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1. Introduction

The purpose of this paper is to get a canonical representation of Gaussian

processes which are equivalent (or mutually absolutely continuous) to Wiener

process. The main result is this. Suppose we are given a Gaussian process

Yt on a probability space (Ω, 33, P), which is equivalent to Wiener process. Then

a Wiener process Xt is constructed on (Ω, 33, P) as a functional of [Ys\ s^t] and,

conversely, Yt is represented as a measurable functional of [Xs\ s^t} for each

*<Ξ[0, T]. In case of £(Fί)=0, fe[0, Γ], Yt is represented by the formula

(1.1) Yt = Xt

where l(sy t) is a Volterra kernel belonging to L2([Q, T]2)2\ and the representation

of Yt is unique (Theorem 1). Conversely, if a Wiener process Xt is given and

if Yt is represented by (1.1), Yt is equivalent to Wiener process (Theorem 2).

The density of the transformed measure with respect to which Yt is a Wiener

process is easily evaluated in the proof of Theorem 2. The proof of these

facts is based heavily upon martingale theory due to Meyer [8] and Kunita-

S. Watanabe [6].

The conditions for a Gaussian process to be equivalent to Wiener process

have been obtained in terms of the mean and the covariance by Shepp [11] and

Golosov [3]. Moreover, by the method of linear transformations of Wiener space,

Shepp [11] and H. Sato [10] have obtained the following representation

t = Xt-\t(\Tm(S,u)dXu}ds,
Jo \Jo /

where m(s, u) is a kernel of £2([0, T]2) with some additional conditions. This

representation involves the stochastic integral on the fixed time interval [0, T1],

so that it does not assert even the fact that if the Gaussian process is equivalent

1) This work was partially supported by the Yukawa Foundation.
2) The Volterra kernel l(s, t)<= L2([0, T]2) means l(s, u)=0 for s<u.
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to Wiener process in the time interval [0, T], it is so in any subinterval [0, t0] for
each tQ e[0, T]. Such a fact is clarified in the representation (1.1).

The author wishes to thank Professor H. Kunita for his helpful comments;
especially the proof of Lemma 3 is due to his idea. The author also enjoyed
many advices from the members of "Seminar on Probability" in Osaka-Kyoto
and Nagoya.

2. Preliminaries

Let (Ω, S3, P) be a complete probability space, {§,; ίe[0, T]} a system of
cr-subalgebras of S3 which are increasing in £, and {Xt\ £e[0, T]} a stochastic
process on (Ω, S3, P). In the following discussion, time interval [0, T] will be
fixed.

DEFINITION 1. When (Xt, %t, P) satisfies the following conditions 1), 2)
and 3), it is called a Wiener process:

1) The sample paths of Xt are continuous in £, and XQ=0.
2) For t^s, ty s<= [0, Γ], E(Xt \ τ&s)=X3 with P-measure 1, where £(• | •)

denotes the conditional expectation with respect to the measure P.
3) E((Xt—Xs)

2\%3) = t—s with P-measure 1, for t^s,' ί, je[0, T]
This definition of Wiener process is due to Doob [1].

DEFINITION 2. A stochastic process YtJ definied on (Ω, S3, P) (or simply,
(Yj, P}} is called a Gaussian process, when the distribution of (Y^, Y/2, •••, Yίjy.)
with respect to P is subject to an TV-dimensional Gaussian distribution.

Let (Yj, P) be a stochastic process. Let P be a probability measure on
(Ω, S3) such that P and P are mutually absolutely continous, that is, P(dω)=
φ(ω)P(dω) with a strictly positive φ. Let 2), be the cr-subalgebra of S3, generated
by {Y5, ί^ί}, adjoined with all P-negligible sets. Note that the notion of
negligible sets is identical for both P and P.

DEFNITION 3. A stochastic process (Y t y P) is said to be equivalent to Wiener
process when there is a probability measure

P(dω) = φ(ω)P(dω),

such that P and P are mutually absolutely continuous and such that (Y t , 2)^, P)
is a Wiener process.

REMARK 1. Suppose S3=2)τ. Let P be absolutely continous relative to P,
that is, P(dω)=φ(ω)P(dω) with non-negative φ. If Y, is Gaussian with respect
to both P and P, then P and P are mutually absolutely continous by Hajek and
Feldman's result (see Rozanov [9]).

REMARK 2. When (Y,, P) is equivalent to Wiener process, we can assume
that the sample paths of Y, are continous by choosing a suitable modification,
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3. Necessary condition and uniqueness

The purpose of this section is to prove the following theorem.

Theorem 1. Suppose that a Gaussian process (Yty P), £e[0, Γ], with mean

0, is equivalent to Wiener process. Then there exists a Wiener process (Xty 2),, P)

and a Volterra kernel l(s, u)<= L2([0, T]2) such that Yt is represented, with P-

measure 1, by the formula

(3.1) y, = Xt-V((Ί(s, u)dXu)ds for every ίe[0, T] .
Jo\Jo I

Moreover, such Xt and l(s, w)eL2([0, Γ]2) are unique.

For the proof of Theorem 1, we need some lemmas. Let φ(ω) be the density

dP(ω)/dP(ω) in Definition 3.

Lemma 1. Let Mt be a right continuous modification of the mar tingle

E( — I <9f) with respect to (2),, P). Then,

1) P(Mt>0 for *<EΞ[0, T]) = 1 .

2) Mt is represented by

Mt = exp (f, ω)dY,— /2^, ω)ώ /or α«y f e [0, Γ] ,

where f(sy ω) is a function which is (i) (s, ω)-measurable and (ii) tys-measurable for

each $e [0, T], «/zrf «;A/ί:A satisfies

(iii)
Proof. Let us put

τo = \
\T , if {ί;Mί = 0} = φ,

then TO is a stopping time relative to (2),} . By the optional sampling theorem

E(MT 12)To) = MΊQ with P-measure 1.

So we get

( MτP(dω) = ( MΊ P(dω) - 0.
J{τ0<T} J{τ0<T) °

On the other hand, since Mτ(ω)=E(φ~112)τ)>0, we get P(τ0<Γ) = 0 from the

above equality. The proof of 1) is finished,
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Since ( Yty 2),, P) is a Wiener process, the martingle Mt is represented by

Mt = ('*(*, ω)dYs+ 1 for any f e= [0, Γ] ,3>

according to Kunita-S. Watanabe [6], where g(s, ω) satisfies (i), (ii) and (iii)
of this lemma by replacing f(s, ω) withes, ω). We can now apply Itό's formula
[5] and we get

t = log(l+\'g(s,ω)dYβ)
Jo

Put

*»*>) = g(s, ω),

then/(s, ω) satisfies (i), (ii) and (iii). The proof of this lemma is finished.

Lemma 2. (Girsanov [2]). Let f(s, ω) be the function of Lemma 1 and let

(3.2) *, = y,

Then (Xt9 2)^, P(dω)) is a Wiener process.

The next lemma plays an important role.
Lemma 3. Under the same assumption as in Lemma l , i f ( Yt, P) is a Gaus-

sian process, then it follows that

oo and E( ^f(sy ω)

Proof. First let us note the fact that

E(MT log Λfτ) = K<oo,

which is due to Hajek-Feldman (see Rozanov [9] for a simple proof), because Yt

is a Gaussian process with respect to two measures P and P. Since x log x is

a convex function, [Mt log Mjίe[0>τj is a submartingale with respect to (2),}
in the probability space {Ω, 33, P} . Therefore, by the optional sampling theorem,

K^E(MTnΛT log Λ/TΛΛT),

where {Γw}w=12... is an arbitrary sequence of stopping times increasing to T.
Moreover,

3) See Supplement,
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£(MTnΛT log Λf TβΛT) = E(MT log MTnΛT)

a τΛr
.

α TM

.

The last equality holds by Girsanov [2] . The process \ \ /(s, ω) dXs \ is a
Uo JfeEo.T]

local martingale4) with respect to (2),} in (Ω, 55, P), so we can choose a sequence
ί f *ΛT» ){Tn} such that { I f(s,ω)dXs\ is a martingale for every n. Then, the
Uo J fe[o,T]

1 / f TnΛT \
last expectation above is ~9~#( I /2ώ J for every n, and we get the first part

of this lemma as n tends to oo. On the other hand,

Mf = exp (- j/^-y J/*

is a martingale with respect to (3),} in (Ω, 33, P). Therefore, we can similarly
get the second part.

Lemma 4. Under the same assumption as in Lemma 3, let 2JΪ, be the linear

manifold spanned by [Ys\s^t] and let 2JίVP) and Wt^ be the closure of%ttt by L2-

norm relative to the measure P andP, respectively. Then 3Jlί

CP:>=3Dίlί

<:P:>. Moreover,

FM = \'f(s> "Vs

Jo

belongs to 2JΪ/P), where f ( s , ω) is the function of Lemma 1.

Proof. To prove the first half, let ZeξjJΐ/^ and {Zn} be a sequence of
9JI, converging to Z in L2(P) sense. Then, there is a subsequence [Zn J of {Zn}
converging to Z with P- measure 1 . Since {Zn J is a Gaussian system relative to
the measure P, so is {#WJ U{Z}, and the convergence {ZMJ-^{Z} takes place in

L2(P)-sense. Therefore, Z (Ξ SR/^ or equivalently ̂ /P) c ̂ t/p). The converse
relation is carried out by the same way.

Since (Xt, 3),, P) is a martingale, the relation (3.2) implies that, for each
λ>0, the equality

(3-3) t'JKF^M-F.fi = f'fi^ΓI).)- Y< ds for ^
V 7 Jo A Jo A

4) We say a stochastic process Lt, t e [0, T], is a local martingale with respect to {?)/} in
(Ω, S3, P) when there exists an increasing sequence of stopping times {Tn}n==1>2,... with respect to
{?),} such that Tn-*T with P-measure 1 and Lt/\Tn is a martingale with respect to {?)/} for each
w in (Ω, S3, P) (see [6]).

5) We define Ft=FT and Yt= Yτ for ί> T, for convenient.
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holds with P-measure 1. On the other hand, it is known that every E[Ύs+h \ 2)J,

s^t, belongs to 9ϊlΛ

(fJ because (Yt, P) is Gaμssian. Hence it is sufficient to

show that the left hand of (3.3) converges to Ft in probability. Put

t = Γ(/VO)Λ, FT = - Γ(/ΛO)Λ
Jo Jo

and denote by Fht* the left hand of (3.3) replacing F by F± there, respectively.

Then {Ff} is a continous and increasing process adapted to {?),} in the sense of

Meyer [8]. Moreover, {F*} is integrable by Lemma 3. Hence, F^ conver-

ges to Ff as λ->0 in L1(P)-sense ([8] p. 126), respectively. Similarly Fhtt con-

verges to Ft as λ-»0. Thus the proof is complete.

Proof of Theorem 1. 1°. Under the assumption of this theorem, we shall

first prove that, with P-measure 1 the function f(s, ω) of Lemma 1 can be re-

presented by

f(s, ω) = [*k(s, u)dYu for almost all s<= [0, T] ,
Jo

where k(s, u) is a Volterra kernel in L2([0, T]2). It is well known that each element

of 2ϊΐ,CP) can be represented by a stochastic integral of the form \ K(u)dYu.
Jo

i t
K(ty u) dYu. Noting that Ft is con-

0
tinuous, we can choose K(t, u) to be (£, w)-measurable by means of Slutsky's

method [12]. Now, let Λ denote the (ί, ω)-set

{(f, ω); lim n(Fs—Fs_1/n) does not exist or

where we define FS=Q, for s<0. Then Λ is (s, ω)-measurable and μ(Λ)— 0,

where μ is the product measure of P(dω) and Lebesgue measure m(ds) on

[0, T]. In fact, m(Λω)=0 with P-measure 1, where Λω = {s; (s, ω)eΛ}.

By FubinΓs theorem it follows that JP(&S) = 0 for almost all s, where

Λ5={ω; (s, ω)^Λ} . Therefore, for almost all s,

lim n(Fs—F3-1/n)=f(s, ω) for ω <£ Λ5 ,
«->oo

and/(ί, ω)eφϊ,CP) for such s. Hence for almost all $e[0, Γ],

S5
Λ(ί, u)dYu with P-measure 1,

0

where A(s, w) belongs to L2(du) for such s. Moreover, we can choose k(s, u) to be

(ί, z/)-measurable. Put
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Λ'. = ω;/(ί, ω)Φ

then P(Λ'S)=0 for almost all ίe [0, T]. Since

Λ' = {(*, ω);/(ί, ω)φ *Λ(ί, «

is (s, ω)-measurable,

/(*, ω) = \Sk(s, u)dYu
Jo

holds for s eΛω' = {s; (s, ω) eΛ'} with P-measure 1. By this fact, we can get

Xt= Yt-\'^k(s9 u)dY,)ds .

By Lemma 2,

S T re
1 A(ί, u)

o Jo

therefore we can see that k(s, u) is a Volterra kernel of £2([0, T]2).
2°. Next, we want to represent Yt in the form of (3.1), by constructing

the kernel l(sy t). For the Volterra kernel k(s, t), there is a resolvent kernel l(s, t)
such that

l(s, t)+k(s, t)- (Ί(s, u)k(u, t)du = 0 in L2([0, T]2)

(3.4) 1
l(s, t)+k(s, t)-\ k(s, u)l(u, f)du = 0 in L2([0, Γ]2) .

Jt

For, the Neumann series for the Volterra kernel k(sy t) converges in the sense of
L2([0, T]2), and the limit is the kernel l(sy t) (see Smithesis [13]). Thus the
equations

(3.5) X.

ds, «)J"*(«, v}dYvdu)

o \ J o V J z ;
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hold with P-measure 1 for each t e[0, T]. The last equality follows by using

the formula

where m(z/, z;)eL2[0, T]2). By the equation (3.4), the stochastic process

Γ {*(-*(*, u)-l(s, u)+[Ί(s, v)k(v, u)dv)dYu] ds
Jo l o \ Ju / )

is identically 0 with P-measure 1. Therefore the right side of (3.5) is equal to Yt

with P-measure 1 for each t e [0, T].

This proves (3.1), for both side of (3.1) are continuous with P-measure 1.

3°. Finally we will discuss the uniqueness of the representation (3.1). In

fact, we will prove a slightly stronger result than the uniqueness statement in

the theorem. Suppose Yt has two representations such as

where (X^ ?)/> P) and (Xt

2, ?)„ P) are Wiener processes and h(s, ω) is a function
satisfying (i), (ii) and (iii) in Lemma 1. Then,

Xt

l~Xt

2 = (Ίh(s, ω)-(Ί(s, u)dx
J o \ J o

is a martingale with respect to {?)J. By the uniqueness of Meyer's decom-

position ([7] p. 113), it follows easily that

V i V 2 _ vϊ γ 2 _ n
Λ.t — Λ.t — Λ.Q — Λ.0 — U,

(ί, ω)ds = '( l(s, u)dxS\ ds

hold for any ί^[0, T] with P-measure 1. By Fubini's theorem

h(s, ω) = I l(s, u)dXu\ for almost all (j, ω)<Ξ[0, T] XΩ.
Jo

Thus, the proof of this theorem is completed.

REMARK 3. Theorem 1 shows that 3^=2), for each ί^[0, Γ], where X,

is the σ-algebra generated by {Xs, s^t} and P-negligible sets. Therefore (Yt,P)

has the proper canonical representation (3, 1) with respect to the Wiener process

(Xt9 X,, P) in the sense of Hida [4].

In case of E( Yt) Φ 0, we get the following theorem by the same method as
in Theorem 1.
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Theorem 1 '. Suppose that a Gaussian process ( Yt, P), t e [0, Γ], is equivalent
to Wiener process. Then there exists a Wiener process (Xt, ?)„ P) such that Yt

is represented, with P-measure 1, by the formula

Yt = Xt-('(Γl(s, u)dXu] ds-(*a(s)ds, for any ίe[0, T\
Jo V Jo / Jo

where l(s, u) is a Volterra kernel belonging to L2([0, T]2) and a(s)<ΞL2([Q, T]).
Moreover such Xty l(s, u) and a(s) are unique.

4. Sufficient condition

In this section we will prove the converse of Theorem 1 . This result is im-
plied in Shepp [11] or H. Sato [10], if we note that the Volterra kernel has only
zero as its eigenvalues. But, our proof is simpler than theirs and the density is
explicitly evaluated.

Theorem 2. If (Xt, §„ P] is a Wiener process, then the Gaussian process
with respect to the measure P

is equivalent to Wiener process, where l(sy z/)eL2([0, T]2) is a Volterra kernel.

In this case the density φ(ω) in Definition 3 can be taken as follows^

(4.1) φ(ω] = exp

Proof. This theorem is established if we can show that

for then (Yt, τ§t, Nτ(ω)P(dω)) is a Wiener process by virtue of Girsanov [2].

Let
(Ct/fS \ 1 n/fS \ 2 \Λ

Nt = exp ( /(*, u)dXu)dX.—± ( l(s, u)dXu\ ds)\ .
LjQ\Jθ / ^ Jo \Jθ / / )

Then the process (Nt, $t, P) is a local martingale (see [6]) and we may consider
Nt has continous paths. Therefore, there is an increasing sequence of stopping
times {Tn} which tends to T with P-measure 1 such that (Nt

n=Nt^Tnί %t, P} is
a martingale for each n. Hence, it is enough to prove that {Nτ

n} is uniformly

integrable, because E(NT)=lim E(NTn)=l. Observing that

6) The density φ(ύ)) may not be unique in general. But, the function of (4.1) is the only
density which is measurable with respect to {



308 M. HITSUDA

Nt" = exp { ί Y%[O>ΓM] (5) ('/(,, u)dXu] dXs-\ Γ (%[o,Tί>] (s) \Ί(s, u)dXβ}* ds] ,
I Jo \ Jo / ^ Jo \ Jo / )

where

% 1 if s^Tn
/ [ 0 τ"κ; o if s>τa,

define

y," = xt- Γ%to,Tκι (*) (\Ί(S, u)dxu] ds
Jo \Jo /

S Tn/\t / Λ5 \

( \l(S,u)dXu)dS.o \ Jo /

Then Girsanov's theorem, applied to Nτ

n, tells us that (F/1, S#, Nτ

nP(dω)) is
a Wiener process for each n. On the other hand, a similar calculation as in

(3.5) shows that

Xt=Yt-\Ί\Sk(s,u)dYu)ds
Jo V Jo /

holds for any t e [0, T] with P-measure 1, where &(s, z/) is the resolvent kernel of

l(s, u) which satisfies (3.4). Therefore, it follows that

or

Then

. u)dYuds = /(ί, ttJdX ώ, ίe[0, T],

(Sk(s, u)dYu = (Ί(s, u)dXu for almost all s EΞ [0, T] .
Jo Jo

5 t/\Tn/ (s \ ι ft/\Tn/ f s \ 2

"( /(ί, M)^a ) dX.-\ "( l(s, u)dXu) ds
o \ J o / ^ J o \ J o /

S tf\Tn/ rs \ -j f t / \ T n / rs \
"( /(ί, tt)dar,,) rfy.+ i- "( /(ί, «μΛΓ

o \ Jo / ^ Jo \ Jo /
Γt/\τM/ rs \ ι ftΛTn/ rs \

= "( A^fixyJrfF.+i "( *(ί,«>/y
Jo V J o / ^ J o \ J o /

5 t/\Tn/ rs \ I ΓM(jo% M)rfys)£/yj+^-J

for any ίe [0, T], with P-measure 1. The last equality follows from the fact that

J tf\τn ΐ*/\τn
"f(s, ω)dYs = "f(s,

0 J θ

holds for any/(s, ω) satisfying (i), (ii) and (iii) in Lemma 1. As (Yt*> %t, P
w),

n— 1, 2, ••• , are Wiener processes, where Pn(dω)=Nτ

n(ω)P(dω)^ we have
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T/\T

^ - ( k(s,ufdu)ds = K .
^ Jo \ Jo /

Hence, the family {Nτ

n} n=ι,2, 1S uniformly integrable. This is our desired
result.

More generally, the following theorem can be proved analogously.

Theorem 2'. Let (Xty $/> P), l(s, t) be as in Theorem 2 and a(s) be of

L2([0, T]). Then the Gaussian process with respect to the measure P

Yt = Xt-\'Cl(s, u)dXa}dS- \ta
Jo \o / Jo

is equivalent to Wiener process. In this case, the function

φ(ω) = exp Γ( \Ί(s, u)dXu+a(s)}dXs
lo \ J o /

1 f T / fs \ 2 ^

-̂ - ( \ l(s, u)dXa+a(s)) ds\
^ Jo \ Jo / )

defines a density in Definition 3 such that (Xt, %t, φP(dω)} is a Wiener process.

5. Related topics

1. A decomposition of a positive definite operator (I—H) on L2 ([0, T]).

Proposition 1. A Gaussaίn process ( Yt, P), ίe [0, Γ], with mean 0 is equiva-
lent to the Wiener process if and only if ( Yty P) has the covarίance

S ίjΛίo / r*ι \
2( l(s,u)ds)du

0 \ Ju /

5 tι/\t2 / Γ*2 \

(\ l(s, u)ds\du

S 'l f * 2 / f*l^*2 \
( 7(fl, «) /(*„ u)du)dSl ds2,o Jo \ J o /

with a Volterra kernel l(s, u) in L2([Q, T]2). Moreover such l(s, u) is unique.
This proposition follows immediately from Theorem 1 and Theorem 2.

As an application to L2-theory, we can get

Proposition 2. Let H be a symmetric integral operator on L2([0, T}).
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Then I —H is strictly positive definite if and only if there is an integral operator L
of Volterra type such that

(5.1) I-H = (I-L)(I-L*) ,

where L* is the adjoint of L. Furthermore, such a decomposition is unique.

Proof. "If" part: Since L is of Volterra type, the integral equation

(/-£)/ =0

has the unique solution /=0 in L2([0, T]) (Simthesis [13]). Therefore

(I-L*te = 0

has the unique solution £=0 in L2([0, T]). Hence,

= ((I-L )g,(I-L )g)>0.

"Only if" part: Let h(u, v) be the kernel which defines the operator H.
Then, by a result of Shepp [11], there is a Gaussain process (Yt, P), equivalent to
Wiener process, with covariance

E(Ytl F/2) = fcΛί,)- u, v)dudv .
Jo Jo

Hence, by Proposition 5.1, there is a unique Volterra kernel
l(uy v) such that

S T
l(u, w) l(uy w) dw .

0

If we define the operator (I —L) by

(I-L)f(u) =f(u)- \Ί(u, v)f(v)dv=f(u)- \Ί(u, v)f(v)dv ,
Jo Jo

then

2. Pinned Wiener process (Levy [7] p. 318).
If (Xty S/, P), ^^[0, 1], is a Wiener process, then

= 0 t= 1

is the so-called pinned Wiener process with mean 0 and covariance
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E(YtYβ)=(l — t)s, for t<s. In this case,

<
, k(s,u)=

l0 u>s lθ u>s.

Evidently, the Gaussian process (Yt, P) is equivalent to Wiener process in [0, ί0],
ί0<l, by Theorem 2, while (Yt, P) is not equivalent to Wiener process in [0, 1],
because Y1=0y with P-measure 1. This phenomenon can be explained from
that the kernel l(s, u) does not belong to £2([0, 1]2). The process Ύt is the unique
solution of the stochastic integral equation

with the initial condition Yo=0.
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Supplement for the proof of Lemma 1.

Professor T. Watanabe pointed out that, for the representation

J
u

g(s, ω)dYs + \, it is necessary to prove that there is an increasing
0

sequence (7Ί

M}M^1 2 ... of stopping times wh;ch converges to T and {M ίΛτJ/e[0 ,τ]
(n=l, 2, •••) are square integrable martingales with respect to {2)J in (fl, S3, P)
(see Kunita-S. Watanabe [6]).

For the proof, we will first show that Mt has cotinuous paths. Set

φ

then Mf — M? is a positive martingale and Mj converges to Mτ in L\P}
sense. Using Doob's inequality ([1] p. 353),

P( sup (M,-M^X)

O^t^T

This shows M^ converges to Mt uniformly in probability P. On the other
hand, {M^}t^i0tT^ are square integrable martingale, and so they have continuous
paths. Hense Mt has continuous paths.

Next, if we choose the sequence of stopping times {Tn}H==lt2... such that

=

n T if

then 7"M converges to T and {ΛfίΛTn}ί(=[0fT] (n=l,2 ) are square integrable
martingales, because of the cotinuity of paths of Mt.




