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Introduction. Let M be a strictly pseudoconvex CR manifold of dimen-
sion 2n+1. In case a volume element is specified on M, the Szegd projector
S: L*(M)— LXM) is defined as the orthogonal projector onto the subspace
ker 9;; thus S is not CR-invariant. Assuming that M is the boundary of a
strictly pseudoconvex domain  c C"*', Fefferman [5] constructed a volume
element on M, by using the complex Monge-Ampére operator, in such a way
that a natural transformation law for the Szegt projectors holds under CR
isomorphisms, cf. (4.1) below. The purpose of this note is to generalize his con-
struction to the case in which M is not necessarily the boundary of a domain.

What we have to do is to seek a right condition on the vloume element on
M so as to get the transformation law. Keeping in mind that volume element
on M is uniquely determined by contact form, we first specify a family of locally
defined contact forms—a step, due to Farris [2], of making Fefferman’s con-
struction intrinsic (cf. also Fefferman [4]). As is observed in Farris [2], this
is equivalent to giving a family of (n+1, 0)-forms on M, closed and nonvanishing.
In order to achieve our construction of volume element, it is at first necessary to
assume the local existence of a nonvanishing closed (71, 0)-form in a neigh-
borhood of every point on M. The simplest situation is that there exists a
globally defined contact form @ obtained by gluing the (n+1, 0)-forms above;
if the volume element is given by 0 Ad@", then the transformation law for the
Szegd projectors (Theorem 1) is derived just as in Fefferman’s construction.
However, there is a topological obstruction to the global existence of such a
contact form. The vanishing of ¢(K,), the Chern class of the canonical bundle
with real coefficients, is a necessary condition for the global existence. It is not
known whether this condition is sufficient (cf. Lee [6] and Remark 1 below);
to avoid this difficulty we generalize the notion of the Szegd projector. We
construct a complex line bundle, by using the assumption ¢(K,,)=0, via transi-
tion of the locally defined contact forms in order to define the space of L? sec-
tions of the bundle, the space on which the Szegd projector is acting; then,
the required transformation law (Theorem 2) follows naturally.
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In deriving the transformation law, we assume the topological condition
H'(M, R)=0. This assumption ensures the univalence of a ‘“Jacobian” in
Theorem 1, and, in Theorem 2, the uniqueness of the hermitian line bundle
on which sections the Szegt projector acts.

The plan of this note is as follows. We introduce some definitions and
notation in section 1. In section 2 we present a condition on contact forms
which characterizes Fefferman’s volume element in the general case, a natural
condition leading to the transformation law. Then, we can state and prove,
in section 3, our main result (Theorem 1)—a transformation law for the Szego
projectors in case M admits a globally defined contact form which satisfies the
condition in section 2. In section 4 we apply the result of section 3 to the case
of domains in C**' (which was treated by Fefferman). In section 5 we prove
Theorem 2, a generalization of Theorem 1 to the case of CR manifolds satisfy-
ing ¢(K,)=0 (see also Remark 2).

I would like to thank Professor J.M. Lee for pointing out an error in the
earlier version.

1. CR manifolds. In order to state our results, we shall briefly recall
definitions and notation. Let M be a real, (2#+1)-dimensional, orientable, C*
manifold. A CR structure on M is defined by giving a complex #n-dimensional
complex subbundle T of the complexified tangent bundle CTM satisfying:

(i) TN T%'={0}, where To1=T%9,

(i) if X and Y are sections of T, so is [X, Y].

We will assume that the structure is strictly pseudoconvex, that is, for some choice
of a real one-form @ annihilating T*°, the Levi form LV, W)=—id6(V AW)
is positive definite on T°. Such a one-form @ is called a contact form associated
with the CR structure.

To define the Szegd projector, we need to give a contact form 6 on M—a
choice of contact form is called a pseudohermitian structure on M. A pseudo-
hermitian structure permits us to define the Hilbert space L¥M) of square
integrable functions with respect to the volume element § Ad#”, so that the opera-
tor 3,: C*(M)— C=(M, T*") defined by 9,f=df |01 extends naturally to a
closed operator in L¥M). Then, the Szegt projector is defined as the ortho-
gonal projector onto the closed subspace ker 9,, the space of L?* CR holomor-
phic functions.

Recall that the canonical bundle of M is a complex line bundle K, of
(n+1, 0)-forms given by

Ky={eCA"™'T*M; V]t =0 for VeTlT}.
We shall later use the following fact on the canonical bundle K,,, or, rather,

K=K, \{0}. Given closed sections ¢, {’ of K3, we have {=f¢’, where f
is CR holomorphic.
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2. Condition on contact forms. In order to derive the transformation
law, we start with the observation of Farris [2] that a nonvanishing (n+1, 0)-
form determines a contact form.

Proposition 2.1 ([2, Proposition 3.2]). Let U be an open set in M. If
teC~(U, K#) there exists a unique contact form 0. defined on U such that

(2.1) ;. Nd0=i"nl0; N(TJO)N(TIE)  whenever 6,T)=1,Te€TM.
Furthermore, if f is a nowhere zero complex valued function on U, then
2.2) 0ye = | f V000, .

This contact form 6; is said to be normalized with respect to ¢. 'This
normalization is used in order to define our condition.

DeFINITION 2.2. A pseudohermitian structure 6 is said to satisfy Con-
dition F if, in a neighborhood of every point, there exists a closed section ¢
of K} which normalizes 6.

The most important example of a pseudohermitian structure satisfying
Condition F is the one induced by an embedding M cC”*'. In this case,
E=dz'\--- ANdz"*' gives a closed section of Kj, and hence 6. satisfies Con-
dition F. We will see in section 4 that the associated volume element 6; Ad@?
coincides with the volume element constructed by Fefferman.

RemaRk 1. If dim M >5, then Condition F arises from a geometric pro-
blem which was posed by Lee [6]: Find a pseudohermitian structure for which
the pseudohermitian Ricci tensor (i.e. the Webster Ricci tensor) is a scalar
multiple of the Levi form. A pseudohermitian structure satisfying this con-
dition is said to be pseudo-Einstein. This condition is nontrivial only when
dim M >5. In this case, Lee showed in [6] that the pseudo-Einstein condition is
equivalent to Condition F. For global existence of a pseudo-Einstein structure,
he gave a simple necessary condition—the vanishing of the first Chern class of
T™° with real coefficients, or, equivalently, ¢(K,)=0. (In three-dimensional
case, it is easy to see that this is also a necessary condition for the existence of
a pseudohermitian structure satisfying Condition F.) He conjectured that the
Chern class condition is also sufficient, and proved it positively under some
geometric restrictions.

3. Transformation law on pseudohermitian manifolds. We are
now in a position to derive a transformation law for the Szegd projectors on
pseudohermitian manifolds satisfying Condition F. Our result is the following:

Theorem 1. Let (M, 0,), (M,, 6,) be pseudohermitian manifolds satisfying
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Condition F and let ®: M,— M, be a CR isomorphism. Assume that H'(M,, R)
=0. Then, there exists a CR holomorphic function f on M, which satisfies ®*0,=
| f1¥®*D0,, and the Szegs projectors transform according to

3.0 S\(f-(pe®)) =f-(8p)°®)  for peLiM),
where S; is the Szegd projector on M; for j=1, 2.

Before proving this, we rewrite (3.1) in terms of kernel functions. Boutet
de Monvel and Sjostrand [1] showed that if M bounds a relatively compact
set in a Stein manifold, or if M is compact and dim M >3, then the Szego pro-
jector is written as a Fourier integral operator. In this case, we can write (3.1)
as

32) (%, 9) = f(@)5(@ (), PONAY)  for (v, y)EM, XM,
where s; is the Schwartz kernel of S; for j=1, 2.

Proof of Theorem 1. Since ®*f, is a contact form on M,, it follows that
d*0,=¢*0, with a real a valued function u on M,. We first show that u is CR
pluriharmonic, that is, u is locally the real part of a CR holomorphic function.
Clearly 0, and ®*0, satisfy Condition F, so that there are locally defined,
closed sections £, ¢’ of K which normalize §,, ®*0,, respectively. If we write
¢'=e#¢ with a CR holomorphic function g, then (2.2) gives ®*,=¢Re@/+2g
Therefore u is locally the real part of g/(n+2). Since HY(M,, R)=0, it follows
from Lemma 3.1 of [6] that there exists a globally defined conjugate function v
of u—a real valued function which makes #+7v CR holomorphic. Then, the CR
holomorphic function f=e®*D®+i) satisfies the first assertion. With such an f,
we have, for any functions @, \Jr& L{(M,),

S <m792/\d03=5 @o® Afro® - D* (0, \d6})
M2 My
— Sle.(¢o@) f-(ro®)-0,\dO} .

Hence we can define an isomorphism L*(M,)— L*M,) by @t f+(po®). Since
£ is CR holomorphic, it follows that this isomorphism preserves the space of CR
holomorphic functions and thus commutes with the Szegd projectors. We
therefore obtain (3.1).

4, Strictly pseudoconvex domains. In this section we shall recall
Fefferman’s construction of volume elements and view it from the standpoint of
Theorem 1.

Fefferman, in the epilogue of [5], defined a volume element o on the boun-
dary of a strictly pseudoconvex domain Q CC**! by the normalization
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G/\d\[l‘ — i("+1)271!](\[/')l/(n+2)d2/\d;,

where 4 is a defining function of ) measured as positive in Q, dz=dz'A -+ A
dz""!, and J denotes the complex Monge-Ampére operator defined by

¥ Or/02° )

Jop) = (=1 det (a\p/azﬂ 0™/020%°

Then the associated contact form is computed by using an approximate solution
of J(y)=1 to first order along 8Q. Taking a defining function # of Q which
satisfies J(#)=1 on 00, we consider the contact form 0o=(i/2) (8—0)u. After
some calculation, we see that the volume element 65 A d@3 satisfies the normali-
zation above. It was further shown by Farris [2] that A, is normalized with
respect to dz. 'Thus the pseudohermitian manifold (39, 6,,) satisfies Condition F.

We now apply Theorem 1. Let ®: Q,—Q, be a biholomorphic map be-
tween bounded strictly pseudoconvex domains. Since @ has a smooth extension
to O, by Fefferman’s theorem [3], it follows that the holomorphic Jacobian J,
is defined on O, by ®*dz=J,-dz. Thus (2.2) gives

@*002 = l]o|zl("+z) 001 .

In this case, we can take a branch of (J,)**®*2 as f in Theorem 1. Then
(3.2) is written as

(#.1) $1(2, @) = (Jo) "V D (2)5(D(2), D(w))(Jo) " (w)

for (2, w)€0Q,x0Q,. This formula is also valid for (2, w)eQ,xQ,, if we
regard s, and s, as the Szego kernels.

5. Transformation law on CR manifolds satisfying ¢(K,)=0. In
this section we generalize Theorem 1 to CR manifolds such that the real Chern
classes of the canonical bundles vanish. For the purpose, instead of specifying
a volume element, we construct a CR holomorphic line bundle L with a (2n+1)-
form valued hermitian inner product. In view of (2.2), we make L by modify-
ing K§+/»+D__it is rather symbolic; we assume the Chern class condition
c(K3)=0 in order that the (n+42)-th root makes sense (cf. Remark 2).

To construct such a CR holomorphic line bundle, we need an additional
assumption that K, is a CR holomorphic line bundle in a natural manner. This
amounts to assuming that the canonical bundle admits a nonvanishing closed
section in a neighborhood of every point.

We begin with the definition of the Szegd projector acting on sections of a
hermitian line bundle. Let L be a CR holomorphic hermitian line bundle with
C A1 T*M-valued pointwise inner product {,>. The L? inner product is
then defined by
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(o, ¥) = SM<¢, > for the sections ¢, y» of L .

Note that {g, ¥> is a (2n-+1)-form on M. Denoting by L* M, L) the Hilbert
space of square integrable sections of L, we can define the Szegd projector as
the orthogonal projector of LM, L) onto the subspace ker 3;, where 9, is re-
garded as an operator acting on the sections of the CR holomorphic line bundle
L.

Our result is the following:

Theorem 2. Let M,, M, be strictly pseudoconvex CR manifolds with the
CR holomorphic canonical bundles such that the real Chern classes vanish, and
assume that H'(M;, R)=0 for j=1,2. Then there exists a CR holomorphic her-
mutian line bundle L; on each M; with the following property : for any CR isomor-
phism ®: M,— M,, there exists an isomorphism &: L*(M,, L,)— L*(M,, L,)
which commutes with the Szego projectors, i.e.,

S0t = dtoS,,
. where 8 is the Szego projector defined on LM, L;) for j=1, 2.

It turns out that if the CR manifolds above admit pseudohermitian structu-
res satisfying Condition F, then the bundles L,, L, are trivial CR holomorphic
bundles, and Theorem 2 is reduced to Theorem 1.

In what follows we give a procedure of constructing a CR holomorphic
hermitian line bundle, unique up to isomorphisms, intrinsically from the CR
structure—then the proof of Theorem 2 will be clear.

Assume at first we are given a CR holomorphic line bundle L on M with a
system of transition functions {u;,}, with respect to an open covering {U},
such that

(5-1) ,l“j,kln+2 = |7\fj,k|"+1 on U,- N Uk ’

where {1} is a system of transition functions of K,, which comes from local
frames {¢ ;+. Then we can naturally define a hermitian inner product <, > on
L. For @, in a fiber L, over a point p& U;, we define

s ¥y = @ (0;Ad07),E€ (C A T*M), ,

where @, y; are fiber coordinates of @, 4 over U, and 0; is the contact form
normalized by ¢;. Since this defintion depends on a choice of the open set U;,

we must show that this inner product is well-defined. This easily follows from
(2.2) and the transformation rule on U; N U,:

Pi= Prtin,;, Vi =Awm,; and ;= N8
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Therefore we have only to find a line bundle L satisfying (5.1). Then the
required hermitian line bundle is given by L with the inner product defined as
above. For this purpose we consider the exact sequence:

0>2,,%0+ 800,

where O* is the sheaf of nowhere zero CR holomorphic functions and «, B are
defined by a(k)=e"*"*a B(f)=f"*%. The existence of L follows from its
induced cohomology exact sequence:

B* 8
(5.2) HYM, O*)— H\(M, O*) - H*M, Z,.,) .
Since ¢(K,)=0, we can choose F € H(M, S*) in such a way that the integral

Chern class of FQK§"*! vanishes. Then we have §(FQK§')=0. Thus,
by (5.2), there exists a CR holomorphic line bundle L such that

(5.3) Lo = FQKS .

This implies (5.1). Moreover, we can select L uniquely in such a way that
the integral Chern class vanishes. Here we use the assumption H'(M, R)=0.
Since there is ambiguity in the choice of the isomorphisms in (5.3), the hermi-
tian inner product on L is not uniquely determined. Nevertheless, we can show,
by using H(M, R)=0, that all such hermitian line bundles are isomorphic—the
proof is essentially the same as that of Theorem 1. We have thus constructed a
CR holomorphic hermitian line bundle unique up to isomorphisms.

ReMARK 2. The existence of L satisfying (5.1) follows from a weaker Chern
class condition: ¢(K,)=c(E®*?) for some complex line bundle E. However,
there is no canonical choice of L, and the ambiguity of the bundles is described
by HY(M, S*).
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