
Title Pipelined Processor Synthesis from Micro-
operation Level Specification

Author(s) Itoh, Makiko

Citation 大阪大学, 2001, 博士論文

Version Type VoR

URL https://doi.org/10.11501/3184179

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Pipelined Processor Synthesis from

Micro-operation Level Specification

Makiko Itoh

J組U訂y， 2001

。

雲

宍
o
a
o
R
n
o一O『
n
oコ
マo
一
勺ω
R
Y
m
m

∞
一C
O
O
M
R
W
コ

O
『@
O
コ
〈
包

E
g
z

-
《o
a
ω
R
o
s
v

、
ω
n
ω一
。

:�

問

ω

4匙

-.

問

∞

Pipelined Processor Synthesis from

Micro-operation Level Speci五cation

Doctoral Dissertation

by

Makiko Itoh

Department of Informatics and Mathematical Science

Graduate School of Engineering Science

Osaka U niversity

t
i
-
-

つ
ム

A
『A
A

ヨ
ハ
b

氏
U

Introduction

1. 1 Background .

1.2 ASIP Development

1.3 Objective

1.4 Approach

1.5 Contribution of the Research. .

1.6 Organization of the Thesis . .

Contents

1

Q
υ
Q
d
Q
d
n
U
1

ム
つ
』
つ
リ

ー
』
ム

4
1
ム

1
l

ム
『
i

ム

Related Work

2.1 HW/SW cかdesign in ear ly years

2.2 Recent ASIP Development System

2.2.1 Prepared Processor based Approach

2.2.2 Software Development Tool Generation Systems .

2.2.3 Processor Synthesis Systems .

Problems of Existing Processor Descriptions

2

F
b
P
O
G
O
-
-
η

，
，
白
つ
剖
A
H
&
A
宝
。
。
。

δ
Q
U

1

1

1

2

2

2

2

2

2

2

2

PEAS-III: Processor Design Environment

3.1 Characteristics of Modern Processor Architecture
3.2 Design Methodology

3.2.1 Flexible Hardware Model. .

Micrかoperation Level Processor Specification

3.3.1 Design Goal and Architecture Parameter Setting. .

3.3.2 Resource Declarations

3.3.3 Instruction Format Definitions .

3.3.4 Interrupt Condition Definitions

3.3.5 Interface Definitions

3.3.6 Micro Operation Descriptions

2.3

3

3.3

q
d
q
、
υ

凋
告
。
。
口
。

3

3

3

3

3

Processor Model

4.1 Processor Clωs

4.2 Processor organization

4.3 Datapath Model. .

4.4 Controller Model

4

4.4.1 Instruction Decoder
4.4.2 Pipeline Stage Controller .

4.4.3 Interrupt Controller .

n
u
d
1
i
n
u

q
J
A
斗
A
R
U

A Grammar of Micro-operation Level Processor Specification

A.1 Organization of Micrかoperation Level Speci五cation

A.2 Architecture Parameter. .

A.2.1 Design Goal .
A.2.2 Pipeline Processor Parameters .

A.3 Interface Definition
A.4 Instruction Format Definition

A.4.1 Instruction Type DefiniもlOn

A.4.2 Instruction De五nition .

A.5 Resource Declaration .
A.6 Interrupt Definition

A.7 Micrかoperation Description

A.7.1 Variable

A.7.2 Constant.
A.7.3 Storage
A.7.4 Operands

A.7.5 Function.

A.7.6 Assignment statement

A. 7. 7 If-statement
A.7.8 Decode statement .

5 Processor Synthesis

5.1 Datapath Synthesis .

5.1.1 DFG generation

5.1.2 Basic Datapath Synthesis

5.1.3 Signal Confiicts Resolution .

5.1.4 Pipelining.

5.2 Controller Synthesis
5.2.1 Control Signal Extraction

5.2.2 lnterlock Condition Extraction
5.2.3 Branch Condition Extraction

5.2.4 Instruction Decoder Synthesis

5.2.5 Stage Controller Synthesis .

5.2.6 Interrupt Controller Synthesis

q
o
q
ο
r
o
p
O

ハh
U
丹
、u
ハh
u
円h
u
口
δ
Q
u
n
U

円
4
A

せ

5
5
5
5
5
6
6
6
6
6
7
7
7
 6 Experiments

6.1 Objective of the Experiments

6.2 Basic RISC Processor. . . .

6.3 PEAS-I Processor Core .

6.4 Embedded RISC Controller
6.5 Pipeline Stage Tuning

6.5.1 Changing the Number of Pipeline Stages

6.5.2 Clock Frequency Improvement .
6.6 Design Space Exploration for DSP Application .

6.6.1 Customization of PEAS R3K

7

ウ
d

公
u
n
u

つ
ム

4
&
v
b

ウ
t

父
U
Q
d

円i

ヴt

ウ
t
Q
0
0
0
0
0
0

。
。
。
。
。
。
。

B Processor Specification of PEAS R3K

C Synthesis Result of PEAS R3K Processor
C.1 VHDL Descriptionf of PEAS R3K Datapath
C.2 VHDL Descriptionf of PEAS R3K Controller .

6.6.2 Pipeline Stage τ'uning for Derivative Processors 91

6.6.3 Results of Design Space Exploration for DSP Applications .. 91

7 Discussion
7.1 Design Space

7.2 Design Time and Design Space Exploration Time

7.2.1 Design Time for New Processors .

7.2.2 Design Time for Derivative Processors
7.3 Design Quali ty

97

97

99

99

. 100

. 101

8 Conclusions and Future Work
8.1 Conclusion...........

8.2 Future Work. . .

8.2.1 Design Space Expansion

8.2.2 Design Exploration Time Reduction .

8.2.3 Improvement of the Design Quality

103
. 103

. 104

. 104

. 105

. 106

11 III

113
. 113

114
. 114

. 115

. 115

. 116

. 116

. 117

. 117

. 118

. 119

. 120

. 120

. 120

. 121

. 121

. 121

. 122

. 122

123

139
. 139
. 150

Abstract

In an embedded system area, application specific instruction set processors (ASIPs)

provide better performance, lower power consumption and a smaller chip area than

general purpose processors. However, the design time of ASIPs becomes longer with

the growth of the design scale. Higher abstraction level processor design method

is required more than a traditional register transfer level (RTL) processor design

method. The processor designs at RTL require a long design time because the deｭ

signer has to design datapath and controller structures while considering the assignｭ

ment of registers, functional units, interconnects among them, and the organization

of the finite state machine of the controller. Designing processor organization at RTL

台om instruction set architecture level processor specification is an error-prone and

time-consuming task. In addition, the modification of 七he processor specification

requires a long time for re-design of datapath and controller at RT level. Thereforeヲ

comparing with several design candidates for specific application in a short design

time is di伍cult.

In this thesis ヲ micro-operation level pipelined processor specification and a proｭ

cessor sy瓜hesis method from a micrかoperation level processor description are prcト

posed for the improvement of design productivity of the ASIP development. The

higher abstraction level than RTL contributes to the easiness of design and design

modification for ASIP design. The ease of specification and modification of prか

cessor architecture enables architectural exploration of a large design space in a

short design time. The designer only spec泊ed clock based instruction behavior in

micrかoperation level specifications. Datapath and controller of the processor are

synthesized from the behavioral description of instructions.

The design space of micrかoperation level processor specification is large enough

V

for practical straightforward pipelined processors. Exploration of larger design space

enables the designer to select a more suitable architecture for the target application.

The target architecture of micrかoperation level processor speci五cation includes the

following features: user-defined pipeline organization in terms of the number of

pipeline stages, the number of delayed branch slots and the role of each pipeline

stage; clock based behavioral representation of instructions and interrupts; utiｭ

lization of parameterized hardware modules; and user-defined instruction format ,

processor interface ports and external interrupt conditions.

Processor synthesis from the micrかoperation level processor speci白cation inｭ

cludes datapath synthesis and controller synthesis. The synthesis of datapath and

controller allows the designer to concentrate on instruction set design and evaluate

various arcmtecture candidates in a short time. In datapath synthesis, data fiow

graph generation 仕om micro-operation description, signal confiicts resolution and

insertion of pipeline registers are performed. In controller synthesis, instruction deｭ

coder) pipeline control logic such as pipeline stall and pipeline fiush , and external

interrupt control are synthesized.

From experimental resultsう the effectiveness and feasibility of the proposed proｭ

cessor synthesis method were evaluated. Examples in experiments are a MIPS R3000

compatible processor, DLX, PEAS-I core, a sirnple RISC controller, and a cusｭ

tomized MIPS R3000 processor for DSP application. The amounts of processor

design time and design modification time were drastically reduced compared with

that of conventional RT level manual design. Processor synthesis time was about

two minutes for the processor, which has 52 instructions. The design space of pracｭ

tical processors was explored at an architecture level in a short design time. In the

design quality of synthesized processors and manually design processors, the clock

frequencies are almost the same. The area of synthesized processors is about 20%

larger than that of manually designed processors. Though the area is inferior to

manual design, the advantage of e紅白tive design space exploration has an impact

on the total design quality. The effectiveness of the micro-operation level processor

specification and processor synthesis for architectural design space exploration is

con五rmed.

vl

The proposed processor synthesis method enables the designer to explore a large

design space at an architectural level. By the architectural exploration of a large

design space, design productivity for application specific processors is drastically

improved.

Vll

Acknow ledgll1ents

1 would like to express my deepest gratitude to my supervisor Prof. Masaharu Imai,

Osaka University, for introducing me to this research area and guiding this work ,

for providing all the facilities to carry it out , and for continuous support , help and

encouragement.

1 would also like to express my thanks to Prof. Ken-ichi Taniguchi and Prof.

Teruo Higashino for helpful suggestions and comments in writing this thesis. 1

wish to express my thanks to the professors and staff of the Department of Inforｭ

matics and Mathematical Science, Graduate School of Engineering Science, Osaka

University, for their guidance, especially the late Prof. Seishi Nishikawa, and the

late Prof. Mamoru Fujii, and Prof. Masaru Sudo, Prof. Nobuki Tokura, Prof. Akiｭ

hiro Hashimoto, Prof. Toru Kikuno, Prof. Hideo Miyahara, Prof. Toshinobu Kashiｭ

wabara, Prof. Toru Fujiwara, Prof. Katsuro Inoue, Prof. Kenichi Hagihara, Prof.

Masay叫ö Murata, Prof. Toshimitsu Masuzawa, Prof. Tadahiro Kitahashi and Prof.

Shinichi Tamura.

The author is extremely thankful to Prof. Yoshinori Takeuchi, Prof. Akira Kiｭ

tajima from Osaka University, Prof. Jun Sato 丘om Tsuruoka N ational College of

Technology and Prof. Akichika Shiomi 仕om Shizuoka U niversity for their continｭ

uous support , help and encouragementう and many tha叫cs to all members of the

PEAS project for their kind assistanceヲ especially， Dr. N. N. Binh, Mr. Yoshimichi

Homma, Prof. Takumi Nakano, Prof. Tsutomu Kimura, Mr. Nobuyuki Hikichi 台om

Software Research Associates, Inc. , and to the members of the VLSI System Design

Laboratory at Osaka University, especially, Ms. Akiko Fujii, Ms. Ranko Morimoto,

Mr. Takafumi Morifuji, Mr. Norimasa Ohtsuki, Mr. Shigeaki Higaki, Mr. Shinsuke

Kobayashi , Mr. Yoshiharu Watanabe, Mr. Tomohide Maeda and Mr. Naoki Morita.

lX

The author would like to express her special thanks to Dr. Tokinori Kozawa,

Mr. Michiaki Muraoka and Dr. Eiji Masuda from STARC (Semiconductor Technolｭ

ogy Academic Research Center) , Dr. :Y.Iasao Hottaヲ Mr. Mitsuho 8eki, Mr. Yoshio

Takarnine from Hitachi Limited, and Mr. Masanobu Mizuno from Matsushita Elecｭ

tric Industry Corporation.

This research was supported in part by STARC.

X

Chapter 1

Introduction

1.1 Background

With advancements in semiconductor technology, chip complexityう that is, the numｭ

ber of transistors on a silicon chip, is doubling every three years. In the ne訂 future ，

it is estimated that over 10 million transistor circuits will be realized on a silicon

chip of only 1 cm2
. From the technology innovation, System-on-a-Chip (SoC) with

compound functionalities integrated on a single chip tends to be widely used in

electronic equipment [1]. Figure 1.1 shows a typical orga凶zation of SoC. SoC usuｭ

ally consists of a combination of the following components: processors such as CPU

core, digital signal processor (DSP) and specific processors; A81Cs such as signal

processing hardware, control hardware and other specific hardware; memories like

flash and DRAM; and analog circuits. L81 designs are moved 仕om the individual

design of microprocessors and application-specific integrated circuits (A8ICs) to a

whole system design on a chip.

In SoC design, design productivity is a key issue. The roadmap of SEMATｭ

ECH [2] indicates the growing productivity gap between available transistors and

those that can be designed in microprocessors. The growth of transistor density is

58% per year. On the other hand, the growth of design productivity is only 21 % per

year. 1n addition, the rapidly changing technological environment shrinks product
life cycles and shortens time-tかm紅ket .

l

日回目

B己主
、，

Figure 1.1: Typical Organization of System-On-a-Chip.

1.2 ASIP Development

Focusing on the design of application specific instruction set processors (ASIPs)

that are integrated to the SoC, HardwarejSoftware 時design [3] environment with

architectural design space exploration is considered to be key to design productivity

improvement. For the ASIP design, it is important to explore suitable processor

architecture for the tぽget application. The HW jSW cかdesign environment enｭ

ables the designer to design and evaluate the processor while considering target

application and suggests the direction for design improvement. Using the HW jSW

co-design environment, the designer is able to design and evaluate various architecｭ

ture candidates at instruction set architecture level easily. As a consequence, the

designer is able to choose the most suitable architecture for the target application

in a short design time.

Figure 1.2 shows one HW jSW cかdesign 台amework for effective design space

exploration. The designer speci五es processor architecture with entry system at inｭ

struction set architecture level. Processor components such as registers う memory

access units, functional units and so on are instantiated from a module library. The

module library provides instances at various abstraction levels. A processor synｭ

thesizer generates a simulation model and a synthesizable model of the designed

2

Libræγ

Model A

Ccトverifier

/ Estimator

Figure 1.2: HW jSW Cかdesign Framewor k

processor. The processor synthesizer receives instances used in the processor 仕om

the database manager of the library. Software development tools such as a compiler

and an assembler are also generated 仕om the same processor description as processor

synthesis. The synthesized instruction set simulation model and SW development

tools enable co-verification and performance evaluation of the designed processor.

A generated RT level processor model is used to estimate area, clock 台equencyand

power consumption. Estimation and veri五cation results suggest the direction for

improvement of the processor design. Using a HW jSW cかdesign 仕amework like

this , exploration of large design space becomes possible because the turn-around

time of the ASIP is drastically reduced.

The following techniques 紅e required to implement a HW jSW co-design 仕ame

work: instruction set level processor specification, processor synthesis and software

development tool synthesis method 企om the same processor description, and fast

estimation of designed processor. The processor synthesis method of the HW jSW

co-design system often limits the design space of the system. In the recent research,

several HW jSW cかdesign methods and processor synthesis methods are proposed,

but their design space is veηT small in regard to pipeline orga凶zation .

3

Z 一ーー一一ー一一一一 一一一一一一一 一一一一一寸|

1.3 Objective

The aim of this research is an investigation of a processor synthesis method for

exploration of a large design space for ASIPs. Because processor synthesis methods

usually limit the design space of the H W jSW co--design environment, processor

synthesis methods should support various other architecture candidates of the ASIPs

for architectural design exploration.

To explore a large design space, two requirements must be satisfied: a short turnｭ

around time for evaluation of various candidates, and a large design space. Even if

the design space is large enough, the design space cannot be fully explored in the

restricted design time if the turn-around time for the design is too long. There is

a tradeoff between the easiness of the processor specification and the design space.

An appropriate abstraction level for processor specification should be considered.

1.4 Approach

Considering the tradeoff between the easiness of the processor speci五cation and the

design space of the specification language, micrかoperation level processor specificaｭ

tion for processor synthesis and a processor synthesis method for micro--operation

level speci五cation are proposed in this thesis.

Micro--operation level processor specification is based on a clock base behavｭ

ioral description of instructions. With the abstraction level processor specification

higher than the RT level, the design time and design modi五cation time of the ASIPs

紅e drastically reduced. Despite the easiness of the specification, the design space of

micro-operation level processor specification enables the designer to specify practical

straightforward pipelined processors. The designer can specify the pipeline organiｭ

zation, hardware module configuration and external interrupts. From these points,

a Illlcrかoperation level is appropriate for a straightforward pipelined processor in

terms of the easiness of the design and design space.

At a micrかoperation level processor design, datapath structure and controller

紅e synthesized 仕om behavioral description of instructions and hardware module

con五guration. The designer is free 丘om tedious, eロor-prone datapath and controller

4

design. Therefore the designer can design various ASIPs in a short design time.

The target processor architecture is straightforward pipelined architecture that

includes basic functionality of embedded microprocessors [4. 5: 6: 7 、 8 ぅ 9] such as

multi-cycle operation, delayed branch and external interrupts. Micro--operation level

processor speci五cation includes: the number of pipeline stages and the number of

delayed branch slots; utilization of parameterized hardware modules; user-defined

instruction format , processor interface ports and external interrupt conditions; and

clock-based behavioral representation of instructions and interrupts. Operations of

each pipeline stage are speci白ed by the designer wi th micrかoperation description of

instructions. The pipeline depth, role of each pipeline stage and hardware modules

have an impact on clock frequency and area. The number of delayed branch slots

affects code size and execution cycles. Therefore, fiexibility in the processor archiｭ

tecture , such as the number of pipeline stages and delayed branch slot and the role

of pipeline stagesう and in the con五guration of hardware modules, allows exploration

of a large design space.

For the processor synthesis method from a micro-operation level processor speciｭ

fication , datapath and controller synthesis is required for user-de五ned pipeline orgaｭ

nization in terms of the number of pipeline stages, the number of delayed branch slot

and role of each pipeline stage. The controller synthesis includes pipeline control

logic synthesis for pipeline hazards う interrupt controller synthesis, and instruction

decoder synthesis. Structural hazards are caused by multi-cycle operations and reｭ

source confiicts 仕om multiple stages. Hence generation of the hazard detection logic

and pipeline interlock logic is required. To deal with the specified number of delayed

branch slots, generation of branch control and pipeline fiush control logic are also
required.

In this thesis, to deal with user-defined pipeline organization, a fiexible pipelined

processor model is proposed. The model has fiexibility regarding the number of

pipeline stages and pipeline controllogic. The model consists of datapath and conｭ

troller of each pipeline stage, instruction decoder and external interrupt controller.
The pipeline control rnechanism using the model for pipeline interlock and pipeline

fiush is discussed. The processor model and pipeline control rnechanism supports

5

τ一一一一一一一一一一一一一一一一rlIIIIIoIIr..!._y- 一一一一一一一 一一一一-

the processor synthesis from the micro-operation level processor specification.

Finally, the processor synthesis method based on the processor model is proposed.

Processor synthesis from the micro-operation level processor specification includes

datapath structure synthesis and controller synthesis. Synthesis of datapath and

controller allows the designer to concentraもe on instruction set design and evaluate

various architecture candidates in a short time. In datapath synthesis, data fiow

graph generation 仕om micro-operation description , signal confiicts resolution and

insertion of pipeline registers are performed. In controller synthesis, instruction

decoder, pipeline controllogic such as pipeline stall and pipeline fiush , and external

interrupt control are syn七hesized .

1.5 Contribution of the Research

The e旺ectiveness of architectural design space exploration using the proposed proｭ

cessor design method and synthesis method is known from the experimental results.

Design and design modification time is reduced compared with the RT level prか

cessor design. Processor design space was successfully explored at an architecture

level in a short design time. Processor synthesis time was about two m匤utes for the

processor, which has 52 instructions.

In the design quality of synthesized processors and manually design processors,

the clock 丘equencies are almost the same. The area of synthesized processors is

about 20% larger than those of manually designed processors. Though the area is

inferior to manual design, the advantage of effective design space exploration has an

impact on the total design quality.

Consequently, the effectiveness of the micrかoperation level processor specificaｭ

tion and processor synthesis for architectural design space exploration is con五rmed.

By the architectural exploration of a large design space, design productivity for

application specific processors is improved drastically.

1.6 Organization of the Thesis

This thesis is organized as follows.

6

In Chapter 2, ex﨎ting HW / SV.,r cかdesign environments, customizable processor

cores and processor sy凶hesis methods are reviewed. Problems of existing methods

are discussed.

Chapter 3 describes micrかoperation level processor specification and processor

design environment PEAS-III. To determine parameters and user-de五nable parts

of target processors, the characteristics of processor architecture are classi五ed and

evaluated in view of their impacts on performance and area on the processor.

In Chapter 4 ヲ the pipel匤ed processor model for processor synthesis is illustrated.

The model consists of datapath, an instruction decoder, a pipeline controller and

an external 匤terrupt controller. The conditions of pipeline interlock and pipel匤e

fiush are considered. The pipeline controller mechanism using these conditions 﨎

expla匤ed.

Chapter 5 is devoted to the processor synthesis method. The datapath and

controller synthesis methods are described. The datapath synthesis includes data

fiow graph generationぅ signal confiicts resolution, and pipeline register insertion.

The controller synthesis includes instruction decoder synthesis, pipeline controllogic

synthesis and interrupt controller synthesis.

In Chapter 6, the effectiveness of the method is evaluated through several exｭ

periments and architectural design space exploration is demonstrated. Examples

in experiments are a MIPS R3000 compatible processor, DLX, a simple RISC conｭ

troller, PEAS-I core, and a customized MIPS R3000 processor for DSP application.

The amount of processor design time was drastically reduced compared with that

of conventional RT level manual design in HDL. The processor design space was

successfully explored at an architecture level 匤 a short des刕n time.

Chapter 7 presents the discussion of this thesis. The design space, design producｭ

tivity and design quality of the proposed processor synthesis method are evaluated.

The direction of further expansion of des刕n space, reduct卲n of turn-around time

and improvement of the design quality are discussed.

The last chapter discusses the research results and concludes with future work.

7

E 一一一一一一一一一一一て~ 一一一一一 一一一一一寸

Chapter 2

Related Work

In this chapter, related work for application specific instruction set processors (ASIPs)

design is reviewed.

2.1 HW jSW co-design in early years

HW jSW co-design systems in early years 訂e closely connected to the base prか

cessor of the system. The system adopts parameterized processor cores. Howeverヲ

datapath structure and pipeline organization are almost restricted. PEAS-I [10] ヲ

Sat叫 [11] and ARC [12] are clωsified to this approach. In these systems, the

glven con五gurable arcrutecture is tuned to specific application by chang匤g some

arcrutectural parameters such as bit w冝th of hardware functional blocks, register

file síze, memory size, etc. The super set of instructions that can be executed on

adopted processor arcrutecture for the system is restricted. The system does not

allow the user-defined extension instructions, so that the system cannot always fully

satisfy the demand of diverse applications. User-defined instructions for extension

are required to gain high performance.

2.2 Recent ASIP Development System

In the recent research, several ASIP development systemsぅ which permit user-defined

application specific instructions to be equipped with the target processor, have been

proposed. These systems use their original processor description language to deｭ

scribe the target processor's instruction set and the hardware structure. From the

9

「ー一一一一一一一一一一一一ιι 一一一一一一一一一一一一一

processor description, a code generator, an instruction set simulator and HDL deｭ

scription of the targe七 processor are generated.

ISPS [13] is a common processor description for code generation, simulation and

processor synthesis in 1980's. While it incorporates a rich set of control mechanisms

to describe parallelism and synchronization of processes ヲ the synchronization mechｭ

anisms are inadequate to model pipeline operations and hazards for modern pipeline

processors.

The other processor description based ASIP design systems for pipelined procesｭ

sors are classified into three types.

1. Adding several dedicated instructions to already designed processors. This

approach includes FLEXWARE [14], Xtensa [15]， τTimaran [16], CASTLE [17]

and MetaCore [18].

2. Software development tool generation and performance evaluation system for

its original processor speci五cation language. This approach includes ISDL [19]

based system, Expression [20] b脱d system and LISA [21] based system.

3. RT level processor HDL description synthesis system for its original processor

specification language. This approach includes MIMOLA [22] based system,

nML [23] based system, AIDL [24] based system, and [25].

2.2.1 Prepared Processor based Approach

Processor descriptions in the first approach describe instruction set and portion of

the datapath structure. In the approach, their pipeline organizations are fixed , so

that modification of pipeline control does not allowed.

In the FLEXWARE [14], user-defined instructions can be described by the combiｭ

nation of generic instructions. The generic instructions are supported by instruction

set simulator model of the FLEXWARE in VHDL. The designer can specify exeｭ

cution cycles for each instruction, but cannot specify pipeline organization. 羽1hile

FLEXWARE supports the retargetable code generator CodeSyn and the instruction

set simulator Insulin, i七 doesn ' t suppo口 processor synthesis.

10

--四一一ー一一一一一一一

Xtensa [15] uses a customizable processor core. Xtensa permits some user-defined

instructions using 百nsilica Instruction Extension Language (TIE). While Xtensa

supports both processor synthesis and software development tool generation , userｭ

defined instructions must be executed in restricted cycles. The designer can only

describe behavior of the instructions and the structure of “execut ion" stage, but

he/she cannot change the number of pipeline stages and other pipeline stages.

τ'rimaran uses processor description language MDes [26], which describes both

behavior/structure of the target processor. Trimaran allows only a restricted retarｭ

getability of the simulator to the HPL-PD [27] processor family.

CASTLE [17] specifies target processor's datapath in block diagram and generｭ

ates VHDL description of a processor. The target arcrutecture of CASTLE is VLIW.

The feature of CASTLE includes: instantiation of VHDL descriptions for functional

units 仕om a module library, automatic input signal confl.ict resolution by selector

insertion, and generation of VLIW control word for speci白ed datapath. However,

CASTLE assumes a basic VLIW architecture and cannot change pipeline stages.

MetaCore [18] is an application specific DSP development system. MetaCore

prep紅白 basic and extended instruction set , and additional user-defined instructions

are permitted. Net-list level description of the datapath structure and behavioral

description of instructions 紅e described as a specification of a target processor.

From these descriptions, software development tools and an HDL description of the

target processor are synthesized. Howeverぅ additional execution units are specified

only for the “execution" stage. Additional execution units for other stages and

changing the number of pipeline stages are not permitted.

2.2.2 Software Development Tool Generation Systems

Processor descriptions in the second approach describe an instruction set and strucｭ

ture of datapath. The designer can define pipeline structure of the target processor

� terms of the nurnber of pipeline stages and operations in each pipeline stage.

ISDL [19] [28] is one of such approach that describes an instruction set and

datapath structure. In ISDL う constraints of pipeline execution are explicitly specified

through illegal operation groupings. This is tedious for complex arcrutectures like

11

DSPs that permit operation parallelism.

EXPRESSION [20] specifies an instruction set and datapath structure. A Pipeline

description provides a mechanism to specify the order of pipeline stages. Accurate

reservation tables can be generated 台omthe description. While EXPRESSION supｭ

ports cycle-accurate instruction set simulation by SIMPLESS [29], processor synｭ

thesis has not been su pported.

LISA [21] [30] describes the datapath structure and operation-level description of

the pipeline. LISA describes activation relationship among pipeline stages, pipeline

stalls and pipeline fiushes. However, LISA is used for retargetable simulators [31].

Processor synthesis has not been supported, either. Furthermoreう description of

pipeline control is tedious 七o design and to modify branch instructions and multiｭ

cycle operations.

2.2.3 Processor Synthesis Systems

In the last approach, both behavior and datapath structure of the target processor

are described. Synthesizable processor HDL descriptions are generated.

MIMOLA [22] describes behavior and structure of the target processor and genｭ

erates RT level processor description. However, pipeline control is not supported

since MIMOLA is micro-code based approach.

nML [23] describes behavior of instructions and datapath structure. From nML

description , an instruction set simulator is generated [32]. nML is used by the retarｭ

getable code generation environment CHESS [33] to describe DSPs and ASIPs. Prか

cessor synthesis tool "Go" is also developed for nML processor description. However,

nML does not directly support complex pipeline control such as pipeline interlock.

AIDL [24] specifies operations of each pipeline stage and timing relations and

causejeffect relations among pipeline stages. Using AIDL, various kinds of procesｭ

sors can be represented including processors with out-of-order completion. However,

the modi五cation of the design is di伍cult for complicated architecture because the

designer have to consider various kinds of dependency in the inter-instruction beｭ

havior.

Hamabe, et al. [25] proposed a description of clock based instruction behavior

12

and pipeline stage information includes the correspondence of hardware units to the

stage that contains their operations. However, designers must describe instruction

behaviors considering with pipeline registers. Furthermore 、 pipeline control is not

directly described.

2.3 Problems of Existing Processor Descriptions

Existing processor development systems have some problems.

1. Existing processor development systems need both structural and behavior

description of the target processor in order to generate the processor. Describｭ

ing a datapath structure wastes design time. Furthermore , for design space

exploration it is tedious to describe datapath structure in consideration of

consistency between behaviorjstructural descriptions

2. Most systems do not support specification of pipeline organization. The

pipeline model of such languages is restricted. The designer cannot change

the number of pipeline stages and role of each stage. Several systems supｭ

port pipeline control synthesis, but explicit de五nition of the pipeline control

is needed. Pipeline control definition is error-prone task and design of it takes

long design time.

For the more effective architectural design space exploration, synthesis of datｭ

apath 仕om behavioral description of instructions and pipeline control logic synｭ

thesis for user-defined pipeline organization are required. The ability of dealing

with the user-defined pipeline organization is essential to evaluate various pipelined

processor architectures. Datapath synthesis and pipeline controllogic synthesis for

user-defined pipeline organization and instructions can reduce the design time and

design modification time drastically. Consequently, large design space for ASIPs can

be explored in a short design time.

13

Chapter 3

PEAS-III: Processor Design

Environrnent

This chapter describes micrかoperation level processor specification and application

specific instruction set processor (ASIP) design environment PEAS-III based on

micro-operation level processor specification. First of all, characteristics of processor

architecture 紅e classified. Then, their impacts on performance and cost on the

processor are evaluated for decision of fiexibility on micrかoperation level processor

specification.

3.1 Characteristics of Modern Processor Archiｭ

tecture

Architectural characteristics of modern processors are classified into the following

po匤ts:

• instruction set architecture: Instruction set architecture is an interface beｭ

tween software and hardware. Instruction set is in且uenced by many other

architectural features described below.

• configuration of functional units: Performance of the functional unit affects

execution time of application program. Hardware cost of the function unit

affects total chip area. The functionality of the units and connectivity among

them, in other words “datapath structure," restricts instruction set. The numｭ

ber of functional units determines how many operations are executed at the

15

E-ーーーーーー一一一一一一一一てι 一一一一一一 一一一一一

same time.

• storage units' organization: Storage units' organization includes location of

operands, the number of operands, size of register-file and memory, memory

hierarchy and so on.

The operands can be located in accumulators, special registers , general-purpose

registers and memories. When operands are located in the accumulators or

special registers , location of them are implicitly appointed by an instruction.

Using implicit operandsう the designer can reduce the instruction word length.

However, load and store overhead from memory or register to accumulator or

special registers makes execution time long. On the other hand, locations of

operands are explicitly declared in an instruction when operands are located

in a general-purpose register or in a memory.

Furthermore, the processor architecture is classified to register-register arｭ

chitectur民 register-memory architecture and memory-memory architecture

whether operands ぽe located in a general-purpose register or memory. Adｭ

dressing modes for operands affect various 五elds such as instruction bit width,

execution cycles, the number of address generation units and memory access

units, pipeline orga凶zation and structural hazards.

In general, register-register architecture and harvard architecture are preferred

for the design of general purpose RISC processor. Complex memory architecｭ

ture and memory-accumulator architecture are often preferred for data inｭ

tensive digital signal processor design. For ASIP design, decision of suitable

memory organization for applications is required.

• pipeline organization and pipeline hazard resolution policy: Clock f民quency

and pi peline hazard occurrence 訂e influenced by pipeline organization in terms

of the number of pipeline stages and role of each pipeline stage. The deep

pipeline makes clock 企equency high, but hardware cost of it also increases.

Scheduled operations of each pipeline stage decide clock frequency of the prか

cessor. SpeciちTing the operations of each pipeline stage also decides clock

frequency, area, and condition of pipeline hazard occurrence and penalties of

16

them.

The penalty of pipeline hazards increases execution time of application prか

gram. Several techniques to decrease penalty of pipeline hazards are proposed.

Data forwarding , re-order buffer reduces data hazards. Delayed branch, branch

prediction and non-overhead loop reduce the penalty of control hazards. Addiｭ

tional functional units for the division of the operations of conflicted resource

resolve structural hazards. Selection of those techniques makes trade-off beｭ

tween performance and hardware cost.

• instruction issue and completion policy: The policies of instruction issue and

completion are classified into in-order and out-of-order. Complex issue and

completion mechanism make processor performance high but hardware cost

becomes high, too.

• exception and interrupts: Exception and interrupt handling manner has some

variations especially for architectures with out-of-order instruction completion.

One of the exception mechanisms is to use history file or future file to keep

original register values. Another approach is to store status of each pipeline

stage in detail and let the interrupt handling routine to recover the pipeline

status. The other is a technique that stops the instruction issue while it is

uncertain that all the execution instructions will complete without causing an

exception.

These characteristics are not orthogonal and influenced each other. The designer

has to decide processor architecture in considering with these architecture characterｭ

istics and feature of target applications. To overcome the di伍culty of architecture

exploration, pipeline stage level processor design system is indispensable. PEAS-III

is proposed as one of pipeline stage level processor design system.

For the architectural design space exploration in consideration of target appliｭ

cation, micro-operation level processor specification and design system PEAS-III is

proposed [34 ぅ 35]. PEAS-III enables the designer to do architectural design space

exploration in a short design time. The designer can try various architecture candiｭ

dates including following architecture variations: configuration of hardware modules,

17

specification of application speci五c instructions which include multi-cycle operations,

user-defined external interrupts, the number of branch delay slots , and the number

of pipeline stages.

Figure 3.1 shows the organization of PEAS-III. The designer entries processor

specification using GUI,“Architecture Design Entry System ," and processor syntheｭ

sis system generates micrかoperation level simulation model and RT level processor

description for logic synthesis in VHDL [36]. The designer selects resources 台om

fiexible hardware model database (FHM-DB) [37] and the processor synthesis sysｭ

tem receives HDL descriptions of selected resources 企om FHM-DBMS. Estimation

is also performed at each design step, architecture design phase and micro-operation

specification phase. Estimation system also accesses to FHM-DBMS to get estimaｭ

tion results of selected resources. This thesis describes architecture level processor

specification and processor synthesis.

Figure 3.1: PEAS-III System.

3.2 Design Methodology

Fi思rre 3.2 shows a design fiow of PEAS-III. With PEAS-III, processor is designed

design step by step. Firstly, design goal and processor architecture type are set.

Secondly, outline of the processor is specified. Specification in the second step

includes declarations of resources , which are used in the processor, definition of inｭ

struction format and conditions of external interrupts, and definition of interface

18

Satisfy Design Goal

Describe MicrかOperation of
Instructions and Interrupts

Processor Synthesis

RT Level Estimation

Satisfy Design Goal

Logic Synthesis

Figure 3.2: PEAS-III Design Flow.

19

ports. In the resource declaration, hardware modules are selected with appropriate

parameters from parameterized hardware library FHM-DB. The designer can specｭ

ify application speci五c interface between the processor core and other modules on

SoC by specifying the external interrupt condition and specific processor interface

ports. Then, area, clock 台equency and power consumption of designed processor

are estimated at the first cut estimation . 明司len the estimation results do not satisfy

the design goal, the designer changes archltecture parameters, resources, instruction

formats and so on to satisfy design constraint.

3.2.1 Flexible Hardware Model

After the estimation results satisfy the design goal, clock based micro-operation

description of instructions and interrupts is defined. Simula七ion model and syn七he

sizable model of the processor are generated from the processor description. The

functionality of the designed processor can be validated using the generated simuｭ

lation model. The simulation model consists of behavior level instances in VHDL.

The simulation model can also be used for evaluation of execution cycles of appliｭ

cation programs, and for cycle based cφveri五cation. The area, clock frequency and

power consumption of the designed processor are evaluated from synthesized datｭ

apath and controller. When estimation results do not satisちT the design goalう the

designer improves the processor design by re-scheduling operations of instructions

to the pipeline stages or changing the number of pipeline stages. Re-scheduling may

improve clock 台equency and the number of pipeline stages improve area and clock

frequency.

For architectural design space exploration, effective design reuse of hardware modｭ

ules and frequent cut and try of them are required. For that purpose, fiexible

hardware model [38] is utilized. FHM is parameterized with various characteristics

such as bi七 width ， algorithm of the operation, etc. , and various design instances

can be generated according to the given parameter values. Since instances can be

generated with various combinations of parameter values , the designer is able to

evaluate many kinds of resources only by changing parameter values of FHM.

Several instances of different abstraction levels can be generated from an FHM.

The processor synthesis system uses behavioral level instances to synthesis micrcト

operation level simulation model and gate level instances to generate RT level proｭ

cessor HDL description for logic synthesis. FHM provides estimation results of

ms七ances for various combinations of parame七er values. The estimation results of

FHMs are also used for estima七ion of 七he designed processor.

‘ ..

時6

4勝 目bít_wídth

algordtu捻

Description and modificaもion time of micro-opera七ion level processor specification

is shorter than other existing processor description for synthesis because datapath

and pipeline control logic are automatically generated. To generate datapath of

designed processor,“Processor Synthesis System" inserts selectors for signal confiicts

and pipeline registers for pipeline execution. The pipeline hazard detection and

pipeline control logic for pipeline interlock and pipeline fiush are also synthesized.

The designer can concentrate on instruction set design.

øJ.主主

寝泊ぽ

滋滋!:IW

�;viWr
回1.. 姻~
I1ItJltiplier
/JQrrelshifter
rut.ョrttlr ...

Rn:If，鴫_ port S�I'

Iざs;-it'1ま ♂f1・併 a びUU1't1 ~t1rf"'.t
tS cmp .sJgned cmp，脅ag(3)‘ C. l1 ag(2) Z. flag(1)' $, t1ag(O) V"
(合 ag) -. (a, b I ctrl • .01010ぺ CIn〆1')
fi 0 cmpzu .unslgned cmp zero ，ねg(3) C. f1ag(2) ・ Z. tlag(1): S , nag(O) �.
I(flag) ・ (a I clri 錨‘00000. ， cm 〆むう
明 l' cmþ~ 輸SJgn色d cmp zero ，持ag(3) C, t�g(2) Z. 官ag(l) S. nag(O) 0"
(明ag) '. (a I ctrt .勺1000. ， Cln . ・0')
η2 dec 'unslgned decremen!. l1ag(3) C, flag(2). Z, !lag(l) S. 担ag(O) O.

(resu f1，升ag) ._ (a I c1rl 民 泊00011" ， cm .もう
れ 3 ' cdec . 'unslgned decr喧ment(c l!p) ， t1ag(3) C ，肯ag(2) Z，官ag(1) S，ね9(0) . 0・
(resuft，ね9) ・ (a I ctr! .. ・00 111. ， cm 〆0')

器 噌，

cll1

-園田『品"・

a‘

4

例
制
M

A
門
n
M
0
・

152JlOOOtJO 品 3O'6.00000D

Figure 3.3: Flexible Hardware Model Browser View.

20 21

Figure 3.3 shows an FHM browser. FHMs in FHM-DB are displayed in the

left box. FHM parameters are shown in the upper-central box and the designer

can select candidates of parameter values from the pull down menu on the right.

Functionality of the selected FHM is shown in the central box. Estimation results

of the FHM with selected parameters are shown at the bottom of the window. An

FHM "alu" has a two parameters "biLwidth" and "algorithm.η “32" and “carry

look ahead (cla)ηare selected for the parameter value of "alu" respectively.

3.3 Micro-operation Level Processor Specification

The micrかoperation level processor description consists of six major parts as follows:

1. Design Goal and Architecture Parameter Setting

2. Resource Declarations

3. Instruction Format Def�ition

4. Interrupt Condition Definitions

5. Interface Definitions

6. Micro-operation Descriptions of instructions and interrupts

In this section, details of each part 紅e described.

3.3.1 Design Goal and Architecture Parameter Setting

Figure 3.4 shows a portion of design goal and architecture parameter setting window.

In this step, the designer speci五es design goal of area, clock 仕equency， execution

cycle count and power consumption. Then, architecture p訂ameters for pipelined

processors are speci五ed.

The number of pipeline stages and the number of delayed branch slots 泣e supｭ

ported, currently. Pipeline interlock logic for multi-cycle operation is synthesized.

Pipeline interlock logic for data hazard, register bypass and memory bypass 紅e not

synthesized. These parameters are prepared for future extension of PEAS-III. Figｭ

ure 3.5 shows a portion of processor description, which is output 仕om architecture

22

File SIl騨鵠

令時lete

vu,

Fi♂rre 3.4: Architecture Parameter Setting Window.

23

始Ip

-
a‘

entry system (GU1). 1n the example the number of pipeline stages is 日ve and delayed

branch architecture is selected. The number of delayed branch slots is speci五ed to

'1'. 1t indicates that synthesized execute one succeeding instruction to the branch

instruction whether branch is taken or not.

FI{e 邸'i1 J)J蝉鳩

αw凶e

鎗苦'Ip

Figure 3.5: Example of Architecture Parameter Settings.

0m ._
oぽ
bZ [0 blt_Wl的 認

gz 芯55fmM
o AfX)(J

0)区抑
o /)JVfi
0:F!p ...

Rn.謹加縮財t繊細m嘘

fむ nop "No opera�lOn"
G 篇(I enb . ・0 ・， 7$1 ・ '0

11 reset “ res♀t"

0 ・(I rst • '1 ')
吃 wnte -register wnte"
o .. (data_1n I enb, ') aflp.r 1/: cycle whεn pOSI!lve_!'dge(Cfk.)
ﾟ. !~d.， 'lMI$1p.ue;ui"
4

‘ ... AbstractJevel__architecture{

Pipeline __architectu吋
Number _of_stages{" 5" },
Delayed_bra吋l{" Yes" } ，

Number_oL閃c_delayed..slot{number{" 1づ }}}

v ・ a挽wior kl fillfe

総'JWior 軒・ Q1Ie

3.3.2 Resource Declarations 明
則
M

A
n
u
p

。‘120000
dυ0.700000

hP; 26.000000

ー
O.700瀇O

'35000000

議~) 0.120000

0.100000

(35000000

Figure 3.6 shows a resource declaration window. Flexible hardware models are seｭ

lected fro皿 FHM-DB ， and instance names and parameter values for them are speciｭ

fied. Abstraction levels of resources are specified for micrかoperation level simulation

model and for RT level synthesizable model, respectively. To synthesize simulation

model，“Behaviorη is more preferable than "RT" and “Gate" for simulation. On the

other hand,“Gate" level is frequently used for synthesizable model generation.

Figure 3.7 shows a portion of a resource declaration description. The processor

synthesis system instantiates HDL descriptions of declared resources from resource

declarations.

1n an example shown in Fig. 3.7, instruction register “1R" is declared. “1R"

is a positive edge trigger type register and its bit width is "32." “Behavior" level

instance is used for micrかoperation level simulation model generation and “Gate"

level instance is used for logic synthesizable model generation.

t年減置t事 、 IBv紛繍øer

Figure 3.6: Resource Declaration Window.

Resource{
"IR"{

class{η regi悦r"} ，

classpath {"" } ,
parameter{
abstraction_jevel {

for _simulation {" Behavior" } ,
for _synthesis{" Gateづ} ，

biLwidth{ワ2" } う
edge_trigger{" positive"} } }

3.3.3 Instruction Format Definitions

Figure 3.8 shows an instruction format definition window. Bit fields ， 五eld type, field

name , and binary value of it are de五ned for each instruction type. Field type is

Figure 3.7: Example of Resource Declarations.

24 25

制iき

一一 Rl type
4・

聞 酬曙

俳句鳩 ... /)/J滅的守 もももODO
晶、‘'

21 亀..，.，. .., nt.鵬 噌· rs

-20 16 魯附窃軍事 V 搬鵬 ..,. rt

省蹄溜)(/ ... 路・e ... rO
四 明一、 一目、目、 明 『

一一
-""~..._一九

備踊~副rJ.... /)l周q... 00000

5 。 寄常減量E! ..., ，.則E ‘ ..

<< Q開制

AOD

8/牌Jgy51 持-者-f 73M1 26J芯P点か;r。d?4?h binJg￡?"μーぴ-， るCbc1ぬ・
J1湾国E 約 25 21 opefお羽 name r宮
RI}I1.調P 灯

k1t~四陸部 20 16 O~et釘ld R叙ne rt

Jtype 11 15 11 Op曽削減 name rd
lStJ'll調!' 11 l.188 決1:served bth:怠ry OO゚Ofl
必?1)'僻灯

5 0 OF人 code btnary ,'00000
/FtJII.到~ "

KJtWJ割u n l 司P

~ � C1�:e1

Figure 3.8: Instruction Format De:finition Window.

26

司.

selected among “op-code," "operand" and "reserved." "op-code" means operation

code and “reserved" indicates that the field is reserved for extension in the future.

Operation code value is specified when the value is constant for all instructions

belongs to that type, and the value for reserved field is also specified.

Then, for each instruction, instruction type is selected among defined insもruction

types and operation code value is decided.

Instruction_type{
"Rltype"{

"OP-code" {"binary" {司00000"} ，width{" 31" ," 26"}} ,
" Operand" {" name" {" rsづ ，width{"25" ,"21"}} ,
" Operand" {" name" {川" } ，width{" 20ぺ" 16" } },
"Operand" {" name'う { " rd" },width{" 15" ," 11づ}，
" Reserved" {" binary" {" 00∞O∞O∞0"づ} ，川川Wlほdtぬh{" l叩0
"う OP-code" {"name" {"rfunct" },width{" 5" ， " 0円}}} }

Instruction {

"ADD" {type{" Rltype円 } ，"0 P -code" {" binary" {" 000000" }, width {" 31" ," 26づ} ，
" Operand'ヲ { "name" { "が}ヲwidth{"25" ,"21"}} ,
" Operand" {" name" {川円 } ，width{"20" ," 16"}} ,
"Operand" {"name" {"rd" },width{" 15" ," 11 " }} ヲ
円 Reserved" {"binary" {" OOOOO"} ,width {" 10" ," 6"} } ,
"OP-code" {"binary" {円 100000" } ， width{"5" ， " 0づ}}

Figure 3.9: Example of Instruction Format Definitions.

In micrかoperation descriptions, bit field of the instruction is referred by the field

name that is de:fined in instruction format definition phase. Modification of instrucｭ

tion format which includes varying instruction bit width, re-ordering instruction

fields, changing operation code and so on do not require modification of micrか

operation description of instructions. When bit width, name and role of the field

are not changed, there is no need to modify micrかoperation description. Instrucｭ

tion code definition is used to generate instruction decoder, which is mentioned in

Section 4.4.1 and Section 5.2.4.

In an example shown in Fig. 3.9, an instruction type "Rltype" and an instruction

“ADD" which belongs to “R1type" are defined. The instruction type “R1type" has

27

ーー一一一孟=二一一一一一一--一一一一一一一一 一一一一一

six instruction fields. The range of the first field is 仕om “31" to “26." The type of

the first 白eld is “OP-codeηand its value is constant “000000." The second and the

third fields indicate register address of source oper叩ds and the forth field indicates

destination register address. The 五fth field is reserved for future extension. The last

filed is an operation code for Rltype instructions. The operation code for "ADD"

is "100000."

3.3.4 Interrupt Condition Definitions

Figure 3.10 shows an interrupt condition de五nition window. Interrupt definitions

include interrupt conditions and the number of execution cycles of the interrupt. In

the example of interrupt “intO." Processor receives interrupt “intOηwhen external

input port "INTηreceived '1', and needs one cycle to process the interrupt “intO."

εxcept!on

F司rtSfII

JnJfO

鎗圏， εn唱'111<<1

InIs吻.t ・ ßxt.ω拘.，

ギ".腎 :!i'-':，

制_Ior /)1蹴;riptlm 伽Sまrail1l'~as.録的t鋤令畑町曾句~c;md/J量獅
rst..., •

Figure 3.10: Interrupt Condition Definition Window.

3.3.5 Interface Definitions

Figure 3.11 shows an interface definition window. In an interface definition , an

entity name, and input and output ports of target processor are defined. Port

name , direction, type and attribute of processor interface ports are also de五ned. For

the standard processor, memory interface port, clock port, reset port and external

28

File Edit sæn:カ

α7IIPlete

〆 Clk

〆 m智}

〆 lot

〆 r5t

蜘Ip

111 std_loglc CIOC~

Jn ... s!d_log'c_ I，' ector(ご$

m • S!�_loglC

$

〆 InstAB a.Jt ". std_loglC_ l,' ector(3 In strucむon_memory_addres$_bus

ザ msむB in • std_loglC_ ...eClor(3 In structJon_memor~'_data_bus

〆 dataAB OUI' . std_loglc_....ector(3 dala_memory_addreSs_bus

〆 d昌laDB 紺'Id ... stè_loglε_l/eclor(3 dala_memory_data_bus

tI' we aIf . std_loglc_vector(3 data_memory _wnte_enable

‘ ..

Figure 3.11: Interface Definition Window.

interrupt ports are usually de五ned. Furthermore special purpose interface port can

be declared.

Figure 3.12 shows a portion of interface definition description. In the example,

clock port "clk" of which type is “std_logic" is de五ned. “stdJogic" is a bit type that

is generally used in VHDL.

3.3.6 Micro Operation Descriptions

Figure 3.13 shows a micro-operation description window. In the micrかoperation

description phase, the designer defines clock based instruction behavior and interｭ

rupt behavior. In the micrかoperation description of interrupts, operations of the

processor such as setting specific values to special registers and jumping to the inｭ

terrupt handler routine, are described. Micro-operation consists of three kinds of

statements: (i) Operations which are executed by resources, e.g. arithmetic and logic

operation, readぅ register write う (ii) Data transfers between resources , and (iii) Conｭ

ditional execution of (i) and (ii).

29

Port_declaration {

e凶ty_name{" CPU" } 1

Port{

九lk"{

directio吋円 iIf}?

signaLtype{" stdJogic"} ,
signaLatt巾ute{ηclock"} },

"instAB" {

directio吋"outη} ，

signal 一tげyp戸州e吋{"、S削t吋札dι一Jog伊i比C一V刊附e舵Cωt加O町r市(仰3但1 dωowntω00町)"
signal一a州t此t巾u凶1比巾te吋{"ins計tru削lctior山悶n∞Oωry_addむress岱S一b凶usぜ?η'}}}}

Figure 3.12: Example of Interface Definitions.

F匀e 制~t

lnstrucむon

91 tl
ミ'1 #1

ミ'1t! #1
3..T 11
S1..TI 11
3..TfU n
3..Tl/ 11
3� n
S'Ut! /1
S司(11
Sヨ(V 曹E

S叙'1 /1
SJ1 /1
滋~ /1
線'.L T 11
鰻'.LTlJ n
9ft! 叙

/)/決'1 /1
m鳴Z 書官

厳司W I1

lIlHJ 宮E

Kll.DI1
震:0 11
1IE 11

Vi，情翁町功

ph部E

a・.

勝...，

eenavlor Description

IR ..IMEM[Pq
pc.1ncO,

spc....pc.

OをCODE (IR).
$tt "GPR readl (吟J

局'ICT(1勾即itI'J

事 rs ・G PR.readO(rs).
$Imm 鯵 EXTO $Ign(o宵$el)，

$0符S E't • $lmm(29 àov,:nto 0) & . 00ぺ
$targe ! ・ ADDO‘add($pC ， Solfseり，
約ag . .. ，o.Lυo cmp($rs.$門}.
It($llag(2)〆i) then P~:雪arget. end tf,

OK

Figure 3.13: Micrかoperation Description Window.

30

梅lp

MOT{
mnemonic{

"BEQ"{

c比(l){"IR := IMEM[PC];

PC.incO;
$pc:=PC;つ ?

clk(2){" DECODE(IR);

$rt:=GPR.read1 (rt);
$rs:=GPR.readO(rs);

$imm := EXTO.sign(offset);"} ,
clk(3){可offset := $imm(29 downto 0) 判明\";

$target := ADDO.add($pc, $offset);
$flag:=ALUO.cmp($rs,$rt) ;

if($flag(2)='1 ') then PC:=$target; end if;"} ,
clk(4){""} ,
clk(5){""} } } }

Figure 3.14: Micrcトoperation Description of instruction BEQ.

Figure 3.14 shows an extracted description of Figure 3.13. In the example,

a m.icro-operation description of an instruction “Branch on Equal (BEQ)" is de-

scribed. The instruction “BEQ" jumps to “PC + offset * 4円 when register values

of "rs" and “rt" 訂e the same. Capitalized identi五ers ， such as “IR" and "ALUO"

denote resources declared in the resource declaration phase. Symbol “:=" denotes

assignment. Identifiers which begin with '$' are temporal variables. An identifier

surrounded by symbols “[" and “]" specifies address to memory or register file. The

expression “DECODE(IR)" in the second stage denotes that an instruction code is

decoded in the second stage, where “IR" is an instruction register. The expression

"$flag := ALUO.cmp($rs, $rt)" in the third stage denotes that values stored in “$rs"

and "$rt" are compared using resource “AL UO" and the result wiII stored in "$flag."

The “if' statement in the third stage is an example of conditional execution.

Definition and modification of micrかoperation description are easy because de-

signer does not need to take care of selectors, pipeline registers and pipeline con-

trollogic. PEAS-III generates HDL description of ASIPs from user-defined micro-

operations of instructions and interrupts by inserting selectors and pipeline registers

31

ーー孟 ーー ~ ーー里ーー-一一一一I-

automatically, and generating control logic for pipeline interlock and pipeline fiush.

Exception{
円 reset" {

Condi tion f' rstこう 1 "'},
Type{円 External"} ,
Cycles{"l"} ,
MOD{

clk(l){"PC.resetO; GPR.resetO;

EPC.resetO; HI.resetO;
LO.resetO; IR.resetO ;" }}} ,

"iniO" {

Co吋ition{"int =γand intn = \可OO\""} ,
Type{官xternal" } ,
Cycles{" 1づ?
MOD{

clk(l){"EPC := PC;

PC:=\勺0000000000000000000000010000000\";" }}}}

Figure 3.15: Example of Interrupt Definitions.

Figure 3.15 shows an example of interrupt de五nition description. Defined interｭ

rupt condi七ions and micro-operation description of interrupts are combined in the

description. In the example, the processor detects the interrupt "intO" when input

port “intO" receives '1' and value of program counter (PC) is stored in exception

program counter (EPC) and PC is updated to "Ox800080."

32

Chapter 4

Processor Model

In this chapter, processor model for processor synthesis is described. In Section 4.1 ,

limitation of target processor is discussed. In Section 4.2, requirements of the prか

cessor model is described and proposed processor organization are described. In

Section 4.3, organization of datapath and controller are described. Processor conｭ

trol mechanism which includes pipeline interlock and pipeline fiush is demonstrated.

4.1 Processor Class

Feature of the t訂get architecture of processor synthesis includes:

• single phase straightforward pipelined processor. PEAS-III assumes pipeline

architecture, but the number of pipeline stages and operations assigned to each

pipeline stage are fiexible. Each pipeline stage is proceeded synchronously with

positive edge of a clock.

• delayed branch with predict-not-taken policy. The designer can speciちT the

number of delayed branch slot. The processor executes succeeding specified

number of instructions whether branch is taken or not , and nullifies other

fetched instructions when branch is taken.

• multi-cycle operation. PEAS-III is able to deal with multi-cycle units such as

sequential multiplier, memoηr access units and so on. The processor syntheｭ

sized by PEAS-III stalls succeeding instructions until multi-cycle operation is

completed.

33

Out-of-order completion • in-order instruction issue and in-order completion.

and out-of-order instruction issue are not supported.

』
ω
=。
』
言
。
υ

On the User-defined external interrupts are supported.

other hand, internal exceptions are not supported.

• external interrupt.

• flexible addressing modes, storage organization. The designer is able to design

addressing modes freely in micr<roperation description of instructions. Multi

port memory and multiple memor冾s can be used.

• single word instruction. The width of instruct卲n word is user-defined constant.

Mult�-word instruct卲n is not d叝ectly supported.

The designer can specify data forwarding in micrかoperation description of in-

structions. Data hazard detection and data forwarding logic are not automat兤ally

generated from micrかoperation description of instructions.

Processor organization 4.2

Since the number of pipeline stages is parameterized and micrかoperations of each

stage is defined by the designer, fiexible processor model is required.

Figure 4.1 shows an example of a pipelined processor organization [39]. This prか

cessor consists of five stages, instruction fetch (IF) , instruction decode and operand

む
。
E
ω

窓

口
。
コU
2
』
】
凶
ロ
【

fetch (ID) , execution (EXE) , memory access (MEM) and register write back (WB)

In general , operations in a pipeline stage complete in one clock cycle and stage.

The operation results are referred from the store the result to pipeline registers.

nest stage at the next clock cycle.

To deal with flexibility in pipeline depth of target processor, datapath and con・
troller is divided into pipeline stages like Fig. 4.2. Specified number of datapath and

controller sets for each pipeline stage are arranged and connected together. A set of

datapath and controller is added or deleted when the number of pipeline stages is
Figure 4.1: Example of Datapath and Controller of Pipelined Processor.

changed.

Fi思rre 4.3 shows a processor model for five stage pipelined processor. The model

35

cons﨎ts of 五ve sets of datapath and pipeline stage controller, instruction decoder and

34

Figure 4.3: Processor Model.

』
U
一τu
b
t
o
U
5
P
E
u
d
t
』

M
Uロ
。
包
ロ
。υ

h』
。
ε
ω

豆

口
。
一ωυヨ
』
】
回
口
同

37

Figure 4.2: Example of Pipelined Processor Divided into Pipeline Stages.

36

interrupt controller. Instruction decoder is arranged to the instruction decode stage

indicated by keyword “DECODE" in micrかoperation description. The term "stage

controller" is used to indicate a controller arranged to each pipeline stage. The stage

controller sends control signals to resources in the datapath and manages pipeline

flush and interlock. The stage controllers and the interrupt controller communicate

each other. The stage controller determines the pipeline stall and the next state

from the output of controller of next and previous stage. Since the load of pipeline

controllogic is distributed to each stage controllers, controller synthesis is simplified.

The rest of this chapter describes datapath model of pipeline stages う instruction

decoder, stage controllers and interrupt controller. Section 4.3 describes datapｭ

ath model and Section 4.4 describes controller model. The organization of stage

controller is described. Pipeline interlock and pipeline flush using proposed stage

controller are demonstrated. In Section 4.4 .3, the organization of interrupt controller

and how to handle interrupts are described.

4.3 Datapath Model

The datapath model is illustrated in Fig. 4.4. The datapath model consists of

resources, selectors, pipeline registers and connections among them. From micrか

operations that are described by the designerう datapath and controller are impleｭ

mented using this model. Resource operations in micrかoperations are executed by

resources, and assignments 紅e implemented as connections between resources. Seｭ

lectors are used to resolve signal conflicts. Operation results are transferred to the

next stage via pipeline registers.

4.4 Controller Model

Controller consists of three major ports, such as instruction decoder, stage conｭ

tr叫lers ， and inteηupt controller.

38

control signals 合omstage controller

口口口 Decl鉱山…s
図仰向炉問日記lector

Figure 4.4: Datapath Model.

4.4.1 Instruction Decoder

There are two ideas of instruction decode shown in Fig. 4.5. The one is to execute

instruction decode in the instruction decode stage. The other is to send instruction

code to pipeline stage step by step and decode the code in each pipeline stage.

The former method leads to shorter critical path of pipeline stage than the latter

method because the latter method makes additional delay of instruction decode

for each pipeline stage. The latter one, however, makes decoding logic simple. In

this thesis ヲ the former type instruction decoder is adopted to generate high-speed

processor.

Instruction decoder in this thesis identifies which instruction is fetched and genｭ

erates two types of control signals in the instruction decode stage: control signals

for resources and instruction identification signals for stage controllers. The latter is

used to judge whether executing instruction in the pipeline stage belongs to a certain

set of instructions or not. Generated signals are transferred to the stage' controllers

39

Datapath

Datapath

Figure 4.5: Example of Two Types of Instruction Decoder.

40

step by step synchronously with pipeline execution. The behavior of stage controller

is described in Section 4.4.2 and usage of instruction decode result are explained.

4.4.2 Pipeline Stage Controller

The stage controller generates control signals for resources , pipel匤e registers, and

selectors. The controller assigns control signals to resources to execute described

micro-operations. The controller also manages pipeline registers to transfer the data

to next stage as usual, and to keep the operation results in the case of pipeline interｭ

lock. The stage controller also regulates pipeline execution in the sense of pipeline

interlock and pipeline flush. The controller stalls the pipeline to wait for completion

of multi-cycle operation and resolution of resource conflicts. The controller flushes

the pipeline by nulliちring executing instructions when branch is taken.

Control IDodel of the stage controller is based on the pipeline control model

published in [40]. In [40], pipeline controller synthesis for pipeline interlock 仕om

usage information of resources is discussed. In this thesis, instead of usage informaｭ

tion of resources, structural hazard detection method is proposed. Furthermore, the

pipeline controller is extended to pipeline flush and suspension of instruction fetch.

The controller model is common to all pipeline stages. Decision of next state

and generation of control signal are distributed to each pipeline stage. Distributed

control logic makes controller organization and synthesis method simple.

Suppose n is the number of pipeli田 stages and k(l 三 k 三 n) is the stage number,

the controller of each stage k is represented by finite state machine

Mk = (qk, h , Ok, 6k, Pk ， ηop)

and datapath control signal generator. Each item of Mk is defined as follows:

states variable: qk ε{ηop， exec}

input signals: h 全 {brαηch ， lockk , gOk-l , gOk+l , validk- 1, validk+1}

output signals: Ok 全 {vαlidk ， gOk}

next-state function:

ふ(qk ， brαnch ， lockk , gOk-l , gOk+l ， υαlidk- 1 ， validk+1)

41

p
u

o
u
r

レ
&

Z

ハMi

ρ
U

相
川

f
t
t
t
j、t
t
E
K

ム
一

when (brαnch+ ωηcel(k)) ・ (validk_ 1 ・ gOk-1+

(qk = exec) ・ (lockk 十叩lidk+ 1 + gOk+l))
The function cαncel (k) holds if and only if the k-th stage has to nulliか current

instruction when branch is taken. Detail of cαηcel (k) is described in the following

sect卲n.
otherwise

output functions: Pk 全 {p叩lidk ， Pgok} The interrupt controller outputs true for goo , as usual. However it output false

when interrupt is occurred and suspension of instruction fetch is required. When

goo = f alse and gOl = true , next state qt becomes nop, and operations of the 五ISt

stage will be stopped. If the instruction in the first stage does not stay, execution

of the first stage will be stopped at next clock.

Output signal gOk becomes f alse if and only if at least one of the following

conditions is satisfied.

P叫dk (qk) 全 (qk 二 exec)

ρgOk (qk , lockk, validk+1, gOk+l) 全 (qk ニ exec) . lockk . (υαlidk+ 1 + gOk+I)

The status variable qk indicates whether executable instruction exists in the k-th

stage or not. When qk = exec, an instruction exists in the k-th stage. The value of

qk becomes ηop when pipeline is stalled and valid ins七ruction is not moved to the

k-th stage or pipeline flush is executed, etc. qk = ηop means there is "no operation"

in the k-th stage. The initial of value qk is nop.

Values of input signals are specified as follows:

initial status:ηop

brαηch -
fαlse

lockk
fαlse

gOk
fαlse

validk =
fαlse

• The k-th stage causes pipeline interlock

• An instruction in the (k + l)-th stage does not move to the (k + 2)-th stage.

when branch is taken

when branch is not taken

when an instruction in the k-th stage causes pipeline interlock
otherwise

when an instruction in the k-th stage is transfered to the next stage
when an instruction in the k-th stage stays

when valid instruction exists in the k-th stage
when no instruction exists in the k-th stage

When the k-th stage causes pipeline interlock by multi-cycle operations or resource

confl.icts, gOk becomes f alse and the instructions in the succeeding 1 三 t 三 (k-l)-th

stages are also stalled.

Control signals to datapath resources are generated 仕om output signals Ok of

stage controller Mk ぅ results of instruction decoder and output signal of interrupt

controller. Stage controller outputs control signal for described micrかoperation of

executing instruction in the k-th stage as usual. The controller outputs the control

signal to hold the status of resources when the pipeline is stalled (gok = fαlse).

Pipeline hazards are classi五ed as follows:

The values of gOn+l , Vαlidn+ 1 are de五ned as goπ+1 = true , Vαlidn+ 1 = false. An

input signal goo is an output signal of interrupt controller.

Next-state function 6k outputs exec if and only if the following conditions are

satisfied.

• structural hazard う which is caused by multi-cycle operations and resource conｭ

自icts ，

• and control, hazard which is caused by branch.

• branch is not taken or the k-th stage does not need to nullify instruction when

branch is t叫cen.
For the structural hazard, pipeline is interlocked until the multi-cycle operations

are completed and resource conflicts are resolved. For the control hazard, some

instructions in the pipeline stages are flushed when branched. 1n the following secｭ

tion, pipeline control mechanism and the controllogic of lockkl brαnch and function

• An instruction in the (k -l)-th stage will reach or current instruction in the

k-th stage stays.

42 43

cαηcel (k) are described. Pipeline interlock sigr叫 lockk is described as follows:

lockk = lock_mk + lock_Tk

lock_mk is a pipeline interlock signal for multi-cycle operations and lock一九 lS a

pipeline interlock signal for resource conflicts.

Pipeline Interlock caused by 乱1ulti-cycle Operations

When multi-cycle operation is executed in the k-th stage, instruction transfer from

stage j (1 三 3 く k) to stage j + 1 is suspended to stall succeeding instructions.

Time

T-l

T

T+l

T+2

T+m

T+m+l

2nd stage 3rd stage 4th stage 5出 stage

Instruction D execute m cycle operation 匤 the 3rd stage
...__、 Instruction is transferred to 出e next stage
-ø..二 Instruction is not transferred to 出en側 stage

Figure 4.6: Example of Multi-cycle Operation.

Figure 4.6 shows an example of pipeline interlock caused by multi-cycle operｭ

ation. Suppose instruction D executes m cycle operation at the third stage from

time T. The instructions in the first , second and third stages are not transferred

to the next stage while multi-cycle operation is executed. The state of fourth stage

becomes "ncトoperation" because instruction in the third stage is not transferred. At

time T + m , multi-cycle operation is completed and then instructions in the first ,

second and third stage are transferred to the next stage at time T + m + 1.

44

In the case of pipeline stall, the j-th stage controller assigns control signals to

storage resources to disable write back while instruction transfer is suspended.

CLK

Star ヒ

Fl.n

Sig_To_Module

Sig_From_Modul

Figure 4.7: Timing Interface Between Controller and Multi-cycle Resource.

Figure 4.7 shows a timing interface between the controller and mult�-cycle reｭ

sources. The controller makes start signal “Start" active for one cycle and then the

resource starts operation. After the multi-cycle operation is finished , the resource

outputs the result and changes the value of the fiag “Fin" active to inform the comｭ

pletion of the operation. When multiple multi-cycle operations are executed in the

same stage and the same instructionヲ the stage controller stalls the pipeline until all

multi-cycle operations are finished. The operation results and completion fiag must

be kept until other multi-cycle operations are finished. Because the resources keep

operation results and fiag values until next operation starts, additional structure for

saving the results and fiags 征e not required. The interface information that includes

start signal input port, fiag output port, and active value of them can be obtained

仕om FHM-DB.

Suppose Uk爪叩 = {(exp , inst) I exp ε Exp， ir凶 ε I} is a set of conditional

expression exp and instruction inst pairs, which represent execution conditions of

operation op of resource T in the k-th stage. In another words, an operation op of

resource T in the k-th stage is executed if and only if one of the executing instrucｭ

tions is inst and condition exp holds. The control logic of lock_mk for multi-cycle

operations is represented as follows:

45

where

lock_mk V V
Tモ li_ (exp ，ins t) モUk.r.o'Prn

OPm. モ OFm 「ー

(instk = inst) . exp . fin叩m

R: a set of resources

OPm: a set of multi-cycle operations in the k-th stage

instk: indicates executing instruction name in the k-th stage

after multi-cycle operation OPm is completed

during multi-cycle operation OPm is executing

(4.1)

Equation (4.1) means that lock_mk holds if and only if at least one multi-cycle

operation is not completed. lock_mk becomes false after all the multi-cycle operaｭ

tions are completed.

The start signal of the multi-cycle operation is activated at 七he first cycle, and

then negated 仕om the second cycle to the start of the next multi-cycle operation.

In the example, control signal for multiplier is activated at time T and then negated

at time T + 1. Suppose Vactive for the active value of control signal stα付ぅ control

logic of stαrt is as follows:

st叫 L・= [Vactive when f切 V叩mεOPm V (exp， inst)εUKTOM(tηsh = inst) 仰
1 , "- I 可ctive otherwise

(4.2)

flαgt - gOk-l (4.3)

flαgk is a register, which indicates whether it is the first cycle of multi-cycle operｭ

ation or not. The value flαgk becomes true when new instruction is transferred to

the k-th stage and becomes ηop when execution instruction stays in the k-th stage.

Pipeline Interlock caused by Resource Conflict

When resource conflict is occurred between stage k and stage j (k < j) , the k-th

stage is stalled until completion of the j-th stage ヲs operation.

Figure 4.8 shows an example of resource conflict. An example processor sh紅白

a single-memory for data and instructions. The first stage is the instruction fetch

46

Time 1st stage 2nd stage 3rd stage 4th stage 5th stage

T-1

T

T+1

T+2

Instruction C accesses to memoηin the 4出 stage.

?、もInstruction is transferred to the n側 stage
可ι可... Instruction is not transfeπed to 出e next stage

Figure 4.8: Example of Resource Confiict.

stage and the fourth stage is the memory access stage. Suppose an instruction C is a

memory access instruction. The first stage is stalled at time T. After the instruction

C completes memory access operation and moves to the fifth stage, memory access

in the first stage is executed at time T + 1.

Suppose Vr,k = {inst I inst ε I} is a set of ir凶ructions ぅ which represents the

instructions that use the resource r in the k-th stage. To put it in another way, a

resource r is accessed 仕om instruction inst in the k-th stage. Suppose ηis the numｭ

ber of pipeline stages. The controllogic of lock一九回 for resource con丑ict is represented

as follows:

lock_Tk v (V (V (instj = ij) . validj) ・
γモRkく3壬n tjEミ Vr.j

(V (instk = 九) • Vαlidk))
ik ε Vr ， k

(4.4)

Equation (4.4) means that lockk ,r holds if and only if at least one resource r is

accessed 仕om the k-stage and from at least one stage j where k < j ::;η.

Control signals for conflicted resources are generated 台om multiple stage conｭ

trollers. Suppose ctrlr is a control signal for resource r and ctrlr,k is a control signal

generated by stage controller of the k-th stage. The control signal is selected as

follows:

47

ctrlr = V ctr lゅ sel吠 (4.5)
l くたくη

se lr、k = ((V (instk = 九). validk). V V ((instj= ω .vαlidj))
ik EVr ,k k くj三n ljEミ VγJ

(4.6)

Equation (4.6) means that control signal ctrl哨 frorn the k-th stage controller

is selected when selM=tTue.selT k becomes tT1Le when resouceTis not accessed

frorn any stage j (k < j 三 η) and is accessed 企om stage k. Figure.4.9 shows an

block diagrarn of interlock si伊al generation logic represented in Equation (4.4) and

control signal selection represented in Equation (4.6).

atapa出 ofstage k datapath of stage j

loc~ ctrl r

S凶ge con甘oller for stage k stage controller for stage j

Figure 4.9: Exarnple of Control Signal Selection for Confiicted Resource.

Pipeline Flush

Branch control is based on a predict-not-taken policy and delayed branch. In PEASｭ

III system, the number of delayed branch slots d is parameterized. The processor

48

executes succeeding d instructions whether branch is taken or not , and ftushes the

pipeline by nulliちring other fetched instructions. When d = 0, the architecture of

the processor is pure predict-not-taken architecture. 明乃len branch is taken at stage

b, the controller of stage k (1 < k :::; b -d) nullifies transferred instruction and makes

its state "nかoperation円 at the next clock cycle.

Time

T-l

T

T+l

T十2

1st stage 2nd stage 3rd stage

The number of delayed branch slots d =1

The branch stage number b =3

4th stage

Figure 4.10: Exarnple of Branch.

5出 stage

In the exarnple shown in Fig. 4.10, the branch stage b is the third stage and

the number of delayed branch slots d is one. In this example, branch is taken at

time T and instruction E that is succeeding to the branch instruc七ion D is executed

continuously and the instruction F that is succeeding to instruction E is canceled

by stage controller in the second stage at tirne T + 1.

The function cαncel (k) is as follows:

f true when (1 < k 三 b -d)
cαncel(k) _ ~ v;~~:~ ~.~~::~~

1 f alse otherwise
(4.7)

Suppose Br = {(exp , inst) I exp ε Exp， irぱ ε I} is a set of conditional exｭ

pression exp and instruction inst pairs, which represent branch condition. The pair

(exp , inst) εBγrepresents that branch is taken when executing instruction in the

かth stage is inst and conditional expression exp holds. The logic of control signal

brαηch is represented as follows:

brαηch = ωlidb .(V (instb=inst).exp)
(exp，仇st)ε Br

49

(4.8)

Limitations of the proposed branch control method are as follows:

• Branch stage b must be unique.

• Instructions that change the statuses of resources such as register write and

so on, in the k-th (1 三 k < b -d) stage should not be scheduled within d + 1

to b slot after branch instruction. If these instructions are scheduled within

d + 1 to b slot after branch instructionう those instructions change the statuses

before branch. Restoring mechanisms such as buffers are needed to cancel the

effects of 七he canceled instruction completely. Since the proposed method does

not synthesis such a mechanism, instructions that change machine statuses in

early stages have to be scheduled within d+ 1 to b slot after branch instruction.

• Instruction that executes a multi-cycle operation in the j-th (b -d 三 j < b)

stage must be scheduled after d instructions from branch. When the multiｭ

cycle instruction is scheduled within d instructions from branch instruction,
some stages becomes empty between branch stage and stage which includes

multi-cycle operations. The empty stages push out instructions in the delayed

branch slots. Pushed out instructions are fiushed by the con七roller.

4.4.3 Interrupt Controller

The interrupt controller suspends instruction fetch and executes described interrupt

operations. The interrupt controller consists of the following finite state machine

Mintr and control signals generator.

Mintr - (qintr , I intr , Ointn 6intr ， ρmか)

Each item of Mintr is de:fined as follows:

status variable: qintr ε{iηtr， exe ， ωit}

input signals: Ii附全 {ir山T問pt ， restαrt ， complete}

output signals: 。的tr 全 {goo ， int}

50

next-state function:

6intr (qintr , interrupt , restαrt ， complete)

(iηtr

ム J exe
l ωαit

when (qintr = ωαit) . complete
when (qintr = iηtr) . restαγt

when (qintr = cxe) . interr叩t
otherwise ~ qiηtr

output functions:ρintr 全 {Pvαlido 1 ρint}

initial status: intr

Pvalido (qintr) 全 (qintr 二 exe)

ρint (qintr) 全 (qir昨= intr)

States “intr ," "exe" and "wait ," of qiηtr are execution state of interrupts, exe-

cution state of instructions and waiting state for completion of all already fetched

instructions, respectively. The initial state of qintr is "intr ," because the processor

has to begin with reset interrupt.

Input signal interrupt indicates the processor receives an interrupt. Input signal

complete signal indicates execution of all fetched instructions is competed. restαrt

signal indicates interrupt handling is completed and instruction fetch can be started.

羽市en an external interrupt occursう the state of the controller changes the state from

“exe" to "wait." Then, the controller suspends i:pstruc七ion fetch by forcing the 900

to false. It makes the state of the 五rst stage “nかoperation. " After all fetched

instructions are completed, the states of all stages become “nかoperation." Then,

the state of the controller becomes "intr." An equation below is an control logic of

complete signal.

complete = V validn (4.9)
l<k<n

The controller begins to execute interrupt operations described in micrかoperation

description of interrupts. When the interrupt is completed, the state of the controller

becomes “exe" and the output signal 900 becomes true to execute the first stage of

the pipeline and to restart instruction fetch.

The following items of interrupt controller that depend on processor specification

description and have to be synthesized.

51

1. logic of restαrt ，

Suppose 1 ntr is a set of defined interrupts, Si is a defined execution cycle

count of interrupt i and Cnt is a counter which counts execution steps from

the status variable qintr becomes intr. The control logic for signal γestart is

represented as follows.

restαrt = V (Si > Cnt)

2. logic of interrupt ,

n山rrupt = V (speci五ed condition of interrupt i)
zε Intr・

3. and datapath control signal generator.

52

(4.10)

(4.11)

Chapter 5

Processor Synthesis

In this chapter the processor synthesis method is explained. The processor synthes�s

method consists of two major parts: datapath synthesis and controller synthes�s.

In this chapter datapath synthes�s method is described first , and then controller

synthesis method �s described.

5.1 Datapath Synthesis

In datapath synthesis, data-flow graph is generated 仕om mlcrかoperation descripｭ

tions of instructions and interrupts at first. Then , techniques in high-level synｭ

thesis area [41] are utilized for datapath synthesis. Since the designer performs

micro-operation scheduling to the pipel匤e stages and resource allocations 匤 micrcト

operation descriptions, 匤terconnect卲n generation and pipeline register insertion are

performed 匤 datapath synthesis.

F�gure 5.1 shows the datapath synthesis flow. Data-flow graphs (DFGs) of inｭ

structions and interrupts are generated 台om mlcrかoperatíon descr厓t卲ns (MODs).

Then, DFGs of instructions are merged together to get required data-flow and conｭ

dition of it. DFGs of interrupts are also merged together. For the resolution of

signal conflicts, selectors are inserted to the both merged DFGs of ins七ructions and

interrupts. For the pipel匤e execution, pipeline registers are inserted to the DFGs

of instructions. DFGs of instructions and interrupts are merged and signal conflicts

are resolved. Then, the DFG that represents the datapath of designed processor is

synthesized. Each generation step is described in the following sections in detail.

53

MODof
mstruc1J.ons

MODof
mterruots

Figure 5.1: Datapath Synthesis Flow.

54

5.1.1 DFG generation

By analyzing a micrかoperation description of each instruction inst , a data-fl.ow

graph is generated. The data-fl.ow graph is represented by Ginst = (九ηst ， Ìlinst , Einst)

where Rnst is a set of resources , ﾌlinst is a set of all resource ports う and Eiηst is a

set of connections between ports of the resources. (s , d) ε Einst represents data

transfer 仕om the port s ε Ìlinst to the port d ζ Ìlinst which is specified by a microｭ

operation description. conde ，i1凶 represents a conditional expression for the data

transfer represented by eε Einst for instruction inst. If the data transfer is written

in an if-statement of M 0 D う the conditional expression exp of the if-statement is

extracted to conde.inst. If the data transfer is not written in if-statement , coηde ，inst

of the transfer e becomes '1'.

adder.add register. read

inputO α outputO q

input1 b reg�ter. wrlte
outputO result inputO d
control dη ← 0 control enb • 1

Figure 5.2: Interface Information for Resources.

To get input and output ports for resource operations described in the MOD ,

interface information of resources is used. This information consists of corresponｭ

dence of input/01均ut arguments of the resource operation to port names. The

information also includes required control signals to execute the operation. This inｭ

formation is registered for each model in FHM-DB. Example of registered interfaces

for an adder and a register 訂e shown in Fig. 5.2. In Fig. 5.2, the first argument of

operation “add" is connected to adder's input port "a" and the second is to “b."

The operation result is output from port “result." The controller have to provide

control signal '0' to port “cin" to execute “a+b."

An example of the extraction of connections is shown in Fig. 5.3. "RZ,"“RX"

and "RY" in Fig. 5.3 denote registers and “AD DO" denotes an adder. From the

interface information shown in Fig. 5.2 ぅ connections eo, el , e2 are extracted. Where

eo , el and e2 denote the data transfer from port q of resource “RX" to po比 αof

55

m兤ro-operatlOn :

“RZ := ADDO.add(RX ,RY); "
connectlOns :

eo = (RX.qぅ ADDO.α)

e] = (RY. q, ADDO.b)
e2 二 (ADDO.γesult ， RZ.d)

Figure 5.3: Connection Extraction.

resource “ADDO ," from port q of resource “RY" to port b of resource “ADDO ," and

from port result of resource “ADDO" to port d of resource “RZ ," respectively.

5.1.2 Basic Datapath Synthesis

After the analysis of micrかoperation ， the data-flow graphs of instructions are merged

into a da抗ta-白.白ow graph G = (R , V, E). It represents a basic datapath of the processor.

R 二 U ~nst (5.1)
instεI

v = U viηst (5.2)
instεI

E = U Einst (5.3)
instεI

where 1 is a set of all instructions. C onde for each data transfer e ε E is determined

as follows:

Conde {(coηde ，inst ， inst) I inst ε I}. (5.4)

(exp , inst) εC onde denotes that the data transfer eε E is executed when

executing instruction is inst and condition exp holds.

5.1.3 Signal Conflicts Resolution

明乃len the same destination port d is shared by multiple connections in E , input

signals for port d must be conflict. This section presents a selector insertion proceｭ

dureう which resolves input signal conflicts. In this section, basic selector insertion

algor咜hm is introduced firs七， and then improvement of the algorithm is described.

56

8uppose that stαgesTC (ε) is a stage number where the port 5 to which data

transfer e = (5 , d) outputs data, stαgedst(e) is a stage number where port d inputs

data, and width(p) is bit width of port p. Instructions can be executed correctlv if

selectors are inserted at any stage 仕om stαgesバe) to stαgedst (e). For a reduction of

pipeline registers, selectors 紅e inserted at each stage 仕om stαgesrc (e) to stαgedst(e) .

Furthermore , a destination port d inputs data 仕om different ports in multiple stage,

some selectors are inserted for each stage stαgedst(e) to resolve signal confiicts in a

stage, first. Then, a selector is inserted to resolve inter-stage signal conflicts.

Stage 3

Stage 4

Stage 5

Figure 5.4: Example of 8elector Insertion.

In a selector insertion example shown in Fig. 5.4, operation results of ALU , 8FT

andDMEM 紅e selected by selectors "sel" in the third, the fourth and the 五丘h stage,

respectively. Because selectors are inserted in each stage, data transfers over pipeline

stage boundary are reduced. Another example shown in Fig. 5.5 is a case of signal

confiict over stages. The example is non-harvard architecture and memory access

unit “MEM" is accessed from both the 五rst stage and the fourth stage. Firstly,

signal conflict in the fourth stage is resolved and then signal confiict between the

first stage and the fourth stage, that is data transfer 仕om PC and 台om inserted

selector, is resolved.

Outlines of selector insertion procedure are shown in Fig. 5.6 and Fig. 5.7.

Fig. 5.6 shows an intra-stage signal conflict resolution and Fig. 5.7 shows an interｭ

stage signal conflict resolution. For each destination port d, a set Xd of stage

numbers in which stage the po口 d receives data. For each member j ε Xd ， selectors

57

stagel stage2

OrignaJ
DFG

巴
】E

3

V

A

凶

d
u
u

d
m
E
h

B
U

、

n
o

H
U

F3

m

u

ps

H

C

E

I

l

Inter-stage
signaJ

conflicts
resolution

Figure 5.5: Example of Selector Insertion for Inter-stage Signal Confiicts.

会
L

K

u

u

p

、
J
4
E
U

叫
卯

G = (R, Vう E)
G = (R, V, E)

1 foreach(dε V) loop

2 Xd := {stαgedst(ε) I e = (s , d) ε E}
3 foreach(j ε Xd) loop

4 Ed，j:={el ε = (s , d) ε E， stαgesバe) = j}
5 min := minimum({stαgesrc(e) I eε Ed，j})
6 for k := min to j loop

7 Ed,j,k := {e I eξ Ed，j ， stαgesrc (e) 三 k}
8 if(I Ed,j ,k I > 1) then
9 zηserLselector (1 Ed,j,k 1 ， ωdth(d))
10 i := 0

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

eaut := (s叫 d)
stαgesrc (eωt) := k

stαgedst(e叩t) := j

foreach(e' = (s' , d) ε Ed，j ，k) loop
ei := (s' , d叫)
C ondei : = C onde,
stαgesrc (ei) := stαgesバピ)
stαge白t(ei) := k

Condeout := Condeout u Conde ,

ci .= (Psel , v叫)
C ondc := C onde,
stαge(ci) := k

C:= C U {Ci}
E:= EU{町} -{e'}
i := i + 1

end loop

E:= EU {eωt}
end if

end loop

end loop

end loop

Figure 5.6: Selector Insertion Procedure. inseァLselector(x ， y) is a function to insert

x inputs and y bit selector.

58 59

to resolve signal confiict in the j-th stage are inserted. Ed ,j is a set of data transfers

that send data to the port d in the j-th stage is calculated. Thenぅ the minimum

stage number min of data output stage of all data transfer e E Ed,j is searched.

Selectors are inserted at each stage k from the minimum stage min to the j.

A set Ed ,j ,k is calculated. For all e ε Ed，j ， k， the output stage of e is less than k is

calculated. Ed,j ,k is a set of data transfer from the k-th stage or before the k-th

stage. When the number of data transfers in Ed,j ,k is more than one, a selector is

instantiated and inserted in the k-th stage. A feature of the selector used here is as

follows: Input ports count is equal to the number of d叫a transfers Ed ,j ,k and the

bit width is equal to the bit width of input data for port d.

With the selector insertion, the data transfer e ε Ed，j ，k should be modi五ed. Each

data transfer 仕om e' = (s' , d) ι Ed，j ， k is deleted 仕om the connection set E. A new

data transfer ei = (s' , d叫) is added to E. ei is a data transfer 仕om the port s' to

the i-th input port dSe1i of the selector. The condition of ei is equal to the condition

of the 白leted data transfer (s' , d). The data input stage number for ei is equal to

k and output stage for ei is equal to that of deleted one. The control signal value

ci = (Psel , v叫) is added to C. Psel is control input port of the selector and v叫 1S

a value of selecting the i-th input. The condition Condc; is equal to the condition

Condei. Addition of selector control signal is described in Section 5.2.1.

+
b

k

u

u

p

、
J
i
4
・
u

叫
側

G = (R, V, E)
G = (R, V, E)

In addition, e仰t that is a data transfer from selector output port Ssel to the por七

d is added to E. The data output stage number is equal to k and input stage is equal

to j. The condition of data transfer using (sseれ d) is a co吋unction of conditions of

connections of Ed ,j ,k'

After intra-stage signal confiicts are resolved う selector insertion for inter-stage

signal confiicts resolution is executed. The procedure of inter-stage signal confiicts

resolution is shown in Fig. 5.7. If the number of stages in Xd is more than one, a

selector is inserted over stages. Feature of the selector used here is as follows: Input

ports count is equal to the number of stages in Xd and the bit width is equal to

the bit width of input data for po吋 d. Each data transfer ed,j = (Sd山 d) in the j-th

stage is deleted 台om the connection set E. A new data transfer ei - (Sd山 d叫)

is added to E. ei represents the data transfer from the port Sd ,j to the i-th input

1 foreach(dε V) loop

2 Xd := {stαgedst(e) I e = (s , d) ε E}
3 if(IXdl > 1) then
4 inserLselector(IXdl , width(d))
5 i := 0

6 eωt := (Ssel , d)
7 foreach(jε Xd) loop

8 ed,j := (Sd山 d) ε Enstαgedst(ed,j) = j

9 ei := (Sd山 d叫)
10COTIdez:=CondEdJ
11 stαges同(ι) := stαgedst(ei) :ニ j
12 Condeωt:=COTLdEouU COTZ4423
13 Ci := (p叫 U叫)
14 stαge(Ci) := j

15COTEdc:=C07zdEd3

16 C:= C U {α}
17 E:= E u {叶- {ed ,j}
18 i := i + 1

19 end loop

20 E:= EU{eωt}
21 end if

22 end loop

Figure 5.7: Selector Insertion Procedure for Inter-stage Signal Confiicts.

60 61

port dSe1i of the selector. The condition of ei is equal to the condition of 七he deleted

data transfer ed,j' The data input stage number and the data output stage number

for ei are equal to j. Then, the control signal value ci = (Psel) Vseli) is added to C.

PseZ is control input port of the selector and Vseli is a value of selecting j-th input.

The condition C ondCi is equal to the condition C ondei. Addition of selector control

signal is described in 8ection 5.2.1.

Improved selector insertion algorithm

Figure 5.8: Original DFG for 8elector 8haring Example.

The algorithm shown in Fig. 5.6 and Fig. 5.7 inserts wasteful selectors. In an

example data-fiow graph shown in Fig. 5.8, some input ports receive same sets of

input signals. Resource "FWUR8" and "FWURT" are the data forwarding units.

They receives data 丘om “ALU" and “8FT" in the third stage ， 企om “ALU，" "8FT"

and “DMEM" in the fourth and fifth stage, respectively. Because different input

ports of "FWUR8,"“FWURT" are used in each pipeline stage, there are no interｭ

stage signal confiicts. The conditions of data transfers 仕om each functional unit

to forw釘ding units and general-purpose registers (GPR) are the same. Figure 5.9

illustrates selector insertion results. The selectors in the third stage always output

the same results and the selectors in the fourth stages, too. Therefore, improvement

of the selector insertion algorithm is required to reduce selectors. Before line nine

62

Figure 5.9: 8elector Insertion Result without 8haring.

of Fig. 5.6 う procedure to search a selector Tsel that have common input signals and

select conditions. If the selector T sel exists, the data transfer sets Ed,j ,k are deleted

仕om E and data transfer from the output port of selector Tsel to the port d is added.

8uppose Ersel is a set of edges which represent data transfers to the selector input

ports, the condition to use the inserted selector T sel is described as follows:

Ve = (s , d) ε Ed，μ ヨ esel = (s , dsel) ε Er sel C ondesel = C onde (5.5)

The condition which is shown in Equation 5.5 becomes true if and only if data

transfer esel exists for all data transfer e of Edふk. e and esel have the same input

port and condition of data transfer.

Figure 5.10 shows a selector insertion result of improved algorithm. Wast efu 1

selectors are reduced to one for each stage.

5.1.4 Pipelining

羽弓len data are transferred over pipeline stage boundary, a pipeline register is reｭ

quired to transfer operation results to the next stage. A data transfer eεE

63

stage5

Figure 5.10: Selector Insertion Result with Sharing.
4
L

K

u

u
p

、
J
i
ふ
L

叫
川

・
胃
A
r
t

G = (R, Vう E)
G = (R, V, E)

~

Pipeline Register

1 Ereg: = {e I e E E , stαge sバe) > stαgedst(e)};
2 if Ereg ヂゆ then
3 e:ニ (s ， d) ε Ereg;
4 insta出ate width(s) bit register;
5 ein := (s ぅ drω;
6 stαges陀 (ein) := stαgesrc(e);
7 stαgedst (ein) := stαge s陀(ε);

9 E:= Eu {ein};
8 E':= {e' I e' = (s ， d') ε Er句 ， stαgesrc (e) = stαgesrc(e')};
10 foreach e' := (s , d') ε E' loop
11 eout := (Sreg , d');
12 stαge sバe仰t) := stαgesバε) + 1;
13 stαgedst(eωt) := stαge出t(e');
14 E:= E U {eωt};
15 E := E -e';
16 end loop;
17 goto 1;
18 end if;

which satisfies stαgesrc (e) < 5tαgedst(e) means data are transferred over pipeline

stage boundary, so that pipeline registers are required at each stage boundary from

stαgesrc (ε) to 5tαgedst(e). In a pipeline register insertion example in Fig. 5.11 ,

pipeline registers are inserted to each pipeline stage boundary.

Stage 2

Stage 3

Stage 4

Figure 5.11: Example of Pipeline Register Insertion.
Figure 5.12: Pipelining Procedure.

Pipelining procedure is illustrated in Fig. 5.12. First of all, a set of data transfer

Ereg that is a subset of E is calculated. For all data transfer e ε Ereg satis五es

stαgesrc (e) < stαgedst(e). Wllen the number of data transfers in Ereg is not zero,

there are some data transfers over pipeline stage boundary. One data transfer e =

(5ヲ d) of the Ereg is selected arbitrarily, and width(5)-bit pipeline register is inserted

between the stage stαgesrc (e) and the stage stαgeιs♂許7γバ.

i凶ns印er凶tiぬon孔， connection e向iη 仕om poぽrt s to dιreg 1詰s added tωo E where dιT陀eg and 5斗Tε句9 are

64 65

an input port and an output port of inserted pipeline register, respectively. Because

t山he r閃珂吋e句矧gis伽 i回s written in the stage st α gesrc(e) , ばα gedst(ein) is 叩al to st α g らc(e).

For all data transfer e' (s ぅ d') which transfers data from port s and satisfies

stαgesrc (ぜ)ニ stαgesrc (e) ， connection eout = (Sreg , d') is added to E. Because the

register is read at one stage after it is writtenヲ stage number stαgesrc (eout) becomes

nstαgedst(ein) + 1. An original connec七ion e' = (s , d') is deleted 仕om E. Until

no data transfer , which transfers data over pipeline stage boundary, exists in E ,

pipeline insertion procedure is repeated from line one.

5.2 Controller Synthesis

The controller synthesis is based on the controller model described in Section 4.4.

The control logics that depend on processor specification are synthesized from proｭ

cessor specifications, mainly from micrかoperation descriptions.

The controller synthesis procedure consists of six parts:

1. Control Signal Extraction 仕om micro-operation descriptions ,

2. lnterlock Condition Extraction,

3. Branch Condition Extraction,

4. lnstruction Decoder Synthesis,

5. Stage Controller Synthesis,

6. and lnterrupt Controller Synthesis.

Each synthesis procedures are described in the following sections in detail.

5.2.1 Control Signal Extraction

Control signals for declared resources to execute described micro-operation are exｭ

tracted in this step. By analyzing a micrかoperation description of each instruction

inst , a set of control signal assignments Cinst is generated. A control signal assignｭ

ment cε Cinst is a 七uple (p , v) where p denotes a control input port of a resource and

66

v denotes 七he value to the port p. An expression condc.inst represents a condition

for the control signal assignment of c for instruction inst. The extraction procedure

of control signal c from a micrかoperation description is explained using example

shown in Fig. 5.13 as follows. Control signal values for ciηport of “ADDO" and

enb port of register “RZ" are induced by Fig. 5.2. As a consequence, control signal
assignments Co and Cl are extracted.

micro-operation :

“RZ := ADDO.add(RX ,RY); "
control signals:

Co = (ADDO.cin ,O)
Cl = (RZ.enb , 1)

Figure 5.13: Control signal extraction.

After the analysis of micrかoperations ， sets of control signals are merged into C.

C is obtained as follows:

C - U Cinst (5.6)

where 1 is a set of all instructions. C ondc is determined as follows:

Condc - {(cond仰st ， inst) I inst ε I}. (5.7)

(exp , iηst) ε Cond(p，v) denotes that the value v is assigned to port p when executing

instruction is inst and condition exp is satisfied. The stage controller assigns the

value v to p when all the following conditions are satisfied. (1) The status variable

qk is '1' , (2) the executing instruction of the stage is ir凶， and (3) the expression

exp holds. The stage controller assigns control signal value for “no-operation" when

one of the conditions above does not hold. “nかoperation" value means the resource

of the port p do not change its status during the port p is receiving the value Vo ・

For exampleヲ the “ncトoperation" value for register write enable port is its negative

value.

When the selectors are inserted in datapath synthesis, control signals for selectors

are also added to C described in Fig. 5.6 and Fig. 5.7.

67

E 士プ一一一ーーーー竺竺竺

5.2.2 Interlock Condition Extraction

To synthesis pipeline interlock control signal lockk ぅ conditions of multi-cycle operｭ

ations and resource confiicts are extracted. In this sect ion, condition extraction

of multi-cycle operations is described 五rst and then that of resource confiicts is

described.

Pipeline interlock logic for multi-cycle operation is synthesized from the Equaｭ

tion (4.1) in Section 4.4.1. Execution conditions of resource operations Uk九叩=

{ (exp, inst) I exp ε Exp ， inst ε I} are extracted 仕om the micrかoperation deｭ

scription of instructions where exp is a conditional expression and inst indicates an

execution instruction. If operation op of resource r occurs in the micrかoperation

description of instruction inst in the k-th stage, execution condition (exp , inst) is

added to Uk ，r ，叩 ・ Completion fiag fin叩m = (p , v) is defined for each operation op in

FHM-DB. fin叩m = (p , v) denotes that the output signal of the port p becomes v

after the operation OPm is finished. From extracted execution conditions Uk ，r押 and

received completion fiag expression fin叩m 仕om FH :NI-DB, interlock controllogic for

multi-cycle operation multiJockk is synthesized.

Suppose Fin is a set of completion fiags of all described multi-cycle operation.

Fin {fin停m} (5.8)

OJうin is a set of multi-cycle operations, which have the same completion fiag fin.

。乃in = {oplfin叩m = fin}

Then EXPk,fin and h，J仇，exp are calculated by the following equations.

EXPk ,Jin

h ,Jin,exp

{exp I (exp , inst) ε Uk爪恥 op ε OJうin}

{inst I (exp ， inst) ε Uk爪叩 ， op ε01ラin}

(5.9)

(5.10)

(5.11)

EXPk ,fin is a set of execution condition of operation op ε OPfin ・ h，t民自p is a set of

instructions, which execute multi-cycle operation op εo Pfin when exp holds.

Suppose 01卯ut(p) indicates output value of port p. Using Equation (5.8) , (5.10)
and (5.11) multiJockk is represented as follows:

68

multi よOCkk

v (V ((instk ε h，Jin ， exp) . exp . validk) . (ωtput (p) チ υ))
f仇=(p，v)ε Fin expεEXPk ， fin

(5.12)

Signal multiJockk becomes ' 1 う when at least one of the multi-cycle operations is not

completed. The signal multiJockk becomes ゅう when all the value of completion fiag

output port p becomes v.

Pipeline interlock detection logic for resource confiicts is synthesized from the

Equation (4.4) in Section 4.4.1. A set Vr,k is calculated 仕om the set C , function

resσurce(p) and stαge(c). A function resource(p) returns resource r of port p and

stαge(c) returns the stage number in that stage control signal is assigned to port p.

Suppose Cγ = {c I c = (p , v) ε C, resource(p) - ァト and Cけ = {c I c ε

Cr, stαge(c) = k}. Usi時 Cr，k ヲ a set Vr,k is calculated. From \九 and Equation (4.4),

lock signal for resource confiict res_conflictk is synthesized. に，k is also used to

synthesis control signal selection for resource r.

Vr.k {iηst I (inst , exp) εCoηdc，. . k ' 今，k ε Cr，k} (5.13)

res_conflictk V ((V (instj ξL4J)-uαlidj) ・ (instk ξl勺) • validk)
7・εR k<j壬η

(5.14)

5.2.3 Branch Condition Extraction

By analyzing a micrかoperation description of branch instructions, branch stage

number b and a condition Br = {(exp , inst) I exp ε Exp， inst ε I} of branch

are extracted. The conditional expression exp is a condition for the case that the

program counter PC is written. Suppose EXPBr is a set of conditional expression

exp for branches and 1 Br,exp is a set of instructions, which execute branch when

condition exp holds.

The set EXPBr and IBr ,exp are calculated as follows:

EXPBr - {exp I (exp , iπst) ε Br} (5.15)

69

1 Br,exp - {inst I (exp, iηst) ε Br} (5.16)

From an Equation (4.8) in Section 4.4 .2 , controllogic of brαnch is calculated as

follows:

brαnch validb . (V (instb ξ IBr、白p) . exp)
expεEXPBァ

5.2.4 Instruction Decoder Synthesis

(5.17)

Instruction decoder inputs instruction word and generates two types of signals based

on the model described in Section 4.4.1. In this section, resource control signal

generation is described first , and then instruction identi:fication signal is described.

The control signals that are independent of datapath status signals are selected.

Then the instruction decoder logics for selected control signals are generated. A set

of instructions Ic ,exp ,k which assigns the value v to control port p in the k-th stage

when condition exp holds is calculated as follows:

Ic,exp,k - {inst I cεC， (exp , inst) ε Condc ， stαge(c)=k} (5.18)

Ic,l ,k is a set of instructions which assigns control signal represented by c indeｭ

pendently of datapath status. A set of control signal assignment Cp ,k for the port p

in the k-th stage is selected as follows:

Cp ,k = {c I (p ， v) ε C， stαge(c)=k} (5.19)

!p ,k (inst) is an output function of instruction decoder which generates control

signal for the port p in the k-th stage. The decoded result !p,k(inst) is sent to each

pipeline stage step by step via pipeline register. Suppose Zj ,Jp ,k(inst) is a pipeline

register for !p ,k(inst) between the (j-1)-th stage to j-th stage and d is an instruction

decode stage. The value of Zk ,Jp ,k(inst) is assigned to the port p in the k-th stage

when k is less than instruction decode stage d. The decoded result !p,k is directly

70

assigned to the port p when k is equal to d. ! p,k and Zよ!p ，k(inst) are represented as

follows:

!p ,k(inst) v v. (iηst ε IC， l ， k)) + υ0 ・八 (inst 要 Ic，l ， k) (5.20)
c= (p，v) εCp ， k Cε Cp， k

Zj ,Jp ,d inst) . g句 + Zj+l ，fp ， k (inst) ・ gOj (d<j<k) (5.21) '7+
LJ j+ l ,Jp ,k (inst)

ZLl,fM(mt)=fp,k(mst). (5.22)

Function !p,k(inst) returns the value v when fetched instruction inst is a member

of Ic,l ,k. If fetched instruction inst is not a member of Ic， l ， k ぅ !p ， k(inst) returns “nか

operation" value Vo ・

The other type of instruction decode, the result indicates whether fetched inｭ

struction is a member of a certain set of instructions or not. It is used to generate

the following control signals: interlock control signal lockk , branch detection signal

brαnch and resource control signal, which depends on daもapath status. The decoded

result of m(I, inst) is also send to each pipeline stage step by step via pipeline regｭ

ister Zj，m(I， inst) ・ Suppose Zj ,m(I,inst) is a pipeline register for m (I , inst) between the

(j -l)-th stage and the j-th stage. Suppose 'inst' is a fetched instruction and 1 is

a set of instructions , function of the latter type instruction decode is described as

follows:

m(I , inst)

Fア+

LJ j+ 1,m (I, inst)

rァ+
LJd+ l ,m (I ,inst)

(lwh…εf
o otherwise (5.23)

Zj，m(I， inst) ・ gOj + Zj+l ,m (J,inst) . gOj (d < j < k) (5.24)

m (I , inst). (5.25)

The stage controllers input decoded result Sk ,Jp ,k(inst) and Sk ,m (I ,inst) that are

shown in the following equations.

S -j ZKJK(mst)

k ,Jp ,k (inst) - ì んバtηst)

f Zk ,m (J ,inst)

Sk ,m(I,inst) - ~ m (I, inst)

71

(d く k)

(d = k)

(d < k)
(d = k)
(k < d)

(5.26)

(5.27)

Eニ 一一一ーー ζーーー一一ヨ

The controller of the k-th stage uses output signal of pipeline register Zk ,* when

k is greater than dヲ which represents instruction decode stage number. The stage

controller of instruction decode stage uses decoded result directly.

5.2.5 Stage Control1er Synthesis

The stage controller, which is based on a model in Section 4.4.2 , is described. The

following items of stage controller depend on architecturallevel processor description

and are synthesized, and items of finite state machine Mk are generated from the

model:

1. interlock detection signal lockk.

lockk multiJockk + res_conflictk (5.28)

lockk is a logical sum of multiJockk and res_conflictk. multiJockk and

res_conflictk are defined in Equation (5.14) and (5.12). Using the result of

instruction decode shown in Equation (5.23) , mult曻ockk and res_conflictk
are represented as follows:

mult曻ockk

γes_conflíctk

v (V Sk ,m(h ,fin ,exp ,inst) . exp . validk) ・ (p ヂ v))
finεFin expεEXPk ， fin

(5.29)

V ((V Sj ，m(昨，j ， inst) ・ validj) . Sk ,m (Vr ,k ,inst) . validk)
TεR k三j~η

(5.30)

2. branch detection signal brαnch that is defined as Equation (5.17). U sing the

result of instruction decodes shown in Equation (5.23) , brαnch is represented

as follows:

brαηch 叩Jμid仇b' (V Sb，川m叫州(υI恥B酌T巾叩，占e口φz
εxpεEXPBγ

(5.31)

3. function cαncel (k) that is generated from Equation (4.7) in Section 4.4.2 and

extracted branch stage number b.

4. and control signal generation functions.

Control Signal Generation Functions

Control signal generation functions are classified into three types,

1. control signals for resources in the k-th stage,

2. control signals for multi-cycle operations,

3. control signals for the resources, which are accessed 仕om multiple stages.

Control signal of the port p in the k-th stage is generated from Cp,k shown

in Equation (5.19) and (5.18) and Expゅ Expゅ is a set of expression exp for

conditional control signal assignment of c.

EXPc ,k - {exp I cεC， (exp , í)ε Condc ， stαge(c)=k} (5.32)

Referring to Equations (5.19) , (5.18) and (5.32) , control signal Sp ,k for the port

p in the k-th stage is represented as follows:

Sp ,k = (V V v. αp-SK，叫ん叫川st) ・ gOk)
cε Cp ， k expεEXPc ， k

exp手l

十九fp， k(inst) . gOk . (八 八(可+ Sk，m(Jc ， exp ，印刷))
cεCp， k expεEXPc ， k

exp:;;il

十吾百k. V。 (5.33)

Control signal Sp ,k becomes the "nかoperation円 value Vo when the k-th stage is

stalled (gOk = 0). Control signal Sp ,k becomes the value v if condition exp holds and

executing instruction is a member of the set of instructions Ic,exp,k. If any condition

exp of conditional signal assignrnent does not hold, the result of instruction decoder

fp ,k(inst) , which is described in Equation (5.20) in Section 5.2.4, is assigned to the

port p.

Control signals for multi-cycle operations and confiicted resources are discussed

in Section 4.4.2.

Because control signal Sp,k becomes active value of start signal when multi-cycle

operation should be executed, control signal for multi-cycle operation Sp,k ,start is

described as follows:

Sp ,k ,start = f lα9 ・ S刊十 flα9 ・苛EEZE (5.34)

Using the result of instruction decoder, resource usage condition v;.,k , and control

signal Sp,k of port p in the k-th stage, control si伊al Sp for the port p which is accessed

仕om multiple stages is described as follows:

s p

Selr,k

V Sp,k. selr

l<k<η

Sk ，m(に， k ， inst) ・叫idk . V Sk，m(巧 ， k ， inst) ・叫idj
k<j壬η

5.2.6 Interrupt Controller Synthesis

(5.35)

(5.36)

針。m an interrupt definition, a state machine shown in Section 4.4.3 is synthesized.

The conditions of state transition 仕om “exe" to “wait" are logical sum of defined

interrupt conditions. The synthesis method of data-path and control signal values

to execute described interrupt operation is the same as that of instructions.

interrupt V condition of defined interrupt i (5.37)
iEミ Ii札tr

restαrt (Cη，t ~三 Si) (5.38)

(5.39)

where

Si execution cycle count for interrupti

Cnt counter for interrupts

羽なlen one of the conditions for specified interrupt holds, the output of the signal

interrupt becomes '1' and detects interrupts. The counter Cnt counts the number

of execution cycles of interrupts.

74

If one of the interrupt conditions condition holds, the signal restαrt turns to '1'

and detects interrupts. The counter S is used for interrupt control during the status

variable keeps qiπtr = O.

Suppose Cintr is a set of control signals assignment for interrupt intr ・ Suppose

cycle(c) is a function which returns in what stage control signal assignment c is

executed in micrかoperation description of interrupt intr. The control signal for

interrupts are defined as follows.

Sp,int = v V . exp . (intr = int一name). (Cηt = cycle(c)) +
c= (p ，v)ε Cintr

v v . exp . (intr = inLnαme) . (Cnt = cycle(c)) . Vo (5.40)
c=(p，v)εCintr

If execution interrupt is intr ヲ the number of steps since interrupt processing is

started is equal to cycle(c) and condition exp holds, the control value v is assigned

to port p.

75

Chapter 6

Experilllents

In this chapter, the effectiveness of the proposed processor design method and synｭ

thesis method are evaluated through experiments.

6.1 Objective of the Experiments

In this chapter five kinds of experiments are described.

1. existing RISC processor to evaluate variety of instructions that can be designed

and synthesized by the proposed method.

2. PEAS-I processor core to comp紅e design quality of synthesized processor to

that of manually designed one.

3. embedded RISC controller for comparison between conventional design method

and proposed processor synthesis method in terms of design time and design

quality.

4. pipeline depth tuning. It is aimed for evaluate modification time and efｭ

fectiveness of an adjustment of the number of pipeline stages and operation

re-scheduling to the pipeline stages

5. architectural design space exploration for FIR filter. It is aimed for evaluate

the design time of new instruction specification and the range of explored

design space.

77

正二二竺一一一一一一一一一一一_，.正一ー一一ーーー-ーで=二二二二

To evaluate the effectiveness of the proposed processor synthesis method, prcト

cessor synthesis time , design productivity and the quality of synthesized processor,

and the largeness of explored design space are examined. Processor synthesis time is

evaluated using prototyped processor synthesizer of the proposed synthesis method

on Pentium III processor. Design productivity is evaluated in terms of design time

and the amount of description. Design productivity is evaluated for both new proｭ

cessor design and architectural design space exploration. The quality of synthesized

processor is evaluated in terms of area and clock frequency.

6.2 Basic RISC Processor

In the first experiment, the easiness of new processor design and its derivative proｭ

cessor design is explained. First, a MIPS R3000 [4] [42] compatible processor PEAS

R3K was designed. Then, it was modi五ed into DLX [43] for evaluation of the easiness

of design in micrかoperation level processor specification.

At the first step, a subset of MIPS R3000 instruction set was implemented. The

number of implemented instructions is 52 out of 74 instructions of all instructions

on MIPS R3000. Coprocessor instruction and interrupt instruction were not imｭ

plemented in this experiment. Required time for design was about eight hours.

Required time for synthesis was about two minutes.

Table 6.1: Results of Synthesis for PEAS R3K

component # Total Area Frequency
(gates) (MHz)

user specifiedresources 17 45759.22 157.48
regIsters 20 7064.67 769.23
selectors 10 2046.08 471.70
controller 1 2347.18 200.00

sum of the above 46 57217.17 157.48
processor 1 59818.34 125.63

using Design Compiler (0.5pm CMOS library)

The results of synthesis are summarized in Table 6.1. The column “#" denotes
the number of components in the processor. “Total Area" indicates the component

78

area including wiring area. "Frequency" means the maximal 仕equency of the correｭ

sponding component. "User specified resourcesう， are the resources that are explicitly

declared by the designer. "Registers，円“selectors ，" and “controllerηare automatiｭ

cally introduced resources by the generator. “Sum of the above" means just the

summary of all values above in the column. “Processor" is the synthesis result as a

processor.

From these experimental results , it is confirmed that automatically generated

parts does not so much affect area and performance of the processor. Area of the

generated part is about 15% of the whole processor. Frequency of the introduced

resources including the controller is relatively highヲ hence they do not include the

critical path individually. The critical path of PEAS R3K was zerかfiag generation by

AL U and PC update. This path is synthesized from the micrかoperation description

in the third stage of some branch instructions like "Branch on Equal (BEQ) 円 Micro

operation description of BEQ is shown in Fig. 3.14 in Section 3.3.6.

Table 6.2: Results of Synthesis for PEAS DLX

component # Total Area Frequency
(gates) (MHz)

user specifiedresources 14 45758.01 157.48
regIsters 23 7545.82 769.23
selectors 15 1960.82 628.93
controller 1790.78 200.80

sum of the above 53 57055.39 157.48
processor l 48469.03 116.28

using Design Com piler (0.5μm CMOS library)

At the second step in this experiment , a subset of DLX (called PEAS DLX) was

implemented based on PEAS R3K. The number of implemented instructions is 51

out of all instructions 91. Similar to the case of PEAS R3K, coprocessor instruction

and interrupt instruction were not implemented in this experiment. The reuse ratio

for DLX design from the description of PEAS R3K is 59% since both architectures

have many similar instructions. Required time for modi五cation is about 3 hours.

Table 6.2 shows a logic synthesis results of DLX.

79

The amount of descriptions for both PEAS R3K and PEAS DLX is shown in Taｭ

ble 6.3. The amount of description for micrかoperation level processor specification

is about less than one sixth of the case of the corresponding generated HDL descripｭ

tion. It is clear that proposed processor synthesis method reduces the designer冶

load.

Table 6.3: Comparison of the Amount of Descriptions for PEAS R3K and PEAS

DLX

PEAS R3K
PEAS DLX 824

6.3 PEAS-I Processor Core

PEAS-I core is a processor generated by the PEAS-I system [10]. PEAS-I system

can generate an optimal processor for a given application program 仕om predefined

instruction set. Predefined instruction set consists of a primitive instruction set and

optional instructions. The primitive instruction set contains basic instructions that

most processors have. 1nstructions in the prirnitive instruction set can be categか

rized into arithmetic instructions, data transfer instructions, and execution sequence

control instructions. 1n this experiment , the existing design and new one designed

with PEAS-III's micrかoperation level processor specification are cornpared. First,

a PEAS-I core from a prirnitive instruction set was designed with PEAS-III. The

instruction set contains 85 instructions. Then, this processor was extended with

adding multiply instructions.

The result of the first step is shown in Table 6.4. The column “original" corｭ

responds to the case of the original design, and the column “with PEAS-III" corｭ

responds to the case of the design with PEAS-III. Workload for the design with

PEAS-III is about one third compared to the original one. Maximum delays of each

design area almost the same and area of the design with PEAS-III is 20 % larger

80

than original design.

Table 6.4: Result of PEAS-1 Core Design

" original I with PEAS-III
work load (hour) 96 32 (札

lines in the 6431 7194
HDL description (1038 for MOD)
maximum delay (ns) 9.80 9.74
of gates 22,247 26 ,970

(吋) includes learning about the system and improvement of MODs.

Next in this experimentう this processor was extended with additional multiply

with signedjunsigned operations using PEAS-III. The result of the logic synthesis is

shown in Table 6.5. To implement the multiply instructions, several functional units

for multiply operation can be selected. Using the proposed method, this selection

is done by speci令ing the parameters for the multiplier in the resource declarations.

Pipeline interlock logic is automatically generated and the designer has no need to

design pipeline control logic.

Table 6.5: Delay and Size of PEAS-I Core with Multiply Operation

Design 11delay (ns)|Area (gate)

under 100MHz
SR 17.93 49567.8
SL 9.77 49946.5
CR 9.7"8 67905.8
仁L 9.72 75089.6

under 200MHz
SR 17.69 50784.4
SL 7.68 51828.9
CR 6.93 69351.8
CL 6.07 76577.2

S: sequential circuit implementation，仁: combinational circuit implementation; R: using
ripple carry adder, L: using carry-lookahead adder.

81

6.4 Embedded RISC Controller
Table 6.6: Work Load for Designing a RISC Controller

This experiment is aimed for comparison between designs with conventional method

and designs with the proposed processor synthesis method used in PEAS-III. The

original controller that is used for image processing was designed by manual RT -level

description. A compatible controller was designed with PEAS-III in this experiment.

This RISC controller has Harvard architecture. The instruction width is 24 bits.

The number of instructions is 54. The controller consists of three-stage pipeline. It

has synchronous interrupt facility.

An undergraduate student designed this controller with PEAS-III. He had no

experience of processor design with PEAS-III at the beginning of this experiment.

Design proceeded as the following way.

works 1l hue叩 lmodiheatlon
(hour) 1 (hour)

selecting resourc邸 3
determining instruction set architecture 12 8
writing micrかoperation description 40 2
modiちring errors 2 2
total oo

v
h
u

13

1. He learned the usage of PEAS-III.

Examples of instruction code assignment of both 24-bit and 32-bit are shown in

Fig. 6.1. In this example, code assignments of ADDU (add unsigned) instruction

are shown. Fields named like “opr1" in Fig. 6.1 is referred in the micrかoperation

description.

An example of a portion of a micrかoperation description is shown in Fig. 6.2.

In this exampleヲ the micro-operation description of ADDU instruction is shown.

It consists of behavior of each stage. At the stage 2, the value of operands are

referred using the names "opr2" and “opr3." As shown in this example, modi五ca

tion of instruction codes can be done without modi五cation of the micro-operation

description.

The column “modi五cation" of the Table 6.6 shows the required time for this

work.

2. He designed the controller with 32 bi七s for instruction width.

3. He modified the design to fit 24 bits for instruction width.

The time required for learning PEAS-III is about seven hours. The learning

includes reading manuals and trying design with a sample processor attached to

PEAS-III.

In the 五rst design, he designed the 32 bits instruction width for ease of the code

assignment う because the code assignment of the original instruction set was not

given. He implemented all 54 instruc七ions. The workload for this work is shown in

the column “自rst design" of Table 6.6. The total required time is 58 hours. Though

he was not familiar with PEAS-III, he designed a processor in a few days. The

designed controller has various addressing modes and special registers and resister

files. Because the complex addressing mode makes the micrかoperation descriptions

difficult , design time became longer than other processors in the experiments.

In the second design, he modified the first design concerning about the instruction

width. The main work was 七he modification of instruction format. While some

trivial modifications were required, the most part of the micrcトoperation description

was reused.

addu (24・b比)

|1001 lop什叩ロ lop市 lopr4 I 0000 !

31 26 25 22 21 18 17 14 13 10 9 0

|∞00∞ lopr1 IOPr2 ! op白 !opr4 ! 0∞∞∞∞o

Figure 6.1: Difference of Instruction Code of ADDU between 24-bit and 32-bit in

RISC controllers.

The design quality in terms of area and available clock 仕equency are also exam-

82
83

stage 1 IR := IMEM[PC];
PC.inc();

stage 2 DECODE(IR);
$sr1 := freg.readO(opr2);
$sr2 :=台eg.read1(opr3);

stage 3 ($result ぅ $aluflg) := ALU.addu($srl う $sr2 ， '0');
alufl.g := $alufig(2) & $alufig(3);
仕eg.writeO(opr1, $result);

The improvement includes changing the rnicro-operation scheduling to the pipeline

stages.

PEAS R3K-5 is an extended version of PEAS R3K for data forwarding. Design

time for forwarding extension was about half an hour.

6.5.1 Changing the Number of Pipeline Stages

12.7k
12.9k

14.3k
14.6k

Changing the number of pipeline stages may lead to change the critical path and

the number of pipeline registers. In other words , both performance and hardware

cost can be improved by proper choice of the number of pipeline stages and micrcト

operation scheduling to the pipeline stages.

Hardware cost is approximately linear to the number of pipeline stages. Because

the number of pipeline registers increases in proportion to the increase of the number

of pipeline stages.

On the other hand, maximal frequency is more complicated. If operations in the

critical path can be divided into di宜'erent stages by increasing the number of pipeline

stages, the length of the critical path can be reduced. However, if operations in the

critical path cannot be divided into different stages, the length of the critical path

cannot be reduced.

The critical path of PEAS R3K-5 was the path from pipeline register to program

counter (PC) through ALU and stage controller in the third stage. ALU comp紅白

operands stored in pipeline registers and output zerかfiag ， then the stage controller

decides whether branch is executed or not and sends control signal for PC to update

its value.

Figure 6.2: Micr仁トoperation Description of ADDU in RISC Controllers.

ined in this experiment. The generated HDL description of 32-bit version of a RISC

controller and the HDL description of real RISC processor were synthesized under

the same condition. Table 6.7 shows the result. Two target 仕equencies 50 MHz and

108 MHz was set up for logic synthesis. Given proper constraint for logic synthesis,

both controllers have achieved these frequencies. N ote that the original controller

has several instructions that were added to the original instruc七ion set for extension,

and they were not implemented in the controller designed with PEAS-IIL Though

rough comparison of the values for the 紅eas is not justi五ed enough, there seems no

remarkable difference.

Table 6.7: Comparison of the Design with PEAS-III and with Conventional Method

for a RISC Controller

ハ
り
一

Z
Z

M
一

H
H

C
一

M
M

L
U
一1
j
-
A
U
0
0

・
出
一U一
伊m

w

一
加
一

川
一
吋
一
e

d
-
b
一
・
回

u
f

一
一S

廿
一
山
一
疋

m
一
明
一
例

|I PEAS-III I conventional method
32 24
58 420

(using CMOS 0.25μm library)

To change the number of pipeline stages from five to fourヲ llllcrかoperations in

the fourth stage and the 五fth stages were merged (PEAS R3K-4) because there

were not critical path in these stages. The critical path of PEAS R3K-4 was the

same as PEAS R3K-5. To change the number of pipeline stages 仕om four to three,

arithmetic and logic operations, address calculation operations in the third stages

紅e merged into previous stage and branch operation was merged into next stage

(PEAS R3K-3). Because delay time of a sequential operations such as address

calculation operation by ALU and memoηr access operation need longer time than

6.5 Pipeline Stage Tuning

In this experiment the number of pipeline stages of PEAS R3K-5 was varied from

three to five. Then, the design improvement for clock frequency was described.

84 85

E ァ一一一一一一一一一ーで二コ

品位PS R3K-5 お任PS R3K-4 h征PS R3K-3

Instruction Fetch ト→ Instruction Fetch ト→ Ins汀uction Fetch

2
Ins住uction Decode

ト→ 2
Instruction Decode Instruction Decode

Operand Fetch Operand Fetch 卜、 Operand Fetch

Arithmetic and Logic Arithmetic 担d Logic
2 Arithmetic and Logic

Operation
一一+

Operation 片J Operation
3

Address Calculation
3

Address Ca1culation Address caJculation

Branch IRr月n c:h Branch

4 Memory Access \、 Memory Access 3 Memory Access
4 』・ー... Write Back

.---'" WriteBack
5 Write Back

Figure 6.3: Scheduling Result of Micrひoperations to the Pipeline Stages.

other operations, scheduling these two operations into different stages is preferable.

To keep the branch stage same as PEAS R3K-5 and PEAS R3K-4 , branch operation

was scheduled to the third stage. Figure 6.3 shows a scheduling result of PEAS R3K-

4 and PEAS R3K-3.

Table 6.8: Comparison of the Design that has Different number of Pipeline Stages.

of stages
3

企eq. (MHz) I # of gates (k gates)
95.0 I 57.4

4 11 121.1 1 60.4

5" 119.9 1 62.3
using Design Compiler (0.5μm CMOS library)

The number of gates in Table 6.8 is approximately linear to the number of

pipeline stages. The difference of clock 仕equency between four-stage processors

and five-stage processors is caused by the difference of the logic of decoder and

autornatically inserted selectors.

The time of each modification for changing the number of pipeline stages is

less than 20 minutes. In micro-operation level processor specification, changing the

number of pipeline stages needs rewriting the micrかoperation description.

86

6.5.2 Clock Frequency Improvement

For the improvement of clock frequency, there were two ideas for changing operation

scheduling to the pipeline stages.

(a) One was to move the branch stage to the next stage and divide the critical

path into two stages as follows: comparison by AL U and zerひflag generation,

and conditional program counter update. This modi五cation increased branch

penalty. As a result , an execution cycle becomes increased.

(b) The other was addition of dedicated comp訂ator to shorten the delay time of

comp紅白on and zercトflag generation.

Table 6.9 shows design modi五cation result for (a) and (b). Because comparison and

branch operations were divided into different stages in the design of PEAS R3K一三

the design of R3K-3 (original) and R3K-3 (a) were the same.

Table 6.9: Design Quality of Clock Frequency Improvement.

original (a) (b)
of freq. # of gates freq. # of gates freq. # of gates
stages (MHz) (k gates) (MHz) (k gates) (MHz) (k gates)

3 95.0 57.4 95.0 57.4 100.7 57.3
4 121.1 60.4 144.3 62.8 140.4 61.1
5 119.9 62.3 141.2 64.5 131.8 62.2

using Design Compiler (0.5jLm CMOS library)

Frorn the result shown in Table 6.9, it is confirmed that both rnodification of (a)

and (b) irnproved clock 仕equency. Division ofbranch stage and comparison stage (a)

made clock 企equency higher than addition of dedicated cornparison (b). However,

considering the branch penal ty increase of processor (a) , whether the execu tion

time of processor (a) is less than that of (b) or not it depends on an application

program. If an application progr出n includes rnany branch instructions which are

taken 台equently， execution cycles of (a) becornes rnuch larger than that of (b) , and

execution time of (a) becomes larger than that of (b).

87

On the 0七her hand, the area of (a) was increased because additional pipeline

registers were required. The area of (b) was also increased. Add咜ional comp紅ator

made the area increase.

The design modification time of (a) and (b) was only two or three minutes for

each mod凬ication. For the design of (a) , micrかoperation description of branch

and jump instructions were modified with moving branch operation to the next

stage. For the design of (b) , resource declaration for dedicated compぽator was

added. Moreover, micro-operation description of branch and jump instruct卲ns were

modi五ed with replacing comparison resource 仕om AL U to added comp紅ator .

initialize ar and aj;
while (1) {

retrieve xr [OJ 臼d xj[OJ from input;
yr = 0;

yj = 0;

for (i = M; i > = 0; iー) {

yr +=む [M -iJ * xr [iJ -aj [M -iJ * xj [iJ ;

yj +=む [M -iJ * xj [iJ + aj [M -iJ * xr [iJ ;
xr[iJ = xr[i -1J;

xj [iJ = xj [i -1J;

1
J

V
d

、

α但r

vd
+u u

p
‘ +

しU

1
f
o

6.6 Design Space Exploration for DSP Applica田

tion Figure 6.4: Pseudo Code of an FIR Filter.

An FIR filter is one of applications in digital signal processing area. In the second

experiment , modules to calculate the following equation are designed as ASIPs:

6.6.1 Customization of PEAS R3K

M

y[η] =乞 αi x x[N -i] (6.1)

To improve performance, three types of new instructions are added. As another

architectural design space exploration, the effect of changing the number of pipeline

stages is examined.

where α ， x , and y are complex numbers.

Speci五cation of the filter module is as follows. Data size of inputjoutput value

is 32 bits. It consists of two 16-bit parts. The higher 16 bits corresponds to the

real part of the complex number and the lower 16 bits corresponds to the imaginary

part. Both parts are fixed point representation. Input data are provided to the filter

module at specified intervals. Output data must be produced before the next data

input. The result of the calculation is rounded to round-もかnearest.

An algorithm of th﨎 filter 﨎 shown in Fig. 6.4. This is a stra刕htforward imｭ

plementation of Equation (6.1). Variables ar and aj correspond to real part and

imaginary part respectively of coe白cientsαi in Equation (6.1). Variables xr, xj , yr,

and y j follow the same manner.

A program of the filter is coded for PEAS R3K processor in assembly language.

The code size is 1631ines.

Adding New Instructions

Complex MAC Complex MAC type instructions consist of complex MAC operｭ

ation and related operations such as initialization of complex MAC operation. The

instruction ' cmult う performs multiply, accumulatíonヲ and rounding. By introducing

instructions related to complex MAC operation, drastic improvement of execution

cycles of the application is expected.

To implement the Complex MAC type instructions, a complex MAC module

was designed. A block diagram of the module is shown in Fig. 6.5. This MAC Unit

simultaneously calculates complex multiplication and addítion, in other words , real

part and imaginary part computation, at once. It also includes a round-tかnearest

rounding function.

To add Complex MAC type instructions to PEAS R3K, instruction definitions

and micrかoperation descriptions were added by the designer. The micrかoperation

88
89

a b

start

fin

load

result

Figure 6.5: Block Diagram of a Complex MAC Unit.

description of 'cmult う instruction is shown in Fig. 6.6. In this description , it is

specified that the pipeline is proceeding with instruction fetch at stage1 , decoding

of fetched instruction at stage2, execution of complex MAC operation with complex

MAC module 'CMACO' at stage3. As shown in this example, multi-cycle operations

do not need supplemental description compared to single cycle operations since

proposed processor synthesis method can detect multi-cycle operations and generates

the controller with multi-cycle handling.

stage1 IR := IMEM[PC]; PC.incO;

stage2 DECODE(IR) ;

$rs:ニ GPR.readO(rs);

$rt := GPR.read1(rt);

stage3 ($result , $fl.ag) :二 CMACO.mac($rs ， $rt);

stage4

stage5

Figure 6.6: Micrcトoperation Description of cmult (Complex MAC).

90

Modulo Addressing Modulo addressing is one of addressing modes to calculate

address for queues. In the algorithm in Fig. 6.4, buffer x for preceding inputs has

overhead of load/store. Using Modulo addressing, when load/store instruction is

executed, the next address is also calculated in the instruction. By introducing

instructions related to Modulo addressing, some improvement of execution cycles of

the application is expected.

Since these instructions require no special resources ぅ the designer only added

instruction definitions and micrひoperation descriptions for introducing these inｭ

structions.

Loop Loop instruction is one of branch instructions. The loop instruction perｭ

forms decrement of counter and branch as a single instruction. Though the imｭ

provement of the number of the execution cycles is at most one instruction per

iteration, relatively large improvement can be expected for the iteration of short
basic block length.

To implement Loop instruction, the designer added instruction definitions and

mlcrかoperation descriptions for introducing these instructions.

6.6.2 Pipeline Stage Thning for Derivative Processors

The number of pipeline stages of derivative processors, which are added the instrucｭ

tion described in the previous section, was varied from three to 五ve. Micrかoperation

re-scheduling that is described Section 6.5 is also done to improve clock frequency.

6.6.3 Results of Design Space Exploration for DSP Appliｭ

cations

Results of logic synthesis for each modification are shown in this section. Design

times for each modi五cation 紅e also shown.

Results of Adding Instructions

Five derivative version processors have been designed. Let M mean the processor

including complex MAC instructions, L mean the processor including Loop instrucｭ

tions, and A mean the processor including modulo addressing instructions. Results

91

of logic synthesis, i.e. , the number of gates and maximal clock frequencyヲ and the

nurnber of execution cycles for calculating a single output value for M = 128 are

summarized in Table 6.10.

Table 6.10: Design Quality for Each Processors

processor max frequency # of gates # of execution
(MHz) (k gates) cycles

original 119.9 80.0 23932

M
し

MA

ML

MAL

101.8 71.4 3893

104.4 64.7 23805

100.0 92.0

102.7 73.6

100.7 94.8

using Design Compiler (0.5μm CMOS library)

M : including complex MAC instructions

L : including Loop instructions

A : including Modulo Addressing

3507

3766

3509

In Table 6.10, the number of execution cycles is drastically reduced by introducｭ

ing CMAC type instructions. In this case, maximal 丘equency of processor decrease

approximately 30%.

Table 6.11: Design Time for Each Instructions
instructions I time (hour)
original instructions I 8.5
CMAC 0.8
Mod. Addr.
Loop

0.5
0.8

Design time for each processors is shown in Table 6.11. Original PEAS R3K

processor has been designed in eight hours. To add new instructions, less than one

hour was required in any type of instruction in this experiment. Furthermore, any

processor, which has any combination of already designed instruction, can be easily

synthesized by PEAS-III.

92

Results of Pipeline Tuning

Results of logic synthesis for each design are summarized in Table 6.12. The colｭ

umn “model" denotes the variation of instruction set addition shown in Table 6.10.

The column “type" denotes variation of clock frequency irnprovernent shown in Secｭ

tion 6.5.2.

As rnentioned in Section 6.5, the nurnber of gates in Table 6.12 is approxirnately

linear to the number of pipeline stages, too. Clock frequency for three stage derivaｭ

tives is about 40 % less than that of four and five stage derivatives. Clock frequency

of both four and five stage derivatives is alrnost the same.

Table 6.12: Design Quality for Changing the Number of Pipeline Stages

of pipeline stages

model
of exec. 3 stages 4 stages 5 stages

type cycles 仕eq. area freq. area 仕eq . area
(MHz) (k gates) (MHz) (k gates) (MHz) (k gates)

original ong 23932 95.0 57.4 121.1 60.4 119.9 62.4
a 24063 95.0 57.4 144.3 62.8 141.2 64.5
b 23932 100.7 57.3 140.4 61.2 131.8 62.2

ML ong 3766 66.3 70.9 101.9 72.6 102.7 73.6
a 3895 66.3 70.9 102.8 75.4 100.6 75.3
b 3766 65.8 71.4 102.6 73.2 104.0 73.8

MA ong 3507 73.4 85.9 101.9 89.1 100.0 92.0
a 3636 73.4 85.9 98.3 91.8 98.9 93.9
b 3507 72.2 86.5 102.0 89.2 101.5 92.1

MAL ong 3509 65.3 89.3 98.0 92.4 100.7 94.8
a 3638 65.3 89.3 104.8 94.2 102.7 96.3

b 3509 65.1 89.3 103.8 92.7 101.2 93.9
using Design Compiler (0.5μm CMOS library)

Relationship between area and execution time for FIR filtering application is

plotted in Fig. 6.7.τ同de-off between area and execution time is plotted in Fig. 6.8.

At various design constraint , various architecture candidates can be selected in terms

of the number of pipeline stages, extension instruction set and so on.

Design time of derivative processors in terms of pipeline tuning was within an

hour per one model. Total design time of pipeline tuning for four models in Ta-

93

3∞

ble 6.12 took four hours. Total design time of all derivatives, which was the addition

design time of new instructions and design time of pipeline tuning, was about six
hours.

ﾗ

200 X X

'" E
ﾘ"150
E
•

×交×

100

50
X

X>ac: x
ﾗ 潟〈

×獄滅XX

。

60 65 70 75 80 85

Aaea(K gate)

90 95 1∞

Figure 6.7: Area and Execution Time for all Derivatives.

2∞~ X oriﾇJ4

×町り4b
XonﾇJ4a

150

帥
E
)@
E

一
』

1∞

50
ML3X

_ ML4b
M5 X)湾政 ML5b

ML4 ML5
MA4 >伽A4b XMAL4b

。

60 65 70 75 80

Aa回(Kgate)

85 90 95

Figure 6.8: Trade-off of Area and Execution Time.

94 95

E士一一一一一一一一一一一一一 一一一一一一竺竺竺三

Chapter 7

Discussion

In this chapter, the effectiveness of the proposed processor design and synthesis

method is discussed with the results of experiments. The effectiveness is discussed

at the following points:

• largeness of explored design space,

• design and design exploration time,

• and design quality.

7.1 Design Space

The proposed synthesis method supports portion of the architectural characteristics

shown in Chapter 3. The supported items are as follows:

• hardware module con五guration ，

• storage units organization,

• pipeline organization that includes the number of pipeline stages and micrひ

operation assignment to the pipeline stages,

• structural hazard detection and pipeline interlock control synthesis,

• predict-not-take based delayed branch,

• and external interrupt.

97

From experimental results, e百ectiveness of design space exploration with these arｭ

chitectural variations was shown.

In the experiments, design space was explored in terms of the following points:

Design space was explored in terms of the following points:

• hardware module configuration. Hardware configuration includes changing

resource parameters and addition of new resources. Changing resource paｭ

rameters for PEAS-I core, which is shown in Section. 6.3. Addition of new

resource for clock 仕equency improvement is shown in Section 6.5.2.

• instruction bit width. The instruction bit width of embedded RISC controller

was changed 仕om 32-bit to 24-bit.

• the number of pipeline stages. The number of pipeline stages for PEAS R3K

processor and derivative processors for DSP applications were changed. It is

shown in Section 6.5 and Section 6.6.2.

• operation scheduling to the pipeline stages. Changing the stage of branch

operation for PEAS R3K and DSP derivative processors is shown in Section 6.5

and Section 6.6.2.

• organization of storage units. Complex addressing modes for special registers

and multiple register 五les were designed. Complex addressing modes were

shown in Section6.4.

Furthermore proposed synthesis method has a potential ability for designing

complex mernory architectur弘 such as rnernory-rnernory architecture, non-harvard

architecture, multiple port rnemory and so on. Synthesis of structural hazard deｭ

tection and pipeline interlock logic enables to design such processors.

Proposed synthesis method can deal with rnuch larger design space than that

of existing prepared processor based systems. Design space is enlarged in terms of

instruction bit width, user-defined pipeline organization in terms of the number of

pipeline stages, the number of delayed branch slot, role of each pipeline stage and

multi-cycle operations, storage unit organizatio民 and user-defined external inter-

rupt.

98

For the further expansion of the design space, extension for out-of-order instrucｭ

tion issue and out-of-order completion, VLIW architecture, and internal exception

are required. When target processor uses a functional unit that has long latency

to calculate the result, the pipeline organization with out-of-order completion is efｭ

fective. The processor with out-of-order completion can execute other succeeding

instructions while executing instructions that have long latency. For the applicaｭ

tions which requires high performance, the processor with out-of-order instruction

issue and VLI羽T processors are suitable to execute multiple instructions at the same

time.

Extension for branch mechanism is also required. The synthesis method cannot

deal with the non-overhead loop instructions which are popular in DSP application

because branch architecture is fixed to predict-not-take base delayed branch.

7.2 Design Time and Design Space Exploration
Time

7.2.1 Design Time for New Processors

With the higher abstraction level processor specification than RT level , design tirne

of the ASIPs are drastically reduced. Higher abstraction level processor description

contributes the easiness of the design.

Frorn the experimentsヲ reduction of the design tirne was shown. Design tirne

for ASIP with proposed rnethod was about three to seven times shorter than those

for conventional RT level design as shown in experirnents. Compared with other

processor description language AIDL [24], AIDL needs 37 hours to design 23 inｭ

structions of PA-RISC processor. AIDL includes cornplex specification descriptions

for complicated processors. Frorn the results, it is obvious that micrφoperation

level processor description is effective for shortening design tirne of straightforward

pipelined processors.

99

7.2.2 Design Time for Derivative Processors

Proposed micro-operation level processor specification also reduces design exploｭ

ration time compared with that of RT level processor specification. Synthesis of

datapath structure and controller reduces design and des�gn mod凬ication time of

them and enables the designer to change the architecture in a short time.

From the experiment s, turn around t匇e for derivative processor designs was

shown. The derivative processor designs includes the following rnodi五cations:

• changing resource parameters. The designer change pararneters for the sake of

the evaluation of various hardware module which has same functionality and

different design quality in the sense of area, clock frequency and execution

cycles. This modification needs only few seconds per one parameter.

• addition of application speci五c user-defined instructions. The designer defines

instruction format and describe rnicrかoperation description of new instrucｭ

tions. This rnodification takes ten to 五fteen minutes per one instruction of

DSP ins七ructions shown in Section 6.6.

• addition of new resource. The designer declares additional resources to gain

performance of the design. It takes only a few rninutes.

• changing the number of pipeline stages and changing operation scheduling

to pipeline stages. The number of pipeline stages will be decreased for the

reduction of the 紅白. On the other hand, the number of pipeline stages

will be increased to reduce the delay tirne of the critical path. The designer

also changes the stage of rnicrφoperation to reduce the delay tirne of critical

path. Changing the nurnber of pipeline stages and operation scheduling to

the pipeline stages requires re-scheduling of rnicro-operation to the pipeline

stages. The changing time is within a rninutes per one instruction. From the

experiments, pipeline tuning takes 20 minutes for the PEAS R3K processor

that has 52 instructions.

Large design space has been successfully explored. The trade-off of the design is

found. The designs of 12 derivatives were tried in a day.

100

Though design and design modi五cation time is very short , evaluation and valiｭ

dation time for the designed processor makes turn around time long. Effective and

rapid estimation and critical path analysis for synthesized processor are required.

For more e伍cient support of design space exploration, optimization of resource

selection , instruction format decision, the number of pipeline stages and micrか
operation assignment for pipeline stages are required.

7.3 Design Quality

In the design quality of synthesized processors and manually design processors, clock

fおquencies of thern 訂e almost the same. The area of synthesized processors is about

20% larger than those of manually designed processors. Though the area is inferior

to manual design, the advantage of effective design space exploration has an impact

on the total design quality. The disadvantage on the area does not affect so rnuch.

To improve the design quality of synthesized processor, optimization of selector

and pipeline register insertion is required. For the reduction of pipeline registerぅ

pipeline register sharing could be effective. However, sharing the register needs adｭ
ditional selectors. On the other hand, when critical path includes automatically

inserted selectors, moving the selector to the previous pipeline stage or to the next

pipeline stage, if possible, reduces the critical path. Pipeline register sharing and

selector insertion stage optimization based on an RT level rapid and accurate estiｭ

mation irnprove the design quality.

101

E ...'---- ， . τ ・ 一±

Chapter 8

Conclusions and Future Work

In this thesis a micro-operation level processor specification and processor synthesis

method is proposed for the architectural design space exploration of ASIPs.

8.1 Conclusion

In this thesis, micro-operation level processor specification for architectural design

space exploration hωbeen discussed. The specification includes a parameterized

pipeline structure in the sense of the number of pipeline stages and roles of the

pipeline stages. Furthermore , a complex mechanism that includes pipeline control

logic, designing a datapath structure is not needed. The easiness of the design and

design modification and flexibility on the processor enables architectural exploration

of a large design space in a short design time.

For processor synthesis, a processor model has been examined. To deal with fl.exｭ

ibility in pipeline depth of target processor, datapath and controller is divided into

pipeline stages. The sequence of datapath and controller models of each pipeline

stage organizes the pipelined processor. The organization of each pipeline stage

conもroller ， instruction decoder and external interrupt controller are discussed. The

pipeline hazard detection and control mechanism that includes pipeline interlock and

pipeline fl.ush are formalized. The pipeline control model and pipeline hazard detecｭ

tion mechanism are used to synthesize pipeline control logic 仕om mlcrcトoperation

level processor specifications.

Processor synthesis method 台om illicrcトoperation level processor specification is

103

proposed. Each part of the datapath synthesis, such as data fiow graph generat ion,

signal conflicts resolution and pipeline register insertion are described. Instruction

decoder synthesis, pipeline controllogic synthesis and interrupt controller synthesis

are also described. The synthesis method supports user-defined pipeline organization

in the sense of the number of pipeline stages and the number of delayed branch slot ,

multi-cycle operation , structural hazards resolution, and external interrupts. The

wide su pport for the pi pelined processor enables exploration of a large design space

for ASIPs.

Through the five kinds of experiments, the e旺'ectiveness of the micrcトoperation

level processor design is confirmed. The design time and the architectural design

space exploration time are reduced while keeping the fiexibility in the pipeline organiｭ

zat ion, hardware configuration and so on. A large design space has been successfully

explored. The trade-off of the design is found by trying 12 derivative processors.

The designs of 12 derivatives were tried in a day.

In this thesis , micrcトoperation level processor specification and a processor synｭ

thesis method for architectural design space exploration for ASIPs are proposed.

It is confirmed that in using the proposed method, large design spaces ぽe easily

explored in terms of the number of pipeline stages and delayed branch slots and

hardware module configuration, user-defined instructions interface ports and exterｭ

nal interrupts, and operation scheduling to pipeline stages.

8.2 Future Work

Future work for further architectural design space exploration includes the expansion

of design space and reduction of design exploration time. Improvement of the design

quality of synthesized processors is also a future goal. In the following section, the

future directions of these articles are described.

8.2.1 Design Space Expansion

Supports for the following characteristics described in Section 3.1 to enlarge design

space are required.

104

• branch prediction mechanism and non-overhead loop ,

• out-of-order completion,

• out-of-order instruction issue,

• and other interrupt and exception.

Instruction fetch module synthesis is required to extend branch mechanism beｭ

cause branch control is closely related to instruction fetch. Parameterization of

instruction fetch module and branch architecture, and consideration of their synｭ

thesis method enable the system to deal with various branch architectures. The

parameter seems to include instruction bit width, increment step, predict-taken or

predict-not-taken or dynamic branch prediction with branch-prediction buffers or

that with branch-target buffers, and parameters of buffers.

Processor model extension for multiple pipeline sequence enables super-scalar

and VLIW type processor synthesis. However, the extension for multiple pipeline

sequence makes hazard detection and the resolution algorithm more complex. For

out-of-order instruction issue, reservation station synthesis is also required.

For the support of the precise exception, restriction of instruction speci.fication

and exception handling should be discussed. Extension instruction fiash and restorｭ

ing the processor status mechanism for exception is also required.

8.2.2 Design Exploration Time Reduction

For the further red uction of the design and design modi五cation time, optimization
of micro-operation level processor speci.fication is required. The target of the optiｭ

mization includes instruction format assignment , resource parameter selection, the

number of pipeline stages and micro-operation assignment for pipeline stages.

The critical path of each pipeline stage can be reduced by changing the pipeline

stage assignment of micrかoperations and hardware module parameters.

Data fiow graph generation from micrかoperation description and ASAP (as soon

as possible) base scheduling with design constraint enables optimization of microｭ

operation assignment to the pipeline stages. At the same time, the parameter selecｭ

tion of resources should be done because the design qualities of the resources affect

the delay time of the critical path. For the scheduling and resource parameter seｭ

lection, fast and accurate estimation of micrかoperation level processor specification

is required , too.

8.2.3 Improvement of the Design Quality

The design quality of the synthesized processor is slightly inferior to that of manual

design using RT level HDL description. For the improvement of the design quality,

optimization of selector and pipeline register insertion taking into account the tradeｭ

off between clock frequency and hardware cost is required, as discussed in Section 7.3.

106

Bibliography

[1] Electronic Industries Association of Japan (EIAJ) ぅ EDA Technology Roαdmap

Toωαrd 2002-Cyber-Gigα-Chip Desigη Technology， apr 1998.

[2] International SEMATECH, lnternαtional Technology Roαdmα，p for Sem犯on

ductors 1999 Edition, 1999.

[3] J. Staunstrup and W. Wolf, eds. , H，αrdware/Software Co-Design: Principles

αηd Practice. Kluwer Academic Publishers, 1997.

[4] G. Kane, mips RlSC Architecture. New Jersey: Prentice-Hall, Inc. , 1988.

[5] Hitachi Ltd・ぅ S叩erHTMRlSC E句ine SH7020 and SH7021 H，αrdωαreMαnual，
rev. 3.0 ed., Nov. 1999.

[6J Hitachi Ltd., S叩erH™ RlSC Engine SH7604 HαァdωαreMαnual， rev. 3.0 ed.,

Nov. 1999.

[7J S. Furber, ARM System ARchitecture. Addison Wesley Longm仏 1996.

[8J Advanced RISC Machines Ltd. , ARM7TDMl Dαtα Sheet， Aug. 1995.

[9] S. B. Furber, VLSl RlSC Architecure and Orgαnization. Marcel Dekker Inc. ,

1989.

[10] J. Sato, A. Y. Alomary, Y. Honma, T. Nakata, A. Shiomi, N. Hikichi, and

M.lmai,“PEAS-I: A HardwarejSoftware Codesign System for ASIP Developｭ

ment ," lEICE Trαnsαctioηs on Fundαmentαls of Electronics, Communications

αnd Computer Sciences, vo1. E77-A, pp. 483-491 , Mar. 1994.

107

[11] B. Shackleford, M. Yas吋a， E. Okushi, H. Koizumi , H. Tomiyama, and H. Yaｭ

suura,“The Satsuki Intergrated Processor Synthesis and Compiler Generation

System ," in Proc. of the Syηthesis and System Integr，αtion Mixed Techinologies

(SASIMI '96人(Ft止uoka， Japan) , pp. 135-142, Nov. 1996

[12] M. Small, An Iηtro to The First U，貯 Deβηαble Processor. ARC Cores Ltd. ,

Nov. 1998.

[13] M. R. Borbacci and D. P. Siewiorek, The Desigηαηd A nalysis 0 f 1 nst問ctioη

Set Processors. McGraw-Hillう 1982.

[14] P. G. Paulin, C. Liem, T. C. May, and S. Sutarwala, Code Generation for

Embedded Processors, ch. 4. Kluwer Academic Publishers, 1995.

[15] Tensilica, Inc., Application Specific Microprocessor Soんtioηs: Dαtα Sheet for

Xtensα Vl ， 1998.

[16] Hewlett Packard Laboratories Compiler and Architecture Group , New York

University ReaCT-ILP Group, University of Illinois IMPACT Group, Trimarαn

User Mαmαl -An Infr，αstructure for Compiler Research in Instruction Level

Pαァαllelism-， 1998.

[17] R. Campぉano and J. Wilberg,“Embedded System Design," Design Aωomα

tion for Embedded Systems, vol. 1, J an. 1996.

[18] J.-H. Yang, B.-W. Kim, S.-J. N組1， Y.-S. Kwon, D.-K. Lee, J.-Y. Lee, C.-S.

Hwang, Y.-H. Lee, and C.-M. Kyung, "MetaCore: An Application Specific

Programmable DSP Development System," IEEE Transαctions on VLSI SYSｭ

TEMS, vol. 8, pp. 174-183, Apr. 2000.

[19] G. Hadjiyiannis, S. Hanono, and S. Devadas, "ISDL: An instruction set descripｭ

tion language for retargeability," in Proc. of 34th Design Automαtion Coη1er

ence (DAC 'g引 June 1997

[20] A. Halambi, P. Grun, V. Ganesh, A. Khareぅ N. Dutt , and A. Nicolau,

"EXPRESSION: A Language for Architecture Exploration through Com-

108

piler jSimulator Retargetability," in Proc. of Desig叫 Automαtion fj Test in

Europe (DATE '99人 (Munich ， Germany) , pp. 485-490, Mar. 1999.

[21] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr, "LISA -Machine Description

Language for Cycle-Accurate Models of Programmable DSP Architectures ," in

Proc. of 36th Desザn AutomatioηCoη1erence (DAC '99), (New Orleans) , June

1999.

[22] P. Marwedel, "The MIMOLA Design System: Tools for the Design of Digital

Processors ," in Proc. of the 21th Design Automation Conference (DAC '84) ,

pp. 587- 593, 1984.

[23] A. Fauth, J. V. Praet, and M. Freericks, "Describi時 Instruction Sets U sing

nML (Extended Version) ," tech. rep. , Technische Universit批 Berlin and IMEC,

Berlin(Germany) jLeuven(Belgiu叫

[24] T. Morimoto, K. Saito, H. Nakamura, T. Bokuぅ and K. N akazawa,“Ad

vanced Processor Design Using Hardware Description Language AIDL," in

Proc. of Asiααnd South Pαcポc Design Automation Conference (ASP-DAC

'97)ぅ (Chiba， Japan) , pp. 387- 390, Jan. 1997

[25] M. Hamabe, A. Nose, N. Togawa, M. Yanagisawa, and T. Ohtsuki, "A Generaｭ

tion System for Hardware Description of Pipelined Processors," in Tech. Report

of IEICE, VLD97-11 ス pp. 33-40, 1997. (in japa凹se) .

[26] J. C. Gyllenhaal, W. W. Hwu, and B. R. Rau,“HMDES Version 2 Spec述ー

cation," Tech. Rep. IMPACT-96-03, University of Illinois, Urbana IL. , 1996.

IMPACT Technical report.

[27] V. Kathail, M. Schlansker, and B. Rau,“HPL Playdoh Architecture Speci五ca

tion: Version 1.0," Tech. Rep. HPL-93-80, HP Laboratories ぅ 1994.

[28] G. Hadjiyiannis, ISDL: Instruction Set Desc付ption Lαηguαge， User's M，αmαl，

1998.

109

[29] N. Savoi, A. Halambi, P. Grun, N. Dutt, and A. Nicolau, "VSAT: A Visual

Specification and Analysis Tool for System-On-Chip Exploration," in Proc. 0]

25th EUROMICRO Con]erence, Sept. 1999.

[30] Institute for Integrated Signal Processing Systems, ISS-RWTH Aachen, LISA

User's Gωde (Versioη 2.0) ， Oct. 2000.

[31J V. Zivoj∞vic ， S. Pees, C. Schlager , M. Willems , R. Schoenen , and H. Meyr ,

“LISA -Machine Description Language and Generic Machine Model ," in Inｭ

ternatio7í刈 Co吋引でT問 on Signal Pγocessing Applicα:tions and Technology (ICｭ

SPAη， (但Bos坑ton仏 Oct. 1996.

[32] M. Freericks, "The nML machine description formalism ," tech. rep. , Universit批

Berlin, Fachbereich Informatik, Berlin, 1991.

[33]

[34]

[35J

D. Lanneer, J. V. Praet, A. Kifii , K. Schoofs, W. Geurts, F. Thoen, and

G. Goossens民3

Cωes路soωrsピ，" in Code Gener，αtion for Embedded Processors, pp. 85-102, Kluwer

Academic Publishers, 1995.

K. Kataoka, A. Shiomi, M. Imai, Y. Aoyama, J. Sato, and N. Hikichiう“Obser

vations on the Implementation of a Codesign Workbench PEAS-III for ASIP

Design -Classification and Parameterization of CPU Architectures -," in IPSJ

Technical Report, DA 78-20, pp. 121-126, Dec. 1995. (in japanese).

M. Itoh, S. Higaki, J. Sato, A. Shiomi, Y. Takeuchi, A. Kitajima, and M. Ima白1 ，

“"PEAS-III: An AS釘IP Design Env吋ironmer瓜l式t ，" in IEEE International Co]erence

on Co仰uter Design: VLSI in Computers & Processors ρCCD 2000), (Austin) ,

pp. 43(}-436 う Sept. 2000.

[36] D. L. Perry, VHDL. McGraw-Hill, Inc ・ ， second ed. , 1994.

[37] T. Morifuji, Y. Take吋lÌ ， J. Sato, and M. Imai,“Flexible Hardware Model:

Implementation and E百éctiveness，" in Proc. of the Synthesis αnd System 1 nteｭ

grlαtioη Mixed Techinologies (SASIMI '9η ， pp. 83-89, Dec. 1997.

110

[38J M. Imai, A. Shiomi, Y. Takeuchi, and J. Sato, "HardwarejSoftware Codesign

in the Deep Submicron Era," in Proc. 0] Internαtionαl Workshop 0η Logic αηd
Architecb川 Synthesis ρWLAS '96), pp. 236- 248, Dec. 1996

[39J D. A. Patterson and J. 1. Hennessy, Computer Orgαnizatioη & Design: The

hαァdωαre/Softωαre Interjαce . Morgan Kaufmann Publishers, Inc ・ ぅ 1994.

[40J S. Kowatari , H. Iwashita, T. Nakataヲ and F. Hiro民“Synthesizable Design

Generation for Pipeline Control1ers ," in Tech. Report 0] IEICE, VLD94-41 ,
pp. 17-24, July 1994. (in japanese).

[41J D. Gajski, N. Dutt , A. Wu, and S. Lin, High-level synthesぽ introducr的on to

chip αnd system design. Kluwer Academic Publishers, 1992.

[42J C. Price, MIPS IV Instruction Set Revis

[μ4必叫3司J J. 1. Henne白ssy and D. A. Pa抗tt印erson ， Comput柁er Ar陀chiばt柁ectur，陀e: A Q 切Tη吋山tit“'tv
Approαch. California: Morgan Kaufmann Publishers, Inc. , 2nd ed ・， 1990.

111

Appendix A

Grarnrnar of Micro-operation

Level Processor Specification

A.l Organization of Micro-operation Level Spec四

ification

Micrcトoperation level specification is a text file divided into eight parts:

1. Version

2. Design Goal and Architecture Parameter

3. Interface Definition

4. Instruction Type Definition

5. Instruction Definition

6. Resource Declaration

7. Interrupt Definition

8. Micro-operation Description

General grammar of micrかoperation level specification is as follows:

KEY := [a-zA-Z] [a-zA-ZO-9J *
STRING : =ぺ [-"]1' \ "')*"
くdesign> := <i七em>

く item> :=くkeyvlOrd> [' { ，くitem>づっ { , " <i七回>}
くkeyword> := (KEY 1 STRING)

“KEY" includes “clk(n)" as an exception.ηtakes integer valu四1児e
Each p戸a此 ha鉛S own s勾yn凶ta以x and keywords. Each p紅t begins with the keywords: Verｭ

sion, Port_declaration , Instruction_type, Instruction, Resource, Exception, and
MOT. Keywords and s戸ltax for each part 訂e described in the following sections.

113

くSpecification> 'Design' ,{,
くVersion> ','
くArchite cture _jコara血e七er〉 P ， P

<InterfaceJDeclara七 iozl〉 P ， P

く Ins七 _TypeJDefini七 ion〉 P ，'

く Instruc七 ionJDefinition> ' , '
<ResourceJDeclaration> ' , '
く Interrup七 JDefini七 ion> 勺 3

くMicro_OpJDescrip七 ion>

,} ,

Design goal for clock frequency, chip area, maximum delay, static power consumption
and dyIIMI11c power consumption-Their values are represented in decimal or integer-

A.2.2 Pipeline Processor Parameters

Architecture parameters for pipeline processor include the number of stages, the number
ot common stages, the number of phases per stages, synthesis of pipeline interlock logic,
data bypassing logic, and branch control logic.

くPipeline _Arch_Parame七er>

ﾁ.2 ﾁrchitecture Parameter

In the architecture p紅ameter part , design goal and architecture parameters are speci五ed .

<Architecture _Par祖e七er> := ' Abs七rac七...level_archi七ecture ' '{'

くFhm_Work_Name> ','
くDesign_Goal> ','
くProcessor_Type> ','
くPipeline_Arch_Parame七er>

, } ,
' FhIn_-wo出担e' , { , STRING '}'

'CPU_type' '{'

くFhm_Work...Name>

くProcessor_Type>

STRING

(' "Non-pipeline'" I '"Pipeline''' I '''VLIW''')
,} ,
" (仁 "J I '¥'")*"

くNumber_of .13七 ages>

くNumber_of_Common.13七ages>

くNumber_of_Phases_Per .13tage>

くMulti_Cycle_Interlock>

くData...HazardJnterlock>

<Regis七er ...Bypass>

くMemory...Bypass>

<Delayed...Branch>

くDelayed...Branch.131ot>

Architecture p訂ameter includes login n剖ne of FHM-DB, design goal, proc田sor type

and architecture p訂ameters for pipeline processor. Candidates of processor type 訂e

"N on-pi peline円， "Pipeline" 組d “VLIW" . Processor types "Non-pipeline" and “VLIW"
ぽe prepared for future extension. Currentlyぅ“Pipeline" architecture is supported.

A.2.1 Design Goal

INT
USAGE

YESNO

'Pipeline _archi七ecture' '{'

くNumber _of .13tages>

くNumber_of _Common_S七ages>

くNumber_of _Phases_Per.13tage>

<Muユ七 i _Cycle _Interlock>

くDa七a...Hazard_In七erlock>

<Register...Bypass>

<Memory...Bypass>

くDelayed...Branch>

くDelayed..Branch_Slot>
,} ,
, Number _of _s七ages' , {, 1町， } ,
'Number_of_common_stages' '{' INT '}'

'Number_of_phases_per_stages' , {, 1町 '} ,
'Multi_cycleユロterlock' , { , USAGE γ
'Dataム臼訂d_interlock ' '{' USAGE '}'

'Register_bypass' '{' USAGE '}'

'Memory_bypass' '{' USAGE '}'

, Delayed_br祖ch' '{' YESNO '}'
'Number_of_exec _delayed_Slo七 ，{ ,

'number' '{' INT '}'
'} ,
" [0-9J +"

("Use" I "Unuse")

("Yes" I "No")

The number of pipeline stages takes integer value. The parameter value of delayed

branch indicat白 whether the proc白sor adopts delayed branch architecture or not. If the
parameter value of delayed branch is "Yes" , the number delayed branch slot should be
specified. The number of delayed branch slot must be less than the number of branch
stage.

The following p紅ameters are prepared for future extension: the number of common

stages, the number of phぉes per stages, synthesis of pipeline interlock logic and bypassing
logic. Pipeline interlock logic for the resolution of structural hazards is automatically
synthesized regardless of the parameter value.

くDesign_Cons七rain七〉

>

>

C
c

・

-

ウ
じ
組

問d

い
は
戸

町

>
5
2

U

>

Vdrr

q
ゐ

a
a
e
e

e
e
1
4
w
w

r

r

e

o

o

f

-

D

P

2

1
4
1
4
1
-
1
4
1
4
r
ｭ

a
a
a
a
a
U

0
0
0
0
0
7

」

円
U
F
U
F
U

円
U

円
U
A
A

/
\
/
、
/
、
、

f
、
/
、

v
w

'cons七ruction' '{'

<Goal_Frequency> ','
くGoaLArea> 勺'

くGoalJDelay> ','
くGoal_Po-wer_S七atic> 勺'

くGoal_Po-werJDynamic>

'} ,
'Goalゴrequency' ,{, V札UE ,},
'Goal_area' '{' Vι四，} ,
'Goal_delay' '{' V札UE '}'

'Goal_po-wer.13' '{' VιUE ,},
'Goal_po-wer _j)' '{' V札UE '}'

" [0-9J 牢[\. [0-9J 牢J"

ﾁ.3 Interface Definition

In the interface definition part, entity name, and input and output ports of target processor
訂e defined.

114 115

く InterfaceJDefinition> :=くEnti七y ..Name> 勺 3 くPortJDeclara七ions>

くEntity ..Name> := 'Entity_name' '{' STRING ,},
くPortJDeclara七 ions>

くPortJDeclara七 ion>

くPortJDirection>

くinout_direction>

くPor七一Type>

くPort .-Attribute>

STRING

>

e

祖

>

Je

e

w
m

1
1

心

十
u
+
』

1
4

s
s
e

a

n
-ｭ

T
ム

T
4
P
ゐ

/
\
/
、
/
、

: = <Inst_Type..N祖e> ,{, <Field> {勺 2 くField> } '}'
:= STRING

:= <Field_Type> '{'

くField_Value> '.)

くField_\hdth>
,} ,

(, "OP-code'" I '''Oper回d'" '''Reserved''')

:= <Field_Contents_Type> ,{, <Field_Value>γ
・_ (' "n臼e'" I '''binary''')
:= (STRING I BINARY)

'Port' '{'
くPortJDeclaration> {ぺ 3 くPort J)eclaration> }

,} ,
-くPO口..Name> '{'

くPortJDirec七ioa>' ， P

<Port_Type> ',)
くPort ..Attribute> ',)

'} ,
'direction' '{' く inou七 一direc七ion> '}'

('"in''' I '"out''' I '''inout''')
'signalλype' '{' STRINGγ
'signal_a七七ribu七 e' '{' S冗ING '}'

" ([角 "J I '¥" ')牢"

>
 e

w

>

T

J

S

S

十
u

十
】

nn

>

>

e

e

e

e

t

t

u

P

E

n

l

v
d
o
o
a

J
よ

Z
J

d

d

d

d

Y

G

1

1

1

1

R

N

e
e
e
e
A
T
i

-
-
l
i
-
-
N
R

F

F

F

F

I

T

く
く
く
く

B
S : = "[OlJ +"

: = "([角 "J I '¥" ,) *"

For each instruction type, instruction type name is defined. Then , instruction 五elds
of the instruction type are defined. For each instruction fieldヲ 五eld type, contents of 山
五eld are defined. Field type is selected むnong "OP-code,"“Operand" and "Reserved."
'OP-code" means operation code and “Reserved" indicates that the field is reserved for
extension in the future.

If the type of instruction field is "OP-code" and the operation code for that field is

common to all the instructions belongs to the instruction type7thehld contents type

becomes “binaげ， and field value is speci五ed in binary representation. If the operation
code is variable for the instructions that belongs to the instruction type, the 白eld contents

type becomes “name円 組d field name of it is defined. The operation code of the field

is specified in instruction definition part for each instruction. For the "Operand" field 、
f�ld type becom郎、ame" and field name is def�ed. For the "Reserved" fìeld, f�ld type
becom缶、m訂y" 釦d field value is specified.

Interface definition part consists of two parts, entity name de五nition and interface port

declarations. For each interface p卯or爪t ，ヲ P卯or吋t name, d必ir陀ectiぬor払1 ，う 七typ戸ea叩nd a抗tt凶rib凶ut旬ea紅re d白efin訂lne吋d.

Port direction is selected 但nong “吋i凶n

in VHDL standard logic style. If the bit width of the port is one, the port type becomes
"stdJ.ogic". If the bit width of it is more than one, the port type becomes standard logic

vector type.

A.4 Instruction Format Definition

A.4.2 Instruction Definition Instruction format definition consists of two parts, instruction type definition and instrucｭ
tion definition.

For each instruction, instruction type is selected むnong defined instruction types and
operation code value is decided.

A.4.1 Instruction Type Definition

'Instructionょype' ,{,
, sub_f ield_n祖e' '{'

'NO一札工V くField_Width> 勺'

'type' '{'

くIns七_Type> {勺， <Ins七_Type> } '}'
'} ,

,} ,
, }'
'wid七h' '{' INT ',' INT '}'
" [0-9J +"

くInstructionJDefinitions> := 'Instruction' '{'

'NO_礼IW' '{'

<Instruction> {勺 3 くInstruction> }
'} ,

'} ,
.=くIns七ruction..N担e> '{'

くField> { ',' <Field> }
,} ,

:= STRING

Instruction type definition part consists of a list of instruction type definitions.

くInst_TypeJDefinition>
くInstruc七 ion>

くField_Width>

INT

く Instruction_Name>

STRING := "([-"J 1' \ "') 本"

Operation code for each instruction is assigned. The syntax of instruction definition
﨎 common to instruction type definition p訂t .

A.5 Resource Declaration
In the instruction type definition part, bit fields ， 白eld type, field name, and binary

value of it むe defined for each instruction type.
In the r回ource declaration part , hardware modules are selected with appropriate p紅白L
eters 仕om parameterized hardware library FHM-DB.

116
117

くResource ...Declara七 ions> .= 'Resource' '{'
くResource> {'，'くResource>}

'} ,
くResource> := <Resource_Name> '{'

<FHM_ModeL.Name> ','
くClass .J>ath> 勺 3

くParame七ers>

,} ,
くResource_Name> := STRING

くFHM_Model_N祖e> := 'class' '{' STRING '}'

くClass _Fa七h> := 'classpath' '{' STRING '}'

STRING := "([-"JI'\"') 寧 H

Resource declaration part consists of a list of resources. For each resourceぅ resource
name, FHM model name and its parameter values are speci五ed. The class pa七h field is

prep征ed for future extension.

くPar日e七ers> := 'parameter' '{'
くAbstraction_Level>

{' , 'くFHM.J>arame七er>}
'} ,

くAbs七rac七 ion_Level> := 'abstrac七 ion _level' , { ,
'for _s ilI叫ation' '{'くLevel> '}' ','
'for_synthesis' '{'くLevel> '}'

,} ,
<Level> : = ('"Behavior''' 1 '"RT''' 1 '"Gate''')

くFHM .J>ar阻e七er> .=くPar担e七er_N祖e> '{'くParameter_Value> '}'

<Parameter _Name> : = NAME
<Parameter_Value> := STRING
NAME := [a-zA-ZJ [a-zA-ZO-9J *
STRING " ([向 "J 1 '¥" ') *11

Resource Par出neter includes abstraction level for synthesized simulation model and

logic synthesizable modeL Abstraction level must be selected among “Behavior" , "RT"
and "Gate". After the abstraction level, parameters, which are specific to the model，町e
specified.

A.6 Interrupt Definition

1n the interrupt definition part, interrupt condition definitions 出ld micrかoperation deｭ

scription of interrupts are combined.

118

くInterruptJDefinition> := 'Excep七ion' '{'

[くInterrupt> { '，'くInterrupt> } J
'} ,

く Interrup七> .=くinterrupt _Name> '{'

く Interrup七一Condユ七102〉 P , P

く In七errupt_Type> ','
<Interrupt_Cycles> ','
<Behavior_ofよ2七errup七〉勺 3

くAssertion_of_Interrupt> ','
くComment ...f or_Interrup七>勺 3

くMOD_of_Interrupt>

'} ,

Interrupt definition includes interrupt name, conditionぅ type ， execution cycle count う

behavior, assertion, comments and micrかoperation description. Interrupt type, behavior
and ぉsertion are prepared for future extension.

くInterrupt_Condition> := 'Condi七 ion' ，{，くCondi七 ion> ,},
く Interrup七_Type> : = 'Type' '{'く Interrupt_Types> '}'
くInterrupt_Types> : = ('" Internal'" 1 '"External''')
くInterrupt_Cycles> := 'Cycles' '{' 1町，} ,
くBehavior_of_Interrup七〉 := 'Behavior' ,{, S冗ING '}'

くAsser七 ion_of_In七errupt> := 'Assert' '{' STRING '}'

くCommen七...f or_In七errupt> := 'Comment' ,{, STRING ,},
くMOD_of_Interrupt> := 'MOD' '{' <MOD> '}'

INT : = "[0-9J +"

Execution cycle count for the interrupt is defined. In the micro-operation description of
ínterrupts, 匤terrupt handl匤g operat卲ns of the processor such as sett匤g specific values to
special registers and jump匤g to the interrupt handler routine, are described. The s戸ltax

of Interrupt condition <Condi tion> and micro operation description くMOD are explained

in Appendix A.7.

A.7 Micro-operation Description

Micrかoperation description is used to describe clock based behav卲r of instructions and

interrupts. Micrかoperation description of ηclock 匤struction (or interrupt) is described

as follows:

clk(1) {"くMicro-Op>"} ，
clk(2){" くMicro-Op>"} ，

clk(k){" くMicro-Op>"} ，

clk(n){n くMicro-Op>n}

Behav卲r of the instruction (or interrupt) in the k-th clock is described with "clk(k)".

Micrφoperation of each clock consists of the following elements:

• Variable,

119

• Constant)

• Storage,

• Operand,

. Function,

• Assignment statement う

. If-statement,

• Decode designation.

くMicro-Op> : =くAssignment ..s七a七emen七>F;3

くFunction ';'

く If ..s七日ement> };'

くDecode ..sta七ement> ';'

A.7.1 Variable

|〈V訂ゆle〉 :=m |
VAR : = $ [a-zA-Z] [a-zA-ZO-9J * I

Variables are declared implicitly in assignment statements. The scope of variable is an

instruction in which the variable is d白cribed. Assignment for a variable is allowed only

once. Right value of the assignment can be referred in the s出回 stage 釦d in the following

stages. The variab1e is imp1emented with net when the variab1e is referred in the sむne

stage. The variable is imp1emented with pipeline register when the variab1e is referred in

the following stage.

A.7.2 Constant

<Constant> := SignalBit I BitVector
SingleBi七 : = ¥'0¥' I ¥'1¥'
BitVector := "[01J+"

Constant in binary expression is used in the micrcトoperation description. Single bit

constant is quoted by single quote. P1ura1 bits constant is quoted by double quote. Conｭ

stant value is referred in ぉsignment statement, conditional expression of if-statement ,
resource operations and index of addressed storage.

A. 7.3 Storage

くS七orage> .-くResourceName> [くAddress> J

くResource_Name> := NAME

くAddress>

NM伝

-くRight_Fart>

[a-zA-Z] [a-zA-ZO-9J 本

120

Declared registers) memory access units, register files and so on in the resource decｭ
laration part , are referred as storage units. For an addressed storage unit) location is

referred by an index. An index is quoted by “[])). The contents value of storage unit
is referred when it is in a parameter of resource operation) right pむt of the assignment

statement and conditiona1 expression of if-statement. The contents value of storage unit

is changed to ぉsigned value when it is in a 1eft part of assignment statement. The value

of the storage unit is replaced synchronously with the transition timing of the stage.

A.7.4 Operands

くOperand> :=くField....Name>

くField....Name> := NAME

NAME := [a-zA-Z] [a-zA-ZO-9J 牢

Certain bit field of the instruction register is referred by an operand fie1d name, which

is specified in instruction format definition part. The field name and bit fie1d of an operand

are defined in instruction type definition p紅t .

A.7.5 Function

くFunction> -くResourceName> '.' <Function....Name> '('くParame七er_List> ,),
くResourceName> : = NAME
<Func七ion....Name> : = NAME
<Par祖e七er_List> : = [くPar祖e七er> { ',' <Parameter> }]

くParameter> : = <Right_Fart>
NAME := [a-zA-Z] [a-zA-ZO-9J 牢

Functions indicate operations of resources. 1nput data of the operation are described

出 par町田ters . Output results of the operation are assigned to variables and storage

units with assignment statement. If the function has no output, the statement consists of

function expression only.

A.7.6 Assignment statement

くAssignmen七..sta七emen七〉

<Left _Par七s>

<Left_Fart>

くRight _Fart>

<Term>i

-くLeft _Far七s> ':='くRight_Fart>

: = <Left_Part> I '(' <Left_Part> { ',' <lef七 一P泣七> } ')'

-くS七orage> I くVariab1e>

-くTerm> {'&'くTerm>}
-くS七orage> [くBit ..selec七>] I くVariable> [くBi七.Be1ect>] I

くCons七ant> I くFunction> I くOpera且d>

1n an assignment statement う right part values are assigned to the storages and variables

appeared in 1eft part. Right hand includes storage units, variables, operands, constant and
function and concatenate of them.

121

A. 7. 7 If-statement
くIf_$tatement> := 'if' ，(， くCondition> ')' くThenYhase >

[くElseYhase>] 'end if'

>>>123

>>

>

an

n

a

n
o
o
O
>

引

引

0
・

3
・

1
・

1

也
釦
釦

コ
活
巾
唱
団

C

‘且

-n

れ
山
口
紅
白

.

七
y
p

d

r

r

r

a

n

e

a

p

p

p

u

e

s

白
む
円
以
K
阿
古
巴

く
く
く
く
く
く
く

-くEquation> I くExpressionl>

: = <Expression2> { '11' くExpression2> }

-くExpression3> { ，銚 P くExpression3> }

:= '('くCondition> つ， 1 'not' くExpres s ion3>

:= <RightY訂七> 1 '='くRight_Part>

' then' くMicro-Op>

'e1se' <Micro-Op>

Appendix B

Processor Speci:fication of PEAS
R3K

If the condition holds, then-phase is executed. If the condition does not hold, elsEト
phωe is executed. The condition of the if-statement is represented in boolean expression of

equations , which compare value of variables , constants , storages, operands and functions.

The order of priority of boolean operators is 'not ', ' &gど and '11'.
、
トJnu

n
J
ι

「

1

I
L
E

n
o

g
b
・

工
-l
s

s
r

e
e

n
u
w
v

くDecode_$七atemen七> := 'DECODE' ' (' く Ins七ructionJRegister> ')'

くInstructionJRegis七er> . =くS七orage>

、
P
J

1
・JK

C

0

1
4

'

b

}

，
、

I

JL'
い
凶
?

h
Jべ

・

1
u
パ

ゴ
凶

t

b

t

L

a-
E

.
t

可
よa

比
伊
ト
パ

一

.

m
.此
〉

j

・
・

1
r

ロ
む
p
'

l
J

、
I
1
J

1
E

・

江
〉
〉
川
}
"
。

E
1
J
1
J
山
リ
刷
、
ー

・1
.

，

"
"
o
J
J
o
o

g
H
J
S
S

〉

c
'

必

3
,
,,

CCE}

L

リ
十
十
凶
冷
山
崎
日

一
(
e
e

目
代

τ
c

、

J

d

〉
t
t

川
也
市
川

d
o

t

c

u

u

c

E

C

S

比
b
b
d
u
d
-

"
な

・

1
・
1

-

C
3
t

J
L
W
川
r
r
1
1
f
ν

宮

市
町k
t
t
3
1
3
r

刈

む
&
〈

t
t
r

、

q
u
f
K
3
c

y
a
a
r
f
i

、

r
b
d

t
η
4
-

-
o
r
o
c

一
，(
1
1
t
'
o
t
e
3

ユ

r
a
a
c
l
J
t
c
v
f
k

A団
0
2
「
苫
「e
l
J
c
e
-
z

p
t
g
g
v
"
e
'
v
c
o

p
u
c
-
-
・
1

一
s
v

、
I
-

-
L
t

i
e
s
s
c
u
-
-
J
c
g
c

s
v

，
，

.

1
b
c
"

・
1
0
e

，
一
、
，
I
、
I
σ
凸
-

・
1
4
S
F
b

，

1
-
V
-
J

-
J
C
"
"
o
s
g
u
o

下
J
-
-
1
J

1
'
f

.

p
-u
・k
l一
回h
b
-
l
-
つ
吋

'-U
r

u
-
u
}

・

1
0
g
g
d
k
-
a
d
s
s

〉

g
L

下

'
"
l
o
o
t
d
d
t
t
u
"
1
J
o
b

-
J
I
L
-
-
l
s
d
t
a
s
b
F
t
"
l
a

J
L

下
J
a
d
-
-
"
a
s
d
"
-
e
s
-
-

白
い

ω
比
d
d
{

に
"
に
べ

S

下
山
d
-町

g
1
j
E
t
t

児
才
f

ヴ
泊
四
s
y
b
t

a
"
t
"
s
s
?
r

冷

r
?

喝
℃
ー
-
s
e

f
-
c
J
L
"
"
Y
G
P
O
-
r
-
a
"
t

L

は

r
e

冶
F
t
f
h
u
.
2
n
m町
b
l
t
f

・1

占
帽

r
p
e
e
-
e

℃
ー
e

一
d
a
a
e
?

W
A
'

川
'
'
叫
忠
一

w
w
A
-
札
口
同
日
明
日
一

m
m

f
f
r
}
"
}
}

，
工
一
一

g
o
P
O
E
T
s
r
L
-
r

m
y
e

，

f
'
"

，

M
K
m
d
d

・
l
i
g

-
-
L
o

'

o
d
。

日
目
白
川

u
m
y
d
E
e
o
c

伊
B
R
A
d-

m
d
3
'
阻
つ
個
出
個

山
間
陶
ぽ
同

'
u
u
'
d
-
v
m

ン
崎
明
川Jm
L
mつ
m

一
凶E
一
事E
-

m
L
m
L、
九'
h
d叩s
-つ

M
M引
っ
'
L
d
-
M
1
h
h
M

凶
凶m
Mね
mねh
ね

"
U
t
E
勺

c
c
e
}
"
y
p
n
"
"
"

-l
u

--
"
d
"
d
"
d

山
ぽL

'∞
∞
つ
m
d
s
-
J
"
，

L
L
L

山
山u
u
h山
f
川
ハ
れUu
r
m
V
M
V
M
-

い
，M
-い
凶
れL

T
t
e
a

'
}
O
O
O

--
e
n
S
F
}
"
"

〉

e
e
f
u
"
d
n
u
n
f
p
M
M
M

民
-m
u
・M
M
h
u

d
-
'
h
.
ω

円
一
夕
刊
山
一

ω
叫
しm
m
m円
…
↓
川
一
川

i
y
M・m
r
L
M
c
-
m
O
M∞
∞
d
h
d
h
d凶
d
M
M
M

v
e
n
4
H
S
D
2

・工

c
c
h
1
，
;
"
'
"・
1

・

l
a
s
e
e
t
"
t

・1

・l
e

--
e

-l
e

--
e

-l
o

--

ヰ
同
庁
刑
訂
正

-
W山v
x
u
u
m
b
m
m
m

，

K
副-
w
m
m
ぷ
ぷ
m
m
Z
2
2
2
沼
町

d

山
山
町
民
ω
ω
m
m
山
田
。
-
。
由
民

h
L
?
?
?
m
d

辺
位-
b
-
u
d
-

叫
」
仙
位u
m
a
m
u
w

小
川-
m
u
w
十
日-
m
u

a
o
r
ι
d
p
p
e
y
l
r
r
f
2
3
4
4
-
h
t
y
e
r
d
y

，

f
f
A
a
p
a
A
a
D
a
d
a

r
w
t
-

一
-
-
一
℃

l
e
e
e
e
e
e
e

-
-
-
s
r
y
e
-
t
.
2
"
"
u
n
t
n
d
n
d
a
f
L
a

t

-
s
l
l

工

1
1
-
e
b
b
g
g
g
g
g
t
a

--
o
a
b

℃

1
t
t
t
s
g
s
F
U
P
U
F
f
p

h
h
z
z
z
記
M
M
m
m
m
m
m
M
M

同
b
M
2
3
h
W
Cぷ
芯
ぷ
伊

A.7.8 Decode statement

Decode statement indicates instruction decode stage and instruction register. Instrucｭ

tion decode stage is the stage where the decode statement is described. The storage unit

出 the decode statement indicates instruction register.

Instruction_type{
sllb_field-:name{NQ_VLIW{width{"31" ， "16"} ， type{"Btype吋
I OP-code" {"n祖e"{"opecodeつ， "Width{ワ1" ， "26"}} ，
"Oper担d吋、担e"{lrs "} ，"Width{"25" ， "21"}} ，
"OP-code吋"ロ担e吋"bfunct つ，"Width{"20 " ， "16つ}，
"Oper担d"{川祖e"{"offset つ，"Wid七h{"15" , "O"}}

122 123

},
"Jtype"{
"OP-code"{"n祖e"{"opecodeづ， width{"31" , "26"}} ,
"Oper臼d"{"n祖e吋"targetつ，width{"25" ，叩'}}
},
"Rtype"{
IOP-code"{"name"{"opecode"} ,width{"31" ， "26つ}，
"Oper臼d吋"n臼e"{"rsつ，width{"25" , "21 づ}，
"Oper臼d'句、担e"{"rt"} ， width{"20" ， "16"}} ，
"Oper臼d"{、担e"{"rd"} ， width{"15" , "11'叫，
"Oper担d"{"n祖e"{" sh祖t"} ， width{"10" ， "6"}} ，
"OP-code"{"n祖e l {l rfunct l } ， width{"5 1 ， "0 つ}
},
"R1type"{
"0P-code"{"n叩e"{" opecode つ，width{"31" ， "26"日，
" Oper担dベ"n担e "{"rs " } ， width{"25" ， "21 つ}，
" Oper臼dぺ "n担e"{"rt " } ， width{"20 " ， "16り}，
"Operand吋"n祖e叩rd "} ， width{"15" ， " 11 "} } ，
"Reserved" {"binaryぺ "00000つ ， width{"10" ， " 6 つ}，
" OP-codeベ "n祖e "{ "rfunct"} ， width{ "5" ， 句" }}
},
"Itype"{
" DP-codeぺ "n祖e叩opecodeつ ， width{"31" ， "26" }} ,
" Dperand"{ "name "{" rs "} ,wi dth{ " 25" , "21 "}} ,
" Dper臼d"{"n祖e叩rt " } ， width{ "20" , "16"}} ,
rpemd'fh祖州国出ate"} ， ωth{"15" ， 明〉

"LStype"{
" DP- code吋百祖e" { "opecodeつ ， width{"31" , " 26つ}，
" Operandベ、祖e"{ "baseつ ， width{ " 25" ， " 21つ} ，
" Oper担d" { "n祖e"{ " rt " } ， width{"20" ， "16つ} ，
"Oper担d"{"n祖e"{"offsetり ， width{"15" ， "0つ}
} ,
"R2type" {
"DP-codeベ"且祖eベ" opecodeつ ， width{ " 31 " ， "26つ}，
" Oper担d"{"n祖e"{"rsつ， width{"25" ， " 21"日 ，
"Oper担d"{"n祖e"{"rt"} ， width{"20" , "16"}} ,
"Reserved"{"binary"{"OOOOOOOOOO"} , wi dth{"15 " , "6 "}} ,
" OP-code"{"n祖e"{"rfunctつ，width{"5" , "O"}}
} ,
"MFtype吋
"OP-code吋"n祖e"{"opecodeつ ， width{ワ1" ， "26"日 ，
"Reservedl{"binary"{"OOOOOOOOOOつ ， width{勺5" ， 勺6つ} ，
" Operand"{"n担eベ"rdつ ， width{"15" , "11"}} ,
" Reserved"{"binary "{勺0000つ， width{"10" ， "6"}} ，
" OP-code" { "n祖e"{"mffunct つ， width{ " 5" , "O"}}
} ,
"MTtype" {
勺P-code"{、祖e叩opecodeつ，width{ " 31" , "26つ}，
" Oper祖d"{"n祖e"{"rsつ，width{"25" ， "21 つ}，
"Reserved"{"binary"{IOOOOOOOOOOOOOOO"} ,width{"20" , "6"}} ,
" 0P- code " {"n祖e " {"mtfunct つ， width{"5" ， "0つ〉
},
"B1type"{
"OP-code吋団組e"{"opecodeつ，width{"31" , "26"}} ,
"Oper担dベヨ祖e"{吋s"} ， width{"25" ， "21 つ}，
" Oper祖d吋百祖e " {"rt"} ， width{つ0" ， "16"}} ，
" Oper祖d"{"n祖e " {"offsetつ ， width{ " 15" , "O"}}
>
} }} } ,

" 0per担d吋 "n祖e"{"rtつ， width{"20" , "16つ}，
"Oper臼d" { " n祖e"{"immediateつ， width{"15" , "O"}}
}, "ADD IU"{type{"Itype"} , "OP-code"{"binary吋吋01001"} ， width{"31" , "26つ}，
" 0per担d"{ "n祖e吋"rs"} ， width{"25" ， "21 つ}，
" 0pera且d"{ 川B祖e"{"rt"} ， width{"20" ， "16"}} ，
11 Opera且d " { "nameベ"immediateつ， width{"15" ， "0つ}
} , "ADDU" {type{"R1type"} , "OP-code"{"binary"{"000000"} ,width{"31" , "26"}} ,
"Oper臼d"{"n担eぺ"rsつ， width{"25" , "21"}} ,
" Oper日d吋 "n姐e" {" rt"} ， width{"20" , "16"}} ,
" Oper臼dベ"ロ姐e "{" rd"} ， width{"15" , "11"}} ,
"Reserved" {" binary " {勺0000" } ， width{"10" ，喝つ}，
" DP-code"{"b阻むy"{"100001つ， width{ " 5 " ， " 0つ}
上 "ANDI"{type{ " Itype"} ， "OP-code吋"binary"{ "00 1100"} ， width{"31" ， "26 つ}，
" Oper担d"{"n祖e"{" rs"} ， width{ " 25 " ， "2 1 つ} ，
" Oper担dぺ "n祖e " { " rtつ ， width{"20 " ， "16つ} ，
" Dperandベ "name" {"国脱出ateつ ， width{ " 15" ， "O"}}
上 "BGEZ吋type{ "Btype"} ， "OP-code"{九阻むy" {"00000l" } ， width{"31" ， "26つ}，
"Dper臼dべ "n祖e叩rsつ， width{"25" , "21 "}} ,
"DP-code"{"binary"{勺0001つ ， width{ " 20" ， "16つ} ，
" Dperand"{、祖e"{"offset"} ， width{"15" , "O"}}
}, "BGEZAL吋type{唱type"} ， "DP-code"{"binary"{"000001"} ， width{ " 31" ， 勺6 "}} ，
" Dper姐dべ、担e"{"rs " } ， width{"25" , "21 "}} ,
"OP-code吋 "bin訂yベ"10001 つ， width{"20" , "16"}} ,
"Dper臼dベ"n祖e"{" offsetつ，width{"15" , "O"}}
}， "BGTZ " {type{"Btypeつ， "DP-code"{"binary" {勺00111つ ， width{"31 " ，勺6"}} ，
"Oper臼d"{"n祖eぺ"rs"} ， width{"25" ， "21 つ} ，
"OP-code吋 "binary"{"OOOOOつ ， width{"20" , "16"}} ,
"Op紅白d"{ "n祖eベ"offsetつ ，width{" 15" , "O"}}
}, 11 BLEZ11 {type{"Btype" } , "DP-code " {"binary吋"000110つ ， width{"31 11 , "26"}} ,
"Oper担dぺ"n祖e"{"rs " } ， width{"25" ， " 21 つ}，
"oP-code"{"binary"{勺0000つ ， width{"20" ， "16"}} ，
"0句pe町r担d"吋'{、祖eぜ"吋'{"吋'0吋ffおseげtγ.つ，wid批th{"15" ， "0"}}
}, "BLTZ吋type{"Btype"} ， "DP-code"{"b阻むy"{"OOOOO lつ ， width{"31" ， "26"}} ，
"Oper担d"{"n祖eぺ"rsつ， width{"25" ， "21"}} ,
"OP-codeベ"b阻むy"{"OOOOO'守， wid七h{"20" , "16"}} ,
" Oper担dベ"n祖e"{"offset"} ， width{"15" , "O"}}
}， "B口弘L"{type{唱type"} ， "OP-c od.e"{もinary"{"OOOOOlつ， width{" 31" ， 勺6"}} ，
"Oper担dぺ、担e"{吋sつ， width{"25" ， "21 つ}，
"oP-codeベ"binaryぺ"10000つ，width{"20" , "16"}} ,
"Oper祖dベ"n担e叩offsetつ ， width{"15" ， "0"}}
}, "IAND吋type{"R1typeつ， "OP-code"{"binary"{吋00000つ，width{"31" , "26"}} ,
"0句pe訂r担dべ"、n祖eぜ"べ'{II吋rs"つ}， wid批七h{"勺25
" 口句pe訂r担d"べ'{"、n祖eぜ"べt{ 1t可rt"つ' }， wid批th{勺01 , "16"}} ,
"Oper也dぺ"nameベ"rd"} ， width{"15" , "11"}} ,
IReserved"{lbinaryl{"00000"} ,width{"10" , "6"}} ,
"ロトcode"{"bin訂y"{"100100つ，width{"5" ， "0つ}
}， "INOR吋type{"R1typeつ， "OP-codeベ "binary"{吋00000つ ， width{"31" ， "26つ} ，
"Oper担d"{"n祖e"{"rsつ， width{"25" ， "21 つ}，
"Operand"{川ame"{吋七つ， width{"20" ， "16つ}，
"Oper担d"{百祖e"{"rd"} ， width{ ・' 15" ， "11"}} ，
"Reserved"{"binary"{"OOOOO"} ,width{"10" , "6"}} ,
"OP-code"{、inaryべ"100111つ， width{"5" , "O"}}
}， "IoR"{type{"R1typeつ， "OP-code"{"bin訂y"{"000000"} ， width{"31" ， "26"日 ，
"Oper祖d"{"n祖e"{" rs つ， width{125" ， "21 つ}，
"Oper担d"{"n祖e"{" rtつ，width{"20" ， "16つ}，
"Oper祖dぺ"n祖e"{" rd"} ， width{"15
"Reserved"{lbinaryl{"OOOOOI} ， width~"勺10" , "6"}} ,
"OP-codeぺ"binary"{" 100101つ， width{"5" , "O"}}
上 "ISUB"{type{"R1typeつ， "OP-code"{"binary"{"OOOOOOつ ， width{"31 " ， "26り} ，
"Oper臼dべ"n祖e"{"rsつ， width{"25" ， "21"}} ，
"0句pe位r担d"吋'{"、n祖e "吋{吋t"つ}， wid批th{"勺20" ， "16"つ}η} ，
" 日句pe釘r担dべ"、n祖e"べ{"可'r吋dつ ， wid批th{"勺15
"Rêserved"{"binary"{"OOOOO"} , width{"10" ， "6~'}} ，
"OP-codeぺ"b阻むy"{"100010つ， width{"5" ，叩'}}
}， "IXOR"{type{"R1typeつ， "OP-code"{"binaryべ"000000つ ， width{"31" ， "26つ}，
"Dperandべ、祖e"{"rsつ， width{"25" ， "21 づ}，
"0句pe釘r担d'ベ"、n祖eぜ"叩'{"吋rt"つ}， wid批th{"勺20" ， "16"}} ,
"0句pe位r臼d"べ'{"、n祖e"べ{"吋'r吋d"つ}， wid批th{"吋15
"Rêserved"{"binary"{"OOOOO"} ， width{"吋10" ， "6"}} ，

、
ー

、
P
J

n
b

n4
4
i

q
u

f
司
hh

+LM d

.

、
・
-w

、
I
1
J

"
、

r
d

ハ
υ
"
0

6

n

u

n

4

n

u

"

nu

'

n

U

H

"
1

ム

r

1

3

v
d
J

・
、

訂
泊
n

d

.
、
‘

.
、
ム

b

w

r
1

、
I

e

o

d

o

o

o

c

，

4
よ

-

、
P
J

ハ
U

P

干
t
I
o

n
u
"

、
P
J
"

"
氏

u
"
F
4
、

'
'
'
'
"
n
u
"
'

l
J
l
J
l
J
1
J
'
"
y
e
l
J

"
、

I
l

J

l
J

"
'
r

、
I

e
"
"
"
o
"
a
"

開
店
泊
目
江
川
ム
喝
旭
川

4

+
U
M

"

"

F
4
LP
4
、

h
u
"

1

,,

Jah"'

n
u
"
"
"
+
L
W
+
U
F
4
・
、
"

"
5
0
5
d
d
"
5

r
司
、

円J
L内4
4
4
・
1
・
1
e
n
J
h

e
"
"
"
w
w
d
"

p
・
r
t
J
L
J
L

'
'

o
J

、

y
h
h
h
l
J
1
J
c
h

+
b
+
ω
+
-
M
+
L
V
"
"

-

+
l
u

r-
d
d
d
o
o
p
d

"
1

・
1
・
1
0
O
O

-

D
w
w
w
o
o
"
w

n
u
，

，

，
ハ
u
ハ
υ

，

A

品
、
与J
、
P
J、
P
J

n
u
n
u
、
，J
、
》J

"
"
"

"
"

4
よ
"

"

-
L
S
t
d
J
L
"
e
s

w

z
r
r
"
r
1
p
z

U
叩
?
?
町
“
寸

h
J
V

-
e
e
e
n
a
"
e

m
祖
祖
組
一m
m
d
祖

F
M
~
“

"
n
h
u
?
山u
m
h
u

o
J
L
JL
r
t
"
r
t
t
r1

.
、
品
"

"

"
A
U
"

r

句
、
"

t
d
d
d
e
e
"
d

民
組
組
組
円
、
∞
目
白

r
r
r
r
e
c
D

r

t
e
e
e
s
-
A

e

邸
内
叩
句
句L
M即
"
'ha

T
よ
"

"
"
"

"

、
ト
J
"

124 125

"DP-code"{"binary"{" 100110つ， width{"5" ， "0"}}
} :~， J;;{tyP~{~Jtyp~"} ， "OP-c9de ;'~"?~Il~"t?~~010"} ， width{"31" , "26"}} ,
"Dper担d吋 "n祖èÎ'{"target "}, widt~{"25" ， "0 ':日
〉，fJAL吋type{リtype"} ， "DP-codeべ"binary吋勺00011つ，width{ " 31" ， "26"日 ，
"Dper臼d"{"n祖e吋"tむget"} ， width~"25" ， "0'叫
}，tJALR" ftypef呪type"} ， "OP-c~de吋"[)~~y" {"000000"} ，..idth{" 31 " , "26つ}，
"Dper臼d吋"n祖e"{"rsつ，width{"25" ， "21 つ}，
"Oper担d"{"n祖e"{"rt"} ， width{"20" ， "16つ}，
"Dpera且d"{"name"{"はつ，width{"15" ， "11"}} ，
"Dper臼d"{"n祖e"{"sh担t"} ， width{"10" ， "6 つ}，
"OP-code"{"binary"{勺01001つ， width{"5" ， "O"}}
} ， "JR吋type{"R1type"}!" OP-co~e吋 "binaryベ吋00000" } ， width{"31" ， "26つ}，
"Oper臼d叩B祖e "{I'rs"} ， width{"25" , "21 リ}，
"Oper祖d叩B担e"{"rt"} ， width{"20" ，"叩1日6"}} ，
"勺Opいera祖且凶d吋"、n祖e "吋{"吋'r吋d"つ}， wid批th{"l臼5
"R込らse工ved"吋{ "bi担n訂y "べ{"司明O∞O∞O∞O∞0"つ}，.. 凶id批th{"10" , "6 "}} ,
"OP-codeベ"bin泣yべ "001000つ ， .. idth{"5 " ， "0つ〉
}, " LB吋type{ "LStypeつ ， " OP-code"{"binaryべ"100000 "} ， width{ワ1" ， 勺6つ} ，
" Oper担d"{百担e"{ " baseつ ， ..idth{" 25" ， 勺1 "}} ，
"。もer担dベ "n祖e" { " rt " } ， ..idth{"20" , " 16"}} ,
"~er担d吋"n祖e "{" offsetつ ， ..idth{吐5" ， "0つ〉
}ヲ日U"{type{"LStype札 "OP-code"{"bin.ary叩 100100 " } ， ..idth{"31" , "26"}} ,
" Oper担d" {"n祖e ，， {í' base" } ， width{"25" , " 21"}} ,
勺ber臼d吋"n担e " {"rt つ， width{"20 " , "16"}} ,
" O~er臼d"{"n担e"{" offsetつ ， ..idth{"15" ， "0つ〉
〉，Zuf吋type{ " LStypeつ ， 勺P-codeぺ"binary"{ " 100001つ，width{ " 31 " ， " 26"日 ，
"OP紅白d吋"n祖e "{Î'basè " } ， width{"25" , " 21"}} ,
"ohr也d叩E祖e " {"r七"}， width{"20 " ， "16つ} ，
"。もer祖d"{百担e " {"offset" } ， ..idth{"15" ， "0つ}
〉，ru町ベtype{"LS~ypeつ ， 叩P-code"{"bin.ary吋 " 100101つ， ..idth{"31 " ， 勺6つ}，
"Oper担d"{"n祖e ，， {í'base"} ， ..idth{"25" , "21 つ}，
"Oper担d"{、祖e"{吋七つ，..idth{"20" ， "16"つ}}，
"叩0吟ber祖d" {"百n祖e叩Oぱffおseげtγ'つ ， ..id批th{ "吋~5" ，"?':n
} , "LUI"{type{"Itype"上旬P-code"{"binary"{勺01111"} ， width{"31 " ， "26つ} ，
"Qper担dベ"n祖eベi'rs"} ，..idth{"25" , "21"}} ,
"~er担d吋"n担e吋"rtつ ， ..idth{"20" ， "16 "日 ，
"0品もer担d'吋"、na祖皿eぜ"吋'{"泊血即ed色ia抗七eぜ"つ'} ， wid批th{"l臼5
}口，ヲ"L印W"ベ巾'叱〈れtype“{"明閣L凶1St抗ty伊P戸e"} ， "OP一C∞od白e"叱'{"判{'υ門"吋'もb凶in凶町a紅ryγ'叩 10∞O∞011"} ， wωiは比d批t削h{"付"ワ叶'宮31" ， " 26"}} ，
"Oper坦d"{"n祖e"{"baseつ， ..id七h{"25" , "21"}} ,
"Oper臼d"{"n祖e"{"rt勺， ..idth{"20" ， "16つ} ，
"oPerand"{"n臼e"{"offsetつ， width{"15" ， "0"日
}， 勺RI吋type{吐typeつ， "Op-éode"{lbinary"{"001101"} ， ..idth{"31" ，勺6"}} ，
"Oper祖d"{"n祖e吋"rsつ ， ..idth{"25" ， "21 つ}，
"OÎ:>er担d"{"n祖e叩rtつ， ..idth{"20" , "16"日，
"Oper担d"{"n祖e"{・'immediateつ ， width{"15" ， "0つ}
〉，hsB"ftypeftStypeH} ， "DP-code吋"binary"{" 101000つ ， width{"31" ， "26つ}，
"Qper担d"{"n祖e"t"base"} ， ..idth{"25" ， "21 づ}，
"OÎ:>er担d吋"n祖e"{"rt"} ， width{"20" ， "16"}} ，
"oPerand"{、ame"{"offsetつ，width{勺5" ， "0つ〉
} ~f， SH"{type{"LStyPe"} ， "OP~éode'~{"binaÌy"~~'101001"} ,width{"31" , "26"}} ,
"Qper担d"{"n祖e"{"baseつ ， ..idth{"25" ， "21 つ}，
"Oper担d"{"n祖e"{"rtつ， width{"20" , "16"日，
"Qper組d吋"n祖e叩offset"} ， width{"15" ， "0"}}
日SLL"{type{"Rtype"γOP-code"{"bi町y叩000000"} ， ..idth{"31" ， "26つ}，
"Operand吋"ロ祖e"{"rsつ ， ..idth{"25" , "21"}} ,
" Op紅白d"{"n祖e吋"rt"} ， width{"20" , " 16 "}} ,
"Oper臼d"{"n祖e叩rd"} ,..idth{" 15" , "11"}} ,
"Oper臼d"{"n祖e"{"sh祖t"} ， width{"10" ， "6"}} ,
" OP-code吋"binary"{" 000000つ， width{"5 " ， "0"η
}, " SLLVベtype{喰1typeつ ， "OP-codeベ"bin訂y"{勺OOOOO"} , width{ ",31" ， 日 26つ}，
"Operand吋"n祖e吋"rs l } ， width{125" ， "21"}} ，
"Oper担d"{団組e"{"rtつ， width{120" ， "16"日，
" Oper担d"{、祖e"{"rdつ ， width{勺5" ， "11"日，
I Reserved"{"binary"{"00000つ ， ..idth{"10" ， "6"日 ，
"DP-codeぺ"binary"{" 000100つ ， width{"5" ， "0つ}
じ'SLT"{type{ "Rl typeつ ， "0P-codeベ"b~~l"{勺OOOOO"} ,..i dth{" 31 " , "26 つ}，
" Oper祖d"{"n祖eぺj'rs"} ， width{"25" , "21"}} ,
11 Dper也d"{"n阻e"{ " rt " } ， width{"20" , "16"}} ,
" 。長erand"{百四e"{" rd"} ， width{勺5" ， "11 つ}，

、
炉
J

、
f
、
I
下
J

下
J

、
I
，
、
I
、
I

，

l
J
l
J
l
J
，
、

I
'
l
J
1
J
，
l
J
l
J
"
1
J

、
I
"
"
l
J

"
、
I
"
"
、
I
1
J
"
p
o
l
J

"
6
6
、

I
6
下

J

6
6
1
J
"
6
2
"

6

2

2

H

2

"

2

2

"

6

2

"

6

門4
"
"

に
U
"

に
u
"
"

氏
u
n
4
"
'
η
4

内
4
，

n
，ι

，
，

円
L
"
'
"
"

"

'

"

4

4

'

H
4

ょ

e
i

，
4

ム

'
4

よ

4

ム

'
"
4
4
q
u
"

1
3
3
"

3
"
3
3
"
1
3
"

ー

っ
d
"
"
4

ム

"
4

ム

"
"
4

ム

q
d
"
F
4

・、
q
u

H

J

4

{

3

f

3

f

I

L

3

"

r

1

h

"

J

L

h

h

N

h

H

h

h

"

I

L

h

t

h

七
七

J
k
t
r
t
t
t
r
1
h
t
d
h

t

d

d

h

d

h

d

d

h

t

d

1

d
i

-ユ

七
・
1

-t

-l
i
t
d
i
w

・
1
w
w

d
w
d
w
w
d
1
w

'

1

w
'
'

・
1

'

・l
'

'
・

1
v

'

l
J

首

，
、
I
1

J
w
l
J
w
l
J
1
J
W
，
l
J
"
'

-
J
"
"

'
"

'

"
"
'
、
I
"

'

o

，

、
I
，

H
4
4
n

u

、
P
J
n
u
、
ト

J

n
υ
円
U
、
P
J
"
n
u
、
P
J

ハU

、
俳
J
"
、
，
J

0
1

O
H
n
u
"
O
O
H
O
n
u
l

J

O
、
r
o
、
I

1

0

0

0

O

O

G

o

-

-

o

"

o

"

o

"

0

1

0

0

O

O

G

o

-

-

0

6

0

6

0

6

一'
1
、
I
0
1
J

O

'

o
o
'
o
o
'
o
，
0
1
、
ー
。
H
O
"
o
"

l
J
1
f
n
u
-
J
0

1
J

n
u
n
u
、
I
n
u
o
、
I
n
u
-
-
1
0
、
I
n
u

'

"
'
o
，

、
I
可
I
o
"
"
"
"

1
r
、
r
o
l
J
"
1
f
、
I
0
1
J
"
、
I
1
f
"
下
〈
I
0
0
"
"
"
、
I
J
、
"
1
r
o
"
、
f

"
1
J
"
O
J
L
O
F
t

H
1
r
o
'
l
J
r
1
"
l
J
O

，

l
J
I
L
"
、
I
，
t
"
、
I
I
'
下
J
"
O
F
1
5
1
J
"
5
1
J
"
5
1
J

6
"
イ
、
"

"
"

"

6

"

"
1
J
"
"
6
"
"
、
I
H
U
6
"

"

6
"
"
1
J
l
J
{
"
"
1
n
Y
1
"
J
L
1
"

"
0

川

'
'
'
y
'
'
'
y
'
'

J
O
J
L

'
'
'

〉

O

y
'
'

;
o
J
L
'
'
'
}
O
y
'
'
;
o
y
'

'

;
o
r
t
-
J
'
"
"
'
'
'
y
'
A
o
r
'
;
o
"

'

;
o

"
;
'
勾
日
日
V泣一け
η
v

z
日υ
日
日
"
，
H
'
f
η
日
日
U
U
J
U
日
η
竹
刀
"
，
J
f
日
日
日
m
u
J
U
日
日
日
"
;
'
訂
日
日
日
"
，
f
f
r
日
m
u
η
η
η
v
紅
一
什
竹
刀
M
"

'
m
D
D
M
J
η
η
竹
刀
M
"
，

"
a
"
"
1

n
"

"
1

E
n
"
"
O
H
X
"
"
"
"
"
E
"
"
"
o
"
r
"
"
"
"
"
n
"
"
"

。

"
n
"
"
"
o
"
r
2
"
'
a
"
"
1
2
"
"
t
"

・
1
"
"
t
"
a
"
"
t
"

1
5
2
1
6
"

・

1
1
6
H

・
1

1
6
1
1
5
a
1
6
1

'

5

・
1
1
6
1
1
5
a
1
6
1

'

5

・
1
1
6
1
1
5
1
1
6
1
1
5
a
"
6
"
E
1
6
"

・
1
1
6
d
5
b
1
6
d
5
2
1
6
d
5

"
"
1
2
1
J
k
b
2
1
f

b
2
1
1
"
"
n
2
1
1
"
"
b
2
1
1
"
"
B
2
1
1
"
"
b
2
1
1
"
"
b
2
1
1
"
"
b
'
1
5
・
工
2
1
f
b
2
1
・
1
"
"
2
1
1
"

・
工
2
1

・1
"

-
L
b
"
"
h
"
"
"
h

"

"
"

"
f
f

・
-
"
"
"
o
f
"
"
"
"
f
f

・-
"
"
"
o
f
"
"
"
"
f
J
L
"
"
"
"
f
r
t

-工
"
"
1
b
"
"
h
"
"
"
w
J
L
J
L
"
"
w
，
t
b
"
"
w
f

h
h
"
'
'
t
I
L
'
'
t
IL
'
'
'
h
h
b

'
'
'
1
h
J
L
'
'
'
h
h
b

'
'
'
1
h
f
'
'
'
h
h
{
'
'
'
h
h
b
5
;
"
'
'
t
J
L
'
'
'
h
"
'
'
'
h
"
'
'
'
h

"
d
H
"
"

d
H
"
H

H
t

℃

"
"
"
"
"
t
"
"
"
"
t
t
"
"
"
"
"
t
"
"
"
"
t
t
"
"
"
"
t
t
"
2
"
r
t
J
L
"
"
d
"
"
"
下
J
t
e
"
"
l
J
t
r
1
"
"
l
J
t

d
d
H
5
0

・
1
e
5
0
1

e
5
0
5
d
d
f
5
0
5
J
L
d
e
5
0
5
d
d
J
L
5
0
5
J
t
d
e
5
0
5
d
d
e
5
0
5
d
d
I
L
"
o
h
"
5
0
1
e
5
0
"
d
d
5
0
"
d
"
5
0
"

2
w
d
2
2
w

d
2
2
1
i
i
"
2
2
1
h

-
l
d
2
2
1
i
l
"
2
2
1
h
l
d
2
2
1

・
1
i
d
2
2
1
l
i
"
f
2
t
e
2
2
w
d
2
2
0

・
1

。

2
2
0
1
e
2
2
0

・
1

w
w
d
H
H
'
o
"
"

'
o
"
"
"
w
w
e
"
"
"
t
v
o
"
"
"
w
w
e
"
"
"
t
v
o
"
"
"
w
w
o
"
"
"
w
w
e
h
"
d
d
"
"

'
o
"
"
o
w
c
n
"
o
v
d
"
"
o
w

'

'

o
r
t
r
1
1
J
e
r
-
-
、
1
J
C

r
-
J
L
J
L
'

'

d
I
L
-
-
、
J
L
d
'
c
r
t
J
L
r
1
'
t
d
J
L
r
t
r
t
d
'
e
r
-
-
L
J
L
'
'
c
J
L
J
L
J
L
'
t
d
t
I
L

-
-
o
J
t
J
、
l
J
C
J
L
J
L
O
，
-
I
L
J
L
O
'
o
J
L
J
L
O
，

}
1
J
c
h
h
"

」

h

h
"

一

h
h
h
}

〉

o
h
h
h

・
1
}
-
h
h
h
l
J
l
J
0

・a
h
h

・

1
1
J
7
a
b
b
-
r
}

一

h
h
h

〉

1
J
o
d
h
w
c
h
h
H
-
h
h
0
1
J
p
h
h
0
1
J
c
h
h
O
}

""-ttep

t
t
epttt""ctttw"pttt""ctttv"pttt""pttt"ne

--t,-tteptto"otto"-tto"

o
o
p
d
d

℃

c

d
d
t
o
d
d
d
o
-
-
d
d
d
'
1
0
d
d
d
o
-
-
d
d
d
'
o
o
d
d
d
O
O
D
d
d
d
o
-
-
v
d
l
J
p
d
d
t
o
d
d
o
o
"
d
d
0
1
p
d
d
0
0

0
1
c
i
-
-
a
"
i
i

a

"
-

1

・

1
・
1
0
1
p
i

-
-
・

1
1
I
1
"

・
l
i

-
-
0
1
p
i

-
-
・

1
1
J
1
"
1

・

1
1
0
1
"
1

・
1
1
0
1
P
?
1
"
0

・
1

・
1
a
N

・
1
1
0
0
?
1

・

1
0
0
n
u

-
-
・

1
0
1

0
0
"
w
w

-

l
'
w
w

・
ュ
，

w
w
W
O
O
O
w
w
w
"
o
，
w
w
w
0
1
0
w
w
v
"
o
'
E
W
W
0
1
'
w
w
w
O
0
0
1
J
w
t
"
w
w
I

'

w
w
o
o
-
-
w
w
o
o
"
w
v
0
0

01''t

d
>

't

dlJ

,,,

01"

'''

tol

J
,,

,OOH,

,
,t01J,,,O01J,,,oo""'e'

'
'dlJ,,01"''01'''01

0
0
1
J
l
J
1
J
e
H

1
J
1
f

e

n

-
J
1
J
、
I
O
O
J
ι
J
1
J
1
J

国

O
"
l
J
l
J
、
I
o
o
，
l
J

可
I
l
J
m
O
"
1
J
l
J
l
J
0
0
"
l
J
l
J
l
J
O
O
'
e
l
J
s
l
J
l
J

可
I
e
"
1
J
l
J
0
1
e
l
J
、
I
0
1
、
I
1
J
l
J
0
1

m
f引"
w
d
J
u

m
md
rm
m
t
u
d
小
判
刊
ゲ
川
町
山
門

m
u
r
t
L
一
円
叫
が
げ
印
如
何

mポ
ハ
ポL一
円m
vげ
ぽ
川
L
一
門
川
町
日
出
"
戸
“
ぽ
山

u
m
m
d
山u
m
L
一
円
明
日
山
山

μ小
一
門
戸
"
f
d
u
L

一
円

v
d
H
V
J
n
"
"

t

H
"

"
t
"
"
"
V

J
"

p
"
"
"
"
"
t
"
"
"
y

"

p
n
"
"
"
"
t
"
"
"
y
"

℃

"
"
H
Y
"
p
"
"
"
y
"
N
H
t
"
n
Y
H
2
"
H
Y
H
Y
"
H
V
J
"

r
y
t
J
L
J
L
J
L
I
J
L
I
L
J
L

1

，

t
I
L
J
L
r
y
y
J
、
I
L
J
L
I
L
Y
-
J
L
J
L
J
L
r
y
y
J
L
J
L
J
L
J
、
Y
1
J
、
J
、
J
L
r
y
1
J
、
I
L
J
L
Z
Y
Y
J

〉

t
I
L
t
J
L
J
、
J
、
2
J
L
r
t
r
y
R
J
L
J
t
r
y
t
I
L
J
L
r
y

m
u
吋
ザ
ザ
v
r
v
v
V
-
J
-
v
v
m
む
批
M
M
M
u
t
t
-
u
m
n
v
u
v
m
U

恥
ザ
M
M
M
M
M
M
訂
叩
d
u
d
-
d
H

国
むm
n
d
v
d
u
d
-
M
U

民
U
M
M
U
t
t
r
v叩u
v
u
m
u
r
t
d
u
m
u
m
v
v
m
u

M
m
d
組
組
担
戸
組
組
担
ぱ
祖
祖
U
M
m
V
組
組
担
祖

-u
d
祖
祖
組
一
回
四
日
γ
祖
担
祖
祖

・m
M
祖
担
祖
M-u
d
組
組
組
一
M
m
t
祖
祖
祖
ぱ
組
組
組
ぱ
組
担
し
m
m
戸
組
担
M

-u
υ
組
組一回
-u

p
山u
m庁
、、
HB
旬
、
唱
、
内
庁
、
川
、
?
も
戸
、
、
、
、
山
U
W
1
h
u
川
ι
h
L

叫ν
戸
川
u
h
u
h
u
~
u
山
u
m
庁
、
、
、
れ
も
も
内
庁
、
h
u
川
u
r

凡u
M
h
u
川
u
~
“
内
庁
、
~
u
h
u
m
庁
、
~
u
p

凡u
w
d
h
品
川
u
?

凡U
戸
h
u
h
u
?

凡U

"

r

1

t
J

〉

t
r
t
J
L
J
:
t
r
t
t
J
L
I
t
-
L

"

J
L
Y
J
L
I
L
-
-
、
r
1
J
L
t
i
t
J
t
J
L
"

J
L
Y
J
t
r
t
r
t
r
t
r
1
t
r
1
，
t
J
L
U
J
L
t
J
L
r
1
J
L
"
J
L
P
r
t
J
L
I
L
t
J
L
J
L
I
L
t
r
t
r
1
"
J
L
J
L
J
L
J
L
"
J
L
y
r
t
r
1
"
J
L

d
H

イ
、
"
"

"
"
"
"
"

r

t
"
"
"
d
"
t
"
"
"
"
"
r
t
"
"
"
d
"
t
"
"
"
"
"
r
1
"
"
"
d
"
J
t
"
"
"
d
"
y
"
"
"
J
L
"
"
"
J
L
"
"
d
"
"
"
"
d
"
t
"
"
d
"

e
e
"
d
d
d
u
d
d
d
H
d
d
d
e
e
f
d
d
d
d
e
"
d
d
d
e
e
Jt
d
d
d
d
e
"
d
d
d
e
e
"
d
d
d
e
e
t
d
d
d
"
d
d
d
"
d
d
e
e
u
d
d
e
e
J
t
d
d
e
e

お
m
m
m
m
m
m
m
m
m
m
m
m
m
m

…
m
m
m
m
叫
m
m
m
m
m
叫
即
日m
m
m川
町m
m
mお
m
m
m
m
Z判m
m
m
m
m
m
m
m
m
m
m

叫
町
立
おm
u
m
m
m
一
一

s
-
s
e
e
e
s
e
e
e
s
e
e
e
s
-
s
e
e
e
e
-
s
e
e
e
s
-
s
e
e
e
e
-
s
e
e
e
s
-
s
e
e
e
s
-
s
e
e
e
x
e
e
e
M
e
e
s
-
M
e
e
s
-
D
e
e
s
-

h
即
ノ
句
匂
句
ノ
句
句
句
ノ

句
句
句
恥
ω
J
句
句
句
句
即
ノ
句
句
句
恥
即
J
句
句
句
句
ω
f
句
句
句
L
M
m
f
h
A
句
句
L
M
即
f
h
A
句
句
"
'
h
‘
句
匂
J
h
‘
伽
4
L
M

白
f
h
‘
h
A
L
m
即
H
'
b

ゐ

h・
L
附
即

"
"
、

I
"
"
"
、

I
H

H

H

1
I
H
H
H
"
"

、
土
"

"
"
"
"
下
J
"
"
"
"
"
、
r
"
"
"
"
"
、
I
"
"
"
"
"
、
r
"
"
"
"
"
、
I
"
"
"
、
f
"
"
"
、
I
"
"
"
"
1
J
"
"
"
"
下
J
"
"
"
"

126 127

}， ID1VU I {type{"R2typeつ， "OP-code"{もinaryl{10000001} ， width{1311 ， 126"日，
"Oper担d"{"n祖e吋 I rs l} ， width{"25 1 ， 121"}} ，
"0per祖d吋"n祖e"{"rt つ， width{"20" ， "16"}} ，
"Reserved"{"binary"{"0000000000"} ， width{"15" ， "6つ}，
"OP-code"{"binary"{"011011 つ， width{"5" , "O"}}
}， "MFH1"{type{"町type"} ， "OP-code"{"binary"{勺00000つ，width{"31" , "26"}} ,
"Reserved"{"binむy"l"oooooOOOOO"} ， width{"25" , "16"}} ,
"Oper担d"{"n祖e"{"rdつ，width{"15" , "1!"}},
"Reserved"{"binary"{"00000"} ,width{"10" , "6"}} ,
"DP-code"{"binary"{"010000"} ,width{"5" , "0"}}
}, "MFLO" {type{"MFtypeつ， "OP-code"{"binむy"{河00000つ， width{"31" ， "26つ}，
"Reserved"{"binary"{"OOOOOOOOOO"} , width{"25" , "16"}} ,
"Dperand"{'~n祖e"{"rd"} ， width{" 15" , "1!"}},
"Reserved"{"binary"{"OOOOOつ， width{"10" ， "6"日，
"OP-code"{"binary"{"010010つ，width{"5" ， "0"日
}， "MTH1"{type{"MTtype"} ， "OP-code"{"binaryぺ"000000つ，width{"31" ， "26つ}，
"Operand吋 "n祖e"{"rs"} ， width{"25" ， "21"}} ，
"Reserved"{"binary"{"000000000000000"} ,width{"20" , "6"}} ,
"DP-code"{"binary"{"010001つ，width{"5" ， "0つ}
}， "MTLO"{type{明Ttypeつ， "OP-code"{"bin訂y吋"000000つ，width{"31" ， "26"日，
"Dper組d吋"n祖e吋"rsつ， width{"25" , "21"}} ,
"Reserved"{"binary"{ゆ00000000000000つ，width{吃0" ， "6" 日，
"OP-code"{"binむy"{勺10011"} ,width{"5" , "0つ}
}, "BEQ"{type{"Bltypeつ， "OP-code吋"binary"{"000100"} ， width{"31" ， "26つ}，
"Oper担d"{"n祖e"{"rs"} ， width{"25" ，"勺21"つ}}，
"0句pe釘r姐d吋"、B祖eぜII{II吋rt"つ}， w凶id批th{勺O
"0句pe位r姐d吋"百n祖eザ"{"oぱffおse抗t"つ}，wid批七h{"15" , "0つ〉
}, "BNE吋type{"Bltypeづ，勺P-codeべ "binary"{勺00101 つ， width{"31" ， "26 つ}，
"Oper担d"{"n担e"{"rsつ， width{"25" ， "21"日，
"Dper担d"{、祖e"{"rt つ， width{"20" ， "16"日，
"Oper担d吋"n祖e吋"offset"} ， width{"15" ， "0"}}
}}},

Operation{NO一札1W{}} ,

Resource{"IR"{cl回s{"register"} ， classpath{" つ，
P訂祖eter{
abstraction_level{for_simulation{"Behavior"} , for_synthesis{"Gate"}} ,
bit_width{"32"} ,
edge_trigger{"positive"}}}
, "iU"{class{"register"} , classpath{" "},
P訂祖eter{
abstraction_level{for_simulation{"Behavior"} , for_synthesis{"Gate"}} ,
bit_width{"32"} ,
edge_trigger{"posi七ive"}}}
, "LO"{class{"register"} ， cl出spath{" づ，
parameter{
abstraction_level{for_simulation{"Behavior"} , for_synthesis{"Gate"}} ,
bit_width{"32"} ,
edge_trigger{"posi七ive"}}}
, "CSW"{class{"工egister"} ， classpath{" "},
P訂祖eter{
abstraction_level{for_simulation{"Behavior"} , for_synthesis{"Gate"}} ,
bit_width{"32"} ,
edge_trigger{"positive"}}}
, "GPR"{class{"registerfile"} , classpath{""} ,
par祖eter{
abstraction_level{for_simulatエon{"Behavior"} ， for_synthesis{"Gate"}} ，
bit_width{"32"} ,
num_register{"32つ，
num_read_port{"2つ，
num_町ite_port{"lつ}}
, "ADDO"{class{"adder"} , classpath{""} ,
parameter{
abstraction_level{for_simulation{"Behaviorつ， for_synthesis{"Gate"}} ，
bit_width{"32"} ,
algorithm{"cla"}}}
, "ALUO"{class{"alu"} ,classpath{""} ,
par祖eter{

128

~bstr~~t~~Il=-~~:，el{for_simulation{"Behavior"} ， for_synthesis{"Gate"}} ，
bit_width{"32"} ,
algorithm{"cla"}}}
, "D1VOベcそass{"divider"} ， classpath{""} ，
parameter{

~~str~~t~<;Il=-~~:，el{for_simulation{"Behavior"} ， for_synthesis{"Gate"}} ，
bit_width{"32"} ,
algorithm{"seq"} ,
adder_algorithm{日la"} ，
data_tYEe{"two_complement"}}}
， "S打O"{class{"barrelshifterつ， classpath{" つ，
parameter{
~bstra~t~~n-:-ley~~{for_simulation{"Behavior"} ， for_synthesis{"RT"}} ，
bit_width{"32"}}}
， "EXTO"{c~ass{"extender"} ， classpath{""} ，
par祖eter{

abstracti~n_leyel{for_simulation{"Behavior"} ， for_synthesis{"Gate"}} ，
bit_width{"16"}}}
，"阻止O"{c~ass{"multiplierつ， classpath{" つ，
parameter{
abstracti~n_leyel{for_simulation{"Behavior"} ， for_synthesis{"Gateつ}，
bit_width{"32"} ,
algorithm{"seq"} ,
adder_algorithm{"cla"} ,
data_type{"two_complement"}}}
， "PC"{class{"pcuつ， classpath{" つ，
parameter{
abstraction_level{for_simulation{"Behavior"} ， for_synthesis{"Ga七 e"}} ，
bit_width{"32 つ，
increment_step{"4"} ,
adder_algorithm{"cla"}}}
， "1阻M"{class{"imcu"} ， classpath{" つ，
pむ担eter{
abstraction_level{for_simulation{"Behaviorつ， for_synthesis{"Gateつ}，
bit_width{"32"}}}
， "DMEMベclass{"dmcuつ， classpath{" つ，
par祖eter{
abstraction_level{for_simulation{"Behavior"} ,for_synthesis{"Gate"}} ,
bit_width{"32"}}}
, "NOTO"{class{"not"} , classpath{""} ,
par祖eter{
abstraction_level{for_simulation{"Behavior"} ， for_synthesis{"Gateつ}，
bit_width{" 1 "}}}
},

Exception{"reset"{Condition{"rst=' l' つ， Type{"External"} ， Cycles{"lつ，
Behavior{"--reset behaviorつ，Assert{" つ，Comment{""} ，
MOD{clk(1) {"PC.resetO ; GPR.rese七 0;
CSW.reset(); HI.reset();
LO.reset(); IR.reset(); つ
}},
"initO"{Condition{"int = '1' 担d intn = \勺OO\""} ， Type{"External"} ， Cycles{"l"} ，
Behavior{"--1nterrupt behaviorつ， Assert{" "}， Comment{" つ，
MOD{clk(l){"CSW := PC;"}
}}

},

MOT{mnemonic{"ADD"{clk(l){"IR := 1阻M[PC] ;
PC. inc 0 ; "} ,
clk(2){"DECODE(IR);

$rs := GPR.readO(rs);
$rt := GPR.read1(rt);"} ,
clk(3){" ($result , $flag) := ALUO.add($rs , $rt);"} ,
clk(4){""} ,
clk(5){"GPR[rd] := $result; "}
}

, "ADDI"{clk(l){"IR := 1阻M[PC] ;
PC .incO; "},

129

clk(2){"DECODE(IR);

$rs:=GPR.readO(rs);
$imm:=EXTO.sign(immediate);"} ,
clk(3){" ($result , $flag) :=ALUO.add($rs ， $imm); つ，
clk(4){""} ,
clk(5){"GPR[rt] :=$result;"}
}
, "ADDIU"{clk (1){"IR := 工阻M [PC] ;
PC. inc 0 ; "} ,
clk(2){"DECODE(IR);

$rs:=GPR.readO(rs);
$imm:=EXTO.sign(immed i ate);"} ,
clk(3){" ($result , $flag):=ALUO . add ($rs ， $ imm); つ，
clk(4){"" } ,
clk(5){"GPR[rt] :=$resu工t ; "}
}

, "ADDU"{clk(l){ "IR : = 1氾M [PC] ;
PC. inc 0 ; "} ,
clk(2){"DECODE(IR);

$rs := GPR.readO(rs);
$rt := GPR.read1(rt); " } ,
clk(3){" ($result , $flag) := ALUO . add($rs , $rt); "} ,
clk(4){""} ,
clk(5){"GPR[rd] := $result;"}
}
, "ANDI"{ clk(l){ " IR := 1阻M[PC] ;
PC. inc() ; つ，
clk(2){"DECODE(IR);

$rs:=GPR.readO(rs);
$imm :=EXTO.zero(immediate) ; "} ,
clk(3){" ($result , $flag) : =ALUO.担d($rs ， $国皿) ; "},
clk(4){""} ,
clk(5){"GPR[rt] :=$result; "}
}

， "BGEZ吋clk(l){"IR := 1肥M[PC] ;
PC.incO;

$pc:=PC ; "} ,
clk(2){"DECODE(IR) ;

$rs:=GPR.readO(rs);
$imm := EXTO.sign(offset);"} ,
clk(3){"$offset := $imm(29 dOYllto 0) &. ¥"00¥";
$target := ADDO . add($pc , $offset);
$flag := ALUO.cmpz($rs);
if ($rs ~3 1) ='0') then PC: =$target; end if; "},
clk(4){""} ,
clk(5){""}
>
, "BGEZAL"{clk (1){"IR := 1肥M[PC] ;
PC.incO;

$pc :=PC; " },
clk(2) {"DECODE(IR) ;

$rs:=GPR.readO(rs);
S四m := EXTO.sign(offset) ; つ ，
clk(3){"$offset := $imm(29 dOYllto 0) & ¥"00¥";
$target := ADDO . add($pc , $offset);
~f($rs(31) = '0 ') then-PC:=$target; end if;
$pc2 := PC; "},
clk (4){""} ,
;比(引"GPR[\"l山町] :吻山"}

, "BGTZ"{clk (l){"IR := 1阻M[PC] ;

130

PC. incO;

$pc : =PC ;"} ,
clk(2){"DECODE(IR) ;

$rs:=GPR.readO(rs);
$imm _: == EXTO. sign(offset) ;つ，
clk(3){"$offset := $imm(29 dOYllto 0) & ¥"00¥";
$target := ADDO.add ($pc , $offset);
$flag:=ALUO.cmpz($rs);
if(($rs(31) = > 0 ') 批 ($f lag(2) = '0')) then PC:= $target; end if;"} ,
clk(4){ "" } ,
clk(5){""}
>
, "BLEZ"{clk (l){"IR := 1阻M[PC] ;
PC. incO;

$pc : =PC;"} ,
clk(2){"DECODE(IR);

$rs:=GPR.readO(rs);
$imm := EXTO.sign(offset) ; "} ,
clk(3){"$offset := $imm(29 dOYllto 0) & ¥"00¥";
$target := ADDO.add($pc , $offset);
$flag:=ALUO.cmpz($rs);
if(~$!~(3~) = '1') II ($flag(2) =中)) then PC:= $target; end if; つ ，
clk(4){" つ，
clk (5){'"'}
}

， "BLTZベclk(1){"IR := lMEM[PC];
PC. incO;

$pc:=PC;"} ,
clk(2){"DECODE(IR);

$rs:=GPR.readO(rs);
$imm := EXTO . sign(offset);"} ,
clk(3){"$offset -:= $四m(29 dOYllto 0) & ¥"00¥";
$target := ADDO.add($pc , $offset);
if(~r~Ç312='1') then C゙:=$target; end if ; つ，
C工k(4){""} ，
clk(5){" "}
}

, "BLTZ札"{clk(l){勺R := lMEM[PC];
PC. incO;

$pc:=PC;"} ,
clk(2){"DECODE(IR);

$rs:=GPR.readO(rs);
$imm := EXTO.sign(offset);"} ,
clk(3){"$offset := $imm(29 dOYllto 0) & \吻0\ " ;
$target := ADDO . add($pc , $offset);
if($rs(31)='1') then PC:=$target; end if;
$pc2 := PC;"} ,
clk(4){川}，

;lk(訓"GPR[\"山1刊] :吻山つ

, "IAND"{clk (1){"IR := 1阻M[PC] ;
PC.incO ; "},
clk(2){"DECODE(IR);

$rs := GPR.readO(rs);
$rt : = GPR. readl (rt) ; "} ,
clk(3){" ($result , $flag) := ALUO.and($rs , $rt) ; つ，
clk(4){""} ,
clk(5) {"GPR[rd] := $result;"}
}

, "INOR"{clk (1){"IR := lMEM[PC];

131

PC.incO; "},
clk(2){"DECODE(IR) ;

$rs := GPR.readO(rs);
$rt := GPR.read1(rt); つ，
clk(3){" ($result , $flag) := ALUO.nor($rs , $r七) ; "},
clk(4){""} ,
clk(5){"GPR[rd] := $result;"}
>
, "IOR"{clk (1){"IR ::: lMEM[PC];
PC.incO; "},
clk(2){"DECODE(IR);

$rs ::: GPR.readO(rs);
$rt ::: GPR.read1(rt);
;つ，
~lk(3){"($result ， $flag) := ALUO.or($rs , $rt);"} ,
clk(4){""} ,
clk(5){"GPR[rd] := $resu工t; "
>
, "ISUB"{clk(l){"IR := lMEM[PC];
PC. inc 0 ; "} ,
clk(2){"DECODE(IR);

$rs := GPR.readO(rs);
$rt := GPR.readl(rt) ;"} ,
clk(3){" ($result , $flag) := ALUO.sub($rs , $rt);"} ,
clk(4){""} ,
clk(5) {"GPR[rd] := $result;"}
}
, "IXOR"{clk(1){"IR := lMEM[PC];
PC. inc 0 ; "} ,
clk(2){"DECODE(IR);

$rs := GPR.readO(rs);
$rt := GPR.read1(玄t) ; "},
clk(3){" ($result , $flag) := ALUO.xor($rs , $rt); "} ,
clk(4){" つ，
clk(5){"GPR[rd] : = $result; "}
>
, "J"{clk(l){"$pc:=PC;

IR := 1阻M[PC] ;
PC.incO j つ，
clk(2){"DECODE(IR) ;
$target := $pc(31 downto 28) & IR(25 downto 0) & \吻0\" ;つ，
clk(3){"PC := $target; つ，
clk(4){" つ，
clk(5){" "}
}

, "JAL"{clk(l){"$pc := PC;

IR := 1肥M[PC];
PC.incO; つ，
clk(2){"DECODE(IR)j
$target := $pcC31 downto 28) & IR(25 downto 0) & \"OO\";"} ,
clk(3){"PC ::: $target;
$pc2 := PC;"} ,
clk(4){""} ,
clk(5){"GPR[¥" 11111¥"] := $pc2; "}
}
, "JALR"{clk(l){"$pc := PC;

IR :== lMEM[PC];
PC. inc 0 ; "} ,
clk(2){"DECODE(IR);
$rs:=GPR.readO(rs);"} ,
clk(3){"PC:=$rs;
$pc2:=PC;"} ,

132

clk (4){""} ,
;出制"G則\"1山町] :吻山つ

, "JR"{clk(l){"$pc:=PC;

IR ::: lMEM[PC];
PC. inc 0 ; "} ,
clk(2){"DECODE(IR);
$rs:::GPR.readO(rs);"} ,
clk(3){"PC :=$rs;"} ,
clk(4){""} ,
clk(5){""}
>
, "LB"{clk(1){"IR := lMEM[PC];
PC. incO; "},
clk(2){"DECODE(IR);

$offset :=EXTO.sign(offset);
$base:=GPR . readO(base); つ，
clk(3){ぺ$target ， $flag):=ALUO.add($base ， $offset) ; つ，
clk(4){" ($data , $addr_err):=DMEM.lb($target); つ，
clk(5){"GPR[rt] :=$data;"}
>
, "LBU"{clk(l){"IR : = lMEM[PC];
PC. incO; つ，
clk(2){"DECODE(IR);

$offset :=EXTO.sign(offset);
$base :=GPR . readO(base);"} ,
clk(3){ぺ$target ， $flag) :=ALUO.add($base ， $offset) ; づ，
clk(4){" ($data , $addr_err):=DMEM .lbu($target) ; "} ,
clk(5) {"GPR[rt] :=$data; つ
}
, "LH"{clk (1){勺R := 1阻M[PC] ;
PC. incO; "},
clk(2){"DECODE(IR);

$offset :=EXTO.sign(offset);
$base : =GPR . readO(base);"} ,
clk(3){" ($target , $flag) : =ALUO.add($base ， $offs~t); づ ，
clk(4){"($data , $addr_err):=DMEM . lh($target);"} ,
clk(5){"GPR[rt] :=$data; つ
>
，"口町"{clk(l){"IR := 1阻M[PC] ;
PC.incO; つ，
clk(2){"DECODE(IR);

$offset :=EXTO.sign(offset);
$base:=GPR.readO(base); つ，
clk(3){" ($target , $flag) :=ALUO. add($base , $of~se~) ; "},
clk(4){" ($data , $addr_err):=D虻EM . lhu($target); つ，
clk(5){"GPR[rt] :=$data; "}
>
, "LUI"{clk (1){"IR := 工阻M[PC] ;
PC.incO ;"},
clk(2){"DECODE(IR);
$imm:=immediate & ¥"0000000000000000¥"; "},
clk(3){""} ,
clk(4){""} ,
clk(5){"GPR[rt] :=$imm; つ
>
, "LW"{clk(l){"IR := lMEM[PC];
PC. inc 0 ; "},
clk(2){"DECODE(IR);

$offset :=EXTO.sign(offset);
$base:=GPR.readO(己ase); つ，
clk(3){" ($target , $flag) : =ALUO.add($b~:;;e ， $off~e~~ ;"} ，
clk�4){" ($dati , $addr_err):=DMEM.read($target) ;" } ,

133

clk(5){"GPR[rt] :=$data;"}
}
, "ORIべclk(l){"IR := IMEM[PC];
PC. inc 0 ; "} ,
clk(2){"DECODE(IR) ;

sresult : = \"0000000000000000000000000000000\H&Sflag(1);"} ,
clk(4){""} ,
clk(5){"GPR[rt] := $result; つ
>
, "SLTIU"{clk (1){"IR := 1阻M[PC] ;
PC. incO ; つ ，
clk(2){"DECODE(IR);
$rs:=GPR.readO(rs);
$i~ :~~TO. s ign (泊mediate);"} ，
~lk(3) {"$flag :=ALUO .cmp($rs ，. $imm);
szeslilt :=\'10000000000000000000000000000000\H&NOT0.nt(Sflag(3));">,
clk(4){" つ，
;比(5){"GPR[rt] := $re叫t; つ

， "SLTU吋clk (l){ " IR := IMEM[PC];
PC. incO; " } ,
clk(2){"DECODE(工R) ;
$rs:=GPR.readO(rs);
$rt:=GPR.readl(rt);"} ,
clk(3){"$flag:=ALUO.cmpu($rs ，$口) ;
sreS111t:=\"0000000000000000000000000000000\"&NOT0 . 2t(Sflag(3)); ">,
clk(4){""} ,
:比(引"GPR[rd] := $re叫t; つ

, "SRA"{clk(l){"IR := IMEM[PC];
PC. inc 0 ; "} ,
clk(2){"DECODE(IR) ;

$rs:=GPR.readO(rs);
$imm:=EXTO.zero(immediate); つ，
clk(3){" ($result , $flag):=ALUO.or($rs ， $imm); つ，
clk(4){" "},
clk(5){"GPR[rt] :=$result;"}
}

， "SBベclk (1){勺R := 1阻M [PC] ;
PC.incO ;"},
clk(2){"DECODE(IR);

$offset :=EXTO.sign(offset);
$base:=GPR.readO(base);
$rt :=GPR.read1(rt); "} ,
clk(3){" ($target , $flag): =ALUO . add($base ， $offset) ; つ ，
clk(4){"$addr_err :=DMEM . sb($target ， $rt); つ ，
clk (5){ " つ
}

, "SH"{clk (1){"IR := 1阻M[PC] ;
PC. inc 0 ; "} ,
clk(2){"DECODE(IR);

$offset :=EXTO.sign(offset);
$base:=GPR.readO(base);
$rt : =GPR .readl(rt); "} ,
clk(3){べ$target ， $flag) :=ALUO.add($base ,$offset);"} ,
clk(4){"$addr_err : =DMEM . sh($target ， $rt) ; つ ，
clk(5){""}
}

, "SLL"{clk (1){"IR : = 1阻M[PC] ;
PC.inc() ; "} ,
clk(2){"DECODE(IR);

$rt:=GPR . readl(rt);"} ,
clk(3){"$result:=SFTO.sra($rt ， sh祖t) ; "} ,
clk(4){" "},
clk(5){"GPR[rd] :=$result; "}
>
, "SRAV"{clk(l){"IR := IMEM[PC];
PC. inc 0 ; "} ,
clk(2){"DECODE(IR);

$rt :=GPR .readl(rt) ; "} ,
clk(3){"$result : =SF・I・O . sll($rt ， sh祖t);"} ，
clk (4) {'"'} ,
clk(5){"GPR[rd] :=$result; "}
}
, "SLLV"{clk(l){"IR := 1阻M[PC] ;
PC. inc 0 ; "},
clk(2){"DECODE(IR);

$sh祖t : =GPR.readO(rs);
$rt:=GPR.readl(rt);"} ,
c~kÇ3?~"$!esult:=SFTO.sra($rt ， $shamt(4 dOYD.to 0)); つ，
clk(4){""} ,
clk(5){"GPR[rd] :=$result; "}
}

, "SRL"{clk(l){"IR := 1阻M[PC] ;
PC. incO; つ ，
clk(2){"DECODE(IR);

$shamt:=GPR.readO(rs);
$rt :=GPR.readl(rt);"} ,
clk(3){"$result : =SFTO . sll($rt , $shamt(4 dOYD.to 0)); つ，
clk(4){" "},
clk(5){"GPR[rd] :=$result;"
>
, "SLT吋clk (1){"IR := 1旭川PCJ;
PC. inc 0 ; "} ,
clk(2){"DECODE(IR);
$rs:=GPR.readO(rs);
$rt :=GPR.read1(rt); "} ,
clk(3){"$flag : =札.uO . cmp($rs ， $rt);
$re~u~~ : ~ ¥'-'0000000000000000000000000000000¥" & $flag(l) ;"},
clk(4){""} ,
clk(5){"GPR[rd] := $resul t; "}
}

, "SLTI"{clk(l){"IR := IMEM[PC];
PC. incO; "},
clk(2){"DECODE(IR);
$rs:=GPR.readO(rs);
$imm : =EXTO . sign(immediate) ; "} ,
clk(3){"$flag :=ALUO . cmp($rs , $imm);

$rt:=GPR.readl(rt);"} ,
clk(3){"$result : =SFTO.srl($rt ， sh祖t); つ，
clk(4){" つ，
clk(5) {"GPR[rd] :=$result;"}
>
, "SRLV"{clk(l){"IR := 1阻M[PC] ;
PC. inc 0 ; "} ,
clk(2){"DECODE(IR);

$shamt:=GPR.readO(rs);
$rt:=GPR.readl(rt);"} ,
clk(3){"$result:=SFTO.srl($rt , $shamt(4 dOYD.to O)) ; "} ,
clk(4){" つ，
clk(5) {"GPR[rd] :=$result ; つ
>
, "SUBU"{clk (1){"IR := 1阻M[PC] ;
PC. inc 0 ; "},
clk(2){"DECODE(IR);

, l
J

、
、
，
，

+au r

e
申,

s

r

h亭
，
，
目
、
、b

u

s

n
u
 u

y
L

A
n
 --

，
、
B

ノ

、
トJ
P
U

"
a

.
，

.

，
可
よ

、
E

J

、
，
J
4
ム

S

℃

e
v

r
r

〆
g
‘
、
，
t
、
，

n
U
4よ

+
l
u

d
、

q
l

a
a
u

e
e
s

r
r
e

-
r

D
U
D
U晶
弘V

P
会
D
ふ
f
k

円
u
n
h
u
"

「

一
一
-
一
、
，J

・
・
つd

，
，
宮
、

s
t
k

r
r
l

s
s
c

134 135

clk(4){" "},
clk(5){"GPR[rd] := $result;"}
}
, "SW"{c1k(1){"IR := 1阻M[PC] ;
PC. inc 0 ; "} ,
clk(2){"DECODE(IR);

$offset :=EXTO.sign(offset);
$base:=GPR.readO(base);
$rt : =GPR. r eadl(rt); "} ,
clk(3){べ$target ， $flag) : =ALUO. add ($base ,$offset);"} ,
clk (4){"$addr_e r r:=DMEM . wr ite($target , $rt);" } ,
clk(S){" つ
}
, "XORI"{clk(l){"IR := lMEM[PC];
PC. incO; " },
clk(2){"DECODE(IR);

$rs:=GPR.readO(rs);
$ imm: =EXTO.zero(四mediate) ; つ，
clk(3){" ($result , $flag) : =ALUO.xor($rs ,$imm) ; "} ,
clk(4){"I} ,
clk(5){"GPR[rt] : =$resuユt ; "}
}
， "肌JLT"{c1k (1){"IR := 1阻M[PC] ;
PC. incO; "},
clk(2){"DECODE(IR);

$rs:=GPR.readO(rs);
$rt :=GPR.readl(rt) ; "} ,
clk(3){" ($result , $flag) : =限凡O . mul($rs ， $rt) ; つ，
clk(4){"I} ,
clk(5){"HI:=$result(63 dOYD.to 32);
LO:=$resu1t(31 dOYD.to 0); つ
>
， "MUL抗1吋clk (1){"IR := lMEM[PC];
PC. incO ; "},
clk(2){"DECODE(IR);

$rs:=GPR.readO(rs);
$rt :=GPR.read1(rt); "},
clk(3){" ($result , $flag) : =阻江O . mulu($rs ， $rt); つ，
clk(4){""} ,
clk(5){"HI:=$result(63 dOYD.to 32);
LO:=$result(31 dOYD.to 0) ; つ
}
，叩IV"{clk (1){"IR := 1肥M[PC];
PC . incO; つ，
clk(2){"DECODE(IR);

$rs:=GPR.readO(rs);
$rt :=GPR .readl(rt);"} ,
clk(3){"($q ， $r ， $flag) : =DIVO . d工v($rs ， $rt);"} ，
c1k(4){""} ,
;lk(訓"HI:=$r ; 比 =$q; つ

， "DlVU吋clk(1){吋R := 1阻M[PC] ;
PC.inc();"} ,
clk(2) {"DECODE(IR) ;

$rs:=GPR.readO(rs);
$rt : =GPR . readl(rt);"} ,
clk(3){"($q ， $r ， $flag):=DIVO.divu($rs ， $rt); つ，
clk(4){""} ,
;は(5){"HI : =$r; LO:=$q;"}

，"町HI"{clk(l){"IR := lMEM[PC];
PC. inc 0 ; " } ,
clk(2){"DECODE(IR) ; "} ,

136

c 工k (3){"$hi :=HI; " } ，
c1k (4){"つ ，

;比ωf十{"GPR[刈 : =$hi;ゾ"

， "M町FLO'吋c1k(1){" IR :戸= 1阻M[PCの] ;
PC. inc () ; "} ,
c1k(2){"DECODE(IR); " },
c1k(3){ "$10:=LO ;" } ,
c1k(4){" "} ,
c1k(5){"GPR[rd] :=$10; つ
}

， "M百fI "{clk (1){"IR := 1阻M[PC] ;
PC. inc 0 ; "} ,
clk(2) {"DECODE(IR) ;
$rs :=GPR.readO(rs); "} ,
clk(3){" "} ,
c1k(4){"つ ，
clk(5){"HI:=$rs ; つ
>
, "MTLO"{c1k (1){"IR : = 1阻M[PC] ;
PC. inc 0 ; "} ,
c1k(2){"DECODE(IR);
$rs:=GPR.readO(rs);"} ,
c1k(3){" つ，
c1k(4){" つ，
clk(5){"LO:=$rs;"}
}

, "BEQ"{c1k(1){"IR := 1阻M[PC] ;
PC. incO;

$pC:=PC;"} ,
c1k(2) {"DECODE(IR) ;
$rt:=GPR.readl(rt);

$rs:=GPR.readO(rs);
$imm := EXTO.sign(offset);"} ,
clk(3){"$offset := $imm(29 dOYD.to 0) & \勺0\" ;
$target := ADDO.add($pc , $offset);
$flag : =ALUO.cmp($rs ,$rt);
if(~f~~g(~)='l') then PC:=$target; end if ; つ，
c1k(4){" "},
clk(5){"I}
}

， "BNE"{clk (1){勺R := 1阻M[PC] ;
PC.incO;

$pc:=PC;"} ,
clk(2){"DECODE(IR);
$rt:=GPR.readl(rt);

$rs:=GPR.readO(rs);
$imm := EXTO.sign(offset);"} ,
c1k(3){"$offset := $imm(29 downto 0) & ¥"00¥";
$target := ADDO.add($pc , $offset);
$flag:=ALUO . cmp($rs ,$rt) ;
if($flag(2)='0') then PC:=$target; end if ; つ，
clk(4){" つ，
clk(5){" "}
>
}}

>

137

Appendix C

Synthesis Result of PEAS R3K
Processor

C.l VHDL Descriptionf of PEAS R3K Datapath
library lEEE;

use lEEE.std_logic_1164.all;

entity CPU is
port C

clk : in std_logic;
intn : in std_logic_vectorC2 downto 0);
in七: in std_logic;
rst : in std_logic;
instAB : out std_logic_vectorC31 downto 0);
instDB : in std_logic_vectorC31 downto 0);
dataAB : out std_logic_vectorC31 downto 0);
dataDB : inout std_logic_vectorC31 downto 0);
ve : out std_logic_vectorC3 downto 0));

end CPU;

architecture syn of CPU is
component cpu_ctrl

port C
instDB: in std_logic_vectorC31 downto 0);
rst : in std_logic;
int : in std_logic;
intn : in std_logic_vectorC2 downto 0);
clk : in std_logic;
IR_data_out : in std_logic_vectorC31 downto 0);
MULO_fin : in std_logic;
DIVO_flag: in std_logic_vectorC1 downto 0);
CSW_enb : out std_logic;
CSW_rst : out std_logic;
reg39_enb : out std_logic;
reg38_enb : out std_logic;
reg37_enb : out std_logic;
reg36_enb : out std_logic;
reg35_enb : out std_logic;
reg34_enb : out std_logic;
reg33_enb : out std_logic;
reg32_enb : out std_logic;
reg31_enb : out std_logic;
reg30_enb : out std_logic;
reg29_enb : out std_logic;
reg28_enb : out std_logic;
reg27_enb : out std_logic;
reg26_enb : out std_logic;
reg25_enb : out std_logic;
reg24_enb : out std_logic;
reg23_enb : out std_logic;
reg22_enb : out std_logic;

139

reg21_enb : out std_logic;
reg20_enb : out std_logic;
sel19_ctrl : out std_logic_vectorC1 downto 0);
se工 18_ctrl : out std_logic_vectorC1 downto 0);
sel17_ctrl : out std_logic_vectorCO downto 0);
sel16_ctrl : out std_logic_vectorCO downto 0);
sel15_ctr1 : out std_logic_vectorCO downto 0);
sel14_ctrl : out std_logic_vectorC2 downto 0);
sel13_ctrl : out std_logic_vectorCO downto 0);
sel12_ctr1 : out std_logic_vectorCO downto 0);
se111_ctr1 : out std_logic_vector(O downto 0);
se110 ctr1 : out std_logic_vector(O downto 0);
DIVO_ctrl : out std_logic;
LO_enb : out std_logic;
LO_rst : out std_logic;
HI_enb : out std_logic;
HI rst : out std_logic;
MULO_start : out std_logic;
MULO_ctr1 : out std_logic;
SFTO_mode : out std_logic_vectorCl downto 0);
DMEM_ext_ctrl : out std_logic;
D阻凡ac_ctrl : out std_logic_vectorC1 downto 0);
DMEM_req : out std_logic;
DMEM_rw : out std_logic;
EXTO_ctrl : out std_logic;
ALUO ctrl : out std_logic_vectorC4 downto 0);
ALUO_cin : out std_logic;
GPR_w_enbO : out std_logic;
GPR_reset : out std_logic;
IR_enb : out std_logic;
IR_rst : out std_logic;
PC_hold : out std_logic;
PC_reset : out std_logic;
PC_load : out std_logic;
reg20_data_out : in std_logic_vector(31 downto 0);
sys4_pO : in std_logic;
sys2_pO : in std_logic;
ALUO_flag: in std_logic_vectorC3 downto 0));

end component;

component pcu_17
generic (W : integer := 32;
S : integer := 4);

port(
c1k : in std_logic;

10ad : in std_logic;
reset : in std_logic;
hold : in std_logic;
data: in std_logic_vector(W-l downto 0);
q : out std_logic_vectorCW-l downto 0));

end component;
component imcu_18

generic (W : integer := 32);
PORT(

addr : in
data : out
m_addr : out
m data : in

std_logic_vectorCW-l downto 0)
std_logic_vector(W-l downto 0)

std_logic_vector(W-l downto 0)
std_logic_vector(W-l downto 0)

) ;
end component;
component register_9

generic (W : integer := 32);
port (clk : in std_logic;

rst : in std_logic;
enb : in std_logic;
data_in : in std_logic_vector(W-l downto 0);
data_out : out std_logic_vector(W-l downto 0));

end component;
component registerfi1e_10

140

generic (W : integer := 32);
port (c10ck : in std_logic;

reset : in std_logic;
w enbO : in std_logic;
w_selO : in std_logic_vector(4 downto 0);
data_inO in std_logic_vector(W-l downto 0);
r_se10 : in std_logic_vector(4 downto 0);
r_sell : in std_ユogic_vector(4 downto 0);
data_outO out std_logic_vectorCW-l downto 0);
data_outl : out std_logic_vector(W-l downto 0));

end component;
component alu_12

generic CW : integer := 32);
port (a , b : in std_logic_vector(W-l downto 0);

cin : in std_logic;
ctrl : in std_logic_vectorC4 downto 0);
result out std_logic_vectorCW-l downto 0);
flag : out std_logic_vectorC3 downto 0));

end component;
component extender_15

generic CW : integer := 16);
port (data_in : in std_logic_vector(W-l downto 0);

ctrl : in std_logic;
data_out : out std_logic_vector(2州ー 1 downto 0));

end component;
component adder_11

generic(W: integer := 32);
port (a , b : in std_logic_vector(W-l downto 0);

cin : in std_logic;
result : out std_logic_vector(W-l downto 0);
cout : out std_logic);

end component;
component dmcu_19

port (rw : in std_logic;
req : in std_logic;
addr : in std_logic_vector(31 downto 0);
i_data : ou七 std_logic_vector(31 downto 0);
o_data : in std_logic_vectorC31 downto 0);
ac ctrl : in std_logic_vector(l downto 0);
ext_ctrl : in std_logic;
addr_err : out std_logic;
we : out std_logic_vectorC3 downto 0);
m_addr : out std_logic_vector(31 downto 0);
m_data : inout std_logic_vectorC31 downto 0));

end component;
component barre1shifter_14

generic(W: integer := 32);
port Cdata_in : in std_logic_vectorCW-l downto 0);

mode : in std_logic_vector(l downto 0);
ctrl : in s七d_logic_vector(4 downto 0);
data_out : out std_logic_vectorCW-l downto 0));

end component;
component not_20

port (data_in : in std_logic;
data_out : out std_logic);

end component;
component multiplier_16

generic (W : integer := 32);
port (clk : in std_logic;

reset : in std_logic;
a , b : in std_logic_vector(W-l downto 0);
ctrl : in std_logic;
start : in std_logic;
result : out std_logic_vec七or(2*W-1 downto 0);
fin : out std_logic);

end component;
component divider_13

generic (W : integer := 32);
port (clk : in std_logic;

141

a , b
ctrl
resultO
resuユtl
flag

in std_logic_vectorCW-l downto 0);
in std_logic;
out std_logic_vectorCW-l downto O~;
out std_logic_vectorCW-l downto_ ?);
out std_logic_vectorCl downto 0));

end component;
component selector_21

generic (w : int~ger := 32;
n integer := ~

lOgll: integer := 1);
port(data-ho:la std-logic-1rector(w-1domto O> ;

data_in1 : in std_logic_vector(w-l downto 0);
ctrl : in std_logic_vector(logn-l downt??);
data out : out std_l�ic_vector(w=l downto 0));
end component;
comnonent selector_22

generic (w : integer := 5;
n integer ,= 2;

log主 : integer := 1);
port (data-1nO :12 Std-logic-vector(w-1domtoO);

data=inl : in std_logic_vector(w-l downto 0);
ctrl : in std_logic_vector(logn-l downto.?);
data_out : out std_lõgic_vector(w~ l downto 0));
end component;
comnonent selector_23

generic (w : int:ger := 32;
n : integer := 8;

lOgll : integer := 3);
port (data_inO : in std_~ogic_vector ~w-~ downto ~(;

data_inl : in std_logic_vector(w-l down七o 0);
data_in2 : in s七d_logic_vectorCw-l downto O~;
data_in3 : in std_logic_vector(w-l downto O~;
data_in4 : in std_logic_vectorCw-l downto O~;
data_in5 : in std_logic_vector(w-l downto O~;
data_in6 : in std_logic_vector(w-l downto ~ ~ ;
data_in7 : in std_logic_vector(w-l downto 0);

ctrl : in std_logic_vector(logn-l downt??);
data_out : out std_l�ic_vectorCw=l downto 0));
end component;
component selector_24

generic (w : integer := 32;
n : in七 eger := 3;

log孟: integer := 2);
port (data_inO : in std_logic_vector~w-~ downto ~~;

data_inl : in std_logic_vector(w-l downto O?;
data_in2 : in std_logic_vector(w-l downto 0);

ctrl : in std_logic_vect�Clogn-l downto.9);
data_out : out std_l�ic_vector(w=l downto 0));
end component;
component pipereg_25

g�eric ~W- : integer := 32);
port Cclk : in std_logic;

rst : in std_logic;
enb : in std_logic;
data_in : in std_logic_vector(W-l downto O)i
data=out : out std_l�ic_vectorCW-l downto 0));

end component;
component pipereg_26

generic ~W- : integer := 30);
port Cclk : in std_logic;

rst : in std_logic;
enb : in std_logic;
data_in : in std_logic_vectorCW-l downto O)i
data=out : out std_l�ic_vectorCW-l downto 0));

end component;
component pipereg_27

g�eric ~W- : integer := 5);
port Cclk : in std_logic;

rst : in std_logic;

142

enb : in std_logic;
data_in : in std_logic_vectorCW-l downto 0);
data_out : out std_logic_vectorCW-l downto 0));

end component;
signal d CSW_data_out : s七d_logic_vector(31 downto 0);
signal d_reg39_data_out : std_logic_vector(31 downto 0);
signal d_reg38_data_out : std_logic_vector(31 downto 0);
signal d_reg37_data_out : std_logic_vector(31 downto 0);
signal d_reg36_data_out : std_logic_vector(31 downto 0);
signal d_reg35_data_out : std_logic_vector(4 downto 0);
signal d_reg34_data_out : std_logic_vectorC31 downto 0);
signal d_reg33_data_out : std_logic_vectorC31 downto 0);
signal d_reg32_data_out : std_logic_vectorC31 downto 0);
signal d_reg31_data_out : std_logic_vector(4 downto 0);
signal d_reg30_data_out : s七d_l ogi c_vector C4 downto 0);
signal d_reg29_data_out : std_logic_vectorC4 downto 0);
signal d_reg28_data_out : std_logic_vectorC31 downto 0);
signal d_reg27_data_out : std_logic_vectorC31 downto 0);
signal d_reg26_data_out : std_logic_vectorC31 downto 0);
signal d_reg25_data_out : std_logic_vectorC31 downto 0);
signal d_reg24_data_out : s七d_logic_vectorC31 downto 0);
signal d_reg23_data_out : std_logic_vectorC31 downto 0);
signal d_reg22_data_ou七: s七d_logic_vectorC31 downto 0);
signal d_reg21_data_out : std_logic_vectorC29 downto 0);
signal d_reg20_data_out : std_logic_vectorC31 downto 0);
signal d_sel19_data_out : std_logic_vectorC31 downto 0);
signal d sel18_data out : std_logic_vectorC31 downto 0);
signal d_sel17_data_out : std_logic_vector(4 downto 0);
signal d_sel16 data_out : std_logic_vector(31 downto 0);
signal d_sel15 data_out : std_logic_vectorC31 downto 0);
signal d_sel14_data_out : s七d_logic_vector(31 downto 0);
signal d_sel13_data_out : std_logic_vectorC4 downto 0);
signal d_sel12_data_out : std_logic_vectorC4 downto 0);
signal d_se工11_data_out : std_logic_vectorC31 downto 0);
signal d_sell0_data_out : std_logic_vectorC31 downto 0);
signal d_DIVO_flag : std_logic_vectorCl downto 0);
signal d_DIVO_resultl : std_logic_vectorC31 downto 0);
signal d_DIVO_resultO : std_logic_vector(31 downto 0);
signal d_LO_data_out : std_logic_vector(31 downto 0);
signal d_HI_data out : std_logic_vector(31 downto 0);
signal d_MULO_fin : std_logic;
signal d_MULO_result : std~logic_vectorC63 downto 0);
signal d_sysl0_pO : std_logic_vector(31 downto 0);
signal d_NOTO_data_out : std_logic;
signal d_sys9_pO : std_logic_vector(31 downto 0);
signal d_sys8_pO : std_logic_vectorC30 downto 0);
signal d_SF寸o data_out : std_logic_vectorC31 downto 0);
signal d_sys7_pO : std_logユ c_vector(31 downto 0);
signal d_sys6_pO : std_logic_vectorC15 downto 0);
signal d_DMEM_addr_err : std_logic;
signal d_DMEM_i_data : std_logic_vectorC31 downto 0);
signal d_sys5_pO : std_logic_vectorC31 downto 0);
signal d_sys4_pO : std_logic;
signal d_sys3_pO : std_logic_vectorC4 downto 0);
signal d_sys2_pO : std_logic;
signal d_ADDO_cout : std_logic;
signal d_ADDO_result : std_iogic_vectorC31 downto 0);
signal d_sysl_pO : std_logic_vectorC31 downto 0);
signal d_sysO_pO : std_logic_vectorCl downto 0);
signal d_EXTO_data_out : std_logic_vectorC31 downto 0);
signal d_ALUO_flag : std_logic_vectorC3 downto 0);
signal d_ALUO_result : std_logic_vector(31 downto 0);
signal d_GPR_data_outl : std_logic_vectorC31 downto 0);
signal d_GPR_data_outO : std_logic_vectorC31 downto 0);
signal d_IR_data_out : std_logic_vector(31 downto_ 0);
signal d_IMEM_data : std_logic_vector(31 downto 0);
signal d_PC_q : std_logic_vector(31 downto 0);
signal c_PC_load : std_logic;
signal c_PC_reset : std_logic;

143

、
、
，J

ハ
U

・
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，

.
，
.
，
、
，
ノ
、

B

ノ
、
‘
ノ
、
，
J

、
，
ノ
、
，
ノ
、
，
ノ
、
，
ノ
、
，
ノ
、B
J

)

O

)

O

0

0

0

0

0

0

0

0

o

n
U
+

し

n
u

n

0

0

0

0

0

0

0

0

0

0

O
W
O
七
七
七
七
七
t
t
t
t
t

0
0
0
0
0
0
0
0
0
o

m
ω
m
m
m
m
m
m
m
m
m
m
m

0

1

0

d

d

d

d

d

d

d

d

d

d

d

〆

t
d
工
O
0
0
0
2
0
o
o
-
-

4
0
1
f
、

r

、

r

、
「
、
f
、
f
t
f
、
「
、
f
、
f
、

r

、
t
f
k
z
r
r
r
r
r
r
r
r
r

r

c

r

0

0

0

0

0

0

0

0

0

0

o

e

o

t

t

t

t

t

t

t

t

t

t

t

v

;

t

c

c

c

c

c

c

c

c

c

c

c
一
c
c
e
e
e
e
e
e
e
e
e
e

ec

--evvvvvvvvvv,

;
v

・

1
g
v
;
-
-
-
一
一
-
一
一
-
-
t

.

，
c
-

・

'
g
D
o
-
-
'
c
・
'
c
c
c
c
c
c
c
c
c
c
・
'
・

2
.

，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
u

c

・

1
・
'
c
c
・
'
0
1

ム

C
C

-
-
c
・
1
・
1
l
l

・
-
・
1
・
1

・
1

・
1
・
1
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
0

.

，
工
g
c

・
1
1
・
'
e
l
-

-1

・
l
g

・
-
g
g
g
g
g
g
g
g
F
u
g
i
-
-
-
l
i
-
-

・
1
E
l
i
-
-
1
・
1
-
1

・
l
i
-
-
-
l
i
-

-
1
・
1
・

2
.

，

c

・
，

.

，
F
O
O
-
-
g
g
C
1
て
d
g
F
O
G
-
，
.
，
.
，
.
，
g
0
0
0
0
0
0
0
0
0
o
g
g
g
g
g
g
g
g
g
g
g
g
g
O
g
p
u
g
g
p
o
g
g
e
c
a
g
b
b
b

・

1
c
c
o
l
g
o
o
-
-
g
d
t
o
o
l
c
c
c
c
o
l
-
-
1
1
1
1
1
1
-
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
O
O
-
-
1
t
'
a
n
n
a

p
o
-
-
1
1
一
o
l
-
-
g
o
t
s
1
4
1
-
一

・
1
1
・
l
i
l
-
-
-
一
一
-
-
-
-
-
1
1
1

占
1
1
1
1

占
1
1
1
1
1
4
1
-
1
1
1
1
1
1

ム

1
g
g
a
n
-
4
e
e
e

o
g
g
-
d
l
-
一
0
1
4
S
-
-
d
g
g
g
g
-
d
d
d
d
d
d
d
d
d
d
-
-
-
-
-
-
一
-
-
-
一
一
-
-
一
一
-
一
一
一
o
o
d
i
f
'
'
-
一

l
o
o
-
d
t
-
d
d
l
-

・

・
d
d
t
o
o
o
o
d
t
t
t
t
t
t
t
t
t
t
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
1
1
4
τ

士

-
b
t
9
8
7

-
1
1
七
s
d
t
t
-
d
・
・
t
t
S
1
1
1
1
-
t
s
s
s
s
s
s
s
s
s
s

℃
℃

t
t
t
t
t
t
t
t
t
t
t
t
t
t
七
七
t
t
-
-
R
-
n
u
n
s
3
3
3

d
-

一
s
t
s
s
d
t
l
s
s
-
-
-
-
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
d
d
I
o
v
e
x
g
g
g

℃

d
d
・
-
s
t
s
l
r
:
d
d
d
d
・
-
:
:
:
:
:
:
:
:
;
t
t
，
f
L
I
-
-
e
e
e

s
t
t
・
・

・
・

・
・
S
E
t

-
-
-

-

t
t
t
t
・
・
・
・
・
・
・
・
・

・

・
・

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

・

・
・
・
・
・
・
・
・
・
・
・
・
・
S
S
B
d
U
D
w
w
r
z
z

s
s
o

-
-
:

t
c
t
s
s
s
S
1
4
1
1
4
1
1
1
1
1
1
1
D
M
-
s
s
-
-
一

℃

b
l
l
・
-
c
-
e
l
-
-
r
r
r
r
r
r
r
r
r
r
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
・
・
・
・
七
〉
て
d
c
c
c
c
c

・

e
n
a
r
z
q
一
t
d
r
a
-
-
-
-
-
-
-
-
r
t
t
t
t
t
t
t
t
t
t
a
n
n
a
n
n
n
n
n
n
a
n
n
a
a
n
B
E
E
E
s
'
=
d
-
-

dse

--ttweexotttcccccccccceeeeeeeeeeeeeeeeeeeetbnn>CC>>>

l
t
b
e
一
c
c
c
r
r
a
e
m
c
s
t
b
t
b
c
-
-
-
一
-
一
一
一
-
一
一
-
-
-
-
-
一
-
一
-
一
-
-
一
一
-
-
-
一
一
s
a
l
-
-
'
'
t
'
t
〉
=
=
=
=

o
s
a
r
w
-
-
-
一
-
-
-
一
一
一
s
n
s
n
-
0
1
2
3
4
5
6
7

.

8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
r
e
r
t
t
n
k
u
=
〉
〉

h
r
e
-
-
0
0
0
M
M
M
M
O
o
o
z
e
r
e
o
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
-
-
t
〉
s
n
・
1
1
0
g
=
=
b
b
b

に
凡
九
四
四
印
印
灯
阻
阻
阻
阻
円
札
瓜
L
L
札
口
-
w
d
d
d
d
d
d
d
d
4
d旬
、
何
百
句
旬
、
句
句
旬
、
句
句
句
句
句
句
句
句
句
句
句
句
何
百
別
別

c
-
(
=
r
・
1
〉
C
丸
山
h
b
t
m
叩
印

P
I
I
G
G
A
A
E
D
D
E
D
S

肝

M
H
H
L
L
D
s
s
s
s
s
s
s
s
s
s
r
r
r
r
r
r
z
r
r
r
r
r
r
r
r
z
r
r
r
r
c
c
u
p
B
〉
〉
=
〉
t
f
f
a
s
-
-
一

-
-
-
-
-
-
一
}
一
-
-
一

-
J
I
-
-
-

一
-
-
-
一
-
-
-
-
一
一
-
-
一
一
-
-
-
-
一
-
-
-
-
-
-
一
一
-
一
-
-
一
一
-
p
a
D
=
=
=
a
-
一
e
Z
9
8
7

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
m
t
n
d
o
o
-
-
3
3
3

s
t
t
t
k
-
L
v
w
w
g
g
g

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
叫
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
叫
4
4
4
:
口

・m
m
-u
u
d
m
町
民
偲
岱
四
回
目

m
r
p
p
p
m
r
p
p
p
p
m
r
p
p
m
r
p
p
p
p
p
m
r
p
p
m
r
p
p
p
m
r
p
p
p
m
r

伊
伊
m
r
p
F
P
m
r
p
p
m
r
p
E
d

戸

1

・1
1
A

・ュ

，ュ
ェ

・1

・1

・1

・
1
1
4
4

・ェ

・1

・1
4
ム

・1
4
A
l
-
-
1
l

-
l
l
・
-

-
l
l

・
-

・
1
・
1
1
目
工
・
1
-
l

・1

・
1
4
4
・
工

・
1

・
1
・
1
・
1
・
1

・
1
・
1
・
1
・
1
・
1
・
1
・
1

-
1
・
1

・
1
t

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

句
c

L
U

reg36_enb => c_reg36_enb ,
reg35_enb => c_reg35_enb ,
reg34_enb => c_reg34_enb ,
reg33_enb => c_reg33_enb ,
reg32_enb => c_reg32_enb ,
reg31_enb => c_reg31_enb ,
reg30_enb => c_reg30_enb ,
reg29_enb => c_reg29_enb ,
reg28_enb => c_reg28_enb ,
reg27_enb => c_reg27_enb ,
reg26_enb => c_reg26_enb ,
reg25_enb => c_reg25_enb ,
reg24_enb => c_reg24_enb ,
reg23_enb => c_reg23_enb ,
reg22_enb => c_reg22_enb ,
reg21_enb => c_reg21_enb ,
reg20_enb => c_reg20_enb ,
sel19_ctrl => c_sel19_ctrl ,
sel18_ctrl => c_sel18_ctrl ,
sel17_ctrl => c_sel17_ctrl ,
sel16_ctrl => c_sel16_ctrl ,
sel15_ctrl => c_sel15_ctrl ,
sel14_ctrl => c_sel14_ctrl ,
sel13_ctrl => c_sel13_ctrl ,
sel12_ctrl => c_sel12_ctrl ,
sell1_ctrl => c_sell1_ctrl ,
sell0_ctrl => c_sell0_ctrl ,
DIVO_ctrl => c_DIVO_ctrl ,
LO_enb => c_LO_enb ,
LO_rst => c_LO_rst ,
HI_enb => c_HI_enb ,
HI_rst => c_HI_rst ,
MULO_start => c_MULO_start ,
MULO_ctrl => c_MULO_ctrl ,
SF寸O_mode => c_SFTO_mode ,
DMEM_ext_ctrl => c_DMEM_ext_ctrl ,
DMEM_ac_ctrl => c_DMEM_ac_ctrl ,
DMEM_req => c_DMEM_req ,
DMEM自主v => c_DMEM_IV ,
EXTO_ctrl => c_EXTO_ctrl ,
ALUO_ctrl => c_ALUO_ctrl ,
ALUO_cin => c_ALUO_cin ,
GPR_w_enbO => c_GPR_w_enbO ,
GPR_reset => c_GPR_reset ,
IR_enb => c_IR_enb ,
IR_rst => c_IR_rst ,
PC_hold => c_PC_hold ,
PC_reset => c_PC_reset ,
PC_load => c_PC_load ,
reg20_data_out => d_reg20_data_out ,
sys4_pO => d_sys4_pO ,
sys2_pO => d_sys2_pO ,
ALUO_flag => d_ALUO_flag);

PC : pcu_17
port map(

clk => clk ,
load => c_PC_load ,
reset => c_PC_reset ,
hold => c_PC_hold ,
data => d_selll_data_out ,
q => d_PC_q);

lMEM : imcu_18
port map(

addr => d_PC_q ,
data => d_IMEM_data ,
m_addr => instAB ,
m_data => instDB);

IR : register_9
port map(

144 145

c1k => c1k ,
rst => c_IR_rst ,
enb => c_IR_enb ,
data_in => d_IMEM_data ,
data_out => d_IR_data_out);

GPR : registerfile_10
port mapC

clock => clk ,
reset => c_GPR_reset ,
w_enbO => c_GPR_w_enbO ,
w_selO => d_sel13_data_out ,
data_inO => d_reg33_data_out ,
r_selO => d_IR_data_outC25 downto 21) ,
r_sel1 => d_IR_data_outC20 downto 16) ,
data_outO => d_GPR_data_outO ,
data_out1 => d_GPR_data_out1);

ALUO : alu_12
port mapC

a => d_reg20_data_out ,
b => d_reg34_data_out ,
cin => c_ALUO_cin ,
ctr1 => c_ALUO_ctr1 ,
resu1t => d_ALUO_result ,
f1ag => d_ALUO_f1ag);

EXTO : extender_15
port mapC

data_in => d_IR_da七a_out(15 downto 0) ,
ctr1 => c_EXTO_ctr1 ,
data_out => d_EXTO_data_out);

ADDO : adder_l1
port mapC

a => d_reg23_data_out ,
b => d_sys1_pO ,
cin => d_sys2_pO ,
result => d_ADDO_resul七，
cout => d_ADDO_cout);

DMEM : dmcu_19
port mapC

rw => c_DMEM_rw ,
req => c_DMEM_req ,
addr => d_reg24_data_out ,
i_data => d_DMEM_i_data ,
o_data => d_reg27_data_out ,
ac_ctr1 => c_DMEM_ac_ctr1 ,
ext_ctr1 => c_D斑EM_ext_ctrl ，

addr_err => d_DMEM_addr_err ,
we => we ,
m_addr => dataAB,
m_data => dataDB);

SF寸o : barrelshifter_14
port mapC

data_in => d_reg26_data_out ,
mode => c_SFTO_mode ,
ctrl => d_reg35_data_out ,
data_out => d_SFTO_data_out);

NOTO : not_20
port map(

data_in => d_ALUO_flag(3) ,
data_out => d_NOTO_data_out);

MULO : multiplier_16
port mapC

c1k => c1k ,
reset => d_sys2_pO ,
a => d_reg20_data_out ,
b => d_reg26_data_out ,
ctrl => c_MULO_ctrl ,
start => c_MULO_start ,
resu1t => d_MULO_result ,
fin => d_MULO_fin);

146

HI : register_9
port mapC

c1k => c1k ,
rst => c_HI_rst ,
enb => c_HI_enb ,
data_in => d_reg37_data_out ,
data_out => d_HI_data_ou七) ;

LO : register_9
port mapC

c1k => clk ,
rst => c_LO_rst ,
enb => c_LO_enb ,
data_in => d_reg39_data_out ,
data_out => d_LO_data_out);

DIVO : divider_13
port map(

clk => clk ,
a => d_reg20_data_out ,
b => d_reg26_data_out ,
ctr1 => c_DIVO_ctr1 ,
resultO => d_DIVO_resultO ,
result1 => d_DIVO_result1 ,
f1ag => d_DIVO_flag);

se110 : se1ector_21
port mapC

data_inO => d_GPR_data_outO ,
data_in1 => d_sys5_pO ,
ctr1 => c_sel10_ctr1 ,
data_out => d_sel10_data_out);

se111 : se1ector 21
port mapC

data_inO => d_reg28_data_out ,
data_in1 => d_ADDO_result ,
ctrl => c_se111_ctr1 ,
data_out => d_se111_data_out);

se112 : se1ector_22
port map(

data_inO => d_IR_data_out(20 downto 16) ,
data_in1 => d_IR_data_outC15 downto 11) ,
ctr1 => c_sel12_ctrl ,
data_out => d_sel12_data_out);

sel13 : se1ector 22
port mapC

data_inO => d_reg31_data_out ,
data_in1 => d_sys3_pO ,
ctrl => c_sel13_ctr1 ,
data_out => d_sel13_data_out);

sel14 : se1ector_23
port map(

data_inO => d_reg25_data_out ,
data_in1 => d_LO_data_out ,
data_in2 => d_HI_data_out ,
data_in3 => d_sys10_pO ,
data_in4 => d_sys9_pO ,
data_in5 => d_SFTO_data_out ,
data_in6 => d_PC_q ,
data_in7 => d_ALUO_result ,
ctr1 => c_sel14_ctrl ,
da七a_out => d_se114_data_out);

sel15 : se1ector_21
port map(

data_inO => d_reg32_data_out ,
data_in1 => d_DMEM_i_data ,
ctr1 => c_sel15_ctr1 ,
data_out => d_se115_data_out);

se116 : selector 21
port mapC

data_inO => d_EXTO_data_out ,
data_in1 => d_GPR_data_out1 ,

147

ctrl => c_se116_ctrl ,
data_out => d_se116_data_out);

se117 : selector_22
port mapC

data_lnO => d_GPR_data_outO(4 dOYnto 0) ,
data_in1 => d_IR_data_out(10 dOYnto 6) ,
ctrl => c_se117_ctrl ,
data_out => d_se117_data_out);

se118 : selector_24
port map(

data_inO => d_reg20_data_out ,
data_in1 => d_DIVO_result1 ,
data_in2 => d_Ml凡0_result(63 dOYnto 32) ,
ctrl => c_se118_ctrl ,
data_out => d_se118_data_out);

se119 : selector_24
port mapC

data_inO => d_reg20_data_out ,
data_in1 => d_DIVO_resultO ,
data_in2 => d_MULO_resultC31 downto 0) ,
ctrl => c_se119_ctrl ,
data_out => d_se119_data_out);

reg20 : pipereg_25
port mapl

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg20_enb ,
data_in => d_GPR_data_outO ,
data_out => d_reg20_data_out);

reg21 : pipereg_26
port mapC

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg21_enb ,
data_in => d_EXTO_data_ou七 (29 downto 0) ,
data_out => d_reg21_data_out);

reg22 : pipereg_25
port mapC

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg22_enb ,
data_in => d_PC_q ,
data_out => d_reg22_data_out);

reg23 : pipereg_25
port map(

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg23_enb ,
data_in => d_reg22_data_out ,
data_out => d_reg23_data_out);

reg24 : pipereg_25
port mapl

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg24_enb ,
data_in => d_ALUO_result ,
data_out => d_reg24_data_out);

reg25 : pipereg_25
port mapC

clk => clk ,
rst => d_sys2_pO ,
enb => c骨reg25_enb ，
data_in => d_sys7_pO ,
data_out => d_reg25_data_out);

reg26 : pipereg_25
port map(

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg26_enb ,

148

data_in => d_GPR_data_out1 ,
data_out => d_reg26_data_out);

reg27 : pipereg_25
port map(

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg27_enb ,
data_in => d_reg26_data ・_out ，
data_out => d_reg27_data_out);

reg28 : pipereg_25
port mapC

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg28_enb ,
data_in => d_se110_data_out ,
data_out => d_reg28_data_out);

reg29 pipereg_27
port map(

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg29_enb ,
data_in => d_se112_data_out ,
data_out => d_reg29_data_out);

reg30 : pipereg_27
port map(

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg30_enb ,
data_in => d_reg29_data_out ,
data_out => d_reg30_data_out);

reg31 : pipereg_27
port map(

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg31_enb ,
data_in => d_reg30_data_ou七，
data_out => d四reg31_data_out);

玄eg32 : pipereg_25
port map(

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg32_enb ,
data_in => d_sel14_data_out ,
data_out => d_reg32_data_out);

reg33 : pipereg_25
port map(

clk => clk ,
rst => d_sys2_pO ,
enb => c _reg33_enb ,
data_in => d_sel15_data_out ,
data_out => d_reg33_data_out);

reg34 : pipereg_25
port map(

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg34_enb ,
data_in => d_sel16_data_out ,
data_out => d_reg34_data_out);

reg35 : pipereg_27
port map(

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg35_enb ,
data_in => d_sel17_data_out ,
data_out => d_reg35_data_out);

reg36 : pipereg_25
port map(

clk => clk ,
rst => d_sys2_pO ,

149

enb => c_reg36_enb ,
data_in => d_se118_data_out ,
data_out => d_reg36_data_out);

reg37 : pipereg_25
port map(

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg37_enb ,
data_in => d_reg36_data_out ,
data_out => d_reg37_data_out);

reg38 : pipereg_25
port map¥

clk => clk ,
rst => d_sys2_pO ,
enb => c_reg38_enb ,
data_in => d_se119_data_out ,
data_out => d_reg38_data_out);

reg39 : pipereg_25
port map(

c1k => clk ,
rst => d_sys 2_pO ,
enb => c_reg39_enb ,
data_in => d _reg38_data_out ,
data_out => d_reg39_data_out);

CSW : register_9
port map(

clk => clk ,
工st => c_CSW_rst ,
enb => c_CSW_enb ,
data_in => d_PC_q ,
data_out => d_CSW_data_out);

d_sysO_pO <= "00";
d_sys1_pO く= (d_reg21_data_out & d_sysO_pO);
d_sys2_pO く= '0';
d_sys3_pO く= "11111";
d_sys4_pO <= '1';
d_sys5_pO く= ((d~reg22_data_out (31 downto 28) & d_IR_data_out(25 downto 0)) & d_sysO_pO);

d_sys6_pO <= "oooooooooooooqog";
d-sys7-PO < =(d-IR-data-out(15downtoO)&d-sys6-Po);
d_sys8_pO <= "OOOOOOOOOOOOOOOOOOOOOOO~O??OOOO" ;
d_sys9_pO く= (d_sys8_pO & d_ALUO_flag(1)) ; 、
d_sys10_pOく= (d_sys8_pO & d_NOTO_data_out);

end syn;

reg35_enb : out std_logic;
reg34_enb : out std_logic;
reg33_enb : out std_logic;
reg32_enb : out std_logic;
reg31_enb : out std_logic;
reg30_enb : out std_logic;
reg29_enb : out std_logic;
reg28_enb : out std_logic;
reg27_enb : out std_logic;
reg26_enb : out std_logic;
reg25_enb : out std_logic;
reg24_enb : out std_logic;
reg23_enb : out std_logic;
reg22_enb : out std_logic;
reg21_enb : out std_logic;
reg20_enb : out std_logic;
sel19_ctr1 : out std_logic_vector(l downto 0);
sel18_ctrl : out std_logic_vectorCl downto 0);
sel17_ctrl : out std_logic_vectorCO downto 0);
sel16_ctrl : out std_logic_vectorCO downto 0);
sel15_ctrl : out std_logic_vectorCO downto 0);
sel14_ctr1 : out std_logic_vectorC2 downto 0);
sel13 ctr1 : out std_logic_vectorCO downto 0);
sel12_ctr1 : out s七d_logic_vectorCO downto 0);
se111_ctr1 : out std_logic_vectorCO downto 0);
se110_ctr1 : out std_logic_vectorCO downto 0);
DIVO_ctr1 : out std_logic;
LO_enb : out std_logic;
LO_rst : out std_logic;
HI_enb : out std_logic;
HI_rst : out std_logic;
MULO_start : out std_logic;
MULO_ctrl : out std_logic;
SFTO_mode : out std_logic_vectorC1 downto 0);
DMEM_ext_ctr工: out std_logic;
DMEM_ac_ctrl : out std_logic_vector(l downto 0);
DMEM_req : out std_logic;
DMEM_rv : out std_logic;
EXTO_ctrl : out std_logic;
ALUO_ctrl : out std_logic_vector(4 downto 0);
ALUO_cin : out std_logic;
GPR_w_enbO : out std_logic;
GPR_reset : out std_logic;
IR_enb : out std_logic;
1R_rst : out std_logic;
PC_hold : out std_logic;
PC_reset : out std_logic;
PC_load : out std_logic;
reg20_data_out : in std_logic_vectorC31 downto 0);
sys4_pO : in std_logic;
sys2_pO : in std_logic;
ALUO_f1ag: in std_logic_vectorC3 downto 0));

end cpu_ctrl;

ー_ entity_end

C.2 VHDL Descriptionf of PEAS R3K Controller

.
，

1
ょ

1

1

1
ム

a
a

-

-
h
u

m叶
訪

日
z

e
e

-

司
ょ
.
、
ム

σ
D
F
D

o
o

--

p
u
‘

d
・

d

r
h
令
L
V
+
L
V

円
じ
S
S

?
4

・町
四
国

r

-
b
e
e

--
s
s

l
u
u
 一_ entity_begin

entity cpu_ctr1 ユs
port C

instDB : in std_logic_vectorC31 downto 0);
rst : in std_logic;
int : in std_logic;
intn: in std_l�ic_vectorC2 downto 0);
clk : in std_logic;
IR_data_out : in std_logic_vectorC31 downto 0);
MULO_fin : in std_logic;
D1VO_flag : in std_l�ic_vectorC1 downto 0);
CSW_enb : out std_logic;
CSW_rst : out std_logic;
reg39_enb : out std_logic;
reg38_enb : out std_logic;
reg37_enb : out std_logic;
reg36_enb : out std_logic;

architecture behavior of cpu_ctr1 is
type Type_Itype isCI_ADD , I_ADDI , I_ADDIU , I_ADDU , I_ANDI , I_BGEZ , I_BGEZAL , I_BGTZ , I_BLEZ , I _BLTZ ,

I_BLTZAL , I_1AND , 1_INOR , I_IOR , I_ISUB , I_IXOR , I_J , I_JAL , I_JALR , I_JR , I_LB , I_LBU , I_LH , I _LHU , I_LUI ,
I_LW ， 1_ORI ， I_SB ， I_SH ， 1_SLL ， I_SLLV ， I_SLT ， I_SLTI ， I_SLTIU ， 1_SL百人工_SRA ， I_SRAV ， I_SRL ， I_SRLV ， I_SUBU ，
I_SW ， 1_XORI ， I_MULT ， I_~江TU ， I_DIV ， I_DlVU ， I_旺百1 ， I_MFLO , LM"口II ， I_MTLO ， I _BEQ ， I_BNE ， I _S_ERR);

type Type_Interruption isCINT_reset , INT_initO);
subtype Type_Intr_Count is integer range 0 to 2;
subtype Type_interrupt_state is integer range 0 to 2;
signal inst : Type_Itype;
signa1 go : std_logic_vectorCO to 5);
signa1 valid : std_logic_vectorC1 to 5);
signal rreset : std_logic;
signal Interrupt_Step : Type_Intr_Count;

150 151

signal iinterrupt std_~ogic ~
signal interrupt_name : TrPe_I~terrupt工on ;
si広nal interrupt_state : Type_interrupt_state;
signal next_multi_st_3 : st~_logic;
signal mult工_st_3 : std_logic;
signal lock_multi_3 : s~d_logic;
signal lock_3 : ~t~_l~gic ;
;i~~l cw_2 : std_logic_vector~~~ dovnto ~~ ;
ignal cw-3 :std-log1C-vector(30 doVEtoO);

signal cw-4:std-logle-vector(9domtoO);
;i~~l cw=5 : std_1~g~c_~ector(3 downto 0);
sigual bbranch ~t~=~~g~~;
sigual lock_3_ctr~_p}J~_~~ag : s~d~lo~ic;
sigual lock_3_ctrl_MULO_fin : std_logic;
begin

go(O) く= '1' when (interrupt_state = 1) else _' ~' ;
go(l) <= validÇ~? 担d (not valid(2) or go(2));
go(2) く= valid(2) 担d(not V44d(3)or go(3));
go(3) く= valid(3) 担d (not valid(4) or go(4)) and not lock_3;
go(4) <= valid(4) 担d (not valid(5) or go(5));
go(5) く= valid(5);
CTRL: process(clk , rreset , bbranch)

begin
if(clk'event a旦d clk = '1') then

if(rreset = '1') then
valid <= "00000";

elsif(bbranch = '1') then
valid く= go(O) & "0" & valid(2 to 4);

else
valid(1)
valid(2)
valid(3)
valid(4)
valid(5)

、
‘
，
，
、‘，
，
，
、
‘
，
，
，

、
‘
，
，
，

、
‘
，
，
，
、
‘

E
J
、
、
，
，
，
、
‘
，

J

勺
L
q
d
A
H
E
E
U

J
'
t、
，
，
‘
、，
，E
、

，
，
‘、

d
d
d
d

-
1
-
1
・
1
・

1

4
4
心
心

v
v
v
v

・

d
・

d
・

d
d

担
辺
白
也

、
、
，J
、E
，
，
，
、
‘
，
，
，
、
、
』
ノ

門
4
q
u
A
せ
に
J
V

，
，
‘
、
，
，
‘
、
，
，
‘
、
，
，
.
、

0

0

0

O

F
D
F
D
F
b
g
D

+
L
V
+
L
U
+
L
M
+
l
M

o
o
o
o

n
n
n
E

，
，
‘
、
，
，
屯
、
，
，

E
、
，
，
‘
、

r
r
r
r

。
。
。

O

、
‘
，
，
〆
，
、
、

a

〆
、
、a
，J，
、
‘
，
ノ

、
、
目
，
，
、
、
.
，
，
、
、
目
，
，
、
、
.
，
，

1
1畠
2
3
4

，
，
‘
、
，，
‘
、，
，E
、
，
，
‘、

。

O

。
。

σ
白
σ
D
σ
D
σ白

d
d
d
d

也
祖
担
臼

、
‘
，
，
、‘
，
，
〆
，
、
‘
，
ノ
、
‘
，
，J,

4
1ム
内
ι
包
d
4
4&

，
，
h
、
r
，
‘
、

r
，
E
、
，
，
‘
‘
、

、

.
，

d
d

唱d
d
‘dd

、

J
-
1

エ
.

1
.

エ

O

工

1
1占
1
1
1

f
屯1、

a
a

a
a

。

v
v
v
v

F
匂
〆k
〆
k
r
k

〆
E
・
、

=
=
-
一
一
一
=

く
く
く
く
く

end i工;
end if;

end if;
end process INTERRUPT;
lock~multi_3 <= '1' when((lock_3_ctrl_DIVO_flag = '1') and (DIVO_flag(O) /= '1'))

or ((lock_3_ctrl_MULO_fin = '1') and (肌江O_fin /= '1'))
else
'0' ,
next_multi_st_3 <= '0' when go(2) = '1' else

'1' ,
肌凡T_ST : process(clk)

begin
if(clk'event and clk = '1') then

if(rreset = '1') then
mult i_st_3 く= '0';

else
multi_st_3 <= next_multi_st_3;

end if;
end if;

end process MULT_ST;
lock_3 <= lock_multi_3;

inst <=
I_ADD when (1R_data_out(31 dovnto 26) = "000000") and (IR_data_out(5 downto 0) = "100000") else
I_ADDI when (IR_data_out(31 dovnto 26) = "001000") else
I_ADDIU when (IR_data_out(31 dovnto 26) = "001001") else
I_ADDU when (IR_data_out(31 dovnto 26) = "000000") and (IR_data_out(5 dovnto 0) = "100001") else
I_ANDI when (IR_data_out(31 dovnto 26) = "001100") else
I_BGEZ when (IR_data_out(31 dovnto 26) = "000001") and (IR_data_out(20 dovn七o 16) = "00001") else
I_BGEZAL when (IR_data_out(31 dovnto 26) = "000001") and (IR_data_out(20 downto 16) = "10001") else
I_BGTZ when (IR_data_out(31 dovnto 26) = "000111") 担d (IR_data_out(20 dovnto 16) = 吻0000") else
I_BLEZ when (IR_data_out(31 dovnto 26) = "000110") 担d (IR_data_out(20 downto 16) =勺0000") else
I_BLTZ when (IR_data_out(31 downto 26) =勺00001") and (IR_data_out(20 downto 16) =勺0000") else
I-BLTZAL when (IR_data_out(31 downto 26) = "000001") and (IR_data_out(20 downto 16) = "10000") else
I_IAND when (IR_data_out(31 downto 26) =吻00000") and (IR_data_out(5 downto 0) = "100100") else
I_INOR when (IR_data_out(31 downto 26) =勺00000") and (IR_data_out(5 downto 0) = "100111") else
I_IOR when (1R_data_out(31 downto 26) =吋00000") and (IR_data_out(5 downto 0) = "100101") else
I_ISUB when (IR_data_out(31 downto 26) =勺00000") and (IR_data_out(5 downto 0) = "100010") else
1_IXOR when (IR_data_ou七 (31 downto 26) =勺00000") and (IR_data_out(5 dovnto 0) = "100110") else
I_J when (IR_data_out(31 downto 26) = "000010") else
1 JAL when (1R_data_out(31 downto 26) = "000011") else
1=JALR when (工R_data_out(31 downto 26) =勺00000") and (1R_data_out(5 downto 0) =勺01001") else
I_JR when (1R_data_out(31 downto 26) = "000000") 担d (IR_data_out(5 downto 0) = "001000") else
1_LB when (IR_da七a_out(31 downto 26) = "100000") else
1_LBU when (1R_data_out(31 downto 26) = "100100") else
I_LH when (IR_data_out(31 downto 26) = "100001") else
I_LHU when (IR_data_out(31 downto 26) = "100101") else
I_LUI when (1R_data_out(31 downto 26) = "001111") else
I_LW when (IR_data_out(31 downto 26) = "100011") else
1_OR1 when (1R_data_out(31 downto 26) = "001101") else
1_SB when (1R_data_out(31 downto 26) = "101000") else
1 SH when (1R_data_out(31 downto 26) = "101001") else
I;s斗 when (1R_data_out(31 downto 26) = "000000") 祖d (1R_data_out(5 downto 0) =勺00000") else
ピSLLV when (IR_data_out(31 downto 26) = "000000") 担d (1R_data_out(5 downto 0) =勺00100") else
1=SLT when (1R_data_out(31 downto 26) = "000000つ担d (1R_data_out(5 downto 0) = "101010") else
I_SLT1 when (工R_data_out(31 downto 26) = "001010") else
I_SLT1U when (IR_data_out(31 downto 26) = "001011") else
ILsL百J when (1R_data_out(31 downto 26) =勺00000") 組d (1R_data_out(5 downto 0) = "101011") else
1-SRA when (IR_data_out(31 downto 26) = "000000") and (1R_data_out(5 downto 0) =勺00011") else
I:SRAV when(IR-datιout(31 downto 26) =勺00000") and (IR_data_out(5 downto 0) =勺00111") else
I;sE, when (IR-data-Out (31domto26)="000000")and (IR-data-out <5domto O)="000010り else
LSRLV when (1えdata_out(31 downto 26) = "000000") and (IR_data_out(5 downto 0) = "000110") else
1_SUBU when (1R_data_out(31 downto 26) = "000000") 祖d (1R_data_out(5 downto 0) = "100011") else
1_SW when (IR_data_out(31 downto 26) = "101011") else
1 XOR1 when (1R_data_out(31 downto 26) = "001110") else
1_照江T when (1R_data_out(31 downto 26) =勺00000") 祖d (IR_data_out (5 downto 0) = "011000") else
LM1九百J when (1R_data_out(31 downto 26) = "000000") and (1R_data_out(5 downto 0) = "011001り else
1=D1V when (1R_data_outC31 downto 26) = "000000") and (1R_data_out(5 downto 0) = "011010") else
1_D1VU when C1R_data_out(31 dovnto 26) =勺00000") and (1R_data_out(5 downto 0) = "011011") else
L旺百1 when (1R_data_outC31 dovnto 26) = "000000") and (IR_data_out(5 dovnto 0) = "010000") else

end if;
if(rreset = '0') then
end if;

end if;
end process CTRL;

1NTERRUPT: process(clk)
bel!in

Îf (clk'event 祖d clk = '1') then
if(ロeset = '1') then

interrupt_state <= 0;
Interrupt_Step <= 1;
interrupt_name <= INT_reset;

elsif(int靡rupt_state = 0) then
if(Ì~t~~~pt_Step = 1) 担d (interrupt_name = 1NT_reset) then

1nterrupt_Step く= 0;
interrupt_state く 1 ;

elsif(1nt靡rupt_Step = 1) 担d (interrupt_na皿e = 1NT_initO) then
In七errupt_Step く 0;
interrupt_state <= 1;

else
Interrupt_Step く= 1nterrupt_Step + 1;

end if;
elsifCinterrupt_state = 1) then

if (rst='l') orCint = '1' and i凶n = "000") then
interrupt_state く= 2;

end if;
if (rst='l') then

interrupt_name <= INT_reset;
elsif (int = '1' and intn = "000") then

interrupt_name <= IN・I・_initO;

end if;
else

if(valid = "00000") then
1nterrupt_Step <= 1;
interrupt_state く= 0;

152 153

1 MFLO yhen (1R_data_out(31 dOYnto 26) =吋00000") and (1R_data_olユt(5 dOYnto 0) =勺10010") else
fM百f1 yhen (1R_data_out(31 dOYnto 26) =吋00000") and (IR_data_out(5 dOYnto 0) = "010001") else
fMT工o yhen (1R_data_out(31 dOYnto 26) =吋00000") and (IR_data_out(5 dOYnto 0) =勺10011") else
1_BEQ yhen (1R_data_out(31 doYn七o 26) =勺00100") else
1-BNﾈ yhen (IR_data_out(31 dOYnto 26) = "000101") else
1 S_ERR:
示:2(35) <= '1' yhen (inst = 1_ADD1) or (inst = 1_ADD1U) or (工nst = 1_BGEZ) or (inst = 1_BGEZAL) or
(i~~t = 1_BGTZ) or (inst = 1_BLEZ) or (inst = 1_BLTZ) or (土nst = 1_BLTZAL) or
鑛nst = 1=LB) or (inst = 1_LBU) or (inst = 1_LH) or (inst = I_L肌J) 0工
(inst=I-LW)or(1nst=I-SB)oz(inst=I-SH)or(inst=I-SLTI> oz
(Last =I-SLTIU)or(1nst=I-SM)oz(inst=I-BEQ)or(1nst=I-BNE)

else
,'" .
CYーを (34) く= '1' yhen (inst = 1_J) or (inst = 1_JAL) else
,^,
Lーを (33) く= '1' yhen (inst = 1_ADD) or (inst = 1_ADDU) or (inst = 1_1AND) or (inst = 1_1NOR) or
(inst=I-IOR)or(Inst=I-ISUB)or(1nst=I-IXOR)or(inst=I-SLL)or
(inst = 1_SLLV) or (inst = 1_SLT) or (inst = I_SL叩) or (inst = 1_SRA) or
(ins七 =I-SRAV)or (inst=I-SRL)or(12st=I-SRLV)oz(12st=I-SUBU)or
(工nst = 1_町H1) or (inst = 1_貯LO) else
, f、， .
ふーを (32) く= '1' yhen (inst = 1_ADD) or (inst = 1_ADDU) or (inst = 1_1AND) or (inst = 1_1NOR) or

(12st=I-IOR)or(inst=I-ISUB)or(12st=I-IXOR)or(1nst=I-SLT> oz
(1nst=LSLRJ)or(inst=LSUBU)oz(ust=LBEQ)or(1nst=LBNE)

else
,^' .
c~_2(31) <= '1' yhen (inst = 1_SLL) or (ins七= 1_SRA) or (inst = 1_SRL) else
"、， .
ciG(30) く= '1' when (inst = 1_J) or (inst = 1_JAL) or (inst = 1_JALR) or (inst = 1_JR)

else

;:3(29) く= '1' when (inst = 1_1SUB) or (inst = 1_SLT) or (inst = 1_SLT1) or (山t =リロ1U) or
(inst = LSL叩)or (last =LSUBU)or(inst=LBEQ> or(inst=LBNE>
else

，(、， .
Lーを (28) く= '1' when (inst = 1_1XOR) or (inst = 1_XORI) or (inst = I_ADD) or (inst = I_ADD1) or
(i;;t-~'1_ADD1U) or (inst = 1_ﾃDDU) or (inst = 1_LB) or (inst = 1_LBU) or
(ins七= 1_LH) or (inst = I_U町) or (inst = 1_LW) or (inst = 1_SB) or
(inst = 1_SH) or (inst = I_SW) else
,^' .
ょを (27) く= '1' yhen (inst = 1_SLTU) or (inst = I_ISUB) or (inst = 1_SLT) or (inst = I_SLT1) or
(i~~t ="1_SLTIU) or (inst = 1_SUBU) or (inst = I_BEQ) or (inst = 1_BNE) or
(inst = 1_AND1) or (inst = 1_1AND) else

C::j(26) く= '1' ぬ阻 (inst = 1_18UB) or (inst = I_SLT) or (inst =ロLT1) or (inst = 1_SLT1U) or
(inst = 1_SUBU) or (inst = 1_BEQ) or (inst = 1_BNE) or (inst = 1_1NO~2. or
èi~st = 1=BGEZ) or (inst = 1=BGTZ) or (inst = 1_BLEZ) or (inst = 1_ADD) or
(12st=I-ADDI)or(12st=I-ADDI11)or(12st=I-ADDU)or(inst=I-LB)or
鑛nst = 1=LBU) or (inst = 1_LH) or (inst = I_LHU) or (inst = 1_LW) or
(inst = 1_8B) or (inst = 1_SH) or (inst = 1_SW) else
1 (、 1.

cii(25) < ='13when (inst=IJXOR)or(inst=LXORI)or(12st=LIOR)or(inst=LORI)or
(inst = 1_INOR) or (inst = I_AND1) or (inst = 1_IAND) else
'0' :
cw_2(24) く= '1' yhen (inst = 1_SRA) or (inst = I_SRAV) else
,^' .
cA-4(23) く= '1' when (inst = 1_SRL) or (inst = I_SRLV) or (inst = I_SRA) or (inst = I_SRAV)

else
'0' ;
cw_2(22) <= '1' when (inst = 1_M1九T) else
'0' ;
cw_2(21) <= '1' when (inst = 1_D1VU) else
'0' :
cw_2(20) <= '1' 油en (inst = 1_BGEZ) or (inst = 1_BGEZAL) else
'0' ;
cw_2(19) く= '1' when (inst = 1_BGTZ) else
'0' ,
cw_2(18) く= '1' when (inst = 1_BLEZ) else
'0' ,

154

cy_2(17) <= '1' when (inst = 1_BLTZ) or (inst = 1_BLTZAL) else
'0' ・

cw_2(16) <= '1' when (inst = 1_BEQ) else
'0' ;
cy_2(15) く= '1' when (inst = 1_BNE) else
'0' ,
cy_2(14) く= '1' yhen (inst = 1_ADD) or (inst = 1_ADD1) or (inst = 1_ADD1U) or (inst = 1_ADDU)οz
(inst = 1_AND1) or (inst = 1_1AND) or (inst = 1_1NOR) or (inst = 1_10R) or
(inst = 1_1SUB) or (inst = 1_1XOR) or (inst = 1_OR1) or (inst = 1_SUBU) or
(inst = 1_XOR1) or (inst = 1_SLL) or (inst = 1_SLLV) or (inst = 1_SRA) or
(inst = 1_SRAV) or (inst = 1_SRL) or (inst = 1_SRLV) or (inst = 1_SLT1U) or
(ins七= LSL叩) or (工nst = 1_MFLO) else
'0' ;
cy_2 (1 3) く= '1' yhen (inst = I_ADD) or (inst = 1_ADD1) or (inst = 1_ADD1U) or (inst = 1_ADDU) or
(inst = 1_AND1) or (inst = 1_1AND) or (inst = 1_1NOR) or (inst = 1_10R) or
(inst = 1_1SUB) or (inst = 1_1XOR) or (inst = 1_OR1) or (inst = 1_SUBU) or
(inst = 1_XOR1) or (inst = 1_BGEZAL) or (inst = 1_BLTZAL) or (inst = 1_JAL) or
(inst = 1_JALR) or (inst = 1_SLT1U) or (inst = 1_SL叩) or (inst = 1_町H1)
else
'0' ;
cy_2(12) く= '1' when (inst = 1_ADD) or (inst = 1_ADD1) or (inst = 1_ADD1U) or (inst = 1_ADDU) or
(inst = 1_AND1) or (inst = 1_1AND) or (inst = 1_1NOR) or (inst = 1_10R) or
(inst = 1_1SUB) or (inst = 1_1XOR) or (inst = 1_OR1) or (inst = 1_SUBU) or
(inst = 1_XOR1) or (inst = 1_BGEZAL) or (inst = 1_BLTZAL) or (inst = 1_JAL) or
(inst = 1_JALR) or (inst = 1_SLL) or (inst = 1_SLLV) or (inst = 1_SRA) or
(inst = 1_SRAV) or (inst = 1_SRL) or (inst = 1_S町.V) or (inst = 1_SLT) or
(inst = 1_SLT1) else
'0' ,
cy_2 (1 1) く= '1' yhen (注目= 1_D1V) or (inst = 1_D1VU) else
'0' ,
cw_2 (1 0) く= '1' when (inst = 1_ffi凡T) or (inst = 1_ffi凡叩) else
'0' ,
C苛ー2(9) く= '1' 百hen (inst = 1_SB) or (inst = 1_SH) or (inst = 1_SW) else
'0' ,
cw_2(8) く= '1' when (inst = 1_LB) or (inst = 1_LBU) or (inst = 1_LH) or (inst = 1_U町) or
(inst = 1_LW) or (inst = 1_SB) or (inst = 1_SH) or (inst = 1_SW)
else
'0' ,
cw_2(7) <= '1' when (inst = 1_LW) or (inst = 1_SW) or (inst = 1_LH) or (inst = 工ーL肌1) or
(inst = 1_SH) else
'0' ,
cw_2(6) <= '1' when (inst = 1_LW) or (inst = 1_SW) else
'0' ;
cw_2(5) く= '1' when (inst = 1_LB) or (inst = 1_LH) or (inst = 1_SB) or (inst = 1_SH)
else
'0' ;
cy_2(4) く= '1' when (inst = 1_LB) or (inst = 1_LBU) or (inst = 1_LH) or (inst = 1_口町) or
(inst = I_LW) else
'0' ,
cw_2(3) <= '1' when (inst = 1_ADD) or (inst = 1_ADD1) or (inst = 1_ADD1U) or (inst = 1_ADDU) or
(inst = I_AND1) or (inst = 1_BGEZAL) or (inst = 1_BLTZAL) or (inst =工_1AND) or
(inst = 1_1NOR) or (inst = 1_10R) or (inst = 1_1SUB) or (inst = 1_1XOR) or
(inst = I_JAL) or (inst = 1_JALR) or (inst = 1_LB) or (inst = 1_LBU) or
(inst = 1_LH) or (inst = I_LHU) or (inst = 1_LU1) or (inst = 1_LW) or
(inst = 1_OR1) or (inst = 1_SLL) or (inst = 1_S比V) or (inst = 1_SLT) or
(inst = 1_SLT1) or (inst = 1_SLT1U) or (inst = 1_SL叩) or (inst = 1_SRA) or
(inst = 1_SRAV) or (inst = 1_SRL) or (inst = 1_SRLV) or (inst = 1_SUBU) or
(inst = 1_XOR1) or (inst = 1_町田) or (inst = 1_MFLO) else
'0' ;
cw_2(2) <= '1' when (inst = 1_MULT) or (inst = 1_阻止TU) or (inst = 1_D1V) or (inst = I_D1VU) or
(ins七= LMTHI) else
'0' ;
cy_2 (1)く= '1' when (inst = 1_阻止T) or (inst = 1_阻止叩) or (inst = I_D1V) or (inst = I_D1VU) or
(inst = 1_MTLO) else
'0' ;
cy_2(0) く= '1' when (inst = 1_BGEZAL) or (inst = 1_BLTZAL) or (inst = 1_JAL) or (inst = 1_JALR)
else
'0' ,

lock_3_ctrl_MULO_fin <= '0' when valid(3) = '0' else

155

cy_3(10) ;
l o ck_3_ctrl_DIVO_flag く= '0' when valid(3) = '0' else

cw_3(11);
bbranch く= '0' when go(3) = '0' else

'1' yhen (ALUO_flag(2) = sys2_pO) 祖d cy_3(15) = '1' else
'1' yhen (ALUO_flag(2) = sys4_pO) 祖d cy_3(16) = '1' else
'1' yhen (reg20_data_out(31) = sys4_pO) 担d cw_3(17) = '1' else
'1' yhen (reg20_data_out(31) = sys4_pO or ALUO_flag(2) = sys4_pO) 臼d cw_3(18) = '1' else
'1' yhen (reg20_data_out(31) = sys2_pO and ALUO_flag(2) = sys2_pO) and cw_3(19) = '1' else
'1' when (reg20_data_out(31) = sys2_pO) and cw_3(20) = '1' else
cw_3(30);
PC_load く= '0' yhen go(3) = '0' else

'1' when (ALUO_flag(2) = sys2_pO) 担d cy_3(15) = '1' else
'1' yhen (ALUO_flag(2) = sys4_pO) a且d cy_3(16) = '1' eユse
'1' when (reg20_data_out(31) = sys4_pO) and cy_3(17) = '1' else
'1' when (reg20_data_out(31) = sys4_pO or ALUO_flag(2) = sys4_pO) 担d cw_3(18) = '1' else
'1' yhen (reg20_data_out(31) = sys2_pO 回d ALUO_flag(2) = sys2_pO) 祖d cy_3(19) = '1' else
'1' yhen (reg20_data_out(31) = sys2_pO) and cy_3(20) = '1' else
cw_3(30);
PC_reset く= '1' yhen (Interrupt_Step = 1) 臼d ((Interrupt_name = INT_reset)) else

'0' ,
PC_hold <= '1' yhen go(l) = '0' else

'0' ,
IR_rst く= '1' yhen (Interrupt_Step = 1) 担d ((Interrupt_name = INT_reset)) else

'0' ,
IR_enb <= '0' when go(l) = '0' else

'1' ,
GPR_reset く= '1' yhen (Interrup七_Step = 1) 担d ((Interrupt_name = INT_reset)) else

'0' ,
GPR_w_enbO く= '0' yhen go(5) = '0' else

cy_5(3);
ALUO_cin く= cy_3(29);
ALUO_ctrl く= cw_3(25) & cy_3(26) & '0' & cy_3(27) & cw_3(28);
EXTO_ctrl く= cw_2(35);
DMEM一回 <= '0' when go(4) = '0' else

cw_4(9);
D肥M_req く= '0' when go(4) = '0' else

cw_4(8)j
DMEM_ac_ctrl く= cw_4(6) & cw_4(7);
DMEM_ext_ctrl <= cw_4(5);
SFTO_mode <= cw_3(23) & cw_3(24);
阻止O_ctrl <= cw_3(22);
MULO start <= '0' when multi st 3 = '1' else

cw_3(10);
HI_rst <= '1' when (Interrupt_Step = 1) and ((Interrupt_name = INT_reset)) else

'0' ;
HI_enb く= '0' when go(5) = '0' else

cw_5(2);
LO rst <= '1' when (Interrupt_Step = 1) 臼d ((Interrupt_name = INT_reset)) else

'0' ,
LO_enb く= '0' when go(5) = '0' else

cw_5(1);
DIVO_ctrl <= cw_3(21);
sel10_ctrl く= cw_2(34 downto 34);
selll_ctrl <= "1" when (reg20_data_out(31) = sys2_pO) and cw_3(20) = '1' else

"1" when (reg20_data_out(31) = sys2_pO and ALUO_flag(2) = sys2_pO) and cw_3(19) = '1' else
"1" when (reg20_data_out(31) = sys4_pO or ALUO_flag(2) = sys4_pO) and cw_3(18) = '1' else
"1" when (reg20_data_out(31) = sys4_pO) and cw_3(17) = '1' else
"1" when (ALUO_flag(2) = sys4_pO) and cy_3(16) = '1' else
勺" when (ALUO_flag(2) = sys2_pO) 祖d cw_3(15) = '1' else
"0";

se工 12_ctrl く= cw_2(33 downto 33);
se113_ctrl く= cw_5(0 downto 0);
se114_ctrl <= cw_3(12) & cw_3(13) & cw_3(14);
se115_ctrl く= cw_4(4 downto 4);
sel16_ctrl <= cw_2(32 downto 32);
se117_ctrl く= cy_2(31 downto 31);
se118_ctrl く= cw_3(10) & cw_3(11);
sel19_ctrl <= cw_3(10) & cw_3(11);

156

reg20_enb く= '0' when go(2) = '0' else
'1' ;
reg21_enb <= '0' when go(2) = '0' else

'1' ;
reg22_enb く= 'Q' when go(1) = '0' else

'1' ,
reg23_enb く= '0' when go(2) = '0' else

'1' ,
reg24_enb く= 'Q' when go(3) = '0' else

'1' ;
reg25_enb <= '0' when go(2) = '0' else

'1' ,
reg26_enb <= '0' when go(2) = '0' else

'1' ;
reg27_enb く= '0' when go(3) = '0' else

'1' ;
reg28_enb <= '0' when go(2) = '0' else

'1' ;
reg29_enb く= '0' when go(2) = '0' else

'1' ;
reg30_enb く= '0' when go(3) = '0' else

'1' ;
reg31_enb <= '0' when go(4) = '0' else

'1' ;
reg32_enb <= '0' when go(3) = '0' else

'1' ;
reg33_enb <= '0' when go(4) = '0' else

'1' ;
reg34_enb <= '0' when go(2) = '0' else

'1' ;
reg35_enb く= '0' when go(2) = '0' else

'1' ;
reg36_enb く= '0' when go(3) = '0' else

'1' ,
reg37_enb <= '0' when go(4) = '0' else

'1' ,
reg38_enb く= '0' when go(3) = '0' else

'1' ;
reg39_enb く= '0' when go(4) = '0' else

'1' ;
CSW_rst <= '1' when (Interrupt_Step = 1) 担d ((Interrupt_name = INT_reset)) else

'0' ,
CSW_enb く= '1' when (Interrupt_Step = 1) and ((Interrupt_name = 1町T_initO)) else

'0' ;
rreset <= '1' when (rst='l') else '0';
PIPE_REG_CTRL: process(clk)

begin
if(clk'event and clk = '1') then

if(go(2) = '1') then
cw_3 く= cw_2(30 downto 0);

end if;
if(go(3) = '1') then

cw_4 <= cw_3(9 downto 0);
end if;
if(go(4) = '1') then

cw_5 <= cw_4(3 downto 0);
end if;

end if;
end process PIPE_REG_Cτ'RL;

end behavior;

157

List of お1ajor Publications of the
Author

J ournal Papers

[1] Makiko Itoh, Ak仁i比C】hi註ik凶a Shiom凶i ， Jt叩 S仇atω0 ， Yoωshi山i∞ri Tal則

Imai仁: “"Procωes岱soぽr Generation Method for Pi単peli凶ned Processors in Consideraｭ

tion with Pipeline Hazardsピ?Jう" τransactions on Information Processing Society

of Japan, Vol. 41 , No. 4, pp. 851-862, Apr. 2000ヲ (in japanese).

[2] Makiko Itoh, Yoshinori Takeuchi, Masaharu Imai and Akichika Shiomi: “Syn

thesizable HDL Generation for Pipelined Processors 台om a MicrかOperation

Description," IEICEτransactions on Fundamentals of Electronics, Communiｭ

cations and Computer Sciences, Vol. E83-A, No. 3, pp. 394-400, Mar. 2000.

International Conference Papers

[伊問3司] Ma北ki込氷k仁o Ito油h， Shig伊ea叫北ki Hi氾ga北ki ，ヲ Jun Sa叫もoa吋 Aki比chikμaS白hiぬom凶i ， YoωSぬhin

Akira Ki比ta勾jima， Ma邸sal油ha紅IU Ima白紅i仁: “ PEAS-I口II: An AS釘IP Design Env吋lronr立ment ，"

IEEE International Conference on Computer Design: VLSI in Computers &

Processors, pp. 430-436, Sept. 2000.

[4] Akira Kitajima, Makiko Itoh, Jun Sato, Akichika Shiomi, Yoshinori Takeuchi

and Masaharu Imai: “Effectiveness of the ASIP Design System PEAS-III in

Design of Pipelined Processors," Asia South Pacific Design Automation Conｭ

ference 2001 (ASP心AC 2001) , Jan. 2001 (to appear)

159

National Conference Papers

[5] Makiko Itoh, Yoshinori Takeuchi, Masaharu Imai and Akichika Shiomi: “A

Synthesizable HDL Generation Method for Pipelined Processor using microｭ

operations," Proc. of 12th Karuizawa Workshop on Circuits and Systems, pp.

121-126, Apr. 1999 ヲ (in japanese).

[伊附6司] Mal北kikωo 1toh, YoωSぬhi∞ ri Takeu恥chi ， Ma

h凶iro Ao句y屯閣a訂m旧a:ゾ‘"Procωes岱soぽr Architecture Description Generation 仕om a Behavｭ

ioral Semantics Description of Ins坑tructions ，円 Proc. of 11th Karuizawa Workｭ

shop on Circuits and Systems, pp. 475-480, Apr. 1998, (in japanese).

[7] Makiko Itoh, Shigeaki Higaki, Akichika Shiomi, Jun Sato, Yosh匤ori Takeuchi

and Masaharu 1mai: “A Synthesizable HDL Generation Method for Pipelined

Processors in Consideration of Pipeline Hazard," Proc. of Design Automation

Symposiumヲ pp. 201-206 , July 1999ヲ (in japanese).

[附8司] Ma叫はki氷ikoおo Itoωoh ， y4泊os油hi凶no∞ri T，羽'ake飢叩u山叫1民chi ， Ma部sal凶t

S坑tructiぬon Set Processor Synthesis Method based on Behavioral Semantics Deｭ

S悶C口n刷pμtionα∞n" ， 1凹E日1CE Technical Report , VLD 97-89, pp. 77-84, Oct. 1997, (in

japanese).

[問9到] Mal北ki比ko 1toωoh ヲ YoωSぬhin

hir叩o Aoyama:ソ"Processor Design Methodology based on a Behavioral Semanｭ

tics Description of 1nstructions," Proc. 1EICE Fall Conf. '97ヲ A-3- 7 ， Sept.

1997, (in japanese).

[10] Shige北i Higaki, Makiko 1toh, Jun Sato, Yoshinori Take凶lÌ and Masaharu

Imai: “Proposal of an HD L Generation Method for Pipeline Processors with

Out-of-order Completion," IPSJ SIG Notes, 99-SLDM-93 Vo1.99, No.101 , pp.

71-78, Nov. 1999, (in japanese).

160

	
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089

