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1. Introduction

In this paper we again consider a mixed problem for hyperbolic equations

of second order. The domain Ω and the equations are same ones in the pre-

vious paper [3]. Let S be a sufficiently smooth compact hypersurface in Rn

and let Ω be the interior or exterior domain of S.

Consider the hyperbolic equation of second order

(1.1) L[u] = —-u-\-aλ(x, t:D) u-{-a2(x, t:D)u = f

n ft

a2(x, t: D) = — Σ —

where the coefficients belong to «S2(Ωx[0, °°))1). We assume that a2(x, t:D)

is an elliptic operator satisfying

(1.2) Σ β/ (̂ , t)ξ{i

(x, t) = ajΊ(x, t)

for all (Λ?, ί)eίlx[0,oo) and ξ=(ξ19 ξ2 , , ξn)^R'\ and that hf(x, t) (ί=l, 2,
..., n) are real-valued.

Let σ^s, t) be a sufficiently smooth real-valued function defined on

Sx [0, oo) such that for some constant £0>0

1) ίBk(ω), ω being an open set, is the set of all functions defined in ω such that their
partial derivatives of order <k all exist and are continuous and bounded.
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(1.3) σι(s, t)«h(s, t),

holds where

v=(vl9 v2 , , vn) is the unit outer normal of S at s&S. Then we consider the

following boundary operator

(1.4) B(t) = —-*>(*, t)-j-+<r&, t)
όnt at

where

<r2(ί, Z) is a sufficiently smooth function defined on Sx[0, °°).
Our problem is to obtain u(x, t)ζΞeΐ(H2(Ω)) ft £l(Hl (&))(} 5?(L2(Ω))2), for

given initial data {u0(x), u^x)}, the second member f(x, t) and the boundary data

g(s, t), satisfying

(1.5)

(i) L[u] =/(Λ?, t) in Ωx(0, Γ)

(ii) „(*, 0) = iφ) , ,0) =

(iii) B(t)u(x, i) = g(s, t) on Sx [0, T) .

In the previous paper [3] the boundary condition was taken as cr^s, t)
=ζh(s, t), vy and g(s, t)=Q. But in our treatment it seems to be difficult to
show the existence of solution without the assumption that the coefficients of the

principal part of L are independent of t on S or that <A(ί, t), z/>=0 on S.

By exchanging the boundary condition as (1.3) (1.4), the existence of solution

can be proved without any additional assumption about L.

Now we state Theorems:

Theorem 1. Given {UQ(X\ w1(Λ:)}e/ί2(n)x/ϊrl(Ω), f(x, t)^el

e(L\Ω)) and

g(s, t)^SΌ

c(H^2(S))Γ((S^(L2(S))y if the compatibility condition at f=0, namely

(1.6) JLuoW-σ ^, 0)Ul(x)+σ2(s, OX*) = g(s, 0) on S
dn0

is satisfied then there exists one and only one solution u(x, t) of (1.5) such that

u(x, ί)

2) u(x, t)^8t(E) means that u(x, t) is k times continuously differentiable in t as E-valued
function.
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When the coefficients of L are sufficiently smooth the solution u(x, t) becomes

regular according to the regularity of given functions :

Theorem 2. Suppose that the coefficients of L belong to ^W+2(Ω X [0, T])
and

{u,(x)9 iφ)} e Hm+\fl) X H W+1

(1.7) /(*, t}^

... n e?-\H
(1.8) £(

ί/ the compatibility condition of order m3) is satisfied the solution u(x, t) of
(1.5) satisfies

(1.9) «(

... n eτ+\Hι

We treat this problem as the following equivalent system

(1.10)

(1.11) <B(t)U(t) = g(S,

U(0)=U0,

where

and

0 1Λ(t) =
L—02( *> *:£>) — a^x, t:.

the operator from H2(Ω) x ̂ (Ω) into 7/1(Ω)xL2(Ω) and

the operator from H\Ω)χH\Ω) into H^(S).
In our treatment, the energy inequality for the solution with non zero

boundary data plays an essential role. The L2-estimate of the solution by the
boundary data has not been derived excepting the case of two independent
variables [12].

3) This condition is stated in Section 5.



342 M. IKAWA

In Appendix it is seen that the condition (1.3) is necessary to hold Theorem
1 and the energy inequality (3.2) simultaneously.

Our method to prove Theorem 1 is as follows: at first we show Theorem
1 when the coefficients of L are independent of ί, then in general case we make
use of the method of Cauchy's polygonal line. The proof of Theorem 2 is
essentially same as the proof of the regularity of the solution in the previous
paper.

The author wishes to express his sincere gratitude to Professor S. Mizohata
for his many invaluable suggestions. He also wishes to thank Professor M.
Yamaguti and Professor H. Tanabe for their kind advices and continuous
encouragement.

2. Notations and lemmas

In this section we introduce some norms in the spaces Hl(Ω) X L2(Ω) and
H2(Ω)χH1(Ω)J and show some basic properties of JL(f) and J$(t), because
for our treatment it is convenient to make use some of suitable norms attached to

the operators JL(t) and <B(t).
We denote by E{ (ι=l, 2, 3, ) the space Hi(Ω)χHi~1(Ω) whose norm

is denoted by 1 1 1 1 1 1, , i. e.

(2.1)

for U= {u, v} e= H'(Ω) X H'-\ίl).

Let us remark that

gives an equivalent norm in /^(Ω) from the condition (1.2).
Denote by M(t) the space Hl(Ω) X L2(Ω) equipped with the following

norm, which is equivalent to ||| H^,

(2.2)
ι ,/=ι\

+ («, u)+(v, v)

for U= {u, v} e £P(Ω) x L2(Ω).

Lemma 2.1. There exists a constant M>Q such that for all U<=E2

(2.3) ^\\\mι<\\Λ(t}u\\*Λw+\m

where < X/2 denotes the norm of the space H1/2(S).
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Proof. It is easily seen that \\Jl(t)U\\jc(t) and ^(t)U\/2 are bounded
by const. | | |t/| | |2, then it is enough to show only the left-hand side inequality
of (2.3).

In order to drive this enequality we make use of the well known apriori
estimate concerning the elliptic operator a2(x, t : D)

"~'~ ^"" y ~\ ' ' ' ^Qnt

 / 1/2

Let us put <Jl(i)U=F={f, g}9 this means

v=f

from which it follows immediately that

W = —g—aj

|̂  = Ά t)f-σ2(s, t)u
ont

The application of the estimate (2.4) to the above relation gives

(2.5) \\u\\ί^w

<K const.

Of course

const. \\F\\ jcφ .

By combining these estimates the desired inequality follows. Q.E.D.
As the immediate consequence of the above lemma if we define | | |t/| | !«#(*)

by the relation

(2.5) i n c / i i i ' Λ c o = \\Jt(t}u\\^(t)+\\u\\2M^+<m(t)uy\/2

\\\U\\\M(t) gives an equivalent norm in E2.
3)(ί) denotes the subset of E2 of all the elements such that <B(t)U=Q on 5.

Lemma 2.2. There exists a constant c> 0 such that for any U^E2 the follow-
ing estimate holos

(2.6) (Jl(t)U,
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Proof. (Jl(t)U,

= Σ fa=

M. IKAWA

, Jl(t)U)&(t}

by integration by parts

Js dnt Jsdnt

+2 Re[(B, ,)-(± fc^+α, ,

= /+//

/= f i .f^-σ^+σ^
Js \9nf s\Qnt

— <A, ι/» I ϋ 1 2dS—
S JS

) dS

Js Js

since σ^s, t)— <A, z^>.<— 60

σ2uϋdS

< 2 R e
Js Js

—
ε0

2uϋdS
s

v\2dS

S0LJs

< const.

2u\*dS\
J

Evidently

<2||tt|| IHI+const. HulUM

<const. ||M||?+||ϋ|

From these estimates for / and //, we obtain the inequality (2.6).

Corollary. For all U^3)(t) we have

(2.7) \\(\I-

if \>c.

Q.E.D.
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Proof. \\(\I-JL(t))U\\2M(t)

, (λJ-

from (2.6) and $(t)U=0

Thus (2.7) is obtained. Q.E.D.

Lemma 2.3. ΓAere exists a constant λ0>0 swcλ that for any λ>λ0

λ/— <Jl(t) is a bijeciive mapping from 3)(t) onto M(t). And if we denote by
(\I—<Jl(t)γl the inverse of the above mapping the following estimate holds:

(2.8)
X —

Proof. Consider an equation in U

(2.9) (\I-Jl(t))U = F , U<=£)(t)y

Namely

\u — v =f

v = g ,

where f^H1(Ω.)y g^L2(Ω). The substitution of the first relation into the
second gives

(2.10) aλu=(a2+\a1+\2)u =

and since J$U=Q> u satisfies the boundary condition

(2.11) ^-\σlU+σ2u= -σj.
t

2Conversely, if we//2(Π) satisfies (2.10) and (2.11), by defining v=\u—f,
we see that U={u, v} is the solution of (2.9).

Hence the solvability of (2.9) means the existence of the solution u^H2(Ω]
of the boundary value problem of the elliptic equation containing the parameter

(2.12) a*u=f in Ω

(2.13) (— -- \σ1+σ2}u= -σ.h on S
\ dnt '

for any/eL2(Ω) and h^H\ΐϊ). To prove this, consider the quadratic form for
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(2.14)

+ \\φ,

By taking account of (1.2) and (1.3), it follows for λ>0

(2.15) τttm.ίrn ^Λ ^ΛNΠ ®Φ

\φ\2dS-\
J

then for some constant λ0>0 if λ>λ0 we have

which assures the existence of the solution u^H1(Ω>) of the variational equation

(2.16) αλ(tt, φ) = (f, φ)~ σ.hφdS
s

for any /eL2(ίl), h^Hl(Ω). This shows that u satisfies (2.12) in the sense
of 3)'(Ω). Moreover with the aid of the theory of the regularity we see
u^H2(Ω), which implies u is the solution of (2.12) and (2.13), therefore the sol-
vability (2.9) is shown.

The last part of Lemma is led immediately by combining the solvability of
(2.9) and the corollary of the previous lemma. Q.E.D.

Lemma 2.4. Let t0 be any fixed point in [0, T\. Suppose that
<D(t0) for all fe[0, T\ and F(t), Jί(t0)F(i) are continuous in M(tQ\ then for any

there exists one and only one solution of the equation

(2.17)

C/(0) =

such that U(t)fΞφ(tΛ) for all ί<=[0, T\ and U(t)(Ξ€}(M(tJj).

Proof. This is an immediate consequence of the application of Hille-
Yosida's theorem to the operator <^?(ί0) in M(tϋ}. In virture of Lemma 2.3 it



MIXED PROBLEM FOR HYPERBOLIC EQUATIONS 347

suffices to show only that 3)(t0) is dense in M(tQ). And this follows from (λ/
)=3)(t0) and (2.6)4>. Q.E.D.

3. Energy inequality

We derive the energy inequality for the solution with non-homogeneous
boundary condition. This inequality plays an essential role in the proof of
the existence of the solution since even for the zero boundary data if the coeffici-
ents of the principal part of L depend on t on the boundary S, our proof needs
the existence of the solution for non-zero boundary data related to the equation
with coefficients independent of t.

At first we show the following inequality

Lemma 3.1. Let u(x, t) EΞ £?(#2(Ω)) Π β}(Hl(Ω)) Π £?(L2(Ω))

and L[u(x, t)] = f(xy t)

B(t)u(x, t) = g(s, t) ,

then the inequality

(3.1)

holds where U(t)={u(x, t), u'(x, t)}.

Proof. A-\\U(t)\\*M^=(U'(t\ U(t))jcW + (U(t), U'(t))jc&
at

= (Jl(t)U(t),

where

for U= {u, v} e M(t). Evidently

I (U(t), U(t))M(t^ I <const.

And

\(U(t\ F(t))jc(t)\

Then by using the inequality (2.6) for U(t) and the above two estimates, we get

4) See T. Kato, Perturbation theory of linear operator, Springer (1966), page 277.
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at

from which it follows

Since I |F(τ)||2Λ(r)= | \f(x, τ)||2 and .3(ί)ί/(f) = g(s, t) (3.1) is shown. Q.E.D.
Now we prove the desired energy inequality

Proposition 3.1. Let u(x, t)^e°e(H\a))n8}(H\ti))r\8*t(L2(ti)} for
[0, Γ+60] (δ.>0). //

L[u(x, t)] = f(x, f)e

B(t)u(x, t) = g(s, ί)e

ί/zen ίAe energy inequality

(3.2) ||φ, ί)llϊ.iAQ>+llιι'(*,

holds for ίe[0, T], roAere c(Γ) does not depend on u(x, t).

Proof. Assume that

Then ί7'(ί) satisfies

~U'(t) = Jl(t)U'(t)+Jl'(t)U(t)+F'(t)

'(t) = -&(t)U(t)+g'(s, t) .

Now by applying (3.1) for U'(t) we have

Γ ||oϊ'
Jo

Remark that



MIXED PROBLEM FOR HYPERBOLIC EQUATIONS 349

= IK'(*. t:D)u(x, t)+aι'(x, t:D)u'(x, t)\\l^

< const. (IK*, ί)llϊ.ιAo3+ll«'(*» Ol

= const. H I [7(01111

< const. (||«(*, ί)IIS

= const.||| [7(01111,

and

< const. (I !| C/(0)|| |!+ 1 1/(^0)| |2).

Thus we get for some constant c^O, which is independent of u,

(3.3)

From inequality (2.3)

= M{\ I U'(t)-F(t)\\*jc(t) + 1 1 U(t)\ |2^(/) +<<£(t) [7(ί)>1/2

2}

by inserting the estimates (3.1) and (3.3)

And by using the obvious estimates

ll/(*. 01
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the following inequality holds for some constant ct '

+ sup <£(*, τ)>1/2

2+ H I f/(τ)| 1 11 dτ]
0<τ</ Jo

for alU<Ξ[0, T\.
At this point we make use of the following Lemma :

Lemma. Let j(t) and p(t) be defined on [0, a] («>0) and non-negative. If
j(t) is summable on [0, a] and p(t) is non-decreasing, and

holds for all t^ [0, 0], then we get

Then (3.2) is led by applying Lemma by taking as

Ύ(t) = \\\U(t)\\\l + \\U'(t)\\2 Λ(t)

P(t) = c/[l W)| I |!4HI/(0)||2+Γ| !/'(*, τ)\\*dτ

here we take c(T) as cί'e
c^Ί \

To remove the additional assumption that u'(x, t) is again in SΌ

t(H2(Ω)) Π
6}(H\Ω))Γ\G*t(L2(Ω)), we use the mollifier with respect to t, which is the
following one: Let φ(t) be C°°-function with a support contained in [—2, —1]

S
CO

φ(t)dt=l. Then we define φ$fa by
-00

U*(x, t) = (φκbu)(x, t) = φ8(t— τ)u(x, r)dτ

for u(x, O^L2(ΩX(0, Γ+δ0)), where

Remark that uδ(x, t)<^S~(L2(Ω}} and φκb commutes with — if ίe[0, T]

and
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Applying φκfr to (1.1) and (1.4), we get

(3.4) L[us]=fs-Csu

(3.5) B(t)ut=gt-Γ*ι

351

where

(Csu)(x, t) =

(TSU)(X, t) =

+[φκh, a2(x, t:D)]u
at

, (̂ί, ί)]-|f
ot

,<r2(s, t)]u

foral l fe[0, Γ]if
LJ

Since u8(x, t)^6~(H2(Ω))9 we can apply the just obtained result for
u8(x, t) then

(3.6) , ί)IIS+ll«.'(*, ί)llϊ+ll««'(*. OH2

*, 0)||2

-s: 3τ

SUP <£»(*>

(Csu)(x, r) dr

+ sup<(ΓsM)(ί,τ)>1/2

2].
0<τ<( J

Evidently we have for all ίe [0, T]

*> Oil. - IK*. Oil.
I !«,'(*, 01 li -H !«'(*, 01 1.
llβ/ί*. oil -> !!«'(*, OH

II/.'(*,OII -*!!/'(*, Oil
!!/•(*, Oil - II/K Oil
<ft'(*. 0> - < '̂(*. 0>

*. 0>ι/ι -* < (̂̂  OX/2

when δ tends to zero. Moreover we have
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(3.7)

9 I

when δ tends to zero. To show the second, in the view of the explicit form
of C8u9 it is enough to show the following fact: Let a(xy £)e ^2(ΩX [0, T+δJ)
and v(x, *)<ΞΞ£<2(Ωx[0, T+δ0]).

—{[φ8fa, a(x, t)]v(x, t)}

Then by putting

we have

when δ—>0. From

= {φ9(t-τ)[a(x9 τ)-a(x, t)]}[v(x, τ)-v(x, t)]dr

— τ)[a(x9 τ)—a(x, t)]v(x, τ)dτ

the desired property of \Jr8 is led. The first one can be shown more easily.
Thus the passage to the limit of (3.6) when 8— *Ό proves Proposition.

Q.E.D.

4. Existence of the solution (Proof of Theorem 1)

In the case where the coefficients of L depend on £, we use the method of
Cauchy's polygonal Iine5), for which it is need of the existence and a certain

estimate of the solution for non zero boundary data in the case where the coeffici-
ents are independent of t.

Let us denote by L(t0) and B(tQ) the operators

x, t0:D)
at

B(t0) = -— σ,(s9 t0)--+σ2(s, t0)
QntQ dt

5) See, for example, Mizohata [8] Chapter 6.
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respectively. Now we shall treat the existence of the solution for L(t0) and

B(t0).

Proposition 4.1. Given {u0(x), u^x^^E^ f ( x , t}^6}(L2(£ϊ)} and g(s,
e°t(H

l'2(S))n€2
t(L*(S)), if the compatibility condition at t=0

(4.1) - — UQ(X)~ σfa ίoX(*)+<r2(*, t0)u0(x) = g(sy 0) on S
dn*o

is satisfied there exists one and only one solution u(x, t) of the mixed problem

(4.2)

, L(t0}[u(x, t)] = f(x, t) in Ω X (0, Γ)

B(t0)u(x, t) = g(s, t) on Sx [0, T)

( φ, 0) = «.(*),-fi-(*,()) = «,(*)
at

such that u(x, Oe^

Proof. When g(s, t)=0, (4.1) means {ua(x), u,(x)} e^)(ί0). Then if f(x, ί)e
<??(^)i.2(Ω)), Lemma 2.4 assures the existence of solution f/(ί) of (2.17), thus
u(x, t) the first component of U(t) is a solution of (4.2) in £ϊ(/Γ(Ω)) Π (Sf(L2(Ω))
and M(», t)(ΞH2(Ω,). We can see that U(t)(Ξg°(E2) from

at

and by using the inequality (2.3), thus u(x, ΐ)^β°ϋ(H2(Ωί)) is shown. The con-

dition/^, ί)e£>?(^i2(Ω)) is removed with the aid of the fact that 6}(3)}*(Ω))
is dense in 6}(L2(Ω)) and the energy inequality (3.2).

When g(sy t) ί 0, at first assume that g(s, t) is sufficiently smooth, then we

can construct a function w(x, t)^S*(H2(Ω)) such that

B(t0)ιo(x, t) = g(s, t) .

Then the obtained result assures the existence of a function

v(x, t)

satisfying

L(tΰ)[v(x, t)] =f(x, t)-L(t0)[w(x, t)]

v(x, 0) = u0(x)—w(x, 0)

-|f(*, o) = Ml(*)-|̂  o)
ot ot
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since {u0-w(x9 0), u,-w'(x, 0)}s=3)(t0),f(x9 t)-L(t0)[w(x, t)]^£}(L2(Ω)). Thus
*(*, t)=v(x, t)+w(x, t)^ε°(H\Ω}}ne}(H\Ω})nε](L\CΪ)) is a solution of the
mixed problem (4.2). Then if we know the existence of a sequence of initial

data {ukQ(x)y ukί(x)}^E2 and sufficiently smooth boundary data gk(s, t) such that

(4.3) $(t0){ukQ(x), ukl(x)} = gk(s, 0)

(4.4) {ukQ(x)> ukl(x)} -» {u0(x), u^x)} in E

(4.5) Λ(j, t) -> g(s, t) in

2

Proposition is proved. Indeed uk(x, t) the solution of (4.2) for {ukQ(x), ukι(x)}

andgk(s, t) exists and the sequence uk(x, t) (k=\, 2, ) is a Cauchy sequence in

ε](H\Ω))Γ(6}(H\Λ))Γ(e2

t(L\Ά)\ this is seen by applying (3.2) for uk(x, t)
—HI(X, t). Then the limit of uk(x, t) is the required solution of (4.2) for

(u0(x), u^x)} and g(s, t).
Now let us show the existence of such {uk0(x), ukι(x)} and gk(s, t). Since

sufficiently smooth functions in <5}(Hl/2(S)) are dense in ff*t(Hl'2(S))Γie}(L2(S)),
there exists a sequence gk(s, t) of sufficiently smooth functions in <S}(Hl/2(S))

which tends to g(s, t) in <S°e(H1/2(S)) Π £](L2(S)). Of course

(4.6) <Λ(ί, 0)-£(j, 0)>1/2->0 when Λ ̂  oo .

If Ω is the interior of S the boundary value problem

/ (a2(x, t0:D)J

Γ\0)u = 0 in Ω

(4-7)
on

has a unique solution u^H2(Ω) for any q(s)^Hl/2(S) for a large X0>0 and

the following estimates holds

(4.8) IWI!,^Ω,<^<<?W>1/2

2.

Then if we take ukQ=u0(x)-\-ϋfc(x), ukl(x)=u1(x)9 where uk(x) is the solution

of (4.7) for taking q(s)=gk(sy Q)—g(s, 0), they are the required ones, for (4.4)
follows from

\\uko(x)-u0(x)\\ίfL^^K^gk(s, Q)-g(s, 0)>1/2

2,

and (4.3) and (4.5) are evident.

When Ω is the exterior of S, let S1 be a sufficiently smooth hypersurface

containing S in its interior and denote by Ωx the domain surrounded by S and
S^ a(x) be a C°°-function such that a(x)= 1 near S and a(x)=Q near and out-

side of S^ Consider
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, (—ίφ, t2:D)+\0)u = 0 in Ωt

= gί on S

= 0 on S1/

instead of (4.7). Then we have

therefore

Hence

are the required ones. Thus Proposition is proved. Q.E.D.

Proposition 4.2. Let u(x, t) e £?(#'(«)) ίl έ?ϊ( '̂(β)) Π <??(^2(Ω)) /or ί > ί0.

L(t0)[u(X, t)] =f(x,

B(t0)u(X, t) = g(s,

then for t^tQ the estimate

(4.8) IHC/Wllte) <eV'-V[|||C7(ίo)

+c* ΓJ/o

holds where c2, c0 do not depend on u and t0.

Proof. Apply Lemma 3.1 to this case taking as t=t0 being an initial plane.
Here the coefficients of the operators are independent of t. We have

(4.9) || [/(OII2Λ(/0) < '̂-V[|| IWΛ(/.)+ ITOH .ΛC/,) dτ
JO

+cλ* <g(s,τ)γdτ].
Jto

Now suppose that u'(x, t) is also in <f J(/ί2(Ω)) Π ̂ ( '̂(Ω)) Π <?f(L2(Ω)). Then
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since F(t) e ̂ )(t0) for all t. By applying again Lemma 3. 1 for Jl(t0) U(t) it follows

that

(4.10) \\Jl(t.)U(t)\\ wtύ ̂ '-

by inserting (4.9) and (4.10)

And <g(s,

= Γ 2<£(ί, τ)>1/2< '̂(s, τ)>1/2ίίτ
JO

< Γ {<&, r)yιJ*o

Then if we take c^^+l, (4.8) follows.
To remove the additional condition that

we make use of the mollifier as used in the proof of Proposition 3.1 and by taking
account of the fact φ^ commutes with L(tQ), B(t0), the proof will be carried
out without any difficulty.

Hereafter we denote < ,̂ τ)>1/2

2 +<£'(*, τ)>1/2

2 by <g(s, τ)>2.

Lemma 4.1. There exists a constant £0>0 such that for any t, £'eΞ[0, T]
and U^E2 the following estimate

(4.H)

holds.
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Proof. Remark that for all

(4.12)

holds since

= Σ
ί,y— i

<const.

<const.

here we used the estimates

* <const. lί'-ί

Thus we get (4.11) by taking c0=c0'+2(c0"Γ)2. Q.E.D.
Under these preparations we prove the existence of the solution for zero

initial data.
Suppose that

g(s,

g(s, 0) = 0 .

Let

ΔA:*0 = 0<ί1<α2< <α*= T

be the subdivision of [0, T] into & equal parts. uk(x, t) is the Cauchy's polygonal
line for this subdivision, which is constructed as follows:
Let uko(x, t), defined for Z £=[£„, ίj, be the solution of

L(t0)[uka(x, t)]=f(x, t) in Ωx(ίβ, ίj

B(t0)ukϋ(x, t) = g(s, t) on Sx [/,, ίj
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and for z">l uki(x, t), defined for te[tit ti+1], be the solution of

Z,(ί,.)[MAi(*, t)] = f(x, t) in Ω X (t{, <<+1]

B(t()uki(x, t) = g(s,

Then uk(x, t) is defined for t<= [0, T] by

Uk(x, t) = MΛί(Λ?, ί) if t e [ί,., ίί+1] .

The existence of such ι/Λί(Λ?, t) (ί=0, 1 , , ft— 1) is assured by Proposition 4.1,

since the compatibility condition (4.1) is satisfied at each t{. Consequently we

find

uk(x,t)εΞeϊ(H2(n))nβ}(H\ζl)) for ίe[0, Γ]

and

if

from which it follows that

uk(x, ί)e//2(ΩX(0, Γ)).

Now we shall show that for some constant

(4.13) \\uk(x, ί)lk£

2CΩχ

holds for all k. Let

*̂, = {«*<(*, 0» "*,-(*» 0)
We get

(4.14) ^B(tt)uu(xt 0>2<2<<?(ί, ί)>1/2

2+const.

if ίφ ί, by combining these estimates

, φ1/2

2+const. l^-ί^

aίiί*, OX/,

In order to derive (4.13) we shall show the following:
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(4.15)

X

for t & [t{ , ti+1] (i= 0, 1,2 , ,k— 1 ). For i = 0, this is nothing but the inequality
(4.8). Suppose that (4.15) holds for i— 1, then by taking t as ί, , it follows

(4.16)

And

(4.17) HI t/*,.(*, )ll to.O = HI f

by (4.11)

by using (4.16)

by using again (4.11)

Taking account of (4.14) the application (4.8) to Uki gives

^

+ Γ I
J ί,

by (4.17)
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Hence by the mathematical induction (4.15) is proved. From (4.15) by using
(2.3), there exists M">0 such that

(4.18)
Jo Jo

holds for ίe[0, T], where M" is independent of k, f(x, t) and g(s, f), and since

(4.19)

holds excepting ί=ίf.. By combining (4.18) and (4.19), (4.13) is shown.
Thus {uk(x, t)} (k=!9 2, —) is a bounded set in H2(Ω,X (0, T)), consequently

weakly compact. Therefore there exists a subsequence kp(p=I, 2, •••) of k
and u(x, ί)eίί2(Ωx(0, Γ)) such that

ukp > u weakly in H2(Ω X (0, Γ))

when p increases infinitely. It is easily seen that u(x, t) satisfies

(4.20) L[u(x, t)] = f(x, t) in the sense of 3)'(Λ X (0, T))

(4.21) B(t)u(x, t) = g(s, t) in the sense of H^(Sχ (0, Γ)).

Since (4.20) is shown by the same observation as that of Cauchy problem, we only
show (4.21).

The mapping

#2(ΩX(0, T))^w-^B(t)w^H^2(Sx(0, T))

is strongly continuous, then the weak convergence of ukp to u in H2(Ω X (0, T))
implies that B(t)ukp converges to B(t)u weakly in HlP(Sx(Q, T)). On the
other hand from

>(*, *)-£(*> Φ1/2

2<const. ί-^-
v / 2/»

we see B(t)ukp(x, t) converges strongly to g(s, t) in L2(Sx (0, T)). Thus we get
(4.21).

Remark that for some M'



(4.22)

holds since from (4.18) we have for all k
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Now we prove that u(x, t) is the solution of (1.5) in

by exchanging the values of u(x, t) on a set measure 0 if necessary.
Put

then

, t) = ^ a c f c - - « ( ^ = 1, 2)

for ίe[0, Γ-δ0] if

We get

(4.23) nβ(*,0)-»0

(4.24) *V(*, 0)-^0

when δ-^0. Indeed, (4.22) means

then

in //2(Π)

= 0, 1),

2-y,zAΩ)

< const
1 Γ 2 δι1 Γ

. J-l
δ J

liί*, τ)
|2

rfr
|2-y,/.2CΩ)

<const. M' δ ,

this shows (4.23) and (4.24).
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Applying <pκfa to both sides of (4.20) and (4.21) we get

L[u9(x, t)] = ft(x, t)-(C8u)(xy t)

(x, t) = ft(*, t)-(Γ8u)(x, t)

and if 0<δ<-^.,when ίe [0, T— δ0] Csu has the form

Σ
\<*\ + j<2

By applying (3.2) to wδ'(#, t)—uδ(x, t) it follows

(4.25) ||fia(f)-ι

», T)-gs'(x, τ)>1/2

2

0<τ</

*, 0)-(C/«X*, 0)||2+

*, T)-- -(C^X*, τ)||^τ

+ sup<(ΓsM)(ί, τ)-(Γs'M)(ί, τ)>1/2

2] .
0<T</

Recall that (3.7) holds for any u(x, t) e /Γ 2(Π X (0, Γ)). Then by using
(3.7), (4.23) and (4.24) we find that the right-hand side of (4.25) tends to zero
when δ, δ' tend to zero. This implies us(x, t) is a Cauchy sequence in

ί

1(fl'1(n))n<S?(La(Ω)), therefore the limit u(x, t) is also in
e}(H*(Cl)) n ε2

e(L\CΪ)). Evidently u(x, Q)=u'(x, 0)=0. Thus we
get

Lemma 4.2. G/^n /(Λ> i)e<?K^i<«)) and g(** t)^β}(H^(S))9 if
s, 0)=0, the mixed problem

B(t)u(X, t)=g(s,

«(*,0) = -|̂ -(*,

has a unique solution in the space
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Lemma 4.2 can be extended for any f ( x , t)<=<£](L2(Ω)) and g(s, £)e
ε°t(Hl/2(S)) Π e}(L*(S)) such that g(s, 0)— 0 if we take account of the fact that
f(xy t) is approximated by functions in £}(3)}z(^L)} and g(s, t) by functions in

β}(Hl*(S)) vanishing at f=0. Then

Proposition 4.3. Given f(x,t)£Ξ<S}(L2(Ω)) and g(s,t)<=β°t(Hl'2(S))n
£}(L2(S))y if g(s, 0)— 0 the mixed problem (1.5) has a unique solution satisfying

u(x, 0) = u'(x, 0) = 0

u(χ, t)€Ξε°e(H2(n))n
Now we prove Theorem 1. Assume that

and the compatibility condition at t=Q is satisfied.
Set

w(x, t) = u^+tu^x) .

Let v(xy t) be the solution of

L[v(x,t)]=f(x,t)-L[fo(x9t)]

B(t)v(x, t)=g(s, t)-B(t)w(x, t)

v(x, 0) = v'(x, 0) = 0 .

The existence of such solution is assured by Proposition 4.3 since L[w(x,
\ B(t)w(x, t)€Ξβ}(HV2(S)) and

= 0

Then

u(x, t) = v(x, t)+w(x, t)

is the required solution of Theorem 1 . At this point by using again the energy
inequality (3.2) and the density of #3(Ω) X #2(Ω) in H2(Ω) x Hl(Ω) the addi-
tional condition that {u0(x)y u^x)} e7/3(Ω) X H2(Ω) is removed. Indeed, for
{u0(x)y ul(x)}^H2(Ω)χH\Ω) we choose {uko(x), ukl(x)}<=H3(Ω,)xH2(Ω) such
that

{uko(x), ukl(x)} -> (iφ), u^x)} in E2

and set

(x), ukl(x)}-g(s, 0) .

Then gk(s,t) converges to g(s, t) in β0

c(H^2(S)) Π <?ί(^2(5)) and Λ(j, /)
=^(O){WΛO(Λ;), WAn(^)}. The just obtained result assures the existence of the
solution u^x, t) for (u^x), ukl(x)} and gk(s, t). It is found that uk(x, t) is a
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Cauchy sequence in £?(#2(Ω)) Π G}(Hl(Ω)) ΓΊ £2<(L2(CΪ)) by applying (3.2) for
Uk(χ9 i)—Ug(Xj t). Then its limit u(x, t) is the solution for {uQ(x)yu^(x^} andg(s, t).

Thus the proof is completed.

5. Regularity of the solution (Proof of Theorem 2)

The solution of this problem becomes more regular according to the re-

gularities of the initial data, the second member and the boundary data. Of

course they must satisfy the compatibility condition of higher order because this

equation is hyperbolic. Here we describe the compatibility condition of order nfr:

Suppose the given functions are that of Theorem 2. Define ^successively up(x)

(p=2, 3, , m+l)by

(5.1) up(x) = -

" 2Yr ΓΠ\Xy V) ,

evidently up(x)^Hm+2~p(Ω). Then the following relations hold

(5.2) Σ f ^ )-3CA)(0){# (#), w (#)} — £c/0(#, 0) for p = 0, 1, 2 ,..., m.
*=»o \&/

At first we prove

Consider the solution u(x, t) of the problem

/ (\} /Γ;7(WlYτ /Yl — V1 ί m\T<:k^ti(m~to(v f\\-\-f(m^ (v t\i i i A-j\iΛ/ V 4 ^) 71 — / ! i i-i-/ iί^ V1^) 71 I V v > /

"* / m\

(m\ ύcp:>(x 0^ — u (x\ (-h — 0 1 2 ••• ra-l-1^^111^ IΛ ^Λ, U^ Up\ΛJ \P U) A > ^ > ) rrι'\L)

(5.4)

The existence of such u(x, t) is shown by the method of successive approximation

with the aid of Theorem 1 and the energy inequality (3.2). Define Uj(x> t)

(/=1, 2, •••) successively as follows: Let Vj(x, t) be the solution

(5.5) L[«y] = -

(5.6) 5(ί)βy = - g fi^Werr"^, 0+ "̂3(ί, 0

(5.7) βχ*, 0) = «.(*), o/(*. 0) = Mm+1W

6) The condition (1.6) is the compatibility condition of order 0.
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and Uj(Xy t) is defined by

(5.8) Λj(x, t) = u0+tUl(X)+ ...+ r~lu-?®+ Γ (*"τ)*7 *X*» r)dr .
(m— 1)! Jo (m— 1)!

Here we take

(5.9) MO(*, ί) = ιφ)+ftφ)+... + r"'u--^ .
(m-1)!

Let us see that «y(«, ί) can be defined successively in £?(# 2(Ω)) Π β^^^l)) Π
<?Γ+2(L2(Ω)). Wheny=l, since wc(*, t)e=S7(H\fl)), fm\x, t)^ei(L2(Ω)) and
"̂"(ί, Oe£?(#I/2(S))n£ί(L2(S)) it suffices to make sure the compatibility con-

dition of order 0. Indeed, if we take account of (5.9) the compatibility
condition for v^(x, t) is nothing but (5.2) for p=m. Thus the existence v^x, ί)e

ε*t(H (Ω))ne}(Hl(Ω))Γ}&(L (fϊ)) is shown, then «,(*, f)€=<f?Γ(#'(Ω))n£Γ+1

(H'ίΩ)) Π <?Γ+2(^2(Ω)) Now suppose that &,_&, ί)e<?r(//2(Ω)) Π ffΓ\H\Λ))
Γ[£T+2(L?(Ω)). Then the right-hand sides of (5.5) and (5.6) are in £ί(L2(Ω))
and S°C(H1/2(S)) Π <?J(L2(5)) respectively, and the compatibility condition of
order m assures the compatibility condition of order 0 for Vj(x, t). Thus the

existence of Vj(x, t) in <??(//2(Ω)) Π ̂ (^(Ω)) Π ffί(L?(Ω)), therefore ΰj(x, t) in
(?r(^2(Ω))n(S>r+1(^'1(Ω))n(?r+2(^2(Ω)) are derived. By the mathematical
induction we see that ΰj(x, t) can be defined for all/.

Next we show that ΰ^x, t) is a Causchy sequence in £™(H2(Ω,)) (~\

cJrW '(Ω))fΊ 5Γ+'(^2(Ω)). By applying (3.2) for vj+1(x, ί)-»X*, 0 it follows

(5.10) ||Vl(*. ί)-»X*. Ollϊ+ll^.(*. *)-»>'(*. Ol l ϊ
+ IK+i(*. ί)-V(*» Oil 2

+('ιι Σ.'„ *-ι

+ Γ< Σ
Jo A-i

+ sup < Σ ^(rJίβr-"^. τ)-βS-ϊM(*. r)})^2]
0<τ</ ft=l \^/

for 7 = 1, 2, 3,

Remark that if k ̂  m + 1 — /

and

Mjw +2-°(Λr, 0— Mi-ί2
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Then we find if k^m+l— i

\\Λ?(x, *)-«$«!(*, ί)||ϊ<const.
o

<const. rΓ||zf-°(*, τ)-cS!Γι"(*, r)\\z

tdr
Jo

and

ιιβr+I-"(*, o-β î' 'x*. on?
= ll»?-°(*, 0-»?-i"(*, <)||? .

From these estimates (5.10) is led to

ll»y+1(*, o-»y(*. OII1+IK+1(*. 0-V(*» Oil?
+llβ;+1(*. o-«y"(*» Oil2

<const. t > * , T - β . * τ||5+||c/(*, T)- .̂,̂ , τ)||f

from which it follows that

00

2 πi^. tx^ t) v.(x, 0111+11^'+ (χ> t) v '(χ, z)||ι
y=»l J

00 (ΊfrΓ\i
+ ||*>JH-I(#> t) — Vj'(x, t)\\]^ Σ^o^—τ~-

for all ίe[0, T]. This assures the convergence of Vj(x, t) in

6}(Hl(Ω)) Π <??(L2(Ω)), therefore that of Uj(x, t) in G?(Ha(Ω)) Π 6

ε?+2(L2(Ω)). Then the limit of Uj(x, t\ which is denoted by u(x, t), is the

solution of (5.4). This is derived by the passage to the limit of (5.5) and (5.6)

and the definition of Uj(x, t).

(5.5) and (5.6) are

dm

dtm

dm

*, 0])=/c">(*.0

(B(t)ΰ(x, t)) = g<m\X, t).
dtm

Our definition of ΰίp:ι(x, Q)=up(x) is taken as

\-^(L[ΰ(X, t)])] =/.<»(*, 0) (k = 0, 1,2 ,..., m)
L αίΛ Jf=o

and the compatibility condition of order m means that

^(B(t)ΰ(x, ί))l =^*(*. 0) (ft = 0, 1, 2 ,..., m)
αr* J/=o
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Thus u(x, 0^(?Γ(^2(Ω))n<?Γ+1(^1(Ω))n(?Γ+2(i2(Ω)) is a solution of problem
(1.5). The uniqueness of solution assures (5.3).

To derive the regularity with respect to x, we make use the following Lemma :

Lemma.7) Suppose that the coefficients of a2(x, t:D) belong to
[0, T]) and

(5.11) u(xy *)e#*+2(Ω) for all t and

(5.12) a,(x, t:D)u(x, t) = q(x, f)e£ί(ff

(5.13) , ,
ont

where p > 0, k > 0 then

(5.14) u(x,t)<=ei(H*

Now let us prove Theorem 2. From (5.3) it follows

(5.15) α,(*, f.D) u(x, t) = ~l«_β l-

(5.16) -φ, ί) = σ - σ J Λ
ont ot

Of course from these relations u(x, t)^H3(Ω) for all ί, then the application of

Lemma by taking p=ly k=m—l proves

fi(x,

If m>l, it turns out the right-hand side of (5.15) e6?"2(^2(Ω)) and
that of (5.16) ζΞβ?-2(H2+1/2(S)) by the just obtained result. And u(x, ί)eH4(Ω)
holds for all t, then by applying Lemma oncemore by taking p=2, k=m—2, we

get

Repeating this process step by step, finally Theorem 2 is proved for any m.

Appendix

We show that the condition (1.3) is necessary for the treatment in L*-sense
of the mixed problem with nonhomogeneous boundary condition.

Let ^{(X,y} ,X>»,-~<y<~},L=-F--.;- and *=

7) This is Lemma 3.5 of our previous paper [3].
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Consider the mixed problem

in ΩX(0,Γ)

When g(yy t) is sufficiently smooth and its support is contained in t>60 the

solution u(x, y, t) of (P) exists uniquely in <5G

t(H2(Ω,)) Π 8}(H\£Ϊ) Π <52

t(L2(Ω,))
and it is also smooth. This is derived from the existence theorem for the
homogeneous boundary condition with the aid of the construction of a sufficiently
smooth function v(x, y, t) such that [Bv]x^0= g(y, t). But concerning the
problem (P) the energy inequality of the type (3.2) is never held. We show the
following:

Theorem A. Whatever we choose T and C the following energy inequality

y,
du
dt

(χ,y,

dt
+ sup I ̂ (j, s)\\l

+ 92α
Qf

(χ,y,

for allt<=[0, T]
never holds.

At first we note some lemmas without proof.

Lemma A.I. Let ^ and k2 be constants such that ^1>/e2>0. Put τ=μ

+iv. Then for all

we have

(A.2)

where cl and c2 are positive constants depending on kιy k2 and μ.

Lemma A.2. Let -η be real and Reτ>0. For any f(x)^L2(R+) and g
a complex number, there exists one and only one solution u(x) in H2(R+) of the boundary

value problem

[n—k2, n+k2]
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=g,

and u(x) is given in the form

(A.3)

where w(x) is the Fourier inverse image of

1

here
7Γ

£+ (£_) w £/ie square root with positive (negative) imaginary part of — 0?2+τ2).
We prove Theorem A by contradiction. Assume that (A.I) holds for some

C and T. Let h(t) be a sufficiently smooth function with support contained

in [S0, Γ0] (0<δ0<Γ0<Γ), and we choose Λ2>0 as

(A.4)

holds where γ is a fixed positive constant. Next take ̂  as k^>k2. Let ^(77) be a
sufficiently smooth function whose support contained in [kl9 2k^\ and denote its
Fourier inverse image by k(y). Put

evidently gn(y,

Denote by un(x,y, t) the solution of (P){orf=Q,g—gn> i.e. un(x, y,

satisfies

dy .

,y, t)=gn(y, t)

By employing the notations of
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En(t) = \\u.(x,y, t)\\lιL^+\\un'(X, y,

+ SUP l
0<*<f

it follows from (A.I)

(A.5) E

Let a(t) be a function in C"(R) such that

where T0<TQ'<T. Then

(A.6) (®L-®L-d2L\a(t\u „(*, v, t)
^ ) \dt2 dx2 dy2/ J J

|«/(*,y, ί)||i cα>

(A. 7) (a(t)un(X, y, ί)) | = α(ί)^(j, 0 = gn(y, t)
ox *=*<>

Put

a(Q)un(x, y, 0) = --(a(t)u,,(X, y, t)) | =0.
01 ί=0

x>
at at

)un(x, y, t) ,

and evidently we have

(A.8) \\vn(x, y, t)\\l+\\vn'(x, y, t)\\\+\\vn'(x, y, ί)2||2<const. En(t)

(A.9) !!/.(*, y, ί)llϊ+ll/.'(*, y, OII2<const. En(t) .

The equations (A.6) and (A. 7) are transformed into the following after
Laplace transformation

Fourier-

i
(X, η, T) =/.(*, 07, T)

^ αjc *=« ^

where T—j-\-iv. The application of Lemma A.2 for each (??, T) gives
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(A.10)

Now
= v£\x, T, τ)+wn(x, 17, r)

Γ dv\~
J -00 J -0

. τ) 1

5W+£2 fW+2jfr _4

Λ rf*τ e Mn-*2 JM+Λ! Imξ+(rjy τ) |τ7

by using Lemma A.I

>

from (A.4) and the choice of k(η)

Therefore we get for some constant £0>0

f°° f°°

And we estimate the second term of (A. 10).

Γ j Γ Λ Γ\ dv\ dη\
J —OO J — O O J _O

<^sup^

<
ί

oo Λoo Λoo

rfi/l ^771

Γ dvΓ dηΓ dξ\rjpn(ξ,η,τ)\*
J -00 J -00 J -00

7Γ μ-£-£-(*, T)

8) sup ^const.
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Im ξ+(η, T)

' π

.r
T
J- l ί

(

rff
iξ

Λϊ-)|

, τ)Γ

Then it follows

J -00

< const. I dv\
J-OO J -<

< const.

kΛ^'ϊ.T)!2^- oo

e""-%jf*(**y>*y*t

fV
< const. I En(t)dt*ζ const. ^M(Γ).

JTO

And now

dt

=
J

Γ
Joo_

Ά>»υ(*> 7, T)

-3(~ rf^ί00 dv\*
J-oo J-oo Jo

from the estimates (A.ll) and (A.12)

> -^ ^-^-const. en(T).

On the other hand by taking account of (A.5)

Γ dy\"dx\
J-~ Jo J

t. \TEn(t)dt
Jo

-« »„(*, y,t)
dy

dt

< const. Ten(T).

Thus it follows that for some c3, cz
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? c —c p (7Λ
/— . * LQ L4 κn\λ ) >

c4) en(T)> *

then

From the definition of gn(y> t) it is easily seen that

£M(Γ)< const, n2.

Then (A. 13) leads that it holds for all n

Λ
(c3+c4) const.

This is a contradiction. Thus Therem A is proved. Q.E.D.

OSAKA UNIVERSITY
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