An application of the theory of descent to the $S \times S$-module structure of S/R-Azumaya algebras

Yokogawa, Kenji

Osaka Journal of Mathematics. 15(1) P.21-P.31

1978

publisher

https://doi.org/10.18910/4113

10.18910/4113

Osaka University
AN APPLICATION OF THE THEORY OF DESCENT
TO THE $S \otimes_R S$-MODULE STRUCTURE OF
S/R-AZUMAYA ALGEBRAS

KENJI YOKOGAWA

(Received December 17, 1976)
(Revised March 4, 1977)

Introduction. Let R be a commutative ring and S a commutative R-algebra which is a finitely generated faithful projective R-module. An R-Azumaya algebra A is called an S/R-Azumaya algebra if A contains S as a maximal commutative subalgebra and is left S-projective. S-S-bimodule structure (for which we shall call $S \otimes_R S$-module structure) of S/R-Azumaya algebras is determined in [5] when S/R is a separable Galois extension and in [8] when S/R is a Hopf Galois extension, both are connected with one which is so called seven terms exact sequence due to Chase, Harrison and Rosenberg [3].

In this paper we shall investigate the $S \otimes_R S$-module structure of S/R-Azumaya algebras assuming only that S is a finitely generated faithful projective R-module. So S/R-Azumaya algebras are not necessarily $S \otimes_R S$-projective (c.f. [8] Th. 2.1). But in §1 we shall show for any S/R-Azumaya algebra A, there exists a unique finitely generated projective $S \otimes_R S$-module P of rank one with certain cohomological properties such that A is $S \otimes_R S$-isomorphic to $P \otimes_{S \otimes_R S} \text{End}_R(S)$. In §2, we shall investigate S/R-Azumaya algebras resulting from Amitsur’s 2-cocycles. Finally we shall deal with the seven terms exact sequence in §3.

Throughout R will be a fixed commutative ring with unit, a commutative R-algebra S is a finitely generated faithful projective as R-module, each \otimes, End, etc. is taken over R unless otherwise stated. Repeated tensor products of S are denoted by exponents, $S^q=S \otimes \cdots \otimes S$ with q-factors. We shall consider S^1 as an S-algebra on first term. To indicate module structure, we write if necessary, $S_1 \otimes S_2$ instead of $S^2=S \otimes S$, $S_1 \otimes M_2$ instead of $S^2=S_1 \otimes S_2$-module M etc.. $H^q(S/R, U)$ and $H^q(S/R, \text{Pic})$ denote the q-th Amitsur’s cohomology groups of the extension S/R with respect to the unit functor U and Picard group functor Pic respectively.

1. S/R-Azumaya algebras and $H^1(S/R, \text{Pic})$

First we prove the following, which clarify the S^2-module structure of
Lemma 1.1. Let M be a finitely generated projective S-module of rank one, then $\text{End}(M)$ is isomorphic to $(M \otimes S) \otimes_S (S \otimes M^*) \otimes_S \text{End}(S)$ as S^2-modules, where $M^* = \text{Hom}_S(M, S)$.

Proof. We define $\psi: (M \otimes S) \otimes_S (S \otimes M^*) \otimes_S \text{End}(S) \rightarrow \text{End}(M)$ as follows:

$$\psi((m \otimes s) \otimes (t \otimes f) \otimes g)(n) = tg(f(sm))m$$

$m, n \in M, s, t \in S, f \in M^*, g \in \text{End}(S)$. Then ψ is a well-defined S^2-homomorphism and by localization we get ψ is an isomorphism.

Remark. By ψ, the multiplication of $(M \otimes S) \otimes_S (S \otimes M^*) \otimes_S \text{End}(S)$ is given by the formula

$$((m \otimes s) \otimes (t \otimes f) \otimes g) \cdot ((n \otimes u) \otimes (v \otimes p) \otimes q) = (m \otimes u) \otimes (t \otimes p) \otimes g \cdot f(n) \cdot s \cdot vq.$$

Now let A be an S/R-Azumaya algebra then A is split by S. Hence there exists a finitely generated faithful projective S-module M such that $S \otimes A$ is isomorphic to $\text{End}_S(M)$ as S-algebras. As is well known, M inherits the S^2-module structure and is S^2-projective of rank one. By Lemma 1.1, $S \otimes A \cong \text{End}_S(M) \cong (M \otimes_S S^2) \otimes_S (S^2 \otimes_M S^2) \otimes_S \text{End}_S(S^2) = (S^2_M \otimes_S S^2) \otimes_S (S^2_M \otimes_S S^2) \otimes_S \text{End}_S(S^2)$, where we regard S^2 (resp. S^3) as S^2-modules. Define the S^2-algebra isomorphism $\Phi: \text{End}_S(M) \cong \text{End}_S(S^2) = \text{End}_S(S^2_M \otimes_S S^2) \cong \text{End}_S(S^2_M \otimes_S S^2)$ by the composite of the isomorphisms $\text{End}_S(S^2_M \otimes_S S^2) \cong (S^2_M \otimes_S S^2) \cong (S^2_M \otimes_S S^2)$, where the middle isomorphism is the one induced from the twisting homomorphism $A \otimes S^2 \rightarrow A \otimes S^2$ (and the others are induced from $S \otimes A \cong \text{End}_S(M)$. Then from Morita theory there exists a finitely generated projective S^2-module Q of rank one such that $(S^2_M \otimes_S S^2) \otimes_S \text{End}_S(S^2_M \otimes_S S^2)$ is $\text{End}_S(S^2_M \otimes_S S^2)$-modules, hence as S^3-modules. Tensoring with S^2 over S^3 (regarding S^2 as an S^3-module by $1 \otimes \mu: S^3 \rightarrow S^3$), we get an S^2-isomorphism

$$S^2 \otimes \text{End}_S(S^2_M \otimes_S S^2) \cong S^2 \otimes (S \otimes S^2).$$

Therefore,

$$S \otimes P = (S \otimes (M \otimes S) \otimes S) \otimes (S \otimes M^*) \cong (S \otimes (M \otimes S^2) \otimes S) \otimes (S \otimes M^*) \cong (M \otimes S) \otimes (S \otimes M^*)$$

split S/R-Azumaya algebras.
\[\simeq (M \otimes S) \otimes s^3((M^* \otimes s^2 S) \otimes S^2) \otimes s^3(S^2 \otimes s M^*) \otimes s^3((M \otimes s^2 S) \otimes S^2) \]

\[= (M \otimes S) \otimes s^3((M^* \otimes s^2 S) \otimes S^2) \otimes s^3(S^2 \otimes s(M^* \otimes s^2 S) \otimes s^3(S^2 \otimes s M^*)) \]

\[= (P^* \otimes S) \otimes s^3(S^2 \otimes s P), P^* = \text{Hom}_S(P, S^3). \]

This means \(P \) is a 1-cocycle of the extension \(S/R \) with respect to the functor \(\text{Pic} \) (we call simply 1-cocycle). Since \(P^* = ((M^* \otimes S^2) \otimes S) \otimes s^3(M^* \otimes S^2 S) \otimes s^3(S^2 \otimes s M^*) \), \(P^* = \text{End}_S(M) \) as \(S \)-algebras.

If \(S \otimes A \simeq \text{End}_S(N) \) for another \(N \), then \(\text{End}_S(M) \simeq \text{End}_S(N) \) as \(S \)-algebras. So there exists a finitely generated projective \(S \)-module \(Q' \) of rank one such that \(s_1 M_{s_2} \otimes s_3 Q' \simeq N \) as \(S^2 \)-modules. Easy calculation shows that the 1-cocycles obtained from \(M \) and \(N \) are \(S^2 \)-isomorphic.

To prove the uniqueness of 1-cocycle \(P \), we prepare the following

Lemma 1.2. Let \(T \) be a commutative \(R \)-algebra, which is a finitely generated faithful projective \(R \)-module. And let \(P, Q \) be finitely generated projective \(T \)-modules of rank one. Then

\[\text{Hom}_T(P \otimes Q, Q \otimes P) \simeq \text{Hom}_T(\text{End}(P), \text{End}(Q)) \]

Especially, \(\text{Iso}_{\otimes T}(P \otimes Q, Q \otimes P) \) corresponds to \(\text{Iso}_{\otimes T}(\text{End}(P), \text{Ecd}(Q)) \).

Proof. For any \(T \)-module \(M_i, N_i (i = 1, 2) \), we have the following isomorphism \(\rho: \text{Hom}_{\otimes T}(M_1 \otimes M_2, \text{Hom}(N_2, N_1)) \simeq \text{Hom}_{\otimes T}(M_1 \otimes N_2, \text{Hom}(M_2, N_1)) \) given by \((\rho(\varphi)(m_1 \otimes n_2))(m_2) = (\varphi(m_1 \otimes m_2))(n_2), m_i \in M_i, n_i \in N_i, \varphi \in \text{Hom}_{\otimes T}(M_1 \otimes M_2, \text{Hom}(N_2, N_1)), \) ([6] I.4.2). Put \(M_1 = P, M_2 = Q, N_1 = \text{Hom}(P, R), \) then we get easily. Further assertion follows easily by localization.

Let \(P, P' \) be 1-cocycles such that \(P \otimes s^3 \text{End}(S) \simeq P' \otimes s^3 \text{End}(S) \simeq A \) as \(S^2 \)-modules. Then \(\text{End}_S(P^*) \simeq \text{End}_S(P'^*) \) as \(S^3 \)-modules by Lemma 1.1 and the cocycle condition of \(P, P' \). From Lemma 1.2 we get an \(S^3 \)-isomorphism \(P^* \otimes s^3 P'^* = (s_1 P^* s_2 \otimes S_3) \otimes s^3(s_1 P'^* s_3 \otimes S_2) \simeq P^* \otimes s^3 P'^* = (s_1 P^* s_2 \otimes S_3) \otimes s^3(s_1 P'^* s_3 \otimes S_2) \).

Thus \(s_1 P^* s_2 \otimes S_3) \otimes s^3(s_1 P^* s_3 \otimes S_2) \simeq (s_1 P'^* s_2 \otimes S_3) \otimes s^3(s_1 P'^* s_3 \otimes S_2) \), the left side is isomorphic to \(S_1 \otimes s^2 P^* s_3 \) and the right side is isomorphic to \(S_1 \otimes s^2 P'^* s_3 \) by the cocycle condition of \(P, P' \). Tensoring with \(S^2 \) over \(S^3 \) (regarding \(S^2 \) as an \(S^3 \)-module by \(\mu \otimes 1: S^3 \rightarrow S^3 \)), we get \(P \simeq P' \).

Summing up we get

Theorem 1.3. Let \(A \) be an \(S/R \)-Azumaya algebra, then there exists a unique 1-cocycle \(P \) such that \(A \) is isomorphic to \(P \otimes s^3 \text{End}(S) \) as \(S^2 \)-modules and \(S \otimes A \) is isomorphic to \(\text{End}_S(P^*) \) as \(S \)-algebras, where \(P^* = \text{Hom}_S(P, S^3) \).

Remark. In proving the above theorem, we used the \(S \)-algebra isomorphism
If we assume this isomorphism is only an S^3-module isomorphism, then by using Lemma 1.2 in suitable situations we shall get Theorem 1.3 only replacing "S-algebras" to "S^3-modules" in the last statement. So Theorem 1.3 does not fully characterize S/R-Azumaya algebras.

Proposition 1.4. Let A, B be S/R-Azumaya algebras, P, Q be 1-cocycles obtained from A, B respectively. Then the 1-cocycle obtained from $A \cdot B = \text{End}_{A \otimes B}(S \otimes (A \otimes B))$ is $P \otimes Q$.

Proof. $S \otimes A = \text{End}_S(P*)$ and $S \otimes B = \text{End}_S(Q*)$, so $S \otimes (A \cdot B) = (S \otimes A) \cdot (S \otimes B) = \text{End}_S(P* \otimes Q*)$, (c.f. [3] 2.13.). Thus the 1-cocycle obtained from $A \cdot B$ equals to $P \otimes Q$.

Next we shall start from a 1-cocycle P and an S^3-isomorphism $\phi: S^2 \otimes P = S^3 \otimes S_2 \otimes S_3 \simeq (S \otimes S_2 \otimes S_3) \otimes s^1(S_1 \otimes S_2 \otimes S_3)$, identity on S_1

$\phi_2: S_1^* \otimes S_2 \otimes S_3 \simeq (S_1 \otimes S_2 \otimes S_3) \otimes s^1(S_1 \otimes S_2 \otimes S_3)$

identity on S_2

$\phi_3: S_1 \otimes S_2 \otimes S_3 \simeq (S_1 \otimes S_2 \otimes S_3) \otimes s^1(S_1 \otimes S_2 \otimes S_3)$

identity on S_3.

Further we define $u(\phi) \in \text{End}_{s^1}(S_1 \otimes S_2 \otimes S_3)$ by the composite

$$
\begin{align*}
&\phi_3^{-1} \circ \phi_1 \circ (1 \otimes s^1) \circ \phi_2 \quad (S_1 \otimes S_2 \otimes S_3) \otimes s^1(S_1 \otimes S_2 \otimes S_3) \\
&\phi_3^{-1} \circ \phi_1 \circ (1 \otimes s^1) \circ \phi_2 \quad (S_1 \otimes S_2 \otimes S_3) \otimes s^1(S_1 \otimes S_2 \otimes S_3) \\
&\phi_3^{-1} \circ \phi_1 \circ (1 \otimes s^1) \circ \phi_2 \quad (S_1 \otimes S_2 \otimes S_3) \otimes s^1(S_1 \otimes S_2 \otimes S_3)
\end{align*}
$$

Then we may think $u(\phi)$ is a unit of S^4 by homothety. As easily checked, $u(\alpha \phi) = \delta(\alpha^{-1})u(\phi)$ for a unit $\alpha \in S^3$, where δ is the coboundary operator in Amitsur's complex with respect to the unit functor U.

Lemma 1.5. $u(\phi)$ is a 3-cocycle.

Proof. By localization it follows readily.

Theorem 1.6. Let P be a 1-cocycle with an S^3-isomorphism $\phi: S_1^* \otimes S_2 \otimes S_3 \simeq (S_1 \otimes S_2 \otimes S_3) \otimes s^1(S_1 \otimes S_2 \otimes S_3)$. Then $A = P \otimes s^1 \text{End}(S)$ has an S/R-Azumaya algebra structure, if and only if, $u(\phi)$ is a coboundary. If $u(\phi) = \delta(\beta)$ where β is a
unit of S^3, then $(\beta \phi)^*$ induces a S-algebra isomorphism $S \otimes A \cong \text{End}_S(P^*)$, where $(\beta \phi)^*$ is the isomorphism $S \otimes P \cong (P^* \otimes S) \otimes S'(s_1 P^* s_2 \otimes S_2)$ induced from $\beta \phi$.

Proof. First we assume $A = P \otimes S^2 \text{End}(S)$ is an S/R-Azumaya algebra, then $S \otimes A \cong \text{End}_S(P^*)$ as S-algebras from the uniqueness of 1-cocycle. Define the S^2-algebra isomorphism

$$\Phi : \text{End}_{S^2} (s_1 P^* s_2 \otimes S_2) = S_1 \otimes A \otimes S_2 \rightarrow S_1 \otimes S_2 \otimes A = \text{End}_{S^2} (s_1 \otimes s_2)^*$$

by the twisting homomorphism $A \otimes S_2 \rightarrow S_2 \otimes A$. Φ is a descent homomorphism, that is if we put $\Phi_1 = 1 \otimes \Phi : S_1 \otimes \text{End}_S(P^*) \otimes S \rightarrow S_1 \otimes S \otimes \text{End}_S(P^*)$ identity on S_1, $\Phi_2 : \text{End}_S(P^*) \otimes S_2 \otimes S \rightarrow S \otimes S_2 \otimes \text{End}_S(P^*)$ identity on S_2, $\Phi_3 = \Phi \otimes 1 : \text{End}_S(P^*) \otimes S \otimes S_2 \rightarrow S \otimes \text{End}_S(P^*) \otimes S_1$ identity on S_1, then $\Phi_2 = \Phi_1 \cdot \Phi_3$. Since Φ is an S^2-algebra isomorphism, there exists a finitely generated projective S^2-module Q of rank one such that $s_1 P^* s_2 \otimes S_2$ is isomorphic to $(s_1 \otimes s_2 P^* s_2) \otimes s_1 \otimes s_2 s_1 Q_{s_2} = (s_1 \otimes s_2 P^* s_2) \otimes s_2'(s_2 Q_{s_2} \otimes S_2)$ as S^2-modules and Φ is induced by this isomorphism ϕ'. From the cocycle condition of P, Q is isomorphic to P^*. From the definition of Φ_1, Φ_2, Φ_3, the following diagram is commutative for any $f \in \text{End}_{S^2} (s_1 \otimes s_2) (s_1 P^* s_2 \otimes S_3)$.

Thus $(1 \otimes s'(\phi' \otimes 1)) \cdot \phi' \cdot f \cdot \phi'^{-1} \cdot (1 \otimes s'(\phi'^{-1} \otimes 1)) = (\phi' \otimes s') \cdot f \cdot \phi'^{-1} \cdot (\phi'^{-1} \otimes s')$. Hence $f \cdot u(\phi') = u(\phi') \cdot f$ for any $f \in \text{End}_{S^2} (s_1 \otimes s_2) (s_1 P^* s_2 \otimes S_3)$. Therefore 3-cocycle $u(\phi')$ is contained in the center of $\text{End}_{S^2} (s_1 \otimes s_2) (s_1 P^* s_2 \otimes S_3)$, which is $S_1 \otimes S_2 \otimes S_3$. Easily we get $u(\phi')$ is a coboundary. Thus $u(\phi') = \ldots$
$u(\alpha^{-1}\phi') = \delta(\alpha)u(\phi')$ is a coboundary.

Conversely let $u(\phi)$ be a coboundary then we may assume $u(\phi) = 1 \otimes 1 \otimes 1 \otimes 1$. Let ϕ^* be the isomorphism $S \otimes P = (P^* \otimes S) \otimes S^*(S_1 \otimes P_2 \otimes S_3)$ induced from ϕ by duality pairing. We consider $S \otimes A = (S \otimes P) \otimes S^*(S^* \otimes S_3 \otimes P_2 \otimes S_3)$ equals $\text{End}_A(P^*) = (P^* \otimes S) \otimes S^*(S_1 \otimes P_2 \otimes S_3)$ by $\phi^* \otimes S$. Thus $S \otimes A$ has an S-algebra structure. Define $\Phi : S \otimes A \simeq S \otimes S \otimes A$ by the twisting homomorphism $A \otimes S \rightarrow S \otimes A$. Clearly $\Phi_2 = \Phi_1 \cdot \Phi_3$. From the theory of faithfully flat descent, if Φ is an S^2-algebra isomorphism, then the descended module A has an R-algebra structure (necessarily an S/R-Azumaya algebra structure) such that the induced S-algebra structure of $S \otimes A$ coincides the original one of $S \otimes A$. Therefore all is settled if we show Φ is an S^2-algebra homomorphism. So we may assume R is a local ring. Thus $P = S^2, A = \text{End}(S)$ and ϕ^* is the homothety by $\sum x_i \otimes y_i \otimes z_i$. Since $u(\phi) = 1 \otimes 1 \otimes 1 \otimes 1$, $\sum x_i \otimes y_i \otimes z_i$ is a 2-cocycle. The multiplication in $S \otimes \text{End}(S) \otimes S$ is given by $(s \otimes f \otimes t) \cdot (u \otimes g \otimes v) = (\sum x_i \otimes y_i \otimes z_i \otimes 1)^{-1} \cdot (\sum x_i x_j s u \otimes y_i y_j g \otimes z_i z_j \otimes t v)$, $s \otimes f \otimes t, u \otimes g \otimes v \in S \otimes \text{End}(S) \otimes S$, which is equal to $\sum s u \otimes f y \otimes g z \otimes t v$ since $\sum x_i \otimes y_i \otimes z_i$ is a 2-cocycle. The multiplication in $S \otimes S \otimes \text{End}(S)$ is given similarly. As easily checked, Φ is an S^2-algebra homomorphism. This completes the proof.

Proposition 1.7. If P is a 1-coboundary then $u(\phi)$ is a 3-coboundary.

Proof. Since $P = (Q \otimes S) \otimes S^*(S \otimes Q^*)$ for some finitely generated projective S-module Q of rank one, $Q^* = \text{Hom}_S(Q, S)$, $A = P \otimes \text{End}(S) \simeq \text{End}(Q)$ has an algebra structure. Hence $u(\phi)$ is a coboundary by Theorem 1.6.

Let $Br(S/R)$ denotes the Brauer group of R-Azumaya algebras split by S. For an element of $Br(S/R)$, we can choose an S/R-Azumaya algebra as its representative, and this representative is uniquely determined modulo $\{\text{End}(Q) \mid Q \text{ is a finitely generated projective } S \text{-module of rank one}\}$ (c.f. [3] 2.13). Thus summing up the results of this section, we get

Corollary 1.8. The following sequence is exact

$$Br(S/R) \xrightarrow{\theta_5} H^1(S/R, \text{Pic}) \xrightarrow{\theta_6} H^2(S/R, U)$$

where θ_5 is the homomorphism induced from the one which carries S/R-Azumaya algebras to 1-cocycles determined by Theorem 1.3, θ_6 is the one induced by Lemma 1.5.

2. S/R-Azumaya algebras and $H^2(S/R, U)$

Let $\sigma = \sum x_i \otimes y_i \otimes z_i$ be an Amitsur's 2-cocycle (of the extension S/R with respect to the unit functor U). We shall define a new multiplication "*"
on $\text{End}(S)$ by setting
\[(f \ast g)(s) = \sum x_i f(y_i g(z_i s))\]
for all $f, g \in \text{End}(S)$, $s \in S$. Then Sweedler [7] proved this algebra $A(\sigma)$ is isomorphic to the Rosenberg Zelinsky central separable algebra coming from the 2-cocycle σ^{-1}.

We shall call that a 2-cocycle σ is normal if $\sum x_i y_i \otimes z_i = \sum x_i \otimes y_i z_i = 1 \otimes 1$.

As can be easily proved, every 2-cocycle σ is cohomologeous to a normal 2-cocycle σ' and $A(\sigma) \simeq A(\sigma')$. For a normal 2-cocycle σ', the S/R-Azumaya algebra $A(\sigma')$ is isomorphic to $\text{End}(S)$ as S^2-modules. The following asserts the converse is true.

Proposition 2.1. An S/R-Azumaya algebra A is obtained from a normal 2-cocycle, if and only if, A is isomorphic to $\text{End}(S)$ as S^2-modules.

Proof. If A is isomorphic to $\text{End}(S)$, then the 1-cocycle P obtained from A is isomorphic to S^2. The method of the proof of the well-known fact that \[\text{H}^2(S/R, U) \simeq \text{Br}(S/R)\text{ if Pic}(S \otimes S) = 0\] can be applied in this case (c.f. [6] V.2.1).

Corollary 2.2. The sequence $\text{H}^2(S/R, U) \xrightarrow{\theta_4} \text{Br}(S/R) \xrightarrow{\theta_5} \text{H}^1(S/R, \text{Pic})$, where θ_4 is induced from the homomorphism which carries a 2-cocycle σ to $A(\sigma)$, is exact.

Lemma 2.3. The homomorphisms $\rho: S \otimes \text{End}(S) \rightarrow \text{End}_S(\text{End}(S))$, $\rho': S \otimes S \otimes \text{End}(S) \rightarrow \text{Hom}_S(\text{End}(S) \otimes_S \text{End}(S), \text{End}(S))$ defined by setting $(\rho(s \otimes f))(g) = sg \cdot f$, $(\rho'(s \otimes t \otimes f))(g \otimes h) = sg \cdot t \cdot f$, $f, g, h \in \text{End}(S)$, $s, t \in S$, are isomorphisms.

Proof. σ is nothing else the well-known isomorphism $S \otimes \text{End}(S)^\text{op} \simeq \text{End}_S(\text{End}(S))$. The composite of the isomorphisms $S \otimes S \otimes \text{End}(S) \simeq S \otimes \text{End}_S(\text{End}(S)) \simeq \text{Hom}_S(\text{End}(S), S \otimes \text{End}(S)) \simeq \text{Hom}_S(\text{End}(S), S \otimes \text{End}(S)) \simeq \text{Hom}_S(S \otimes_S \text{End}(S), \text{End}(S))$ is ρ'.

Proposition 2.4. Let $\sigma = \sum x_i \otimes y_i \otimes z_i$, $\tau = \sum x_i^j \otimes y_i^j \otimes z_i^j$ be normal 2-cocycles, then $A(\sigma) \simeq A(\tau)$ as S/R-Azumaya algebras (that is isomorphic as R-algebras and compatible with the maximal commutative imbeddings of S), if and only only if, σ is cohomologeous to τ.

Proof. "If part" is trivial. Let $\Psi: A(\sigma) \simeq A(\tau)$ be the given isomorphism, then by Lemma 1.2 with $T = P = Q = S$, Ψ corresponds to the homothety by the unit $\sum_i u_i \otimes v_i \in S^2$.

Since Ψ is an algebra isomorphism,

$$
\Psi(f * g)(s) = \sum u_i f(y, v, s) = \sum u_i x_j f(y_j g(z_j v, s)) = (\Psi(f) * \Psi(g))(s) = \sum u_i x_j f(v_i y_i u_i g(v, z v))
$$

for all $f, g \in \text{End}(S) = A(\sigma)$, $s \in S$. Hence by Lemma 2.3

$$
\sum u_i x_j y_j z_i v_i = \sum u_i x_k y_k v_i.
$$

Thus σ is cohomologous to τ.

Now let P be a finitely generated projective S-module of rank one with the S^2-isomorphism $\zeta: S \otimes P \cong P \otimes S$, (this means that P is a 0-cocycle with respect to the functor $P \otimes \cdot$). Define S^3-isomorphisms $\zeta_1, \zeta_2, \zeta_3$ as follows;

$$
\zeta_1 = 1 \otimes \zeta: S_1 \otimes S \otimes P \cong S_1 \otimes P \otimes S \text{ identity on } S_1
$$

$$
\zeta_2 : S \otimes S_2 \otimes P \cong P \otimes S_2 \otimes S \text{ identity on } S_2
$$

$$
\zeta_3 = \zeta \otimes 1 : S \otimes P \otimes S_3 \cong P \otimes S \otimes S_3 \text{ identity on } S_3.
$$

Define the S^3-automorphism of $S \otimes S \otimes P$ by $\zeta_2^{-1} \cdot \zeta_3 \cdot \zeta_1$ then $\zeta_2^{-1} \cdot \zeta_3 \cdot \zeta_1$ is the homothety by the unit $v(\zeta) \in S^3$. By localization we can easily check that $v(\zeta)$ is a 2-cocycle.

Proposition 2.5. Let σ be a normal 2-cocycle and assume that $A(\sigma) = 0$ in $Br(S/R)$. Then there exists a finitely generated projective S-module P such that $S \otimes P \cong P \otimes S$, and σ is cohomologous to $v(\zeta)$ or equivalently $A(\sigma) = A(v(\zeta))$.

Proof. Since $A(\sigma) = 0$ in $Br(S/R)$, $A(\sigma) = \text{End}(P)$ for some finitely generated faithful projective R-module P. P inherits the S-module structure and S-projective of rank one. $\text{End}(P) \cong (P \otimes S) \otimes_{S^2}(S \otimes \text{End}(S))$ as S^2-modules and $(P \otimes S) \otimes_{S^2}(S \otimes \text{End}(S))$ is a 1-cocycle. From the uniqueness of 1-cocycle (Theorem 1.3), there exists an S^2-isomorphism $\zeta: S \otimes P \cong P \otimes S$. We may assume $v(\zeta)$ is a normal 2-cocycle. Therefore by Proposition 2.4, all is settled if we prove $A(v(\zeta)) = \text{End}(P)$. Define $\Psi: A(v(\zeta)) \rightarrow \text{End}(P)$ by the following commutative diagram

$$
P \xrightarrow{\Psi(f)} S \otimes P \xrightarrow{\zeta} P \otimes S
$$

where "cont." is the contraction homomorphism, $f \in A(v(\zeta)) = \text{End}(S)$. By localization technique, we get that Ψ is an S/R-algebra isomorphism.
Corollary 2.6. The sequence $H^n(S/R, Pic) \overset{\theta_3}{\rightarrow} H^n(S/R, U) \overset{\theta_4}{\rightarrow} Br(S/R)$, where θ_3 is induced from the homomorphism which carries a 0-cocycle $P, \zeta: S \otimes P \simeq P \otimes S$, to $v(\zeta)$ is exact.

Proof. The only thing that we must show is that θ_3 is a homomorphism. But it follows readily.

3. The seven terms exact sequence

Let $\rho=\sum_i x_i \otimes y_i \in S^2$ be a 1-cocycle of the extension S/R with respect to the unit functor U. From the cocycle condition of ρ, $\sum_i x_i y_i = 1$. We make a new End (S)-module, ρS as follows;

$\rho S = S$ as S-modules, $f \cdot s = \sum_i x_i f(y_i s)$, $f \in \text{End}(S)$, $s \in S$. By the cocycle condition of ρ, ρS is in fact an End (S)-module. From Morita theory $\text{Hom}_{\text{End}(S)}(S, \rho S) \otimes S \simeq \rho S$.

And $\text{Hom}_{\text{End}(S)}(S, \rho S)$ is a finitely generated projective R-module of rank one. If ρ is a coboundary (that is $\rho = x \otimes x^{-1}$, $x \in S$), then the homomorphism $\text{Hom}_{\text{End}(S)}(S, \rho S) \rightarrow \text{Hom}_{\text{End}(S)}(S, S)$ ($\simeq R$) which carries $g \in \text{Hom}_{\text{End}(S)}(S, \rho S)$ to $x^{-1} g \in \text{Hom}_{\text{End}(S)}(S, S)$ is an isomorphism. For another 1-cocycle ρ', we have a canonical isomorphism $\text{Hom}_{\text{End}(S)}(S, \rho S) \otimes \text{Hom}_{\text{End}(S)}(S, \rho' S) \simeq \text{Hom}_{\text{End}(S)}(S, \rho' S)$. Hence the homomorphism which carries the 1-cocycle ρ to $\text{Hom}_{\text{End}(S)}(S, \rho S)$ induces the homomorphism $\theta_2: H^0(S/R, U) \rightarrow \text{Pic}(R)$.

Lemma 3.1. θ_1 is a monomorphism.

Proof. Let $\rho = \sum_i x_i \otimes y_i$ be a 1-cocycle and assume that $\text{Hom}_{\text{End}(S)}(S, \rho S)$ is a free R-module of rank one with a free base g. If we put $g(1_S) = x$ then x is a unit of S since $\text{Hom}_{\text{End}(S)}(S, \rho S) \otimes S \simeq \rho S = S$ as S-modules. The condition $g \in \text{Hom}_{\text{End}(S)}(S, \rho S)$ claims

$g(f(s)) = f(s)x = f \cdot g(s) = \sum_i x_i f(y_i s)$

for all $f \in \text{End}(S), s \in S$. By Lemma 2.3, we get $\rho = \sum_i x_i \otimes y_i = x \otimes x^{-1}$. Thus ρ is a coboundary.

Next we define $\theta_2: \text{Pic}(R) \rightarrow H^0(S/R, Pic)$ as the homomorphism induced by tensoring with S over R.

Lemma 3.2. The sequence

$$H^0(S/R, U) \overset{\theta_1}{\rightarrow} \text{Pic}(R) \overset{\theta_2}{\rightarrow} H^0(S/R, \text{Pic})$$
Proof. $\theta_2 \cdot \theta_i = 0$ since $\text{Hom}_{\text{End}(S)}(S \otimes S) \otimes S \cong \pi S$ for a 1-cocycle ρ. Conversely, let P be a finitely generated projective R-module of rank one and assume that $S \otimes P$ is isomorphic to S as S-modules. From the theory of faithfully flat descent, there exists an S'-isomorphism $\eta: S \otimes S \cong S \otimes S$ with property $\eta_2 = \eta_3 \eta_1$ and P is characterized as $\{s \in S | s \otimes 1 = \eta(1 \otimes s) \text{ in } S \otimes S\}$, where $\eta_i, i=1, 2, 3$, is defined similarly as ξ_i in §2. Since η is a homothety, we may put $\eta = \sum_i x_i \otimes y_i, x_i, y_i \in S$. Then η is a 1-cocycle by the relation $\eta_2 = \eta_3 \eta_1$. Define the homomorphisms $\Psi, \Psi', P \xrightarrow{\Psi} \text{Hom}_{\text{End}(S)}(S \otimes S)$, by setting $\Psi(p)(s) = sp, \Psi'(g) = g(1_s), p \in P, s \in S, g \in \text{Hom}_{\text{End}(S)}(S \otimes S)$. By Lemma 2.3 and the characterization of $P = \{s \in S | s \otimes 1 = \eta(1 \otimes s)\}$, Ψ and Ψ' are well-defined homomorphisms and are inverse to each other. This completes the proof.

Lemma 3.3. The sequence

$$\text{Pic}(R) \xrightarrow{\theta_2} H^0(S|R, \text{Pic}) \xrightarrow{\theta_3} H^0(S|R, U)$$

is exact, where θ_3 is the homomorphism induced by the one which carries a 0-cocycle $P, \zeta: S \otimes P \cong P \otimes S$ to $v(\zeta)$.

Proof. $\theta_3 \cdot \theta_2 = 0$ as easily proved. Let P be a finitely generated projective S-module of rank one such that $S \otimes P \cong P \otimes S$. Further assume that $v(\zeta) = \xi_2 \xi_3 \xi_1$ is a 2-coboundary. Then we may assume $v(\zeta) = 1 \otimes 1 \otimes 1$. Thus ζ is a descent homomorphism. Hence there exists a finitely generated projective R-module P' of rank one such that $P \cong P' \otimes S$. This completes the proof.

Summing up Corollary 1.8, 2.2, 2.6, Lemma 3.1, 3.2, 3.3 we get

Theorem 3.4. The sequence

$$0 \to H^1(S|R, U) \xrightarrow{\theta_1} \text{Pic}(R) \xrightarrow{\theta_2} H^0(S|R, \text{Pic}) \xrightarrow{\theta_3} H^0(S|R, U) \xrightarrow{\theta_5} Br(S|R) \xrightarrow{\theta_6} H^1(S|R, \text{Pic}) \xrightarrow{\theta_6} H^2(S|R, U)$$

is an exact sequence of abelian groups.

References
