

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

REPRESENTATION OF GAUSSIAN PROCESSES EQUIVALENT TO WIENER PROCESS¹ '

MASUYUKI HITSUDA

(Received June 24, 1968)

1. Introduction

The purpose of this paper is to get a canonical representation of Gaussian processes which are equivalent (or mutually absolutely continuous) to Wiener process. The main result is this. Suppose we are given a Gaussian process *Y*_{*t*} on a probability space (Ω , \mathfrak{B} , P), which is equivalent to Wiener process. Then a Wiener process X_t is constructed on $(\Omega, \mathfrak{B}, P)$ as a functional of $\{Y_s; s \leqq t\}$ and, conversely, Y_t is represented as a measurable functional of $\{X_s; s \leq t\}$ for each $t \in [0, T]$. In case of $E(Y_t) = 0$, $t \in [0, T]$, Y_t is represented by the formula

$$
(1.1) \t Y_t = X_t - \int_0^t \left(\int_0^s l(s, u) dX_u \right) ds,
$$

where $l(s, t)$ is a Volterra kernel belonging to $L^2([0, T]^2)^2$, and the representation of Y_t is unique (Theorem 1). Conversely, if a Wiener process X_t is given and if Y_t is represented by (1.1), Y_t is equivalent to Wiener process (Theorem 2). The density of the transformed measure with respect to which Y_t is a Wiener process is easily evaluated in the proof of Theorem 2. The proof of these facts is based heavily upon martingale theory due to Meyer [8] and Kunita-S. Watanabe [6].

The conditions for a Gaussian process to be equivalent to Wiener process have been obtained in terms of the mean and the covariance by Shepp [11] and Golosov [3]. Moreover, by the method of linear transformations of Wiener space, Shepp [11] and H. Sato [10] have obtained the following representation

$$
Y_t = X_t - \int_0^t \left(\int_0^T m(s, u) dX_u \right) ds,
$$

where $m(s, u)$ is a kernel of $L^2([0, T]^2)$ with some additional conditions. This representation involves the stochastic integral on the fixed time interval $[0, T]$, so that it does not assert even the fact that if the Gaussian process is equivalent

¹⁾ This work was partially supported by the Yukawa Foundation.

²⁾ The Volterra kernel $l(s, t) \in L^2([0, T]^2)$ means $l(s, u) = 0$ for $s < u$.

to Wiener process in the time interval [0, *T],* it is so in any subinterval [0, *t⁰]* for each $t_0 \in [0, T]$. Such a fact is clarified in the representation (1.1).

The author wishes to thank Professor H. Kunita for his helpful comments; especially the proof of Lemma 3 is due to his idea. The author also enjoyed many advices from the members of "Seminar on Probability" in Osaka-Kyoto and Nagoya.

2. Preliminaries

Let $(\Omega, \mathfrak{B}, P)$ be a complete probability space, $\{\mathfrak{F}_t; t \in [0, T]\}$ a system of σ -subalgebras of $\mathfrak B$ which are increasing in t, and $\{X_t; t \in [0, T]\}$ a stochastic process on $(Ω, ℬ, P)$. In the following discussion, time interval [0, T] will be fixed.

DEFINITION 1. When (X_t, \mathfrak{F}_t, P) satisfies the following conditions 1), 2) and 3), it is called a *Wiener process:*

1) The sample paths of X_t are continuous in t, and $X_0 = 0$.

2) For $t \geq s$, $t, s \in [0, T]$, $E(X_t | \mathfrak{F}_s) = X_s$ with P-measure 1, where $E(\cdot | \cdot)$ denotes the conditional expectation with respect to the measure *P.*

3) $E((X_t - X_s)^2 | \mathfrak{F}_s) = t - s$ with P-measure 1, for $t \ge s$, $t, s \in [0, T]$ This definition of Wiener process is due to Doob [1].

DEFINITION 2. A stochastic process Y_t , definied on $(\Omega, \mathfrak{B}, P)$ (or simply, (Y_t, P) is called a *Gaussian process*, when the distribution of $(Y_{t_1}, Y_{t_2}, \dots, Y_{t_N})$ with respect to P is subject to an N -dimensional Gaussian distribution.

Let (Y_t, P) be a stochastic process. Let \tilde{P} be a probability measure on $(0, \mathfrak{B})$ such that P and \tilde{P} are mutually absolutely continous, that is, $\tilde{P}(d\omega)$ = $\varphi(\omega)P(d\omega)$ with a strictly positive φ . Let \mathfrak{Y}_t be the σ -subalgebra of \mathfrak{B} , generated by $\{Y_s, s \leq t\}$, adjoined with all P-negligible sets. Note that the notion of negligible sets is identical for both *P* and P.

DEFNITION 3. A stochastic process (*Y^t ^y P)* is said to be *equivalent to Wiener process* when there is a probability measure

$$
\tilde{P}(d\omega) = \varphi(\omega)P(d\omega),
$$

such that P and P are mutually absolutely continuous and such that $(Y_t, \mathfrak{Y}_t, \tilde{P})$ is a Wiener process.

REMARK 1. Suppose $\mathfrak{B} = \mathfrak{Y}_T$. Let \tilde{P} be absolutely continous relative to P , that is, $\tilde{P}(d\omega) = \varphi(\omega)P(d\omega)$ with non-negative φ . If Y_t is Gaussian with respect to both P and \tilde{P} , then P and \tilde{P} are mutually absolutely continous by Hajék and Feldman's result (see Rozanov [9]).

REMARK 2. When (Y_t, P) is equivalent to Wiener process, we can assume that the sample paths of Y_t are continous by choosing a suitable modification,

3. Necessary condition and uniqueness

The purpose of this section is to prove the following theorem.

Theorem 1. Suppose that a Gaussian process (Y_t, P) , $t \in [0, T]$, with mean 0, is equivalent to Wiener process. Then there exists a Wiener process (X_t, \mathfrak{Y}_t, P) and a Volterra kernel $l(s, u) \in L^2([0, T]^2)$ such that Y_t is represented, with P *measure* 1, *by the formula*

(3.1)
$$
Y_t = X_t - \int_0^t \left(\int_0^s l(s, u) dX_u \right) ds \quad \text{for every } t \in [0, T].
$$

Moreover, such X_t and $l(s, u) {\in} L^2([0, T]^2)$ are unique.

For the proof of Theorem 1, we need some lemmas. Let $\varphi(\omega)$ be the density $d\tilde{P}(\omega)/dP(\omega)$ in Definition 3.

Lemma 1. Let M_t be a right continuous modification of the martingle $\widetilde{E}(\frac{1}{\varpi}|\mathfrak{Y}_t)$ with respect to (\mathfrak{Y}_t, P) . Then,

1)
$$
P(M_t>0
$$
 for $t \in [0, T]) = 1$.

2) *M^t is represented by*

$$
M_t = \exp\left\{ \int_0^t f(s, \, \omega) dY_s - \frac{1}{2} \int_0^t f^2(s, \, \omega) ds \right\} \quad \text{for any} \quad t \in [0, T],
$$

where f(s^y ω) is a function which is (i) *(s, ω)-measurable and* (ii) *ty^s -measurable for each* $s \in [0, T]$ *, and which satisfies*

(iii)
$$
P\left(\int_0^T f^2(s, \omega)ds < \infty\right) = 1.
$$

Proof. Let us put

$$
\tau_{_0}=\left\{\begin{aligned} &\inf\left\{t\,;\,M_t=0\right\} \\ &T &\,,\qquad\text{if}\quad \{t\,;\, {\rm M}_t=0\}=\phi\ , \end{aligned}\right.
$$

then τ_0 is a stopping time relative to $\{\mathfrak{Y}_t\}$. By the optional sampling theorem

$$
\widetilde{E}(M_T | \mathfrak{Y}_{\tau_0}) = M_{\tau_0} \quad \text{ with } P\text{-measure 1.}
$$

So we get

$$
\Big\rfloor_{_{\{\tau_{\textbf{0}}< T\}}}M_T\tilde{P}(d\omega)=\Big\rfloor_{_{\{\tau_{\textbf{0}}< T\}}}M_{\tau_{\textbf{0}}}\,\tilde{P}(d\omega)=0.
$$

On the other hand, since $M_T(\omega){=}\tilde{E}(\varphi^{-1}|\mathfrak{Y}_T){>}0,$ we get $P(\tau_\mathrm{o}{<}T){=}0$ from the above equality. The proof of 1) is finished,

Since $(Y_t, \mathfrak{Y}_t, \tilde{P})$ is a Wiener process, the martingle M_t is represented by

$$
M_t = \int_0^t g(s, \omega)dY_s + 1 \quad \text{for any} \quad t \in [0, T],^{3}
$$

according to Kunita-S. Watanabe [6], where $g(s, \omega)$ satisfies (i), (ii) and (iii) of this lemma by replacing $f(s, \omega)$ with $g(s, \omega)$. We can now apply Itô's formula [5] and we get

$$
\log M_t = \log(1 + \int_s^t g(s, \omega) dY_s)
$$

=
$$
\int_s^t \frac{1}{M_s} g(s, \omega) dY_s - \frac{1}{2} \int_s^t \frac{1}{M_s^2} g(s, \omega)^2 ds.
$$

Put

$$
f(s,\omega)=\frac{1}{M_s}\mathrm{g}(s,\,\omega)\,,
$$

then $f(s, \omega)$ satisfies (i), (ii) and (iii). The proof of this lemma is finished.

Lemma 2. (Girsanov [2]). Let $f(s, \omega)$ be the function of Lemma 1 and let

(3.2)
$$
X_t = Y_t - \int_0^t f(s, \, \omega) \, ds \, .
$$

Then $(X_t, \mathfrak{Y}_t, P(d\omega))$ *is a Wiener process.*

The next lemma plays an important role.

Lemma 3. Under the same assumption as in Lemma 1, if (Y_t, P) is a Gaus-

sian process, then it follows that

$$
E\Big(\int_0^T f(s, \omega)^2 ds\Big)<\infty \quad \text{and} \quad \widetilde{E}\Big(\int_0^T f(s, \omega)^2 ds\Big)<\infty.
$$

Proof. First let us note the fact that

$$
\widetilde{E}(M_T \log M_T) = K \langle \infty,
$$

which is due to Hajek-Feldman (see Rozanov [9] for a simple proof), because *Y^t* is a Gaussian process with respect to two measures P and \tilde{P} . Since $x \log x$ is a convex function, $\{M_t \log M_t\}_{t \in [0,T]}$ is a submartingale with respect to $\{\mathfrak{Y}_t\}$ in the probability space $\{\Omega, \mathfrak{B}, \tilde{P}\}\$. Therefore, by the optional sampling theorem,

$$
K \geq \widetilde{E}(M_{T_{n}\wedge T} \log M_{T_{n}\wedge T}),
$$

where ${T_n}_{n=1,2,...}$ is an arbitrary sequence of stopping times increasing to T. Moreover,

3) See Supplement,

REPRESENTATION OF GAUSSIAN PROCESSES 303

$$
\widetilde{E}(M_{T_{\boldsymbol{n}}\wedge T}\log M_{T_{\boldsymbol{n}}\wedge T}) = \widetilde{E}(M_T\log M_{T_{\boldsymbol{n}}\wedge T})
$$
\n
$$
= E\Big(\int_0^{T_{\boldsymbol{n}}\wedge T} f \, dY_s - \frac{1}{2} \int_0^{T_{\boldsymbol{n}}\wedge T} f^2 ds\Big)
$$
\n
$$
= E\Big(\int_0^{T_{\boldsymbol{n}}\wedge T} f \, dX_s + \frac{1}{2} \int_0^{T_{\boldsymbol{n}}\wedge T} f^2 ds\Big).
$$

The last equality holds by Girsanov [2]. The process $\left\{ \int_0^t f(s, \omega) dX_s \right\}_{t \in [0, T]}$ is a local martingale⁴⁾ with respect to $\{\mathfrak{Y}_t\}$ in (Ω,\mathfrak{B}, P) , so we can choose a sequence { T_n } such that $\left\{ \int_0^{t \wedge T_n} f(s, \omega) dX_s \right\}_{t \in [0, T]}$ is a martingale for every *n*. Then, the last expectation above is $\frac{1}{2} E\left(\int_{0}^{T_n \wedge T} f^2 ds \right)$ for every *n*, and we get the first part of this lemma as *n* tends to ∞ . On the other hand,

$$
M_t^{-1} = \exp\left(-\int_0^t f dX_s - \frac{1}{2} \int_0^t f^2 ds\right)
$$

is a martingale with respect to $\{\mathfrak{Y}_t\}$ in $(\Omega, \mathfrak{B}, P)$. Therefore, we can similarly get the second part.

Lemma 4. *Under the same assumption as in Lemma 3, let* \mathfrak{M}_t *be the linear* manifold spanned by $\{Y_s; s\leq t\}$ and let $\widehat{\mathfrak{M}}_t{}^{(P)}$ and $\widehat{\mathfrak{M}}_t{}^{\widetilde{p}_j}$ be the closure of \mathfrak{M}_t by L^2 norm relative to the measure P and P̄, respectively. $\;$ Then $\overline{\mathfrak{M}}_{\bm{t}}{}^{(P)}\!\!=\!\overline{\mathfrak{M}}_{\bm{t}}{}^{(\bar{P})}.$ $\;$ Moreover,

$$
F_t(\omega)=\int_0^t f(s, \omega)ds
$$

belongs to $\overline{\mathfrak{M}}_t^{\langle P \rangle}$, where $f(s, \omega)$ is the function of Lemma 1.

Proof. To prove the first half, let $Z \in \overline{\mathfrak{M}}_{t}^{\{P\}}$ and $\{Z_{n}\}\$ be a sequence of \mathfrak{M}_t converging to Z in $L^2(P)$ sense. Then, there is a subsequence $\{Z_{n_k}\}$ of $\{Z_n\}$ converging to Z with P-measure 1. Since $\{Z_{n_k}\}$ is a Gaussian system relative to the measure \tilde{P} , so is $\{z_{n_k}\}\cup\{Z\}$, and the convergence $\{Z_{n_k}\}\rightarrow\{Z\}$ takes place in $L^2(\tilde{P})$ -sense. Therefore, $Z \in \overline{\mathfrak{M}}_t^{(\tilde{P})}$ or equivalently $\overline{\mathfrak{M}}_t^{(P)} \subseteq \overline{\mathfrak{M}}_t^{(P)}$. The converse relation is carried out by the same way.

Since (X_t, \mathfrak{Y}_t, P) is a martingale, the relation (3.2) implies that, for each $h > 0$, the equality

(3.3)
$$
\int_0^t \frac{E(F_{s+h} | \mathfrak{Y}_s) - F_s}{h} ds = \int_0^t \frac{E(Y_{s+h} | \mathfrak{Y}_s) - Y_s}{h} ds \quad \text{for any } t^{5}
$$

⁴⁾ We say a stochastic process L_t , $t \in [0, T]$, is a local martingale with respect to $\{S_t\}$ in $(\Omega, \mathfrak{B}, P)$ when there exists an increasing sequence of stopping times $\{T_n\}_{n=1,2,\cdots}$ with respect to $\{\mathcal{Y}_t\}$ such that $T_n \to T$ with P-measure 1 and $L_t \wedge T_n$ is a martingale with respect to $\{\mathcal{Y}_t\}$ for each $n \in (\Omega, \mathfrak{B}, P)$ (see [6]).

⁵⁾ We define $F_t = F_T$ and $Y_t = Y_T$ for $t > T$, for convenient.

holds with P-measure 1. On the other hand, it is known that every $E[Y_{s+h} | \mathcal{Y}_{s}],$ $s \leq t$, belongs to $\mathfrak{M}_{h+t}^{(P)}$ because (Y_t, P) is Gaussian. Hence it is sufficient to show that the left hand of (3.3) converges to F_t in probability. Put

$$
F_t^* = \int_0^t (f \vee 0) ds, \ \ F_t^- = - \int_0^t (f \wedge 0) ds
$$

and denote by $F_{h,t}^{\pm}$ the left hand of (3.3) replacing F by F^{\pm} there, respectively. Then ${F_t[±]}$ is a continous and increasing process adapted to ${D_t}$ in the sense of Meyer [8]. Moreover, $\{F_t^{\pm}\}\$ is integrable by Lemma 3. Hence, F_t^{\pm} converges to F_t^{\pm} as $h \rightarrow 0$ in $L^1(P)$ -sense ([8] p. 126), respectively. Similarly $F_{h,t}$ converges to F_t as $h \rightarrow 0$. Thus the proof is complete.

Proof of Theorem 1. 1°. Under the assumption of this theorem, we shall first prove that, with P-measure 1 the function $f(s, \omega)$ of Lemma 1 can be represented by

$$
f(s, \omega) = \int_0^s k(s, u)dY_u \quad \text{for almost all} \quad s \in [0, T],
$$

where $k(s, u)$ is a Volterra kernel in $L^2([0, T]^2)$. It is well known that each element of $\overline{\mathfrak{M}}_{t}^{(P)}$ can be represented by a stochastic integral of the form $\int_{0}^{R} K(u) dY_u$. *i* ${}^tK(t, u) dY_u$. Noting that F_t is continuous, we can choose $K(t, u)$ to be (t, u) -measurable by means of Slutsky's method [12]. Now, let Λ denote the (s, ω) -set

$$
\{(s, \omega)\n;\n\lim_{n \to \infty} n(F_s - F_{s-1/n}) \text{ does not exist or}
$$
\n
$$
\lim_{n \to \infty} n(F_s - F_{s-1/n}) \neq f(s, \omega) \},
$$

where we define $F_s = 0$, for $s < 0$. Then Λ is (s, ω) -measurable and $\mu(\Lambda) = 0$, where μ is the product measure of $\tilde{P}(d\omega)$ and Lebesgue measure $m(ds)$ on [0, T]. In fact, $m(\Lambda_{\omega})=0$ with P-measure 1, where $\Lambda_{\omega} = \{s; (s, \omega) \in \Lambda\}.$ By Fubini's theorem it follows that $\tilde{P}(\tilde{\Lambda}_s)=0$ for almost all *s*, where $\Lambda_s = {\omega}$; $(s, \omega) \in \Lambda$. Therefore, for almost all s,

$$
\lim_{n\to\infty} n(F_s-F_{s-1/n})=f(s,\,\omega)\qquad\text{for}\quad\omega\!\in\!\Lambda_s\,,
$$

and $f(s, \omega) \in \overline{\mathfrak{M}}_s{}^{(P)}$ for such *s*. Hence for almost all $s \in [0, T]$,

$$
f(s, \omega) = \int_0^s k(s, u)dY_u \quad \text{with } P\text{-measure 1},
$$

where $k(s, u)$ belongs to $L^2(du)$ for such s. Moreover, we can choose $k(s, u)$ to be (s, u) -measurable. Put

REPRESENTATION OF GAUSSIAN PROCESSES 305

$$
\Lambda'_s = \left\{ \omega : f(s, \omega) \neq \int_0^s k(s, u) dY_u \right\} \cup \Lambda_s,
$$

then $P(\Lambda_s) = 0$ for almost all $s \in [0, T]$. Since

$$
\Lambda'=\Big\{(s,\,\omega)\,;\,f(s,\,\omega)\neq\int_0^s\!\!\!\!\!k(s,\,u)d\,Y_u\Big\}\cup\Lambda
$$

is (s, ω) -measurable,

$$
f(s, \omega) = \int_0^s k(s, u)dY_u
$$

holds for $s \in \Lambda_{\omega}' = \{s; (s, \omega) \in \Lambda'\}$ with P-measure 1. By this fact, we can get

$$
X_t = Y_t - \int_0^t \left(\int_0^s k(s, u) dY_s \right) ds.
$$

By Lemma 2,

$$
\tilde{E}\Big(\int_0^T \Big(\int_0^s k(s, u)dY_u\Big)^2 ds\Big) = \int_0^T \tilde{E}\Big(\int_0^s k(s, u)dY_u\Big)^2 ds \n= \int_0^T \int_0^s k(s, u)^2 ds du < \infty,
$$

therefore we can see that $k(s, u)$ is a Volterra kernel of $L^2([0, T]^2)$.

2°. Next, we want to represent Y_t in the form of (3.1), by constructing the kernel *l(s^y t).* For the Volterra kernel *k(s, t),* there is a resolvent kernel *l(s, t)* such that

(3.4)
$$
l(s, t) + k(s, t) - \int_t^s l(s, u)k(u, t)du = 0 \quad \text{in} \quad L^2([0, T]^2)
$$

$$
l(s, t) + k(s, t) - \int_t^s k(s, u)l(u, t)du = 0 \quad \text{in} \quad L^2([0, T]^2).
$$

For, the Neumann series for the Volterra kernel *k(s^y t)* converges in the sense of $L^2([0, T]^2)$, and the limit is the kernel $l(s, t)$ (see Smithesis [13]). Thus the equations

(3.5)
\n
$$
X_{t} - \int_{0}^{t} \left(\int_{0}^{s} l(s, u) dX_{u} \right) ds
$$
\n
$$
= Y_{t} - \int_{0}^{t} \left(\int_{0}^{s} k(s, u) dY_{u} \right) ds - \int_{0}^{t} \left(\int_{0}^{s} l(s, u) dY_{u} \right) ds
$$
\n
$$
+ \int_{0}^{t} \left(\int_{0}^{s} l(s, u) \int_{0}^{u} k(u, v) dY_{v} du \right) ds
$$
\n
$$
= Y_{t} - \int_{0}^{t} \left(\int_{0}^{s} k(s, u) dY_{u} \right) ds - \int_{0}^{t} \left(\int_{0}^{s} l(s, u) k(u, v) du \right) dY_{v} ds
$$
\n
$$
+ \int_{0}^{t} \left(\int_{0}^{s} \left(\int_{v}^{s} l(s, u) k(u, v) du \right) dY_{v} \right) ds
$$

hold with P-measure 1 for each $t \in [0, T]$. The last equality follows by using the formula

$$
\int_0^s \left(\int_0^s m(u, v) dY_u \right) dv = \int_0^s \left(\int_0^s m(u, v) dv \right) dY_u
$$

where m(u, v) $\in L^2[0, T]^2$). By the equation (3.4), the stochastic process

$$
\int_0^t \int_0^s \left(-k(s, u)-l(s, u)+\int_u^s l(s, v)k(v, u)dv\right) dY_u\right\} ds
$$

is identically 0 with P-measure 1. Therefore the right side of (3.5) is equal to Y_t with P-measure 1 for each $t \in [0, T]$.

This proves (3.1), for both side of (3.1) are continuous with P-measure 1. 3°. Finally we will discuss the uniqueness of the representation (3.1). In fact, we will prove a slightly stronger result than the uniqueness statement in the theorem. Suppose Y_t has two representations such as

$$
Y_t = X_t^1 - \int_0^t \left(\int_0^s l(s, u) dX_u^1 \right) ds
$$

= $X_t^2 - \int_0^t h(s, \omega) ds$,

where $(X^1_t, \mathfrak{Y}_t, P)$ and $(X^2_t, \mathfrak{Y}_t, P)$ are Wiener processes and $h(s, \omega)$ is a function satisfying (i), (ii) and (iii) in Lemma 1. Then,

$$
X_t^1 - X_t^2 = \int_0^t \left(h(s, \omega) - \int_0^s l(s, u) dX_u^1 \right) ds
$$

is a martingale with respect to $\{\mathfrak{Y}_t\}$. By the uniqueness of Meyer's decomposition ([7] p. 113), it follows easily that

$$
X_t^1 - X_t^2 = X_0^1 - X_0^2 = 0,
$$

$$
\int_0^t h(s, \omega) ds = \int_0^t \left(\int_0^s l(s, u) dX_u^1 \right) ds
$$

hold for any $t \in [0, T]$ with P-measure 1. By Fubini's theorem

$$
h(s, \omega) = \int_0^s l(s, u) dX_u^1, \quad \text{for almost all} \quad (s, \omega) \in [0, T] \times \Omega.
$$

Thus, the proof of this theorem is completed.

REMARK 3. Theorem 1 shows that $\mathfrak{X}_t=\mathfrak{Y}_t$ for each $t\in[0, T]$, where \mathfrak{X}_t is the σ -algebra generated by $\{X_s; s\leqq t\}$ and P-negligible sets. Therefore (Y_t, P) has the proper canonical representation (3, 1) with respect to the Wiener process (X_t, \mathfrak{X}_t, P) in the sense of Hida [4].

In case of $E(Y_t)$ \neq 0, we get the following theorem by the same method as in Theorem 1.

Theorem 1'. Suppose that a Gaussian process (Y_t, P) , $t \in [0, T]$, is equivalent to Wiener process. Then there exists a Wiener process (X_t, \mathfrak{Y}_t, P) such that Y_t *is represented, with P-measure* 1, *by the formula*

$$
Y_t = X_t - \int_0^t \left(\int_0^s l(s, u) dX_u \right) ds - \int_0^t a(s) ds, \text{ for any } t \in [0, T]
$$

where $l(s, u)$ *is a Volterra kernel belonging to* $L^2([0, T]^2)$ *and* $a(s) \in L^2([0, T])$ *. Moreover such* X_t , $l(s, u)$ and $a(s)$ are unique.

4. Sufficient condition

In this section we will prove the converse of Theorem 1. This result is implied in Shepp [11] or H. Sato [10], if we note that the Volterra kernel has only zero as its eigenvalues. But, our proof is simpler than theirs and the density is explicitly evaluated.

Theorem 2. If (X_t, \mathfrak{F}_t, P) is a Wiener process, then the Gaussian process *with respect to the measure P*

$$
Y_t = X_t - \int_0^t \left(\int_0^s l(s, u) dX_u \right) ds
$$

is equivalent to Wiener process, where $l(s, u) \in L^2([0, T]^2)$ is a Volterra kernel. *In this case the density* $\varphi(\omega)$ *in Definition* 3 *can be taken as follows*⁶;

$$
(4.1) \t\varphi(\omega) = \exp\left\{ \int_0^T \left(\int_0^s l(s, u) dX_u \right) dX_s - \frac{1}{2} \int_0^T \left(\int_0^s l(s, u) dX_u \right)^2 ds \right\}.
$$

Proof. This theorem is established if we can show that

$$
E\Big(\exp\Big\{\Big\{\int_0^T\Big(\int_s^sI(s,\,u)dX_u\Big)dX_s-\frac{1}{2}\int_0^T\Big(\int_s^sI(s,\,u)dX_u\Big)^2ds\Big\}\Big)=1,
$$

for then $(Y_t, \mathfrak{F}_t, N_T(\omega)P(d\omega))$ is a Wiener process by virtue of Girsanov [2]. Let

$$
N_t = \exp\left\{ \int_0^t \left(\int_0^s l(s, u) dX_u \right) dX_s - \frac{1}{2} \int_0^t \left(\int_0^s l(s, u) dX_u \right)^2 ds \right) \right\}.
$$

Then the process (N_t, \mathfrak{F}_t, P) is a local martingale (see [6]) and we may consider *Nt* has continous paths. Therefore, there is an increasing sequence of stopping times $\{T_n\}$ which tends to T with P-measure 1 such that $\{N_t^{\prime\prime} = N_{t\wedge T_n}, \mathfrak{F}_t, P\}$ is a martingale for each *n*. Hence, it is enough to prove that $\{N_{\textit{T}}^n\}$ is uniformly integrable, because $E(N_T) = \lim_{n \to \infty} E(N_{T_n}) = 1$. Observing that

⁶⁾ The density $\varphi(\omega)$ may not be unique in general. But, the function of (4.1) is the only density which is measurable with respect to $\{X_t; 0 \le t \le T\}$.

$$
N_t'' = \exp \left\{ \int_0^t \left(X_{[0,T_n]}(s) \int_0^s l(s, u) dX_u \right) dX_s - \frac{1}{2} \int_0^t \left(X_{[0,T_n]}(s) \int_0^s l(s, u) dX_u \right)^2 ds \right\},
$$

where

$$
\chi_{\mathfrak{l}_0,T_n,\mathfrak{l}}(s) = \begin{cases} 1 & \text{if } s \leq T_n \\ 0 & \text{if } s > T_n, \end{cases}
$$

define

$$
Y_t^n = X_t - \int_0^t \chi_{[0,T_n]}(s) \left(\int_0^s l(s, u) dX_u \right) ds
$$

= $X_t - \int_0^T \int_0^s l(s, u) dX_u \right) ds$.

Then Girsanov's theorem, applied to N_T ", tells us that $(Y_t^*, \mathfrak{F}_t, N_T^*P(d\omega))$ is a Wiener process for each *n.* On the other hand, a similar calculation as in (3.5) shows that

$$
X_t = Y_t - \int_0^t \left(\int_0^s k(s, u) dY_u \right) ds
$$

holds for any $t \in [0, T]$ with *P*-measure 1, where $k(s, u)$ is the resolvent kernel of *l(s, u)* which satisfies (3.4). Therefore, it follows that

$$
\int_0^t \left(\int_0^s k(s, u) dY_u \right) ds = \int_0^t \left(\int_0^s l(s, u) dX_u \right) ds, \qquad t \in [0, T],
$$

or

$$
\int_0^s k(s, u)dY_u = \int_0^s l(s, u)dX_u \quad \text{for almost all} \quad s \in [0, T].
$$

Then

$$
\log N_t^n = \int_0^{t \wedge T_n} \left(\int_0^s l(s, u) dX_u \right) dX_s - \frac{1}{2} \int_0^{t \wedge T_n} \left(\int_0^s l(s, u) dX_u \right)^2 ds
$$

\n
$$
= \int_0^{t \wedge T_n} \left(\int_0^s l(s, u) dX_u \right) dY_s + \frac{1}{2} \int_0^{t \wedge T_n} \left(\int_0^s l(s, u) dX_u \right)^2 ds
$$

\n
$$
= \int_0^{t \wedge T_n} \left(\int_0^s k(s, u) dY_u \right) dY_s + \frac{1}{2} \int_0^{t \wedge T_n} \left(\int_0^s k(s, u) dY_u \right)^2 ds
$$

\n
$$
= \int_0^{t \wedge T_n} \left(\int_0^s k(s, u) dY_u^n \right) dY_s^n + \frac{1}{2} \int_0^{t \wedge T_n} \left(\int_0^s k(s, u) dY_u^n \right)^2 ds,
$$

for any $t \in [0, T]$, with P-measure 1. The last equality follows from the fact that

$$
\int_0^{t\wedge T_{\boldsymbol{n}}}f(s,\,\omega)dY_s=\int_0^{t\wedge T_{\boldsymbol{n}}}f(s,\,\omega)dY_s^{\boldsymbol{n}}
$$

holds for any $f(s, \omega)$ satisfying (i), (ii) and (iii) in Lemma 1. As $(Y_t^*, \mathfrak{F}_t, \tilde{P}^*)$, $n{=}1,2,{\cdots},$ are Wiener processes, where $\tilde{P}^{\textit{n}}(d\omega){=}N{_T}{\textit{n}}(\omega)P(d\omega),$ we have

REPRESENTATION OF GAUSSIAN PROCESSES 309

$$
E((\log N_T^n) N_T^n) = \tilde{E}^n (\log N_T^n)
$$

= $\tilde{E}^n \Big(\int_0^{T \wedge T_n} \Big(\int_0^s k(s, u) dY_u^n \Big) dY_u^s + \frac{1}{2} \int_0^{T \wedge T_n} \Big(\int_0^s k(s, u) dY_u^n \Big)^2 ds \Big)$
= $\frac{1}{2} \tilde{E}^n \Big(\int_0^{T \wedge T_n} \Big(\int_0^s k(s, u) dY_u^n \Big)^2 ds \Big)$
 $\leq \frac{1}{2} \int_0^T \Big(\int_0^s k(s, u)^2 du \Big) ds = K.$

Hence, the family ${N_T}^n$ $_{n=1,2,...}$ is uniformly integrable. This is our desired result.

More generally, the following theorem can be proved analogously.

Theorem 2'. Let (X_t, \mathfrak{F}_t, P) , $l(s, t)$ be as in Theorem 2 and a(s) be of L 2 ([0, T]). *Then the Gaussian process with respect to the measure P*

$$
Y_t = X_t - \int_0^t \left(\int_0^s l(s, u) dX_u \right) ds - \int_0^t a(s) ds
$$

is equivalent to Wiener process. In this case, the function

$$
\varphi(\omega) = \exp \left\{ \int_0^T \left(\int_0^s l(s, u) dX_u + a(s) \right) dX_s - \frac{1}{2} \int_0^T \left(\int_0^s l(s, u) dX_u + a(s) \right)^2 ds \right\}
$$

defines a density in Definition 3 such that $(X_t, \mathfrak{F}_t, \varphi P(d\omega))$ is a Wiener process.

5. Related topics

1. A decomposition of a positive definite operator $(I-H)$ on L^2 ([0, *T*]).

Proposition 1. A Gaussain process (Y_t, P) , $t \in [0, T]$, with mean 0 is equiva*lent to the Wiener process if and only if* (Y_t, P) *has the covariance*

$$
E(Y_{t_1} Y_{t_2}) = (t_1 \wedge t_2) - \int_0^{t_1 \wedge t_2} \left(\int_u^{t_1} l(s, u) ds \right) du
$$

-
$$
\int_0^{t_1 \wedge t_2} \left(\int_u^{t_2} l(s, u) ds \right) du
$$

+
$$
\int_0^{t_1} \int_0^{t_2} \left(\int_0^{s_1 \wedge s_2} l(s_1, u) l(s_2, u) du \right) ds_1 ds_2,
$$

with a Volterra kernel l(s, u) in L² ([Q, T]²). Moreover such l(s, u) is unique.

This proposition follows immediately from Theorem 1 and Theorem 2. As an application to L^2 -theory, we can get

Proposition 2. Let H be a symmetric integral operator on $L^2([0, T])$.

Then I —H is strictly positive definite if and only if there is an integral operator L of Volterra type such that

(5.1)
$$
I-H = (I-L)(I-L^*),
$$

where L is the adjoint of L. Furthermore, such a decomposition is unique.*

Proof. "If" part: Since *L* is of Volterra type, the integral equation

 $(I-L)f = 0$

has the unique solution $f=0$ in $L^2([0, T])$ (Simthesis [13]). Therefore

 $(I - L^*)g = 0$

has the unique solution $g=0$ in $L^2([0, T])$. Hence,

$$
((I-H)g, g) = ((I-L)(I-L^*)g, g)
$$

= ((I-L^*)g, (I-L^*)g) > 0.

"Only if" part: Let *h(u, v)* be the kernel which defines the operator *H.* Then, by a result of Shepp [11], there is a Gaussain process *(Y^t ,* P), equivalent to Wiener process, with covariance

$$
E(Y_{t_1} Y_{t_2}) = (t_1 \wedge t_2) - \int_0^{t_1} \int_0^{t_2} h(u, v) du dv.
$$

Hence, by Proposition 5.1, there is a unique Volterra kernel $l(u, v)$ such that

$$
h(u, v) = l(u, v) + l(v, u) - \int_0^T l(u, w) \, l(u, w) \, dw.
$$

If we define the operator $(I - L)$ by

$$
(I-L)f(u) = f(u) - \int_0^T l(u, v) f(v) dv = f(u) - \int_0^u l(u, v) f(v) dv,
$$

then

$$
(I-L) (I-L^*) f(u) = (I-H)f(u).
$$

2. Pinned Wiener process (Lévy [7] p. 318).

If (X_t, \mathfrak{F}_t, P) , $t \in [0, 1]$, is a Wiener process, then

$$
Y_t = (1-t) \int_0^t \frac{dX_u}{1-u} = X_t - \int_0^t \left(\int_0^s \frac{-1}{1-u} dX_u \right) ds \qquad 0 \le t < 1
$$

= 0 \qquad t = 1

is the so-called pinned Wiener process with mean 0 and covariance

 $E(Y_t Y_s) = (1-t)s$, for $t < s$. In this case,

$$
l(s, u) = \begin{cases} \frac{-1}{1-u} & u \leq s \\ 0 & u > s \end{cases}, \quad k(s, u) = \begin{cases} \frac{1}{1-s} & u \leq s \\ 0 & u > s \end{cases}.
$$

Evidently, the Gaussian process (Y_t, P) is equivalent to Wiener process in [0, t_0], t_0 <1, by Theorem 2, while (Y_t, P) is not equivalent to Wiener process in [0, 1], because $Y_1=0$, with P-measure 1. This phenomenon can be explained from that the kernel $l(s, u)$ does not belong to $L^2([0, 1]^2)$. The process Y_t is the unique solution of the stochastic integral equation

$$
Y_t = X_t + \int_0^t \frac{1}{1-s} \int_0^s dY_u \qquad t < 1
$$

with the initial condition $Y_0=0$.

NAGOYA INSTITUTE OF TECHNOLOGY

References

- [1] J.L. Doob: Stochastic Processes, Wiley, New York, 1963.
- [2] I.V. Girsanov: *On transforming a certain class of stochastic processes by absolutely continuous substitution of measures,* Ther. Probability Appl. 5 (1960), 285-301.
- [3] Ju. I. Golosov: *Gaussian measures equivalent to Gaussian Markov measures,* Dokl. Akad. Nauk SSSR 166 (1966), 48-52.
- [4] T. Hida: *Canonical representations of Gaussian processes and their applications,* Mem. Coll. Sci. Univ. Kyoto 33 (1960), 109-155.
- [5] K. Itό: *On a formula concerning stochastic differentials,* Nagoya Math. J. 3 (1951), 55-65.
- [6] H. Kunita and S. Watanabe: *On square integrable mar tingles,* Nagoya Math. J. 30 (1967), 209-245.
- [7] P. Lévy: Processus Stochastiques et Mouvement Browinen, Gauthier-Villars, Paris, 1965.
- [8] P.A. Meyer: Probability and Potentials, Blaisdell Publ. Comp., Waltham, 1966.
- [9] Yu. A. Rozanov: *On the density of Gaussian measure with respect to another,* Theor. Probability Appl. 7 (1962), 82-87.
- [10] H. Sato: *On the equivalence of Gaussian measures,* J. Math. Soc. Japan 19 (1967), 159-172.
- [11] L.A. Shepp: *Randon-Nikodym derivatives of Gaussian measures,* Ann. Math. Statist. 37 (1966), 321-354.
- [12] E. Slutsky: *Sur les fonctions aleatoires presque periodiques et sur la decomposition des functions aleatoires stationaires en composantes,* Actualites Sci. Indust. 738 (1938), 35-55.
- [13] F. Smithies: *On the theory of linear integral equations,* Proc. Cambridge Philos. Soc. 31 (1935), 76-84.

Supplement for the proof of Lemma 1.

Professor T. Watanabe pointed out that, for the representation *J u* $\int_{0}^{8} g(s, \omega) dY_s + 1$, it is necessary to prove that there is an increasing sequence $\{T_n\}_{n=1,2,...}$ of stopping times which converges to T and $\{M_{t\wedge T_n}\}_{t\in I_0,T}$ $(n=1, 2, \cdots)$ are square integrable martingales with respect to $\{\mathfrak{Y}_t\}$ in $(\Omega, \mathfrak{B}, P)$ (see Kunita-S. Watanabe [6]).

For the proof, we will first show that *M^t* has cotinuous paths. Set

$$
M_t^N = \widetilde{E}\Big(\frac{1}{\varphi}\!\wedge\!N \!\mid\! \mathfrak{Y}_t\!\Big)\;,
$$

then $M_{t} - M_{t}^{N}$ is a positive martingale and M_{T}^{N} converges to M_{T} in $L^{1}(\tilde{P})$ sense. Using Doob's inequality ([1] p. 353),

$$
\widetilde{P}(\sup_{0\leq t\leq T}(M_t-M_t^N)\geq\lambda)\leq \frac{\widetilde{E}(M_T-M_T^N)}{\lambda}.
$$

This shows M_t^N converges to M_t uniformly in probability \tilde{P} . On the other hand, $\{M^N_t\}_{t\in I_0,T]}$ are square integrable martingale, and so they have continuous paths. Hense *M^t* has continuous paths.

Next, if we choose the sequence of stopping times $\{T_{n}\}_{n=1,2...}$ such that

$$
T_n = \begin{cases} \min \{t; M_t \geq n\} \\ T & \text{if } \{t; M_t \geq n\} \neq \phi \end{cases}
$$

then T_n converges to T and $\{M_{t\wedge T_n}\}_{t\in I_0,T]}$ $(n=1,2\cdots)$ are square integrable martingales, because of the cotinuity of paths of *M^t .*