l){"IR := 1阻M[PC] ; 
PC. incO; つ ，
clk(2){"DECODE(IR); 

$shamt:=GPR.readO(rs); 
$rt :=GPR.readl(rt);"} , 
clk(3){"$result : =SFTO . sll($rt , $shamt(4 dOYD.to 0)); つ，
clk(4){" "}, 
clk(5){"GPR[rd] :=$result;" 
>
, "SLT吋clk (1 ){"IR := 1旭川PCJ;
PC. inc 0 ; "} , 
clk(2){"DECODE(IR); 
$rs:=GPR.readO(rs); 
$rt :=GPR.read1(rt); "} , 
clk(3){"$flag : =札.uO . cmp($rs ， $rt);
$re~u~~ : ~ ¥'-'0000000000000000000000000000000¥" & $flag(l) ;"}, 
clk(4){""} , 
clk(5){"GPR[rd] := $resul t; "} 
} 

, "SLTI"{clk(l){"IR := IMEM[PC]; 
PC. incO; "}, 
clk(2){"DECODE(IR); 
$rs:=GPR.readO(rs); 
$imm : =EXTO . sign(immediate) ; "} , 
clk(3){"$flag :=ALUO . cmp($rs , $imm); 

$rt:=GPR.readl(rt);"} , 
clk(3){"$result : =SFTO.srl($rt ， sh祖t); つ，
clk(4){" つ，
clk(5) {"GPR[rd] :=$result;"} 
>
, "SRLV"{clk(l){"IR := 1阻M[PC] ; 
PC. inc 0 ; "} , 
clk(2){"DECODE(IR); 

$shamt:=GPR.readO(rs); 
$rt:=GPR.readl(rt);"} , 
clk(3){"$result:=SFTO.srl($rt , $shamt(4 dOYD.to O)) ; "} , 
clk(4){" つ，
clk(5) {"GPR[rd] :=$result ; つ
>
, "SUBU"{clk (1 ){"IR := 1阻M[PC] ; 
PC. inc 0 ; "}, 
clk(2){"DECODE(IR); 
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clk(4){" "}, 
clk(5){"GPR[rd] := $result;"} 
} 
, "SW"{c1k(1){"IR := 1阻M[PC] ; 
PC. inc 0 ; "} , 
clk(2){"DECODE(IR); 

$offset :=EXTO.sign(offset); 
$base:=GPR.readO(base); 
$rt : =GPR. r eadl(rt); "} , 
clk(3){べ$target ， $flag) : =ALUO. add ($base ,$offset);"} , 
clk (4 ){"$addr_e r r:=DMEM . wr ite($target , $rt);" } , 
clk( S ){" つ
} 
, "XORI"{clk(l){"IR := lMEM[PC]; 
PC. incO; " }, 
clk(2){"DECODE(IR); 

$rs:=GPR.readO(rs); 
$ imm: =EXTO.zero(四mediate) ; つ，
clk(3){" ($result , $flag) : =ALUO.xor($rs ,$imm) ; "} , 
clk(4){"I} , 
clk(5){"GPR[rt] : =$resuユt ; "} 
} 
， "肌JLT"{c1k (1 ){"IR := 1阻M[PC] ;
PC. incO; "}, 
clk(2){"DECODE(IR); 

$rs:=GPR.readO(rs); 
$rt :=GPR.readl(rt) ; "} , 
clk(3){" ($result , $flag) : =限凡O . mul($rs ， $rt) ; つ，
clk(4){"I} , 
clk(5){"HI:=$result(63 dOYD.to 32); 
LO:=$resu1t(31 dOYD.to 0); つ
>
， "MUL抗1吋clk (1 ){"IR := lMEM[PC]; 
PC. incO ; "}, 
clk(2){"DECODE(IR); 

$rs:=GPR.readO(rs); 
$rt :=GPR.read1(rt); "}, 
clk(3){" ($result , $flag) : =阻江O . mulu($rs ， $rt); つ，
clk(4){""} , 
clk(5){"HI:=$result(63 dOYD.to 32); 
LO:=$result(31 dOYD.to 0) ; つ
} 
，叩IV"{clk (1 ){"IR := 1肥M[PC];
PC . incO; つ，
clk(2){"DECODE(IR); 

$rs:=GPR.readO(rs); 
$rt :=GPR .readl(rt);"} , 
clk(3){"($q ， $r ， $flag) : =DIVO . d工v($rs ， $rt);"} ，
c1k(4){""} , 
;lk(訓"HI:=$r ; 比 =$q; つ

， "DlVU吋clk(1){吋R := 1阻M[PC] ; 
PC.inc();"} , 
clk(2) {"DECODE(IR) ; 

$rs:=GPR.readO(rs); 
$rt : =GPR . readl(rt);"} , 
clk(3){"($q ， $r ， $flag):=DIVO.divu($rs ， $rt); つ，
clk(4){""} , 
;は(5){"HI : =$r; LO:=$q;"} 

，"町HI"{clk(l){"IR := lMEM[PC]; 
PC. inc 0 ; " } , 
clk(2){"DECODE(IR) ; "} , 

136 

c 工k (3){"$hi :=HI; " } ，
c1k (4){"つ ，

;比ωf十{"GPR[刈 : =$hi;ゾ"

， "M町FLO'吋c1k(1){" IR :戸= 1阻M[PCの] ; 
PC. inc () ; "} , 
c1k(2){"DECODE(IR); " }, 
c1k(3){ "$10:=LO ;" } , 
c1k(4){" "} , 
c1k(5){"GPR[rd] :=$10; つ
} 

， "M百fI "{clk (1 ){"IR := 1阻M[PC] ; 
PC. inc 0 ; "} , 
clk(2) {"DECODE(IR) ; 
$rs :=GPR.readO(rs); "} , 
clk(3){" "} , 
c1k(4){"つ ，
clk(5){"HI:=$rs ; つ
>
, "MTLO"{c1k (1 ){"IR : = 1阻M[PC] ; 
PC. inc 0 ; "} , 
c1k(2){"DECODE(IR); 
$rs:=GPR.readO(rs);"} , 
c1k(3){" つ，
c1k(4){" つ，
clk(5){"LO:=$rs;"} 
} 

, "BEQ"{c1k(1){"IR := 1阻M[PC] ; 
PC. incO; 

$pC:=PC;"} , 
c1k(2) {"DECODE(IR) ; 
$rt:=GPR.readl(rt); 

$rs:=GPR.readO(rs); 
$imm := EXTO.sign(offset);"} , 
clk(3){"$offset := $imm(29 dOYD.to 0) & \勺0\" ;
$target := ADDO.add($pc , $offset); 
$flag : =ALUO.cmp($rs ,$rt); 
if(~f~~g(~)='l') then PC:=$target; end if ; つ，
c1k(4){" "}, 
clk(5){"I} 
} 

， "BNE"{clk (1){勺R := 1阻M[PC] ; 
PC.incO; 

$pc:=PC;"} , 
clk(2){"DECODE(IR); 
$rt:=GPR.readl(rt); 

$rs:=GPR.readO(rs); 
$imm := EXTO.sign(offset);"} , 
c1k(3){"$offset := $imm(29 downto 0) & ¥"00¥"; 
$target := ADDO.add($pc , $offset); 
$flag:=ALUO . cmp($rs ,$rt) ; 
if($flag(2)='0') then PC:=$target; end if ; つ，
clk(4){" つ，
clk(5){" "} 
>
}} 

>
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Appendix C 

Synthesis Result of PEAS R3K 
Processor 

C.l VHDL Descriptionf of PEAS R3K Datapath 
library lEEE; 
use lEEE.std_logic_1164.all; 

entity CPU is 
port C 
clk : in std_logic; 
intn : in std_logic_vectorC2 downto 0); 
in七: in std_logic; 
rst : in std_logic; 
instAB : out std_logic_vectorC31 downto 0); 
instDB : in std_logic_vectorC31 downto 0); 
dataAB : out std_logic_vectorC31 downto 0); 
dataDB : inout std_logic_vectorC31 downto 0); 
ve : out std_logic_vectorC3 downto 0)); 

end CPU; 

architecture syn of CPU is 
component cpu_ctrl 
port C 
instDB: in std_logic_vectorC31 downto 0); 
rst : in std_logic; 
int : in std_logic; 
intn : in std_logic_vectorC2 downto 0); 
clk : in std_logic; 
IR_data_out : in std_logic_vectorC31 downto 0); 
MULO_fin : in std_logic; 
DIVO_flag: in std_logic_vectorC1 downto 0); 
CSW_enb : out std_logic; 
CSW_rst : out std_logic; 
reg39_enb : out std_logic; 
reg38_enb : out std_logic; 
reg37_enb : out std_logic; 
reg36_enb : out std_logic; 
reg35_enb : out std_logic; 
reg34_enb : out std_logic; 
reg33_enb : out std_logic; 
reg32_enb : out std_logic; 
reg31_enb : out std_logic; 
reg30_enb : out std_logic; 
reg29_enb : out std_logic; 
reg28_enb : out std_logic; 
reg27_enb : out std_logic; 
reg26_enb : out std_logic; 
reg25_enb : out std_logic; 
reg24_enb : out std_logic; 
reg23_enb : out std_logic; 
reg22_enb : out std_logic; 
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reg21_enb : out std_logic; 
reg20_enb : out std_logic; 
sel19_ctrl : out std_logic_vectorC1 downto 0); 
se工 18_ctrl : out std_logic_vectorC1 downto 0); 
sel17_ctrl : out std_logic_vectorCO downto 0); 
sel16_ctrl : out std_logic_vectorCO downto 0); 
sel15_ctr1 : out std_logic_vectorCO downto 0); 
sel14_ctrl : out std_logic_vectorC2 downto 0); 
sel13_ctrl : out std_logic_vectorCO downto 0); 
sel12_ctr1 : out std_logic_vectorCO downto 0); 
se111_ctr1 : out std_logic_vector(O downto 0); 
se110 ctr1 : out std_logic_vector(O downto 0); 
DIVO_ctrl : out std_logic; 
LO_enb : out std_logic; 
LO_rst : out std_logic; 
HI_enb : out std_logic; 
HI rst : out std_logic; 
MULO_start : out std_logic; 
MULO_ctr1 : out std_logic; 
SFTO_mode : out std_logic_vectorCl downto 0); 
DMEM_ext_ctrl : out std_logic; 
D阻凡ac_ctrl : out std_logic_vectorC1 downto 0); 
DMEM_req : out std_logic; 
DMEM_rw : out std_logic; 
EXTO_ctrl : out std_logic; 
ALUO ctrl : out std_logic_vectorC4 downto 0); 
ALUO_cin : out std_logic; 
GPR_w_enbO : out std_logic; 
GPR_reset : out std_logic; 
IR_enb : out std_logic; 
IR_rst : out std_logic; 
PC_hold : out std_logic; 
PC_reset : out std_logic; 
PC_load : out std_logic; 
reg20_data_out : in std_logic_vector(31 downto 0); 
sys4_pO : in std_logic; 
sys2_pO : in std_logic; 
ALUO_flag: in std_logic_vectorC3 downto 0)); 

end component; 

component pcu_17 
generic (W : integer := 32; 
S : integer := 4); 
port( 
c1k : in std_logic; 
10ad : in std_logic; 
reset : in std_logic; 
hold : in std_logic; 
data: in std_logic_vector(W-l downto 0); 
q : out std_logic_vectorCW-l downto 0)); 
end component; 
component imcu_18 
generic (W : integer := 32); 
PORT( 
addr : in 
data : out 
m_addr : out 
m data : in 

std_logic_vectorCW-l downto 0 ) 
std_logic_vector(W-l downto 0 ) 
std_logic_vector(W-l downto 0 ) 
std_logic_vector(W-l downto 0 ) 

) ; 
end component; 
component register_9 
generic (W : integer := 32); 
port (clk : in std_logic; 
rst : in std_logic; 
enb : in std_logic; 
data_in : in std_logic_vector(W-l downto 0); 
data_out : out std_logic_vector(W-l downto 0) ); 

end component; 
component registerfi1e_10 
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generic (W : integer := 32); 
port ( c10ck : in std_logic; 

reset : in std_logic; 
w enbO : in std_logic; 
w_selO : in std_logic_vector( 4 downto 0); 
data_inO in std_logic_vector(W-l downto 0); 
r_se10 : in std_logic_vector( 4 downto 0); 
r_sell : in std_ユogic_vector( 4 downto 0); 
data_outO out std_logic_vectorCW-l downto 0); 
data_outl : out std_logic_vector(W-l downto 0) ); 

end component; 
component alu_12 
generic CW : integer := 32); 
port (a , b : in std_logic_vector(W-l downto 0); 
cin : in std_logic; 
ctrl : in std_logic_vectorC4 downto 0); 
result out std_logic_vectorCW-l downto 0); 
flag : out std_logic_vectorC3 downto 0) ); 

end component; 
component extender_15 
generic CW : integer := 16); 
port (data_in : in std_logic_vector(W-l downto 0); 
ctrl : in std_logic; 
data_out : out std_logic_vector(2州ー 1 downto 0)); 

end component; 
component adder_11 
generic(W: integer := 32); 
port (a , b : in std_logic_vector(W-l downto 0); 
cin : in std_logic; 
result : out std_logic_vector(W-l downto 0); 
cout : out std_logic); 

end component; 
component dmcu_19 
port ( rw : in std_logic; 
req : in std_logic; 
addr : in std_logic_vector(31 downto 0); 
i_data : ou七 std_logic_vector(31 downto 0); 
o_data : in std_logic_vectorC31 downto 0); 
ac ctrl : in std_logic_vector(l downto 0); 
ext_ctrl : in std_logic; 
addr_err : out std_logic; 
we : out std_logic_vectorC3 downto 0); 
m_addr : out std_logic_vector(31 downto 0); 
m_data : inout std_logic_vectorC31 downto 0)); 

end component; 
component barre1shifter_14 
generic(W: integer := 32); 
port Cdata_in : in std_logic_vectorCW-l downto 0); 
mode : in std_logic_vector(l downto 0); 
ctrl : in s七d_logic_vector(4 downto 0); 
data_out : out std_logic_vectorCW-l downto 0)); 

end component; 
component not_20 
port (data_in : in std_logic; 

data_out : out std_logic); 
end component; 
component multiplier_16 
generic (W : integer := 32); 
port (clk : in std_logic; 
reset : in std_logic; 
a , b : in std_logic_vector(W-l downto 0); 
ctrl : in std_logic; 
start : in std_logic; 
result : out std_logic_vec七or(2*W-1 downto 0); 
fin : out std_logic); 

end component; 
component divider_13 
generic (W : integer := 32); 
port (clk : in std_logic; 

141 



a , b 
ctrl 
resultO 
resuユtl
flag 

in std_logic_vectorCW-l downto 0); 
in std_logic; 
out std_logic_vectorCW-l downto O~; 
out std_logic_vectorCW-l downto_ ?); 
out std_logic_vectorCl downto 0)); 

end component; 
component selector_21 
generic (w : int~ger := 32; 
n integer := ~ 

lOgll: integer := 1); 
port(data-ho:la std-logic-1rector(w-1domto O> ;
data_in1 : in std_logic_vector(w-l downto 0); 

ctrl : in std_logic_vector(logn-l downt??); 
data out : out std_l�ic_vector(w=l downto 0)); 
end component; 
comnonent selector_22 
generic (w : integer := 5; 
n integer ,= 2; 

log主 : integer := 1); 
port(data-1nO:12 Std-logic-vector(w-1domtoO); 
data=inl : in std_logic_vector(w-l downto 0); 

ctrl : in std_logic_vector(logn-l downto.?); 
data_out : out std_lõgic_vector(w~ l downto 0)); 
end component; 
comnonent selector_23 
generic (w : int:ger := 32; 
n : integer := 8; 

lOgll: integer := 3); 
port (data_inO : in std_~ogic_vector ~w-~ downto ~(; 
data_inl : in std_logic_vector(w-l down七o 0); 
data_in2 : in s七d_logic_vectorCw-l downto O~; 
data_in3 : in std_logic_vector(w-l downto O~; 
data_in4 : in std_logic_vectorCw-l downto O~; 
data_in5 : in std_logic_vector(w-l downto O~; 
data_in6 : in std_logic_vector(w-l downto ~ ~ ; 
data_in7 : in std_logic_vector(w-l downto 0); 

ctrl : in std_logic_vector(logn-l downt??); 
data_out : out std_l�ic_vectorCw=l downto 0)); 
end component; 
component selector_24 
generic (w : integer := 32; 
n : in七 eger := 3; 

log孟: integer := 2); 
port (data_inO : in std_logic_vector~w-~ downto ~~; 
data_inl : in std_logic_vector(w-l downto O?; 
data_in2 : in std_logic_vector(w-l downto 0); 

ctrl : in std_logic_vect�Clogn-l downto.9); 
data_out : out std_l�ic_vector(w=l downto 0)); 
end component; 
component pipereg_25 
g�eric ~W- : integer := 32); 
port Cclk : in std_logic; 
rst : in std_logic; 
enb : in std_logic; 
data_in : in std_logic_vector(W-l downto O)i 
data=out : out std_l�ic_vectorCW-l downto 0) ); 

end component; 
component pipereg_26 
generic ~W- : integer := 30); 
port Cclk : in std_logic; 
rst : in std_logic; 
enb : in std_logic; 
data_in : in std_logic_vectorCW-l downto O)i 
data=out : out std_l�ic_vectorCW-l downto 0) ); 

end component; 
component pipereg_27 
g�eric ~W- : integer := 5); 
port Cclk : in std_logic; 
rst : in std_logic; 
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enb : in std_logic; 
data_in : in std_logic_vectorCW-l downto 0); 
data_out : out std_logic_vectorCW-l downto 0) ); 

end component; 
signal d CSW_data_out : s七d_logic_vector(31 downto 0); 
signal d_reg39_data_out : std_logic_vector(31 downto 0); 
signal d_reg38_data_out : std_logic_vector(31 downto 0); 
signal d_reg37_data_out : std_logic_vector(31 downto 0); 
signal d_reg36_data_out : std_logic_vector(31 downto 0); 
signal d_reg35_data_out : std_logic_vector(4 downto 0); 
signal d_reg34_data_out : std_logic_vectorC31 downto 0); 
signal d_reg33_data_out : std_logic_vectorC31 downto 0); 
signal d_reg32_data_out : std_logic_vectorC31 downto 0); 
signal d_reg31_data_out : std_logic_vector(4 downto 0); 
signal d_reg30_data_out : s七d_l ogi c_vector C4 downto 0); 
signal d_reg29_data_out : std_logic_vectorC4 downto 0); 
signal d_reg28_data_out : std_logic_vectorC31 downto 0); 
signal d_reg27_data_out : std_logic_vectorC31 downto 0); 
signal d_reg26_data_out : std_logic_vectorC31 downto 0); 
signal d_reg25_data_out : std_logic_vectorC31 downto 0); 
signal d_reg24_data_out : s七d_logic_vectorC31 downto 0); 
signal d_reg23_data_out : std_logic_vectorC31 downto 0); 
signal d_reg22_data_ou七: s七d_logic_vectorC31 downto 0); 
signal d_reg21_data_out : std_logic_vectorC29 downto 0); 
signal d_reg20_data_out : std_logic_vectorC31 downto 0); 
signal d_sel19_data_out : std_logic_vectorC31 downto 0); 
signal d sel18_data out : std_logic_vectorC31 downto 0); 
signal d_sel17_data_out : std_logic_vector(4 downto 0); 
signal d_sel16 data_out : std_logic_vector(31 downto 0); 
signal d_sel15 data_out : std_logic_vectorC31 downto 0); 
signal d_sel14_data_out : s七d_logic_vector(31 downto 0); 
signal d_sel13_data_out : std_logic_vectorC4 downto 0); 
signal d_sel12_data_out : std_logic_vectorC4 downto 0); 
signal d_se工11_data_out : std_logic_vectorC31 downto 0); 
signal d_sell0_data_out : std_logic_vectorC31 downto 0); 
signal d_DIVO_flag : std_logic_vectorCl downto 0); 
signal d_DIVO_resultl : std_logic_vectorC31 downto 0); 
signal d_DIVO_resultO : std_logic_vector(31 downto 0); 
signal d_LO_data_out : std_logic_vector(31 downto 0); 
signal d_HI_data out : std_logic_vector(31 downto 0); 
signal d_MULO_fin : std_logic; 
signal d_MULO_result : std~logic_vectorC63 downto 0); 
signal d_sysl0_pO : std_logic_vector(31 downto 0); 
signal d_NOTO_data_out : std_logic; 
signal d_sys9_pO : std_logic_vector(31 downto 0); 
signal d_sys8_pO : std_logic_vectorC30 downto 0); 
signal d_SF寸o data_out : std_logic_vectorC31 downto 0); 
signal d_sys7_pO : std_logユ c_vector(31 downto 0); 
signal d_sys6_pO : std_logic_vectorC15 downto 0); 
signal d_DMEM_addr_err : std_logic; 
signal d_DMEM_i_data : std_logic_vectorC31 downto 0); 
signal d_sys5_pO : std_logic_vectorC31 downto 0); 
signal d_sys4_pO : std_logic; 
signal d_sys3_pO : std_logic_vectorC4 downto 0); 
signal d_sys2_pO : std_logic; 
signal d_ADDO_cout : std_logic; 
signal d_ADDO_result : std_iogic_vectorC31 downto 0); 
signal d_sysl_pO : std_logic_vectorC31 downto 0); 
signal d_sysO_pO : std_logic_vectorCl downto 0); 
signal d_EXTO_data_out : std_logic_vectorC31 downto 0); 
signal d_ALUO_flag : std_logic_vectorC3 downto 0); 
signal d_ALUO_result : std_logic_vector(31 downto 0); 
signal d_GPR_data_outl : std_logic_vectorC31 downto 0); 
signal d_GPR_data_outO : std_logic_vectorC31 downto 0); 
signal d_IR_data_out : std_logic_vector(31 downto_ 0); 
signal d_IMEM_data : std_logic_vector(31 downto 0); 
signal d_PC_q : std_logic_vector(31 downto 0); 
signal c_PC_load : std_logic; 
signal c_PC_reset : std_logic; 
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reg36_enb => c_reg36_enb , 
reg35_enb => c_reg35_enb , 
reg34_enb => c_reg34_enb , 
reg33_enb => c_reg33_enb , 
reg32_enb => c_reg32_enb , 
reg31_enb => c_reg31_enb , 
reg30_enb => c_reg30_enb , 
reg29_enb => c_reg29_enb , 
reg28_enb => c_reg28_enb , 
reg27_enb => c_reg27_enb , 
reg26_enb => c_reg26_enb , 
reg25_enb => c_reg25_enb , 
reg24_enb => c_reg24_enb , 
reg23_enb => c_reg23_enb , 
reg22_enb => c_reg22_enb , 
reg21_enb => c_reg21_enb , 
reg20_enb => c_reg20_enb , 
sel19_ctrl => c_sel19_ctrl , 
sel18_ctrl => c_sel18_ctrl , 
sel17_ctrl => c_sel17_ctrl , 
sel16_ctrl => c_sel16_ctrl , 
sel15_ctrl => c_sel15_ctrl , 
sel14_ctrl => c_sel14_ctrl , 
sel13_ctrl => c_sel13_ctrl , 
sel12_ctrl => c_sel12_ctrl , 
sell1_ctrl => c_sell1_ctrl , 
sell0_ctrl => c_sell0_ctrl , 
DIVO_ctrl => c_DIVO_ctrl , 
LO_enb => c_LO_enb , 
LO_rst => c_LO_rst , 
HI_enb => c_HI_enb , 
HI_rst => c_HI_rst , 
MULO_start => c_MULO_start , 
MULO_ctrl => c_MULO_ctrl , 
SF寸O_mode => c_SFTO_mode , 
DMEM_ext_ctrl => c_DMEM_ext_ctrl , 
DMEM_ac_ctrl => c_DMEM_ac_ctrl , 
DMEM_req => c_DMEM_req , 
DMEM自主v => c_DMEM_IV , 
EXTO_ctrl => c_EXTO_ctrl , 
ALUO_ctrl => c_ALUO_ctrl , 
ALUO_cin => c_ALUO_cin , 
GPR_w_enbO => c_GPR_w_enbO , 
GPR_reset => c_GPR_reset , 
IR_enb => c_IR_enb , 
IR_rst => c_IR_rst , 
PC_hold => c_PC_hold , 
PC_reset => c_PC_reset , 
PC_load => c_PC_load , 
reg20_data_out => d_reg20_data_out , 
sys4_pO => d_sys4_pO , 
sys2_pO => d_sys2_pO , 
ALUO_flag => d_ALUO_flag); 

PC : pcu_17 
port map( 
clk => clk , 
load => c_PC_load , 
reset => c_PC_reset , 
hold => c_PC_hold , 
data => d_selll_data_out , 
q => d_PC_q); 

lMEM : imcu_18 
port map( 
addr => d_PC_q , 
data => d_IMEM_data , 
m_addr => instAB , 
m_data => instDB); 

IR : register_9 
port map( 
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c1k => c1k , 
rst => c_IR_rst , 
enb => c_IR_enb , 
data_in => d_IMEM_data , 
data_out => d_IR_data_out); 

GPR : registerfile_10 
port mapC 
clock => clk , 
reset => c_GPR_reset , 
w_enbO => c_GPR_w_enbO , 
w_selO => d_sel13_data_out , 
data_inO => d_reg33_data_out , 
r_selO => d_IR_data_outC25 downto 21) , 
r_sel1 => d_IR_data_outC20 downto 16) , 
data_outO => d_GPR_data_outO , 
data_out1 => d_GPR_data_out1); 

ALUO : alu_12 
port mapC 
a => d_reg20_data_out , 
b => d_reg34_data_out , 
cin => c_ALUO_cin , 
ctr1 => c_ALUO_ctr1 , 
resu1t => d_ALUO_result , 
f1ag => d_ALUO_f1ag); 

EXTO : extender_15 
port mapC 
data_in => d_IR_da七a_out(15 downto 0) , 
ctr1 => c_EXTO_ctr1 , 
data_out => d_EXTO_data_out); 

ADDO : adder_l1 
port mapC 
a => d_reg23_data_out , 
b => d_sys1_pO , 
cin => d_sys2_pO , 
result => d_ADDO_resul七，
cout => d_ADDO_cout); 

DMEM : dmcu_19 
port mapC 
rw => c_DMEM_rw , 
req => c_DMEM_req , 
addr => d_reg24_data_out , 
i_data => d_DMEM_i_data , 
o_data => d_reg27_data_out , 
ac_ctr1 => c_DMEM_ac_ctr1 , 
ext_ctr1 => c_D斑EM_ext_ctrl ，

addr_err => d_DMEM_addr_err , 
we => we , 
m_addr => dataAB, 
m_data => dataDB); 

SF寸o : barrelshifter_14 
port mapC 
data_in => d_reg26_data_out , 
mode => c_SFTO_mode , 
ctrl => d_reg35_data_out , 
data_out => d_SFTO_data_out); 

NOTO : not_20 
port map( 
data_in => d_ALUO_flag(3) , 
data_out => d_NOTO_data_out); 

MULO : multiplier_16 
port mapC 
c1k => c1k , 
reset => d_sys2_pO , 
a => d_reg20_data_out , 
b => d_reg26_data_out , 
ctrl => c_MULO_ctrl , 
start => c_MULO_start , 
resu1t => d_MULO_result , 
fin => d_MULO_fin); 
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HI : register_9 
port mapC 
c1k => c1k , 
rst => c_HI_rst , 
enb => c_HI_enb , 
data_in => d_reg37_data_out , 
data_out => d_HI_data_ou七) ; 

LO : register_9 
port mapC 
c1k => clk , 
rst => c_LO_rst , 
enb => c_LO_enb , 
data_in => d_reg39_data_out , 
data_out => d_LO_data_out); 

DIVO : divider_13 
port map( 
clk => clk , 
a => d_reg20_data_out , 
b => d_reg26_data_out , 
ctr1 => c_DIVO_ctr1 , 
resultO => d_DIVO_resultO , 
result1 => d_DIVO_result1 , 
f1ag => d_DIVO_flag); 

se110 : se1ector_21 
port mapC 
data_inO => d_GPR_data_outO , 
data_in1 => d_sys5_pO , 
ctr1 => c_sel10_ctr1 , 
data_out => d_sel10_data_out); 

se111 : se1ector 21 
port mapC 
data_inO => d_reg28_data_out , 
data_in1 => d_ADDO_result , 
ctrl => c_se111_ctr1 , 
data_out => d_se111_data_out); 

se112 : se1ector_22 
port map( 
data_inO => d_IR_data_out(20 downto 16) , 
data_in1 => d_IR_data_outC15 downto 11) , 
ctr1 => c_sel12_ctrl , 
data_out => d_sel12_data_out); 

sel13 : se1ector 22 
port mapC 
data_inO => d_reg31_data_out , 
data_in1 => d_sys3_pO , 
ctrl => c_sel13_ctr1 , 
data_out => d_sel13_data_out); 

sel14 : se1ector_23 
port map( 
data_inO => d_reg25_data_out , 
data_in1 => d_LO_data_out , 
data_in2 => d_HI_data_out , 
data_in3 => d_sys10_pO , 
data_in4 => d_sys9_pO , 
data_in5 => d_SFTO_data_out , 
data_in6 => d_PC_q , 
data_in7 => d_ALUO_result , 
ctr1 => c_sel14_ctrl , 
da七a_out => d_se114_data_out); 

sel15 : se1ector_21 
port map( 
data_inO => d_reg32_data_out , 
data_in1 => d_DMEM_i_data , 
ctr1 => c_sel15_ctr1 , 
data_out => d_se115_data_out); 

se116 : selector 21 
port mapC 
data_inO => d_EXTO_data_out , 
data_in1 => d_GPR_data_out1 , 
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ctrl => c_se116_ctrl , 
data_out => d_se116_data_out); 

se117 : selector_22 
port mapC 
data_lnO => d_GPR_data_outO(4 dOYnto 0) , 
data_in1 => d_IR_data_out(10 dOYnto 6) , 
ctrl => c_se117_ctrl , 
data_out => d_se117_data_out); 

se118 : selector_24 
port map( 
data_inO => d_reg20_data_out , 
data_in1 => d_DIVO_result1 , 
data_in2 => d_Ml凡0_result(63 dOYnto 32) , 
ctrl => c_se118_ctrl , 
data_out => d_se118_data_out); 

se119 : selector_24 
port mapC 
data_inO => d_reg20_data_out , 
data_in1 => d_DIVO_resultO , 
data_in2 => d_MULO_resultC31 downto 0) , 
ctrl => c_se119_ctrl , 
data_out => d_se119_data_out); 

reg20 : pipereg_25 
port mapl 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg20_enb , 
data_in => d_GPR_data_outO , 
data_out => d_reg20_data_out); 

reg21 : pipereg_26 
port mapC 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg21_enb , 
data_in => d_EXTO_data_ou七 (29 downto 0) , 
data_out => d_reg21_data_out); 

reg22 : pipereg_25 
port mapC 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg22_enb , 
data_in => d_PC_q , 
data_out => d_reg22_data_out); 

reg23 : pipereg_25 
port map( 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg23_enb , 
data_in => d_reg22_data_out , 
data_out => d_reg23_data_out); 

reg24 : pipereg_25 
port mapl 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg24_enb , 
data_in => d_ALUO_result , 
data_out => d_reg24_data_out); 

reg25 : pipereg_25 
port mapC 
clk => clk , 
rst => d_sys2_pO , 
enb => c骨reg25_enb ，
data_in => d_sys7_pO , 
data_out => d_reg25_data_out); 

reg26 : pipereg_25 
port map( 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg26_enb , 
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data_in => d_GPR_data_out1 , 
data_out => d_reg26_data_out); 

reg27 : pipereg_25 
port map( 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg27_enb , 
data_in => d_reg26_data ・_out ，
data_out => d_reg27_data_out); 

reg28 : pipereg_25 
port mapC 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg28_enb , 
data_in => d_se110_data_out , 
data_out => d_reg28_data_out); 

reg29 pipereg_27 
port map( 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg29_enb , 
data_in => d_se112_data_out , 
data_out => d_reg29_data_out); 

reg30 : pipereg_27 
port map( 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg30_enb , 
data_in => d_reg29_data_out , 
data_out => d_reg30_data_out); 

reg31 : pipereg_27 
port map( 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg31_enb , 
data_in => d_reg30_data_ou七，
data_out => d四reg31_data_out);

玄eg32 : pipereg_25 
port map( 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg32_enb , 
data_in => d_sel14_data_out , 
data_out => d_reg32_data_out); 

reg33 : pipereg_25 
port map( 
clk => clk , 
rst => d_sys2_pO , 
enb => c _reg33_enb , 
data_in => d_sel15_data_out , 
data_out => d_reg33_data_out); 

reg34 : pipereg_25 
port map( 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg34_enb , 
data_in => d_sel16_data_out , 
data_out => d_reg34_data_out); 

reg35 : pipereg_27 
port map( 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg35_enb , 
data_in => d_sel17_data_out , 
data_out => d_reg35_data_out); 

reg36 : pipereg_25 
port map( 
clk => clk , 
rst => d_sys2_pO , 
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enb => c_reg36_enb , 
data_in => d_se118_data_out , 
data_out => d_reg36_data_out); 

reg37 : pipereg_25 
port map( 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg37_enb , 
data_in => d_reg36_data_out , 
data_out => d_reg37_data_out); 

reg38 : pipereg_25 
port map¥ 
clk => clk , 
rst => d_sys2_pO , 
enb => c_reg38_enb , 
data_in => d_se119_data_out , 
data_out => d_reg38_data_out); 

reg39 : pipereg_25 
port map( 
c1k => clk , 
rst => d_sys 2_pO , 
enb => c_reg39_enb , 
data_in => d _reg38_data_out , 
data_out => d_reg39_data_out); 

CSW : register_9 
port map( 
clk => clk , 
工st => c_CSW_rst , 
enb => c_CSW_enb , 
data_in => d_PC_q , 
data_out => d_CSW_data_out); 

d_sysO_pO <= "00"; 
d_sys1_pO く= (d_reg21_data_out & d_sysO_pO); 
d_sys2_pO く= '0'; 
d_sys3_pO く= "11111"; 
d_sys4_pO <= '1'; 
d_sys5_pO く= ((d~reg22_data_out (31 downto 28) & d_IR_data_out(25 downto 0)) & d_sysO_pO); 
d_sys6_pO <= "oooooooooooooqog"; 
d-sys7-PO < =(d-IR-data-out(15downtoO)&d-sys6-Po); 
d_sys8_pO <= "OOOOOOOOOOOOOOOOOOOOOOO~O??OOOO" ; 
d_sys9_pO く= (d_sys8_pO & d_ALUO_flag(1)) ; 、
d_sys10_pOく= (d_sys8_pO & d_NOTO_data_out); 
end syn; 

reg35_enb : out std_logic; 
reg34_enb : out std_logic; 
reg33_enb : out std_logic; 
reg32_enb : out std_logic; 
reg31_enb : out std_logic; 
reg30_enb : out std_logic; 
reg29_enb : out std_logic; 
reg28_enb : out std_logic; 
reg27_enb : out std_logic; 
reg26_enb : out std_logic; 
reg25_enb : out std_logic; 
reg24_enb : out std_logic; 
reg23_enb : out std_logic; 
reg22_enb : out std_logic; 
reg21_enb : out std_logic; 
reg20_enb : out std_logic; 
sel19_ctr1 : out std_logic_vector(l downto 0); 
sel18_ctrl : out std_logic_vectorCl downto 0); 
sel17_ctrl : out std_logic_vectorCO downto 0); 
sel16_ctrl : out std_logic_vectorCO downto 0); 
sel15_ctrl : out std_logic_vectorCO downto 0); 
sel14_ctr1 : out std_logic_vectorC2 downto 0); 
sel13 ctr1 : out std_logic_vectorCO downto 0); 
sel12_ctr1 : out s七d_logic_vectorCO downto 0); 
se111_ctr1 : out std_logic_vectorCO downto 0); 
se110_ctr1 : out std_logic_vectorCO downto 0); 
DIVO_ctr1 : out std_logic; 
LO_enb : out std_logic; 
LO_rst : out std_logic; 
HI_enb : out std_logic; 
HI_rst : out std_logic; 
MULO_start : out std_logic; 
MULO_ctrl : out std_logic; 
SFTO_mode : out std_logic_vectorC1 downto 0); 
DMEM_ext_ctr工: out std_logic; 
DMEM_ac_ctrl : out std_logic_vector(l downto 0); 
DMEM_req : out std_logic; 
DMEM_rv : out std_logic; 
EXTO_ctrl : out std_logic; 
ALUO_ctrl : out std_logic_vector(4 downto 0); 
ALUO_cin : out std_logic; 
GPR_w_enbO : out std_logic; 
GPR_reset : out std_logic; 
IR_enb : out std_logic; 
1R_rst : out std_logic; 
PC_hold : out std_logic; 
PC_reset : out std_logic; 
PC_load : out std_logic; 
reg20_data_out : in std_logic_vectorC31 downto 0); 
sys4_pO : in std_logic; 
sys2_pO : in std_logic; 
ALUO_f1ag: in std_logic_vectorC3 downto 0)); 

end cpu_ctrl; 

ー_ entity_end 

C.2 VHDL Descriptionf of PEAS R3K Controller 
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 一_ entity_begin 

entity cpu_ctr1 ユs
port C 
instDB : in std_logic_vectorC31 downto 0); 
rst : in std_logic; 
int : in std_logic; 
intn: in std_l�ic_vectorC2 downto 0); 
clk : in std_logic; 
IR_data_out : in std_logic_vectorC31 downto 0); 
MULO_fin : in std_logic; 
D1VO_flag: in std_l�ic_vectorC1 downto 0); 
CSW_enb : out std_logic; 
CSW_rst : out std_logic; 
reg39_enb : out std_logic; 
reg38_enb : out std_logic; 
reg37_enb : out std_logic; 
reg36_enb : out std_logic; 

architecture behavior of cpu_ctr1 is 
type Type_Itype isCI_ADD , I_ADDI , I_ADDIU , I_ADDU , I_ANDI , I_BGEZ , I_BGEZAL , I_BGTZ , I_BLEZ , I _BLTZ , 

I_BLTZAL , I_1AND , 1_INOR , I_IOR , I_ISUB , I_IXOR , I_J , I_JAL , I_JALR , I_JR , I_LB , I_LBU , I_LH , I _LHU , I_LUI , 
I_LW ， 1_ORI ， I_SB ， I_SH ， 1_SLL ， I_SLLV ， I_SLT ， I_SLTI ， I_SLTIU ， 1_SL百人工_SRA ， I_SRAV ， I_SRL ， I_SRLV ， I_SUBU ，
I_SW ， 1_XORI ， I_MULT ， I_~江TU ， I_DIV ， I_DlVU ， I_旺百1 ，I_MFLO , LM"口II ， I_MTLO ， I _BEQ ， I_BNE ， I _S_ERR);
type Type_Interruption isCINT_reset , INT_initO); 
subtype Type_Intr_Count is integer range 0 to 2; 
subtype Type_interrupt_state is integer range 0 to 2; 
signal inst : Type_Itype; 
signa1 go : std_logic_vectorCO to 5); 
signa1 valid : std_logic_vectorC1 to 5); 
signal rreset : std_logic; 
signal Interrupt_Step : Type_Intr_Count; 
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signal iinterrupt std_~ogic ~ 
signal interrupt_name : TrPe_I~terrupt工on ;
si広nal interrupt_state : Type_interrupt_state; 
signal next_multi_st_3 : st~_logic; 
signal mult工_st_3 : std_logic; 
signal lock_multi_3 : s~d_logic; 
signal lock_3 : ~t~_l~gic ; 
;i~~l cw_2 : std_logic_vector~~~ dovnto ~~ ; 
ignal cw-3 :std-log1C-vector(30 doVEtoO); 
signal cw-4:std-logle-vector(9domtoO); 
;i~~l cw=5 : std_1~g~c_~ector(3 downto 0); 
sigual bbranch ~t~=~~g~~; 
sigual lock_3_ctr~_p}J~_~~ag : s~d~lo~ic; 
sigual lock_3_ctrl_MULO_fin : std_logic; 
begin 

go(O) く= '1' when (interrupt_state = 1) else _' ~' ; 
go(l) <= validÇ~? 担d (not valid(2) or go(2)); 
go(2) く= valid(2) 担d(not V44d(3)or go(3)); 
go(3) く= valid(3) 担d (not valid(4) or go(4)) and not lock_3; 
go(4) <= valid(4) 担d (not valid(5) or go(5)); 
go(5) く= valid(5); 
CTRL: process(clk , rreset , bbranch) 
begin 
if(clk'event a旦d clk = '1') then 
if(rreset = '1') then 
valid <= "00000"; 
elsif(bbranch = '1') then 
valid く= go(O) & "0" & valid(2 to 4); 
else 
valid(1) 
valid(2) 
valid(3) 
valid(4) 
valid(5) 
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end i工;
end if; 
end if; 
end process INTERRUPT; 
lock~multi_3 <= '1' when((lock_3_ctrl_DIVO_flag = '1') and (DIVO_flag(O) /= '1')) 
or ((lock_3_ctrl_MULO_fin = '1') and (肌江O_fin /= '1')) 
else 
'0' , 
next_multi_st_3 <= '0' when go(2) = '1' else 
'1' , 
肌凡T_ST : process(clk) 
begin 
if(clk'event and clk = '1') then 
if(rreset = '1') then 

mult i_st_3 く= '0'; 
else 
multi_st_3 <= next_multi_st_3; 
end if; 
end if; 
end process MULT_ST; 
lock_3 <= lock_multi_3; 

inst <= 
I_ADD when (1R_data_out(31 dovnto 26) = "000000") and (IR_data_out(5 downto 0) = "100000") else 
I_ADDI when (IR_data_out(31 dovnto 26) = "001000") else 
I_ADDIU when (IR_data_out(31 dovnto 26) = "001001") else 
I_ADDU when (IR_data_out(31 dovnto 26) = "000000") and (IR_data_out(5 dovnto 0) = "100001") else 
I_ANDI when (IR_data_out(31 dovnto 26) = "001100") else 
I_BGEZ when (IR_data_out(31 dovnto 26) = "000001") and (IR_data_out(20 dovn七o 16) = "00001") else 
I_BGEZAL when (IR_data_out(31 dovnto 26) = "000001") and (IR_data_out(20 downto 16) = "10001") else 
I_BGTZ when (IR_data_out(31 dovnto 26) = "000111") 担d (IR_data_out(20 dovnto 16) = 吻0000" ) else 
I_BLEZ when (IR_data_out(31 dovnto 26) = "000110") 担d (IR_data_out(20 downto 16) =勺0000") else 
I_BLTZ when (IR_data_out(31 downto 26) =勺00001") and (IR_data_out(20 downto 16) =勺0000") else 
I-BLTZAL when (IR_data_out(31 downto 26) = "000001") and (IR_data_out(20 downto 16) = "10000") else 
I_IAND when (IR_data_out(31 downto 26) =吻00000") and (IR_data_out(5 downto 0) = "100100") else 
I_INOR when (IR_data_out(31 downto 26) =勺00000") and (IR_data_out(5 downto 0) = "100111") else 
I_IOR when (1R_data_out(31 downto 26) =吋00000") and (IR_data_out(5 downto 0) = "100101") else 
I_ISUB when (IR_data_out(31 downto 26) =勺00000") and (IR_data_out(5 downto 0) = "100010") else 
1_IXOR when (IR_data_ou七 (31 downto 26) =勺00000") and (IR_data_out(5 dovnto 0) = "100110") else 
I_J when (IR_data_out(31 downto 26) = "000010") else 
1 JAL when (1R_data_out(31 downto 26) = "000011") else 
1=JALR when (工R_data_out(31 downto 26) =勺00000") and (1R_data_out(5 downto 0) =勺01001") else 
I_JR when (1R_data_out(31 downto 26) = "000000") 担d (IR_data_out(5 downto 0) = "001000") else 
1_LB when (IR_da七a_out(31 downto 26) = "100000") else 
1_LBU when (1R_data_out(31 downto 26) = "100100") else 
I_LH when (IR_data_out(31 downto 26) = "100001") else 
I_LHU when (IR_data_out(31 downto 26) = "100101") else 
I_LUI when (1R_data_out(31 downto 26) = "001111") else 
I_LW when (IR_data_out(31 downto 26) = "100011") else 
1_OR1 when (1R_data_out(31 downto 26) = "001101") else 
1_SB when (1R_data_out(31 downto 26) = "101000") else 
1 SH when (1R_data_out(31 downto 26) = "101001") else 
I;s斗 when (1R_data_out(31 downto 26) = "000000") 祖d (1R_data_out(5 downto 0) =勺00000") else 
ピSLLV when (IR_data_out(31 downto 26) = "000000") 担d (1R_data_out(5 downto 0) =勺00100") else 
1=SLT when (1R_data_out(31 downto 26) = "000000つ担d (1R_data_out(5 downto 0) = "101010") else 
I_SLT1 when (工R_data_out(31 downto 26) = "001010") else 
I_SLT1U when (IR_data_out(31 downto 26) = "001011") else 
ILsL百J when (1R_data_out(31 downto 26) =勺00000") 組d (1R_data_out(5 downto 0) = "101011") else 
1-SRA when (IR_data_out(31 downto 26) = "000000") and (1R_data_out(5 downto 0) =勺00011") else 
I:SRAV when(IR-datιout(31 downto 26) =勺00000") and (IR_data_out(5 downto 0) =勺00111") else 
I;sE, when (IR-data-Out (31domto26)="000000")and (IR-data-out <5domto O)="000010り else
LSRLV when (1えdata_out(31 downto 26) = "000000") and (IR_data_out(5 downto 0) = "000110") else 
1_SUBU when (1R_data_out(31 downto 26) = "000000") 祖d (1R_data_out(5 downto 0) = "100011") else 
1_SW when (IR_data_out(31 downto 26) = "101011") else 
1 XOR1 when (1R_data_out(31 downto 26) = "001110") else 
1_照江T when (1R_data_out(31 downto 26) =勺00000") 祖d (IR_data_out (5 downto 0) = "011000") else 
LM1九百J when (1R_data_out(31 downto 26) = "000000") and (1R_data_out(5 downto 0) = "011001り else
1=D1V when (1R_data_outC31 downto 26) = "000000") and (1R_data_out(5 downto 0) = "011010") else 
1_D1VU when C1R_data_out(31 dovnto 26) =勺00000") and (1R_data_out(5 downto 0) = "011011") else 
L旺百1 when (1R_data_outC31 dovnto 26) = "000000") and (IR_data_out(5 dovnto 0) = "010000") else 

end if; 
if(rreset = '0') then 
end if; 
end if; 
end process CTRL; 
1NTERRUPT: process(clk) 
bel!in 

Îf (clk'event 祖d clk = '1') then 
if(ロeset = '1') then 
interrupt_state <= 0; 
Interrupt_Step <= 1; 
interrupt_name <= INT_reset; 
elsif(int靡rupt_state = 0) then 
if(Ì~t~~~pt_Step = 1) 担d (interrupt_name = 1NT_reset) then 

1nterrupt_Step く= 0; 
interrupt_state く 1; 
elsif(1nt靡rupt_Step = 1) 担d (interrupt_na皿e = 1NT_initO) then 

In七errupt_Step く 0;
interrupt_state <= 1; 
else 
Interrupt_Step く= 1nterrupt_Step + 1; 
end if; 
elsifCinterrupt_state = 1) then 
if (rst='l') orCint = '1' and i凶n = "000") then 

interrupt_state く= 2; 
end if; 
if (rst='l') then 
interrupt_name <= INT_reset; 
elsif (int = '1' and intn = "000") then 
interrupt_name <= IN・I・_initO;

end if; 
else 
if(valid = "00000") then 
1nterrupt_Step <= 1; 
interrupt_state く= 0; 

152 153 



1 MFLO yhen (1R_data_out(31 dOYnto 26) =吋00000") and (1R_data_olユt(5 dOYnto 0) =勺10010") else 
fM百f1 yhen (1R_data_out(31 dOYnto 26) =吋00000") and (IR_data_out(5 dOYnto 0) = "010001") else 
fMT工o yhen (1R_data_out(31 dOYnto 26) =吋00000") and (IR_data_out(5 dOYnto 0) =勺10011") else 
1_BEQ yhen (1R_data_out(31 doYn七o 26) =勺00100") else 
1-BNﾈ yhen (IR_data_out(31 dOYnto 26) = "000101") else 
1 S_ERR: 
示:2(35) <= '1' yhen (inst = 1_ADD1) or (inst = 1_ADD1U) or (工nst = 1_BGEZ) or (inst = 1_BGEZAL) or 
(i~~t = 1_BGTZ) or (inst = 1_BLEZ) or (inst = 1_BLTZ) or (土nst = 1_BLTZAL) or 
鑛nst = 1=LB) or (inst = 1_LBU) or (inst = 1_LH) or (inst = I_L肌J) 0工
(inst=I-LW)or(1nst=I-SB)oz(inst=I-SH)or(inst=I-SLTI> oz
(Last =I-SLTIU)or(1nst=I-SM)oz(inst=I-BEQ)or(1nst=I-BNE) 

else 
,'" . 
CYーを (34) く= '1' yhen (inst = 1_J) or (inst = 1_JAL) else 
,^, 
Lーを (33) く= '1' yhen (inst = 1_ADD) or (inst = 1_ADDU) or (inst = 1_1AND) or (inst = 1_1NOR) or 
(inst=I-IOR)or(Inst=I-ISUB)or(1nst=I-IXOR)or(inst=I-SLL)or 
(inst = 1_SLLV) or (inst = 1_SLT) or (inst = I_SL叩) or (inst = 1_SRA) or 
(ins七 =I-SRAV)or (inst=I-SRL)or(12st=I-SRLV)oz(12st=I-SUBU)or 
(工nst = 1_町H1) or (inst = 1_貯LO) else 
, f、， . 
ふーを (32) く= '1' yhen (inst = 1_ADD) or (inst = 1_ADDU) or (inst = 1_1AND) or (inst = 1_1NOR) or 

(12st=I-IOR)or(inst=I-ISUB)or(12st=I-IXOR)or(1nst=I-SLT> oz
(1nst=LSLRJ)or(inst=LSUBU)oz(ust=LBEQ)or(1nst=LBNE) 

else 
,^' . 
c~_2(31) <= '1' yhen (inst = 1_SLL) or (ins七= 1_SRA) or (inst = 1_SRL) else 
"、，. 
ciG(30) く= '1' when (inst = 1_J) or (inst = 1_JAL) or (inst = 1_JALR) or (inst = 1_JR) 
else 

;:3(29) く= '1' when (inst = 1_1SUB) or (inst = 1_SLT) or (inst = 1_SLT1) or (山t =リロ1U) or 
(inst = LSL叩)or (last =LSUBU)or(inst=LBEQ> or(inst=LBNE>
else 

，(、， . 
Lーを (28) く= '1' when (inst = 1_1XOR) or (inst = 1_XORI) or (inst = I_ADD) or (inst = I_ADD1) or 
(i;;t-~'1_ADD1U) or (inst = 1_ﾃDDU) or (inst = 1_LB) or (inst = 1_LBU) or 
(ins七= 1_LH) or (inst = I_U町) or (inst = 1_LW) or (inst = 1_SB) or 
(inst = 1_SH) or (inst = I_SW) else 
,^' . 
ょを (27) く= '1' yhen (inst = 1_SLTU) or (inst = I_ISUB) or (inst = 1_SLT) or (inst = I_SLT1) or 
(i~~t ="1_SLTIU) or (inst = 1_SUBU) or (inst = I_BEQ) or (inst = 1_BNE) or 
(inst = 1_AND1) or (inst = 1_1AND) else 

C::j(26) く= '1' ぬ阻 (inst = 1_18UB) or (inst = I_SLT) or (inst =ロLT1) or (inst = 1_SLT1U) or 
(inst = 1_SUBU) or (inst = 1_BEQ) or (inst = 1_BNE) or (inst = 1_1NO~2. or 
èi~st = 1=BGEZ) or (inst = 1=BGTZ) or (inst = 1_BLEZ) or (inst = 1_ADD) or 
(12st=I-ADDI)or(12st=I-ADDI11)or(12st=I-ADDU)or(inst=I-LB)or 
鑛nst = 1=LBU) or (inst = 1_LH) or (inst = I_LHU) or (inst = 1_LW) or 
(inst = 1_8B) or (inst = 1_SH) or (inst = 1_SW) else 
1 (、 1.

cii(25) < ='13when (inst=IJXOR)or(inst=LXORI)or(12st=LIOR)or(inst=LORI)or 
(inst = 1_INOR) or (inst = I_AND1) or (inst = 1_IAND) else 
'0' : 
cw_2(24) く= '1' yhen (inst = 1_SRA) or (inst = I_SRAV) else 
,^' . 
cA-4(23) く= '1' when (inst = 1_SRL) or (inst = I_SRLV) or (inst = I_SRA) or (inst = I_SRAV) 
else 
'0' ; 
cw_2(22) <= '1' when (inst = 1_M1九T) else 
'0' ; 
cw_2(21) <= '1' when (inst = 1_D1VU) else 
'0' : 
cw_2(20) <= '1' 油en (inst = 1_BGEZ) or (inst = 1_BGEZAL) else 
'0' ; 
cw_2(19) く= '1' when (inst = 1_BGTZ) else 
'0' , 
cw_2(18) く= '1' when (inst = 1_BLEZ) else 
'0' , 
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cy_2(17) <= '1' when (inst = 1_BLTZ) or (inst = 1_BLTZAL) else 
'0' ・

cw_2(16) <= '1' when (inst = 1_BEQ) else 
'0' ; 
cy_2(15) く= '1' when (inst = 1_BNE) else 
'0' , 
cy_2(14) く= '1' yhen (inst = 1_ADD) or (inst = 1_ADD1) or (inst = 1_ADD1U) or (inst = 1_ADDU)οz 
(inst = 1_AND1) or (inst = 1_1AND) or (inst = 1_1NOR) or (inst = 1_10R) or 
(inst = 1_1SUB) or (inst = 1_1XOR) or (inst = 1_OR1) or (inst = 1_SUBU) or 
(inst = 1_XOR1) or (inst = 1_SLL) or (inst = 1_SLLV) or (inst = 1_SRA) or 
(inst = 1_SRAV) or (inst = 1_SRL) or (inst = 1_SRLV) or (inst = 1_SLT1U) or 
(ins七= LSL叩) or (工nst = 1_MFLO) else 
'0' ; 
cy_2 (1 3) く= '1' yhen (inst = I_ADD) or (inst = 1_ADD1) or (inst = 1_ADD1U) or (inst = 1_ADDU) or 
(inst = 1_AND1) or (inst = 1_1AND) or (inst = 1_1NOR) or (inst = 1_10R) or 
(inst = 1_1SUB) or (inst = 1_1XOR) or (inst = 1_OR1) or (inst = 1_SUBU) or 
(inst = 1_XOR1) or (inst = 1_BGEZAL) or (inst = 1_BLTZAL) or (inst = 1_JAL) or 
(inst = 1_JALR) or (inst = 1_SLT1U) or (inst = 1_SL叩) or (inst = 1_町H1)
else 
'0' ; 
cy_2(12) く= '1' when (inst = 1_ADD) or (inst = 1_ADD1) or (inst = 1_ADD1U) or (inst = 1_ADDU) or 
(inst = 1_AND1) or (inst = 1_1AND) or (inst = 1_1NOR) or (inst = 1_10R) or 
(inst = 1_1SUB) or (inst = 1_1XOR) or (inst = 1_OR1) or (inst = 1_SUBU) or 
(inst = 1_XOR1) or (inst = 1_BGEZAL) or (inst = 1_BLTZAL) or (inst = 1_JAL) or 
(inst = 1_JALR) or (inst = 1_SLL) or (inst = 1_SLLV) or (inst = 1_SRA) or 
(inst = 1_SRAV) or (inst = 1_SRL) or (inst = 1_S町.V) or (inst = 1_SLT) or 
(inst = 1_SLT1) else 
'0' , 
cy_2 (1 1) く= '1' yhen (注目= 1_D1V) or (inst = 1_D1VU) else 
'0' , 
cw_2 (1 0) く= '1' when (inst = 1_ffi凡T) or (inst = 1_ffi凡叩) else 
'0' , 
C苛ー2(9) く= '1' 百hen (inst = 1_SB) or (inst = 1_SH) or (inst = 1_SW) else 
'0' , 
cw_2(8) く= '1' when (inst = 1_LB) or (inst = 1_LBU) or (inst = 1_LH) or (inst = 1_U町) or 
(inst = 1_LW) or (inst = 1_SB) or (inst = 1_SH) or (inst = 1_SW) 
else 
'0' , 
cw_2(7) <= '1' when (inst = 1_LW) or (inst = 1_SW) or (inst = 1_LH) or (inst = 工ーL肌1) or 
(inst = 1_SH) else 
'0' , 
cw_2(6) <= '1' when (inst = 1_LW) or (inst = 1_SW) else 
'0' ; 
cw_2(5) く= '1' when (inst = 1_LB) or (inst = 1_LH) or (inst = 1_SB) or (inst = 1_SH) 
else 
'0' ; 
cy_2(4) く= '1' when (inst = 1_LB) or (inst = 1_LBU) or (inst = 1_LH) or (inst = 1_口町) or 
(inst = I_LW) else 
'0' , 
cw_2(3) <= '1' when (inst = 1_ADD) or (inst = 1_ADD1) or (inst = 1_ADD1U) or (inst = 1_ADDU) or 
(inst = I_AND1) or (inst = 1_BGEZAL) or (inst = 1_BLTZAL) or (inst =工_1AND) or 
(inst = 1_1NOR) or (inst = 1_10R) or (inst = 1_1SUB) or (inst = 1_1XOR) or 
(inst = I_JAL) or (inst = 1_JALR) or (inst = 1_LB) or (inst = 1_LBU) or 
(inst = 1_LH) or (inst = I_LHU) or (inst = 1_LU1) or (inst = 1_LW) or 
(inst = 1_OR1) or (inst = 1_SLL) or (inst = 1_S比V) or (inst = 1_SLT) or 
(inst = 1_SLT1) or (inst = 1_SLT1U) or (inst = 1_SL叩) or (inst = 1_SRA) or 
(inst = 1_SRAV) or (inst = 1_SRL) or (inst = 1_SRLV) or (inst = 1_SUBU) or 
(inst = 1_XOR1) or (inst = 1_町田) or (inst = 1_MFLO) else 
'0' ; 
cw_2(2) <= '1' when (inst = 1_MULT) or (inst = 1_阻止TU) or (inst = 1_D1V) or (inst = I_D1VU) or 
(ins七= LMTHI) else 
'0' ; 
cy_2 (1)く= '1' when (inst = 1_阻止T) or (inst = 1_阻止叩) or (inst = I_D1V) or (inst = I_D1VU) or 
(inst = 1_MTLO) else 
'0' ; 
cy_2(0) く= '1' when (inst = 1_BGEZAL) or (inst = 1_BLTZAL) or (inst = 1_JAL) or (inst = 1_JALR) 
else 
'0' , 
lock_3_ctrl_MULO_fin <= '0' when valid(3) = '0' else 
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cy_3(10) ; 
l o ck_3_ctrl_DIVO_flag く= '0' when valid(3) = '0' else 
cw_3(11); 
bbranch く= '0' when go(3) = '0' else 
'1' yhen (ALUO_flag(2) = sys2_pO) 祖d cy_3(15) = '1' else 
'1' yhen (ALUO_flag(2) = sys4_pO) 祖d cy_3(16) = '1' else 
'1' yhen (reg20_data_out(31) = sys4_pO) 担d cw_3(17) = '1' else 
'1' yhen (reg20_data_out(31) = sys4_pO or ALUO_flag(2) = sys4_pO) 臼d cw_3(18) = '1' else 
'1' yhen (reg20_data_out(31) = sys2_pO and ALUO_flag(2) = sys2_pO) and cw_3(19) = '1' else 
'1' when (reg20_data_out(31) = sys2_pO) and cw_3(20) = '1' else 
cw_3(30); 
PC_load く= '0' yhen go(3) = '0' else 
'1' when (ALUO_flag(2) = sys2_pO) 担d cy_3(15) = '1' else 
'1' yhen (ALUO_flag(2) = sys4_pO) a且d cy_3(16) = '1' eユse
'1' when (reg20_data_out(31) = sys4_pO) and cy_3(17) = '1' else 
'1' when (reg20_data_out(31) = sys4_pO or ALUO_flag(2) = sys4_pO) 担d cw_3(18) = '1' else 
'1' yhen (reg20_data_out(31) = sys2_pO 回d ALUO_flag(2) = sys2_pO) 祖d cy_3(19) = '1' else 
'1' yhen (reg20_data_out(31) = sys2_pO) and cy_3(20) = '1' else 
cw_3(30); 
PC_reset く= '1' yhen (Interrupt_Step = 1) 臼d ((Interrupt_name = INT_reset)) else 
'0' , 
PC_hold <= '1' yhen go(l) = '0' else 
'0' , 
IR_rst く= '1' yhen (Interrupt_Step = 1) 担d ((Interrupt_name = INT_reset)) else 
'0' , 
IR_enb <= '0' when go(l) = '0' else 
'1' , 
GPR_reset く= '1' yhen (Interrup七_Step = 1) 担d ((Interrupt_name = INT_reset)) else 
'0' , 
GPR_w_enbO く= '0' yhen go(5) = '0' else 
cy_5(3); 
ALUO_cin く= cy_3(29); 
ALUO_ctrl く= cw_3(25) & cy_3(26) & '0' & cy_3(27) & cw_3(28); 
EXTO_ctrl く= cw_2(35); 
DMEM一回 <= '0' when go(4) = '0' else 
cw_4(9); 
D肥M_req く= '0' when go(4) = '0' else 
cw_4(8)j 
DMEM_ac_ctrl く= cw_4(6) & cw_4(7); 
DMEM_ext_ctrl <= cw_4(5); 
SFTO_mode <= cw_3(23) & cw_3(24); 
阻止O_ctrl <= cw_3(22); 
MULO start <= '0' when multi st 3 = '1' else 
cw_3(10); 
HI_rst <= '1' when (Interrupt_Step = 1) and ((Interrupt_name = INT_reset)) else 
'0' ; 
HI_enb く= '0' when go(5) = '0' else 
cw_5(2); 
LO rst <= '1' when (Interrupt_Step = 1) 臼d ((Interrupt_name = INT_reset)) else 
'0' , 
LO_enb く= '0' when go(5) = '0' else 
cw_5(1); 
DIVO_ctrl <= cw_3(21); 
sel10_ctrl く= cw_2(34 downto 34); 
selll_ctrl <= "1" when (reg20_data_out(31) = sys2_pO) and cw_3(20) = '1' else 
"1" when (reg20_data_out(31) = sys2_pO and ALUO_flag(2) = sys2_pO) and cw_3(19) = '1' else 
"1" when (reg20_data_out(31) = sys4_pO or ALUO_flag(2) = sys4_pO) and cw_3(18) = '1' else 
"1" when (reg20_data_out(31) = sys4_pO) and cw_3(17) = '1' else 
"1" when (ALUO_flag(2) = sys4_pO) and cy_3(16) = '1' else 
勺" when (ALUO_flag(2) = sys2_pO) 祖d cw_3(15) = '1' else 
"0"; 

se工 12_ctrl く= cw_2(33 downto 33); 
se113_ctrl く= cw_5(0 downto 0); 
se114_ctrl <= cw_3(12) & cw_3(13) & cw_3(14); 
se115_ctrl く= cw_4(4 downto 4); 
sel16_ctrl <= cw_2(32 downto 32); 
se117_ctrl く= cy_2(31 downto 31); 
se118_ctrl く= cw_3(10) & cw_3(11); 
sel19_ctrl <= cw_3(10) & cw_3(11); 
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reg20_enb く= '0' when go(2) = '0' else 
'1' ; 
reg21_enb <= '0' when go(2) = '0' else 
'1' ; 
reg22_enb く= 'Q' when go(1) = '0' else 
'1' , 
reg23_enb く= '0' when go(2) = '0' else 
'1' , 
reg24_enb く= 'Q' when go(3) = '0' else 
'1' ; 
reg25_enb <= '0' when go(2) = '0' else 
'1' , 
reg26_enb <= '0' when go(2) = '0' else 
'1' ; 
reg27_enb く= '0' when go(3) = '0' else 
'1' ; 
reg28_enb <= '0' when go(2) = '0' else 
'1' ; 
reg29_enb く= '0' when go(2) = '0' else 
'1' ; 
reg30_enb く= '0' when go(3) = '0' else 
'1' ; 
reg31_enb <= '0' when go(4) = '0' else 
'1' ; 
reg32_enb <= '0' when go(3) = '0' else 
'1' ; 
reg33_enb <= '0' when go(4) = '0' else 
'1' ; 
reg34_enb <= '0' when go(2) = '0' else 
'1' ; 
reg35_enb く= '0' when go(2) = '0' else 
'1' ; 
reg36_enb く= '0' when go(3) = '0' else 
'1' , 
reg37_enb <= '0' when go(4) = '0' else 
'1' , 
reg38_enb く= '0' when go(3) = '0' else 
'1' ; 
reg39_enb く= '0' when go(4) = '0' else 
'1' ; 
CSW_rst <= '1' when (Interrupt_Step = 1) 担d ((Interrupt_name = INT_reset)) else 
'0' , 
CSW_enb く= '1' when (Interrupt_Step = 1) and ((Interrupt_name = 1町T_initO)) else 
'0' ; 
rreset <= '1' when (rst='l') else '0'; 
PIPE_REG_CTRL: process(clk) 
begin 
if(clk'event and clk = '1') then 
if(go(2) = '1') then 

cw_3 く= cw_2(30 downto 0); 
end if; 
if(go(3) = '1') then 
cw_4 <= cw_3(9 downto 0); 
end if; 
if(go(4) = '1') then 
cw_5 <= cw_4(3 downto 0); 
end if; 
end if; 
end process PIPE_REG_Cτ'RL; 
end behavior; 
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