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1. Introduction

Let (M;, ;) be a dynamical system on a manifold M; with a cross-section
X;, where &; is the flow-structure, i=1, 2. To (M,, &F;) the associated dif-
feomorphism f;: X, — X, is defined. ~

By S. Smale ([8], [9]), it is shown that if f, and f, are differentiably or
topologically conjugate by a map k: X, — X,, then (M,, &,) and (M,, &F,) are
differentiably or topologically equivalent respectively.

The main purpose of this paper is to show the converse of the above fact
under some conditions, that is; under the assumption that there exists no ho-
momorphism of the fundamental group of one of the two cross-sections onto
the infinite cyclic group, (M,, &,) and (M,, &F,) are differentiably or topologi-
cally equivalent if and only if £, and f, are defferentiably or topologically conjugate
respectively (Theorem 4.1).

Furthermore we shall show an example of a pair of dynamical systems
(M,, &) and (M,, &F,) with cross-sections X, and X, respectively such that the
fundamental group of X, is isomorphic to the infinite cyclic group, and that
(M,, &,) and (M,, &,) are differentiably equivalent but the associated diffeo-
morphisms are not conjugate (§4).

As an application of Theorem (4.1), we shall show in §5 that for a given X
satisfying the condition stated above concerning its fundamental group, there is
a natural correspondence between the equivalence classes of dynamical systems
(M, F) with the cross-section X and the equivalence classes of smooth fibre
bundles over S* with the fibre X (Theorem 5.3).

Another appiication will be shown in §6; that is classification of dynamical
system on S”x S'4 5"+ with cross-section, where $”*' denotes any homotopy
sphere (Theorem 6.6). Here, it is essential that T"*** classifies the differentiably
conjugate classes of diffeomorphisms on S™.

The author wishes to express his sincere gratitude to Professors Y. Saito,
Y. Shikata and T. Ura who offered helpful advices.



420 G. IkEcAMI

2. Terminology

Throuout this paper, all manifolds considered will be assumed to be compact
and differentiable (C*).

A dynamical system or a flow & on a manifold M is a 1-parameter group of
transformations @ of M, where ¢ is a C~-map @: RXM— M (R; the real
numbers) such that if we put @,(¥)=e(¢, x), then

(1) o) =x

(ll) ¢t+s(x) =Ps ¢s(x) ’
and g, is a diffeomorphism (M, M) — (M, 0M). Here dM is the boundary of M.

By a pair (M, ) we mean a dynamical system & on a manifold M. (M,
%,) and (M,, F,) are said to be differentiably (topologically) equivalent if there
is a diffeomorphism (homeomorphism) #: M,— M, having the property that A
maps every orbit of &, onto an orbit of &, preserving the orientation. Such a
map k will be called an equivalence.

Two diffeomorphisms (homeomorphisms) f,: M, — M, and f,: M,— M, are
said to be differentiably (topologically) conjugate if there exists a diffeomorphism
(homeomorphism) A: M, — M, such that Af,=fh.

A cross-section of a dynamical system (M, &) or (M, @) is a compact con-
nected submanifold X of codimension 1 of M such that X oM, and that

(i) X intersects every orbit,

(i1) the intersection of X with each orbit is transversal,

(ii1) if xe X, there is a t>0 with ¢,(x)= X, and

(iv) if x€ X, there is a <0 with p,(x)= X.

There can be no singular point of (M, &) if there is a crosssection. 9X=¢ if
0M=¢, and X is properly imbedded in M, i.e. 0.X COM and Int X cInt M.
By (M, &; X) we mean a dynamical system & on a manifold M having a cross-
section X.

For (M, &F; X) we can define a map f: X— X by f(x)=¢,(x) where {, is
the smallest positive ¢ satisfying ¢, (x)X. f: X— X is a diffeomorphism; we
call f the associated diffeomorphism of (M, F ; X).

Conversely, suppose that a diffeomorphism f of X onto itself is given. De-
fine a diffeomorphism 7: RXX—>RXX by 7(¢, x)=(t+1, f7(x)). Then the
infinite cyclic group {r”}=Z operates freely on Rx X and the orbit space
(RxX)/Z is a manifold, say M,. The flow yr,: RXX—RXX defined by
Vro(u, x)=(u-+1t, x) induces a flow ¢, on M,. We call this (M,, @,) the suspension
of f. M, has a cross-section X ;=¢(0x X)c M,, where g: RxX— M, is the
quotient map.

The following properties are shown by S. Smale ([7] or [8]).

(2.1)  The associated diffeomorphism of (M,, p,; X,) is differentiably conjugate
to the given f.
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Furthermore

(2.2) if (M', pl; X') is the suspension of the associated diffeomorphism of a
dynamical system (M, @,; X), then (M, @,) and (M', @') are differentiably equivalent
(by an equivalence mapping X onto X').

(2.3) Let (M,, &F,), (M,, &F,) be the suspensions of f,: X,— X,, [, X,— X,
respectively. If f, and f, are differentiably (topologically) conjugate, then (M,, F,)
and (M,, &) are differentiably (topologically) equivalent.

3. Lemmas

Suppose that A: M'— M is a differentiable (topological) equivalence be-
tween (M', F'; X') and (M, F; X). Let f: X— X be the associated diffeo-
morphism of (M, &F; X). Let p: RXX—X be the natural projection and
¢: Rx X— M, the quotient map to the suspension M, of f. Using (2.2), we
consider % to be a differentiable (topological) equivalence: M’ — M,. Put
X,=hX'c M, and let X, be a connected component of ¢g~*(X,). Then we have
the following lemmas.

Lemma (3.1). ¢|X,: X,— X, is a covering. If h is a differentiable equi-
valence, then q| X, is a smooth covering map.

Proof. ¢: RX X — M, is a covering, furthermore ¢ is a smooth covering.

Since X, is a properly imbedded submanifold of M, and since ¢: (RX X,
(X))~ (M, X,) is a local homeomorphism, X, is a proper submanifold of
RxX. Since ¢(0X,)c0X,, ¢(Int X,)cInt X,, and since ¢ is a local homeomor-
phism, the image ¢(X,) is a proper compact submanifold of X, with co-
dimension 0. Therefore, q|X,: X,— X, is an onto map.

Therefore it is easy to see that ¢| X,: X,— X, is a covering and that if % is
a differentiable equivalence, then it is a smooth covering.

Lemma (3.2). If X, is compact, then p|X,: X,— X is a covering. If h

is a differentiable equivalence p| X, is a smooth covering.

Proof. Since X' has transversal intersection with the flow in M’, and since
h and ¢ are local homeomorphisms mapping orbit onto orbit, X; has transversal
intersection with the flow of Rx X. Hence, p|X,: X,— X is a local homeo-
morphism. Furthermore, as in (3.1), X, is a proper submanifold of Rx X, and
p: RXxX— X maps boundary into boundary and maps interior into interior.
Hence, p(X,) is a proper submanifold of X with codimension 0. Therefore,
p| X, is an onto-map.

For each x in X and each %, X, in p7'(x) let U(X)eX, be a neighbour-
hood such that p| U(%;) is a homeomorphism and that if ;%% , %;, %,€p™'(%),
then U(%,)N l7(5c‘j)=q5, and let Uy (x)C X be the homeomorphic image of U(%;)
by p. Since X, is compact, it is clear that p~*(x) is a finite set. Put
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W) = 0 U)
and
w(z) = (p' W)n U(x,) .
Then, W(x) and W(%;) satisfy the usual conditions for covering.
This proves that p| X,: X,— X is a covering.
Let h: M'—- M, X,, g, and X,c Rx X be the same as in (3.1). It should

be noted that one and only one of the two assumptions in the following lemmas

(3.3) and (3.4) holds.

Lemma (3.3). If there is t,>0 such that (tx X)N X,=¢ for every t with
|t|>t,, then q| X, is a diffeomorphism or a homeomorphism onto X, according that
h is a differentiable or topological equivalence.

Proof. Suppose there are two points u, v X, such that g(u)=¢(v)E X,.
Then for some integers i, j, (=), some 0=<t<1, and some x X, we have

u = 7'(t, x) v =1/(t, x),
where 7: RX X—RX X is defined, as in §2, by (¢, x)=(t+1, f~(x)) (so that
(¢, x)=(t+1, f#(x))). We may suppose i<j.
As X, is connected, there is a simple arc C,: I— Rx X such that
C(s)eX, forany 0=<s=<1,
Cy(0) = u = 7(2, x),
C(l) =v=1/(t, x).
Next, for any integer r, we can define an arc C,: I - RXx X by
C,(s) = 779D C(s) .

Clearly C,(0)=C,_,(1) and ¢C,=qC, for any r, whence C,(I)c ¢ X, for any r
and UC,(I) is connected. Hence UC,(I)cX,, where C,(0)e(t+i+r(j—i))

x X. Therefore X, does not satisfy the hypothesis of the lemma. This implies
that the covering map ¢|X;: X,— X, is a diffeomorphism or a homeomorphism,
by (3.1), according that % is differentiable or topological. This completes the
proof of (3.3).

Lemma (3.4). If for any t,>0, there is a teR such that |t|>1, and
(tx X)N X, %=, then the covering of (3.1): X,— X, is a regular covering with a
transformation group isomorphic to Z.

Proof. By the assumption, the covering is not trivial, since X, is not
compact but X, is compact. Let x,& X, be a base point of X,. If %,%'eX,
N ¢ '(x,), then, by the definition of g, ¥'=+"% for some integer m.
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Next, we shall show that this 7™ is a covering transformation of the covering:
X,— X, Let 7 be any point in X,. Since X, is connected, there is an arc
C with the ends % and §. 7”C is an arc in ¢~ 'X, with the ends ' and 7" 7.
Since %’ X, and X, is connected, we have 7<= X,. Furthermore ¢gr™y=g7.
Hence 7 is a covering transformation of this covering.

Therefore X, — X, is a regular covering.

Let 7 be the smallest positive integer such that 7= X,. We shall show
that for any integr k, ™ %<X,. Let C be an arc with the ends % and *%.
Then, by repeating the argument above, 7* »Cc X, if >0 and %C c X, if
k<0. Therefore ¥z X,.

Further we shall show that for any point 7”% in the fibre over x,, m=ki
for some integer k. Generally, we put m=ki+h, where &, h are integers and
0<h<i. If k=0, 7"% must exist in X, as above; it is a contradiction to the
property of z. 'Therefore m=~ki.

Hence the transformation group of the regular covering is isomorphic to Z.
This completes the proof of (3.4).

Let (M, &F; X) and (M’, &'; X’) be the suspensions of some C~-automor-
phisms (diffeomorphisms) on X and X" respectively. Suppose that there exists
a topological equivalence of dynamical systems, ~: M'— M. Let g: RXX—M,
p: Rx X — X and X, be the same as these in (3.1) and (3.2). And put ¢,=¢| X,.

Lemma (3.5). Suppose that X, satisfies the condition of (3.3), so that
4o Xo—h(X') is a homeomorphism. Then, =, (X )=z (X) by ixs=(pgs'h| X")x-

Proof. Since X, is homeomorphic to X’, p|X,: X,— X is a covering by
(3.2). p induces the injection py: 7,(X,)—>=,(X). Hence, if j': X' — M’ de-
notes the including mapping, the composition i=pgs'hj': X' — X induces an
inclusion

iy m(X') = m(X).

Let j: X— M denote the inclusion. We shall prove that the following

diagram is commutative.

There is a homotopy

such that
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In fact, F, can be made easily by sliding ¢5'4(X’) along the flow r, of RX X
onto X. Then,

G,=qF,: X' > M
is a homotopy such that

G, = by’

G, = jpgs* by’ = ji.
Therefore the diagram above is commutative.

We shall construct a smooth fibering M — S* with fibre X from (M, &F; X)
(Cf. §5). Recall that M=Rx X/r, as in §2 and that S'=R/t~t+1. The
mapping: RX X—R defined by (¢, x)—>t (t€R, x=X) induces a mapping:
Rx X[r— R[t~t+1. This is a fibre map: M— S*.

In the same way, we construct a fibering: M'— S* from (M', F'; X').
Since the fibres X and X’ are connected, we have the following commutative
diagram, where the horizontal and vertical sequences are exact.

1
Vogr
11— 7 (X)) 25 2 (M) —> Z — 1
Ly . ha
1 2(X) L5 (M) —> Z — 1
Then,
Z = n,(M)[z(X)
= (m(M)/jx i5 (X)) (X) 1 57,(X7)) -
But,
7 (M)/j s ixmy(X") 2= m (M) [m(X") = Z,
whence,
Z == Z|(z(X)[ixm (X)) -
Hence it is necessary that
r(X)fiam(X) = 1.
Therefore 7 (X') ==z ,(X).
This completes the proof of (3.5).

4. Cross-section theorem
The purpose of this section is to prove

Theorem (4.1). Let (M,F; X) and (M', F'; X') be dynamical systems with
cross-sections. (Manifolds may have boundaries.) Suppose that there exists no
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projection of the fundamental group = (X) of X onto the infinite cyclic group Z.

Then (M, F) and (M', F') are differentiably (topologically) equivalent if and
only if the associated diffeomorphisms of (M, F; X) and (M', F'; X') are differ-
entiably (topologically) comjugate.

REMARK (4.2). The assumption in the theorem about the fundamental
group is necessary. 'This is verified by the following.

Let T=S,X S, be a torus, where S is a 1-dimensional circle, and let & be
the dynamical system on T such that any orbit of & is S;xxc T for x=.S,.
Then S,=+XS, in T (*€.S,) is a cross-section of (7, &) and the associated
diffeomorphism of (T, &; S,) is the identity map i: S,—.S,.

Next, we imbed a circle in 7 in such a way that the imbedded image S, is
a cross-section of (T, F) and the associated diffeomorphism of (7, &} S,) is the
antipodal map p: S,—S,. This is possible. In fact, the imbedded image .S,
is a clover-knot, if we consider T" to be located 3-dimensional euclidean space
(see the figure).

an orbit

Then S, and S, are two cross-sections of the same (therefore equivalent)
dynamical system (7', &), but the associated diffeomorphisms 7 and g cannot be
conjugate. In this case the fundamental groups of the cross-sections are iso-
morphic to Z.

Corollary (4.3). Let (M, F; X) and (M', F'; X') be dynamical systems
with cross-sections. Suppose that the fundamental group = (X) of X or the 1-
dimensional homology group H (X) is a finite group.

Then (M, F) and (M', F') are differentiably (topologically) equivalent if
and only if the associated diffeomorphisms of (M, F; X) and (M', F'; X') are
differentiably (topologically) conjugate.

Proof. This corollary is a direct consequence of (4.1).
In fact, if G is a finite group, there is no projection of G onto Z. If there
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is a projection of 7z,(X) onto Z, the projection induces a projection of = (X)/
[7(X), 7,(X)] onto Z, where [z,(X), z,(X)] denotes the commutator subgroup.
And 7,(X)/[z(X), =,(X)] is isomorphic to H,(X).

Corollary (4.4). Assume that for (M,, F,; X,) and (M,, F,; X,), (M,, F,)
and (M,, F,) are differentiably (topologically) equivalent and that M, and M, are
closed (so that X, and X, are closed). Suppose that one of the following two con-
ditions is satisfied.

i) There exists no projection of =, (X,) onto Z.

ii) There exists (M, G;; X;) (i=1, 2) satisfying the following conditions.

(a) oM;=M,;, 3X,=X,.

(b) G is an extention of F;.

(c) (M, F,) and (M,, F,) are differentiably (topologically) equivalent.

(d) There exists no projection of =,(X,) onto Z.

Then the associated diffeomorphisms of (M,, F,; X,) and (M,, &F,; X,) are
differentiably (topologically) conjugate.

Proof of Theorem (4.1). If the associated diffeomorphisms of (M, &F; X)
and (M', F'; X') are differentiably (topologically) conjugate, (2.2) and (2.3)
imply that (M, F) and (M’, F") are differentiably (topologically) equivalent.

Next, we shall prove the converse of this, assuming that there is no pro-
jection of 7z, (X’) onto Z. The proof consists of two parts; the first, to fined a
diffeomorphism (homeomorphism) of X’ onto X, and the second, to prove that
the diffeomorphism (homeomorphism) satisfes the condition of conjugacy.

Let h: M'— M be the differentiable (topological) equivalence of (M, &F)
and (M', &’). Here, by (2.1) and (2.2) we may regard (M, F; X) as (M, F,;
X), the suspension of the associated diffeomorphism of (M, &; X), and may
regard (M’, &'; X') similarly.

Part 1. Let qg: RX X— M be the suspending projection as in §2. Then,
by (3.1), ¢: X,— X, is a covering map, where X,=h(X') and X, is any con-
nected component of ¢7*(X,).

Suppose further that for any #,>0 there is a ¢ such that |#| >, and (¢ X X)
NX,#+¢. Then by (3.4) this covering X,— X, is a regular covering with the
transformation group isomorphic to Z and we have an exact sequence

1l —s 7 (X)) — m(X) — Z — 1.

This is a contradiction to the assumption of 7,(X')= = (X,). Therefore, by
(3.3), any component X, of ¢ *(X,) is diffeomorphic (homeomorphic if % is a
homeomorphism) to X,.

Therefore X, is a compact differentiable (topological) submanifold of Rx X.
Hence, by (3.2), p: X,— X is a differentiable (topological) covering, where p is
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the natural projection Rx X—X. Since X, is diffeomorphic (homeomorphic)
to X', we get a differentiable (topological) covering map i=pg;*h: X' — X,
where g,=p|X,. Therefore, since i, is an isomorphism of 7,(X’) onto =,(X)
by (3.5), pgs*h is a diffeomorphism (homeomorphism if % is a topological
equivalence): X' — X.

Part 2. Since any component of ¢7'(X,) is homeomorphic to X, by ¢, any
component of ¢7(X,) is X, for some integer 7, where X, is a fixed component
and 7 is defined, as above, by

(¢, x) = (t+1, f(x)), teR, xX.
In order to prove Part 2, we shall prove the following lemma.

Lemma (4.5). Suppose that v°X, is homeomorphic to X by the map p and
that (s, x)e7X,, (t, x)e1/X,. Then, s<t if and only if i<j.

Proof. Since t=s whenever i=j, it is sufficient if we can prove that <(j
implies s<2.

Here, we suppose that there exist integers 7, j, real numbers ¢, s&€R and a
point x= X satisfying the conditions of the lemma, such that s>¢ and i<j.

Since p: 7 X, — X is homeomorphism, 7:X, splits Rx X for any 7; that is,
if (s,, x,), (5, x,)E7 X, and (¢, x,)e7/X,, and if 5,<t,, then there is t,&R such
that (¢,, x,)e7/X, and 5,<t,.

By assumption we have

(s+Hj—i, fii(x) = 1775, x)emX,, j—i>0.
By the splitting property and by s>t, there is a s, R such that
(s, fii(x)erX,, s>s+j—i.
By repeating this process we get s, = R for all r such that
(S [P) EeTX,, s, >s40(j—1).

But this is in contradiction to the fact that 7" X, is compact. This completes
the proof of the lemma.

Now, we come back to the proof of Part 2.

Let (t, x)eX,cRxX. The orbit of Rx X passing through (¢, x)eX,
meets ¢7'(X,) at (s, x)7X, for the first time. Define a diffeomorphism
(homeomorphism) g: X,— 71X, by g(t, x)=(s, x).

Now we can easily see, by (4.5), that the following diagram is comutative.
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Here f,: X— X is a diffeomorphism (homeomorphism) defined as follows;
if xe X, f,(x) is the point where the orbit of (M, &F) passing through x meet X,
for the first time.

The commutativity of the diagram implies that f and f’ are differentiably
or topologically conjugate, according that % is differentiable or topological.
This completes the proof of Part 2.

Therefore the proof of Theorem (4.1) is completed.

We deduce the following corollary directly from (4.1).

Corollary (4.6). Let X and X' be two cross-sections of a dynamical system.
If there exists no projection of =, (X) onto Z, then X and X' are diffeomorphic.

Remark (4.2) isnotapplicable to this corollary. In a paper in preparation®,
we will show examples of dynamical systems with two cross-sections which are
not diffeomorphic or homeomorphic.

5. Relation with fibre bundles

All fibre bundles considered in this section are assumed to be smooth and
to have the base spase S* and the group Diff(X), in the sense of [10], where
Diff (X) is the group of diffeomorphisms of the fibre X onto itself. We con-
sider the discrete topology in Diff (X).

Let X, be the mapping torus of f defined by X,=1Ix X with identification
(0, flx))=(1, x) for all x& X. If fis a diffeomorphism, X is a smooth manifold.
For any diffeomorphism f of X onto itself, let £, be the fibre bundle p: X, —
I/0~1=S" defined by p(¢, x)=¢. Moreover,

(5.1) for any fibre bundle & with fibre X, there exists a diffeomorphism f over
X such that £, is equivalent to £ in Diff (X), in the sence of [10].

Let Hom (X) be the group of homeomorphism of X onto itself. We con-
sider the discrete topology in it. Let [£], and [£], be the equivalence classes in
Diff (X) and Hom (X) respectively containing the fibre bundle £. Then,

(5.2) [Edi=[E)s (E1—IE) if and only if f and g are differentiably
(togologically) conjugate.

Let [(M, &)], be the differentiable equivalence class containing a dynamical
system (M, &), and [(M, &F)], the topological equivalence class having the same
property. And set

F (X)) = {[(M, F)]s; (M, F) has a cross-section X} ,
F(X) ={(M, F), ; — 3
F/(X) = {[€l,; £ has a fibre X},
F(X) = {[&l:; ;-

1) G. Ikegami: On dynamical systems with cross-sections, (to appear).
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We define a map 7,: Fy(X)— F,(X) (similarly for n,: F(X)— F,(X)) as
follows; Let [£],& F,(X), then by (5.1) there is f with £, [£],. We define
n,4[£]s by the differentiable equivalence class of the dynamical system wich is the
suspension of f. Here, 7, is well defined; in fact by (5.2) and (2.3), 7, is
independent of the selection of f.

In order to define the mapping u,: F,(X)— Fy(X) (similarly for u,: F,(X)
— F(X)), we must suppose that there is no projection of z,(X) onto Z. In
this case, for any [(M, F)],eF (X)), p[(M, F)], is defined by [£/],€ Fy(X),
where f is the associated diffeomorphism of (M, &F; X). u, is well defined;
in fact, by (4.1) and (5.2), p, is independent of the selection of (M, &F) and X.

Here, u,n,=identity (u,n,=identity) by (2.1) and %, u,=identity (7, u,=
identity) by (2.2).

Therefore we have proved the next theorem;

Theorem (5.3). If there exist no projection of =,(X) onto Z, then there is a
natural one-to-one correspondence between F,(X) and Fy(X) (Fy(X) and F(X)).

6. Dynamical systems on tori with cross-section

The purpose of this section is to prove Theorem (6.6).
Define the two fibre maps,

po: S"XS' =S by p(xy) =y,
po: S"™XS'—= S by p_(x,3)=1(),

for any x=S”, yeS', where r: §'— .S denotes an arbitraly given homeo-
morphism of order —1.
The following lemma is concerned only with topology.

Lemma (6.1). Ifn=2, any fibre map p: S* X S*— S* with connected fibre
is homotopic either to p. or to p_.

Proof. Denote by z(X; Y) the set of homotopy classes of the maps: X —Y
with fixed base points.

First, we shall show #(S”x S*; SY)=Z. Let 7: S*vS'—.8"x S" be the
natural injection, where v denotes the union in identifying the base points,
and let A: §*xS*— (S*x S§")/(S" v S§')=S""" be the natural projection. We
have an exact sequence (Puppe sequence);

h* ¥
(8" §) —— 2(S*x 8" §) —— 2(S" v S'; SY).
Here,
z(S*; §') =0

and
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z(S*v S SY) = #(S"; S)+=(S*; S) = Z.
Moreover, we can easily see that 7* is a projection. Therefore,
7(S*"xX S S =7 (S)=Z.

Let this isomorphism z(S”x S*; S*)—#,(S") be denoted by the same 7*.

Next, we shall show that, for a fibre map p with connected fibre F, 7*([p])
is a generator of z,(S'). Where [p] denotes the element of =(S”*x.S*; S")
containing p.

Let

o (87X 8 P 2 (8) s (F)

be the homotopy exact sequence of the fibre space. Since z,(F)=0 and since
7,(S"%x S*) and =, (S*) are isomorphic to Z, p, is an isomorphism. If j: S'—
S"x 8* is the natural inclusion, j: 7z ,(S")—z,(S"XxS") is an isomorphism.
And if 1 is the generator of = (S') preserving the orientation of S, we have

pxjx(1) = *([2]) -
Since p4j4(l) is ¢ generator of =,(S?), i*([p])=41. But, *([p,])=1 and

*([p_.])=—1. Therefore [p]=[p.] or [p_].
This completes the proof of (6.1).

Let Diff, (S™) and Diff, (D**') denote the groups of orientation preserving
diffeomorphisms on S* and on a disk D*** resp., and let r: Diff, (D"*')—
Diff (S”) denote the homomorphism obtained by the restriction. Then, the
group 9(S”)=Diff, (S*)/Image r is isomorphic to T"*** ([4]). Here I'"*' denotes
the group of differentiable structures on S™* with usual p.1. structure under
the connected sum operation #. 4 (S”) is an abelian group [6]. If =4 or
n=1, T"*" is the same as 6**', which is by definition the group of homotopy
(n+1)-sphres ([3]).

Let S(S”x S*) denote the set of all differentiable manifolds homeomorphic
to S”x S* classified by diffeomorphisms and let

‘p . I-\n+1 - S(S”XSI)
be the mapping defined by W($**)=S"x S*4# 5!, §*'eT"*'. Next, define
a mapping
@ : Diff, (S") —> S(S"x SY)
by ®(f)=.S? for any fe Diff, (S*).

Lemma (6.2). ® induces a one-to-one correspondence &: P(S™)—¥(I'"*).
Moreover, if [f1eD(S”) then &([f])=S"x S'4S*", where S*" €T is the
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element corresponding to [f] under the isomorphism of 9 (S”) with T™*.

Proof. For any $7*' in T+, §”x S48+ is diffeomorphic to S}, where
f is any diffeomorphism in the element of 9)(S”) corresponding to S""'eT™*
under the isomorphism. (See [1], Lemma 1.) Therefore & can be well-
defined and & maps 9 (S”) onto ¥ (I'"*).

Moreover, for any S7+, S5 =T+ with S+ S3",

S x ST 4S5 += S ST S in S(S*xS8Y),
because, if

S”x S St = S7x ST S in S(S*xS8Y),
then

S*x S* ST #(—S3H) = S*x S

by using an orientation-preserving diffeomorphism. But, the innertia group
of S*x S': I(S*x S)={S""er"; S"x S'#S5""'=8"x 8"} is equal to 0 for
all n (see [11], [2], [6])°. Hence, S7+#(—S3*")=0 in T**'. This implies
S+ is diffeomorphic to S3™. Therefore & is an injection.

These prove the lemma.

Proposition (6.3). If f, g Diff. (S*) are differentiably conjugate®, then f
and g are contained in the same element of 9 (S™)>.

Proof. If f and g are differentiably conjugate, S7 and S7 are diffeomorphic.
Then, (6.2) implies [ f]=[g] in D(S*).

We denote by C(S™+") the set of differentiably conjugate classes of diffeomor-
phisms contained in the element of 9)(S™) corresponding to S*"'eT™".

The following property is due to W. Browder ([1], Lemma 2).

(6.4) Let mapping tori X, and Y, be the total spaces of differentiable fibre
bundles over S* with projection p and q, and with fibres X" and Y which are 1-
connected closed manifolds of dimeksion n=>5. If h: X .—Y, is a diffeomorphism
such that qh is homotopic to p, then there is a diffeomorphism h' such that qh’=p,
so that h' restricts to a diffeomorphism of X with Y.

If M*+eS(S*xS*) for n=5, any smooth fibre bundle over S* with total
space M"*' and with connected fibre has fibre with the homotopy groups of
sphere, which is homeomorphic to S” by [7] or [5], p. 109, Prop. B. The
following lemma shows a condition for fibre to be diffeomorphic to S™.

1) Ifn=4, I(S"x S')=0 by the method in [11]; and if n>4, I(S"x S!)=0, since I'’"*1=0
by [2] for n=3 and by [6] for n<2.

2) If f and g are conjugate, there is a A€ Diff (S") with Af=gh. But we should notice
that the definition of conjugacy in § 2 does not imply that & preserves orientation. If & preserves
orientation, (6.3) is trivial. Because, we can consider A€ 9(S*), and the group 9(S*) is abelian.

3) By using J. Cerf’s theorem to (6.4) we have; If f, geDiff.(S") are differentiably con-
Jugate, and n=8, then f and g are isotogic.
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Lemma (6.5). Suppose M™' is in W(I'™*"), n=5 or n=2, then the fibre of
any smooth fibre bundle over S* with total space M and with connected fibre is
diffeomorphic to S™.

Proof. By (6.2) there is f& Diff, (S”) such that S} is diffeomorphic to M**'.
Let p,: 87— S* be the fibre bundle defined by p(¢, x)=¢, as in §5. Put p_=
rp,, where r: S*— S* is a diffeomorphism with degree —1. And let ¢g: M""
— S be any smooth fibre bundle with connected fibre. ¢ is homotopic either
to p, or to p_ by (6.1). Hence, if n=5, (6.4) implies that the fibre of ¢ is
diffeomorphic to the fibre S” of p, or of p_. If =2, the Lemma is trivial,
since #*=T"*=0.

Theorem (6.6). If M™' (n=5 or n=2) is diffeomorphic to S™x S*4 5"+
for some S*** in T+, then the differentiable equivalence classes of dynamical systems
on M with cross-sections have a one-to-one correspondence with C(S™*). The class
corresponding to f&C (S"*) is the suspension of f.

Proof. Let (M, &; X) denote any dynamical system on M”** with cross-
section. M is diffeomorphic to X, where f is the associated diffeomorphism of
(M, F; X). Since there is a smooth fibre bundle X,— §*, (6.5) implies that
X is diffeomorphic to S”. Hence, any differentiable equivalence class of
dynamical systems on M with cross-sections is in &F,(S"), for which (5.3) is a
one-to-one correspondence to F,(S”). And, by (5.1) and (5.2) there exists a
one-to-one correspondence between the differentiably conjugate classes of diffeo-
morphisms on S” and F,(S”). Therefore (6.2) and (6.3) imply that the differen-
tiable equivalence classes of dynamical systems on M"*' correspond to C (S**?).
This completes the proof of the theorem.
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