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Introduction

Let 4 be an artinian ring. Then 4 is said to be of right local type if any
finitely generated indecomposable right A-module M is local (i.e. M has a
unique maximal submodule) and a ring of left colocal type is defined as the
dual notion. We say 4 is left serial if a left A-module A4 is a direct sum of
uniserial submodules. Tachikawa [4, 5] gave characterizations of algebras
of right local (or equivalently of left colocal) type.

Theorem (Tachikawa). For a finite dimensional algebra A with the Jacob-
son radical N, the following conditions (a)—(d) are equivalent.

(a) A is of right local type.

(b) A is of left colocal type.

(¢) (c,) A4 is left serial.

(c;) For any uniserial left A-modules L, and L, with |L,|<|L,|, any
isomorphism 0: S,(L,)— S,(L,) is (L,, L,)-maximal or (L, L,)-extendible (see
Section 1 for the definitions), where |L;| is the composition length of L; and S,(L;)
is the socle of L; for i=1, 2.

(cs) |eN[eN?| <2 for any primitive idempotent e of A.
(d) (dy) A is left serial.

(d;) eN=M,PM, for any primitive idempotent e of A, where M,

is either zero or a uniserial submodule of the right A-module eN for each i=1, 2.

More precisely Tachikawa [4] gave a proof of the equivalence of (b) and
(c) for any artinian ring. But in the proof of the implication from (c) to (b),
there were two gaps. He himself pointed out one of them, namely [4, Lemma
4.9], and informed Fuller of it and that the lemma holds for any artinian ring
under a suitable assumption (D) which is satisfied for any finite dimensional
algebra over a field (cf. Section 3 for the definition of (D). See also Fuller
[3, Note p. 165].). Now the other one (which is related to [4, Corollary 4, 6])
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can be filled with an elementary lemma (i.e. Lemma 1.1 below, which is essen-
tially used in [5, Proposition 4, 2]) under the additional assumption (D).

In Section 3 we shall give a self-contained proof for the above stated im-
plication from (c) to (b). On the other hand we shall point out in Section 4
that the equivalence of (c) and (d) holds for any artinian rings. Unfortunately
it remains open whether any ring of colocal type satisfies (D), however in the
last Section we shall give an example of an artinian ring which satisfies (c) but
not (b) and remark that some simultaneous equations with 6-unknowns are
closely related to this problem.

For the sake of completeness we shall also give a proof of the implication
from (b) to (c) together with proofs for results which have been shown in [4]
and [1].

Throughout this paper A4 is a left and right artinian ring with unity, N
is the Jacobson radical of 4 and all modules are finitely generated (unitary)
left A-module unless otherwise stated. For a module M, we denote the top
M|NM of M by M, the composition length of M by |M|. For any integer
i>0 we define a submodule S;(M) of a module M inductively as following:
Sy(M)=0 and S;(M)/S;_(M) is the socle of M[S;_,(M). We denote by p(4)
the set of primitive idempotents of A. Symbols (a), -, (d) always mean the
conditions in the theorem above.

The author wishes to express his thanks to Professor H. Tachikawa for
his valuable advice.

1. Preliminaries

Let M, and M, be modules with submodules T, and T, respectively.
If a homomorphism @: M,—M, canonically induces a map 7',—T,, the map
is also denoted by @: T'—T, Let 0: T\—T, be a homomorphism. We say
0 is (M,, M,)-extendible if 0 is induced from some homomorphism @: M,—M,,
and in this case @ is an extension of 8. We say 0 is (M,, M,)-maximal if there
is no module U such that T\SUCM, and 0 is (U, M,)-extendible. In case
T=T,=T, and 0 is 1; the identity map of T, we simply say T is (M,, M,)-
extendible (resp.-maximal) if 1, is (M), M,)-extendible (resp.-maximal).

The following lemma is clear.

Lemma 1.1. Let M,, M, and T te submodules of a module M such that
M=M,+M, and T=M,NM,. If T' is a submodule of T and ¢: M,—M, is
an extension of 1, then for M{={x—xqp|x&M,} the following hold.

(1) M=M{+M,.

(2) MiNM,={x—axp|x=T}.

(3) The epimorphism M,— M{ defined by x— (x—xp);x&M,, induces
epimorphisms M,|T'—M7{ and T|T'— M/ N M,, in particular |M{N M, <|T|—|T"|.
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The following lemmas 1.2 and 1.3 are due to Tachikawa [4, Lemma 1.3
and Lemma 4.4].

Lemma 1.2. Let M,, M, and T be submodules of a module M such that
M=M,+M, and T=M,NM,. Then

(1) T is (M, M,)-extendible if and only if M= Mi{DM, for some sub-
module M{ of M.

(2) T is (M,, M,)-maximal if and only if S,(M)=S,(M,).

Proof. (1) ‘Only if’ part is immediate from Lemma 1.1. If M=M{®M,,
then the restriction map z,: M,— M, of the projection =,: M{ B M,— M, is
clearly an extension of 1.

(2) ‘Only if’ part: Assume S,(M)=U'@PS,(M,) for a non-zero module
U’. Since U'NM,=0 and U'PM,DM, U SM,=M,+M,)N(U PM,)=
(MN (U PM,))+M, Put U=MNU+M,). Then we have U+M,=
UBM, T=UNM, and TSUCM,. Applying (1) to U+M,, T is (U, M,)-
extendible.

‘If’ part: Assume @: U—>M, is an extension of 1, with TSUC M,.
From (1) we have U+M,=U'PM, for some module U'#%0. Thus S,(M)>D
S(U")DS(My) 2 S,(M,).

Lemma 1.3. Let M, (i=1, 2, 3) and T be submodules of a module M such
that M=M,+(M,®M;) and T=M, N (M,PM;), and r3: T— M, the restriction
map of the projection M,®OM;—M;. Then s is (M,, M;)-extendible if and only
if M=(M{+M,)D M, for some submodule M of M.

Proof. This is shown by the method similar to the proof of (1) in Lemma
1.2.
Let M and P; (=1, ---, n) be modules. Then a map ¢: M— éP,- has

a matrix representation @=(g, -+, ,) by the composition maps @;: M—P;
of ¢: M— ,éBP; and the projections é} P,—P;. Similarly a map r: é P—-M
i=1 i=1 i=1

has a matrix representation yr=(yr,, -+, Y,)7 (the transposed matrix of (yr,, -+, Yr,))
by the maps +r;: P,—M. For idempotents e and f of A4, we assume that
uct(eN""'f) means eN""'f 2eN'f, uceN""'f and ucceN'f.

Let u,c#(eN"7'f;), where e, f;ep(A4) and i=1, ---,n. Denote a residue
class of xEeA in ed/eN" by % and that of ye Af; in Af;/N’f; by [y]; or simply

by [y].

Lemma 1.4. Let u;ct(eN""'f,) and put P,=Af;/N"f; for an integer r>1,
where e is an idempotent of A, f; is a primitive idempotent and i=1, ---,n. Then
under the above notation, the following conditions are equivalent.

1) @A+---+u,,4)Nu,A%0.
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2 a,end+---+u, A
(3) There is a homomorphism +r: %I:Bl P,—P, such that (”2_1 [l r=[u,]

(4) There is a homomorphism @: EJ§ P,—P, such that (Z”} [#.].)p=0 and
@, is an identity map, where p=(p,, -+, @,)7.

Proof. The equivalences (1)< (2) and (3)«(4) are clear since #,4 is a
simple module. ‘

(2)=(3). Note that any homomorphism P;,—P, is induced from a right
multiplication map &;: Af,—Af, by a; A with a;=f;a;f,. The condition (2) is
equivalent to one that there are elements a;=f;a;f, of A4, i=1, ---,n—1, with
4,=ua,+-+1u,.,a,, which is equivalent to [u,]=[wa ]+ -+ [#,-18,-1]
This shows the equivalence of (2) and (3).

We say that a module M is uniserial if M has a unique composition series,
and an artinian ring A4 is left serial if a left A-module 4 is a direct sum of uni-
serial submodules.

The following corollaries immediate from Lemma 1.4, noting A[u,]=~=A[u,]~=
Ae in Corollary 1.6.

Corollary 1.5. Let A be a left serial ring, e a primitive idempotent of A
and r and n integers>1. Then the following conditions are equivalent.

(1) |eN" | <n.

(2) If P, -, P, are uniserial modules with |P;|=r and a=(ay, -+, a,):
Ae— é_} P; is a map with monomorphism co; for each i=1, ---, n, then there exists

a map p=(py, -+, P,)": D P,—>P; for some j (1 <j<n) such that ap=0 and
@, is an identity map.

Corollary 1.6. An artinian ring A is right serial if and only if for any
u,H(eN""'f,) (i=1, 2) the isomorphism 0 : A[u,]—A[u,) with [u,10=[u,] is (P,, P,)-
extenditle, where e, f;cp(A), P,=Af,/N'f; and [u;]J=u,+N'f,€P;. In parti-
cular, a left serial ring A is (left and right) serial if and only if for any uniserial
modules L, and L, with |L,| <|L,|, any isomorphism @: S,(L,)—S,(L,) is (L,, L,)-
extendible.

2. The implication from (b) to (c)

The results in this section were essentially delt with in [1] (see [1, Theorem
2.5 and Remark 4]).
B

Let (E): 0— T-C—E é P,—M—0 be an exact sequence of modules with mono-
i=1

morphism «;: T—P; for each =1, ---, n, where n>2, a=(a,, -, ,) and B=
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By -+, B)F. Put L;=P,8. Let af: T— ?Pi and B: ? P;— M denote
i i*j
maps induced from o and B, respectively. Then as easily seen B; and 3 are
monomorphisms for each j and in particular P,~=L; and Z¢}L,'= % L,. More-
iFs i
over for any non-trivial partition I=1,UI, of I={1, -+, n} (i.e. 1, ,<I and
INI,=¢) we have &, L;N D, L,=T.

Conversely let T be a module and M= EL a sum of submodules L; of

a module M with the followmg property:
(A) For each j=1, .-, n, 2 L;= @ L; and for some non-trivial partition

{1, -, m}=LUI, @, L, nea,,L r.”

Put P,=L; and let G: GBP—>M—— EL be a canonical map (i.e. (%, -
x,)8= Z}x,, %, EP;). Then it is easy to see that we have an exact sequence
(E) w1th monomorphlsm a; and L;=P;8 as above. We say a sum M= Z_”IIL;
of submodules L; with n>2 is a T-amalgamated sum (by (E)) if it has the 'g)ro-
perty (A) (and L;=P;(3 in the exact sequence (E)).

ReMARK 1. Consider the above exact sequence (E) and put T;=L;N @L
Then we have commutative diagrams

or, % oL, P,.-—&»L,-
ifj (=]
| o | )

with isomorphism rows and inclusion cclumns. Since a}: T— @® P; and
i*j

a;: T—P; are monomorphisms, a map 0: Ta}— Ta; defined by tajf=ta;

(t€T) is well-defined and an isomorphism. Moreover we have (ta})(—0)B;=

—ta;B;=(ta})Bi1;,;; t€T. Therefore it follows from the above diagrams that

0 orequivalently —@ is ( @ P;, P,)-extendible (resp.-maximal) if and only if
i%/

T;is (% L;, L;)-extendible (resp.-maximal).

Lemma 2.1. Let S be a simple module and L, ---, L, local submodules
of a module M such that M zi] L; is an S-amalgamated sum, where n>2 and

|L;| >2 for each i=1,---,m. Then M is decomposable if and only if S; is
(% L;, L;)-extendible for some j, 1< j<mn, where Sj=(_E:B L)NL,.

Proof. Assume M has a non-trivial decomposition M =M, &M, If
o: M—>M=M|NM is a canonical epimorphism, L;c is simple and we have
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M=Lc® - PBL,oc=McPM,o by the assumption. Then by [1, Lemma 1.1]
there exists a non-trivial partition {1, ---,n} =1I,U1, such that M= M,cP
(@[2 L,'O')=(®[] L,'O')@Mza'. Hence we have M=Ml+(@12 L,')z(@[] L,‘)+M2,

for NM is small in M. But it holds 2|M|=(Z:}|L,-|—1)—|—’(|M1|—|—|M2|)

since |S|=1. This shows M=M® (®,,L;) or M=(DH,, L;)PM, Thus
L; is a direct summand of M for some j, which implies S; is (@ L, Lj-
i+

extendible by Lemma 1.2. The converse is also immediate from Lemma 1.2,

ReMark 2. ‘Only if part’ of Lemma 2.1 is essentially used in Proposition
2.4 for n=2 or 3. In the case =2 or 3, Lemma 2.1 is shown by lapplying
the Krull-Schmidt Theorem instead of [1, Lemma 1.1].

Corollary 2.2. Let S be a simple module and P; a local module with
|P;| >2 for each i=1, ---,n. Assume (E): 0—>S—(—x> _E[_"BP,-EM—>O is an exact

sequence of modues with monomorphisms c;, where o = (ay, -+, &,). Then the
following conditions are equivalent.
(1) M is decomposable.
(2) There is a homomorphism r: @_Pier for some j such that o r=a;,
5=

where a: S— .-EEP‘ is a map induced from ”a.

(3) There is a homomorphism @: ® P,— P; for some j such that ap=0
and @; is an identity map, where p=(p,, H , @)Y

Proof. Each condition of (1), (2) and (3) implies #>2. Hence, consider-

ing the S-amalgamated sum by the exact sequence (E), the corollary is immedi-
ate from Lemma 2.1 (see Remark 1).

Corollary 2.3. Let u;t(eN"'f,) for r>2 and put S=Ae and P;=Af;|N’ f;,
where e, f;Ep(A) and i=1,---,n. Let a;: S—P; denuvte the monomorphism defined
by [aela;=[aeu;]; ae = Ae, where [—] is a residue class in S or P;. If 0—

a
S—>P,®---DP,—~M—0 is an exact sequence with a=(a,, -, a,,), then the following
conditions are equivalent.
(1) M is indecomposable.

(2) B AD---Pu,AceN ", where u;ceN""* is a residue class of .
Proof. This is immediate from Corollary 2.2 and Lemma 1.4.

We say that an artinian ring A is of left colocal type if any finitely generated
indecomposable left A-module is colocal.

Proposition 2.4. Let A be an artinian ring of left colocal type. Then A
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satisfies the condition (c) (i.e. (¢,), (¢;) and (c3)).

Proof. (c;) If N"'f=0 for fep(A) and an integer »>1, then by the
assumption an indecomposable module Af/N'f has a simple socle S;(Af/N"f)
which contains N"-'f. This shows N"~'f is simple. Thus 4 is left serial.

(c) Let 8: Sy(L,)—S.L,) be an isomorphism, where L, and L, are uni-
serial modules with |L,|<|L,|. Then as easily seen we may assume L, and
L, are submodules of a module M such that M=L,+ L, S=L,NL, is simple
and @ is the identity map of S (see Remark 1). If 6 is not (L,, L,)-maximal,
then by Lemma 1.2 S(M)=2S,(L,)=S. Hence M is not colocal, so M is
decomposable by the assumption. Thus 6 is (L,, L,)-extendible by Lemma
2.1.

(cs) Suppose [eN|>3, where eep(4). Then eNDO#ADPRAPUA for
some u;Et(eNf;); fi€p(A). Then there exists an indecomposable module
M such that |S(M)|>2 by Corollary 2.3. This is a contradiction. Thus it
holds |eN| <2 for each e p(4).

3. The implication from (c) to (b) under a condition (D)

Throughout this section, assume that 4 is a left serial ring. In this case
any local left A-module is quasi-projective. Let L be a uniserial module with
|L|=n and put L;=S,(L) and D,(L)=Hom (L,, L;) for each i=1, --,n. 'Then
D(L) is a division ring. If n>i>;j>1, any element ®;: L,~>L; of D(L) is
induced from a map @;: L;—L;, and moreover @; induces an map @;: L—L,
Now we define a map n;;: Dy(L)—D;(L) by (P)n;;=P;. Then as easily seen
\i; are well-defined and ring monomorphisms with equalities ;A j;=\; for
all 7, j and k(n>i>j>k>1). Hence through the maps \;;, we can regard a
sequence D,(L), Dy(L), ---, D,(L) as a descending chain

D(L)>Dy(L)> - >D,(L)
of division rings (cf. [4, p. 211]).

Lemma 3.1. Let A be a left serial ring. For a uniserial module L with
|L|=n and an integer r with 1<r<mn, the following conditions are equivalent.

(1) DAL)=D,(L).

(2) Any isomorphism 0: Sy(L)—Sy(L) is (L, L)-extendible whenever 6 is
(SAL), S,(L))-extendible.

Proof. Put L;,=S/(L), i=1,---,n and let &,: L,—~L, be a map induced
from an isomorphism @,: L,—L,. As easily seen (1) is equivalent to a con-

dition that there is a map vr,: L,— L, with (L,) (p,—Vr,)C L,_,. Since L is
uniserial, the last conditions is equivalent to (L,) (p,—v,)=0 which implies (2).

ReEMARK 3. For an integer r>2, the condition (2) of Lemma 3.1 does not
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imply that any isomorphism ¢,: S,(L)— S,(L) is (L, L)-extendible (see Ex-
ample 1).

It is called by S,-classes isomorphism classes of uniserial modules with
composition length 7. Note that for e and f in p(4) and an integer r>1, f4

is embedded in eN"7! if and only if Ae is embedded in N”~f, since these condi-
tions are equivalent to eN"'f/eN" f 0.

Lemma 3.2. Let A be a left serial ring and e, f,, ---, f, and f be primitive
idempotents with f,AZf;A for i==j. Then for any integer r>1 the following hold.

(1) fLAD--DfA is embedded in eN* if and only if L,=Af;IN'f;
(1=1, -+, 5) satisfy |L;|=r and S\(L;)=Ae. (Thus in this case there are s S,
classes whose socles are isomorphic to Ae.)

(2) (fA)* (i.e. a direct sum of t-copies of fA) is embedded in eN""' if and
only if dim D(L)/p y>t and S(L)=N""'f=Ae, where L=Af|N"f.

Proof. (1) This is clear by the note above.

(2) Put eN"'f=eN""'fleN’f and D=fAf|fNf. Then (fA)' is embedded
in eN""T if and only if dimeN""'f,>¢ By the above note, S,(L)=N""'f=
Ae if f4 i sembedded in eN7-'. Therefore D,(L)=Hom, (N""'f, N""'f) =
Hom, (de, N""'f)=eN""'f as right D-modules. The restriction maps ¢, :
Sy(L)—>S,(L) of maps @,: L—L coincide with the right multiplication maps
by elements of D. Therefore we can identify D,(L) with D, so the assertion
is immediate from the above D-isomorphisms.

Let S be a simple module and L a uniserial module with |L|>2. Denote
by ¢(S) the number of S,-classes whose socles are isomorphic to S and put
m(L)=dim D,(L)p,). 'The following lemma is easily seen by Lemma 3.2.

Lemma 3.3. Let A be a left serial ring and e a primitive idempotent. Then
|eN| <2 if and only if ¢(S\(L))+m(L)<3 for any uniserial module L with the
conditions |L|>2 and S,(L)=/Ae.

Let S be a simple module. We call S of first kind if m(L)=1 (i.e. D\(L)=
D,(L)) for any uniserial module L with S=S,(L)S<L, and S of second kind if
S is not if first kind. By Lemma 3.2 4e is of first kind if and only if eN is
(zero or) square free (i.e. a direct sum cf pair-wise non-isomorphic simple modu-

les).

Lemma 3.4. Let A be a ring satisfying (c) and let L, and L, be uniserial
modules with |L,| < |L,| and S=S,(L,)=S,(L,).

(1) If Sy(L,)=Sy(L,), then L, can be embedded in L,.

(2) If S is of first kind and S,(L,)=S,(L,), then any isomorphism 6: S,(L,)
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—8\(L,) is (Ly, L,)-extendible.
(3) If S is of second kind, then L, can be embedded in L,.

Proof. (1) is clear by (c,), and (2) follows from Lemma 3.1 and
(c;). Moreover (3) is an immediate consequence of (1) since it holds ¢(S)=1
by Lemma 3.3.

Lemma 3.5. Let A be a ring satisfying (c) and let Py, ---, P, be uniserial
modules with |P;| >2 and a;: S—P; a homomorphism for each i=1, ---, n, where

S is a simple module and n>3. If O»SﬁPl@---@PngM»O is an exact
sequence with a=(a, -+, a,,), then M is decomposable.

Proof. We may assume that |P,| < |P,|<---<|P,| and each «; is a non-
zero map. Put S;=S,(P;) and P!/=S,(P;) and consider an exact sequence

o /
0—>S‘*Pf@-~-@PdgM’—>O induced from the above one. Then by (c),
n>3 and Corollary 1.5, there exists a map @’ = (1, ---, @1)": EEP{-*P,’- for

some j such that a’@'=0 and @/ is an identity map. Put I={i|@} is an iso-
morphism (i.e. (S;)p!=0)}. Then we may assume j=max ¢ by considering a
ier

map @@} " instead of @/ for each =1, ---, n if k>j for some k€l. By (c;)
for each 7€1, there exists a map @;: P,—P; such that (S;)(@,—p?), where
we take an identity map as @;. For each k&1, let ¢,: P,—P; be a zero map.
Then for p=(ep,, -**, »,)7 we have ap=0, and therefore by Corollary 2.2 M is
decomposable.

We say that a module M is of I,-type (resp. 1,-type) if M is indecomposable
and |M|=1 (resp. |M|=2), and M is of I-type if M is of 1,- or I,-type. Since
A is left serial, the modules of I;-type coincide with the uniserial modules.

Proposition 3.6. Let A be a left serial ring satisfying (c;). Then a module
M is of I-type if and only if there exist uniserial submodules L, and L, which satisfy
the following conditions.

(1) M=L+L,and |L,|, |L,| >2.

(2) S=L,NL, is a simple module and S is (L,, L,)-maximal. Moreover
in this case S=Sy,(M), so M is colocal.

Proof. ‘If’ part and S=S,(M) are immediate from Lemma 1.2.

‘Only if” part: Let M be an indecomposable module with |M|=2. Then
we have clearly M=L,+ L, for some uniserial submodules L, and L, such that
LNL,#0and 2<|L,|<|L,|. Assume L,NL, is notsimple. If.S’isasimple
submodule L, N L,, then S’ is not (L,, L,)-maximal so S’ is (L,, L,)-extendible
from (c;). Thus by Lemma 1.1, M=L{+L, for some uniserial submodule L{
of M such that |LiNL,|<|L,NL,|. Iterating this argument, the assertion
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holds.

Let M, L, and L, be as the above proposition. If |L,| <|L,|, then |L,|
is equal to the Loewy length ¢ of M (i.e. N*"'M =0 and N‘M=0) and we have
|L,|=|M|—|L,|4+1. 'Thus we define an integer s(M) as min {|L,|, |L,|}
determined by M. Moreover we define s(L) as |L| if L is a uniserial module.

Now we consider the following condition (D) which is always satisfied
for finite dimensional algebras over a field.

(D) dimyp,) Dy(L)=dim D,(L)p,y for any uniserial left A-module L with
|L|>2.

Note that the condition (D) is equivalent to the following: dim,Hom,
(Nf, Nf)=dim Hom,, (N7, Nf), for any f&p(A4), where D denotes a division
ring fAf/fNf and Hom, (Nf, Nf) is canonically regarded as a (D, D)-bimodule.

Lemma 3.7. Let A be a ring satisfying the conditions (c) and (D). If
M is a module of I,-type and L is a uniserial module with |L|<s(M), then any
homomorphism 6: S,(L)—S,(M) is (L, M)-extendible.

Proof. Put S=S)(L) and S'=S,(M). From Proposition 3.6, there exist
uniserial submodules L, and L, of M such that M=L,+L,, |L;|>2 (=1, 2),
S'=L,NL, is simple and (L,, L,)-maximal. Then we have |L|<|L;|;i=1,2,
from the definition of s(M). We may assume ¢: S—S’ is an isomorphism, since
otherwise 8 is a zero map.

(1) In case S is of first kind. Since S’ (=S) is of first kind and (L,, L,)-
maximal, we have S,(L,;)7%S,(L,) by Lemma 3.4. It follows from ¢(Sy(L))<2
that Sy(L)=S,(L,) or Sy(L)=Sy(L,). Thus by Lemma 3.4 0 is (L, L;)-extendi-
ble for some =1, 2, and consequently (L, M)-extendible.

(i1) Incase Sisof second kind. Putr=|L| and M'=S,(L,)+S/(L;)C M.
It suffices to show that 6: S—.S(M') is (L, M')-extendible. Thus we may
assume M=M' and r=|L|=|L,|=]|L,|. Since S is of second kind and
S=38,(L)=8\(L,)=S,(L,), we have isomorphisms B;: L—L; for i=1,2 by
Lemma 3.4. Let s be an elements of S. Since the restriction maps [3;:
S—8|(L;)=S" are isomorphisms, there is an isomorphism A: S—S such that
SAB;= —s5B,. Define a: S>LPL and B: LAL—->M as sa=(sr, s) and

B=(B B)". Then we have an exact sequence 0——>S£¥—>L@L~B—>M—>O. Since
S’ is (L, L,)-maximal, A\ is also (L, L)-maximal (see Remark 1). The maps
Bi: S—8’ and 6: S— S’ are isomorphisms, so we have an isomorphism pu:
S—S such that s§=supB,, i.e. s0=s(p,0)B. By Lemma 3.1, Lemma 3.3 and
the assumption, it holds that D,(L)=D,(L) and dim, ;) Dy(L)=dimDy(L)p,¢y=2.
On the other hand A: S—S is (L, L)-maximal, so A¢D,L)=D,(L). Con-
sequently Dy(L)=D,(L)ls+ D,(L)x and there exist maps @;: L—>L (i=1, 2)
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such that p=@,1s—@,\; in D|(L), i.e. su=s@p,—s@p,x. Put p=(g,, @,): L—
LD L. Since (s@,\, s@,)B = (sp)aB=0, we have spB= (sp,s9;)B=
(sp,—sPoN, 0)B=s(p, 0)B=s6. This shows @B: L—M is an extension of 8:
S—S’.

For any artinian ring 4, the condition (b) implies (c) by Proposition 2.4.
But its converse does not necessarily hold (see Example 3). The following
proposition shows the converse holds under the condition (D).

Proposition 3.8. Let A be a ring satisfying conditions (c) and (D). Then
A is of left colocal type.

Proof. Let M be an A-module with |M|=n. By induction on 7, we
show that M has a decomposition M=M,P---PM, such that each M; is of
I-type. If =1 or 2, then the assertion holds by Proposition 3.6. Assume
n>3. Then it suffices to show that M is decomposable, for any proper direct
summands of M has a decomposition as above by the inductional ‘assumption.
From |M|=n we have M=L,+---+L, for some uniserial modules L,, i=1,
.-, m, since A is left seria. We may assume |L,|<|L;| for each i=1, ---, n.
By inductional assumption L,+---+L,=M,H---PM, for some modules M;
of I-type; i=2, ---, 7. If there is a module M;, 2<i<7, such that s(M;)<|L,]|,
then we have M =L{4 ..-4+ L} for some uniserial submodules L/ with
|L{|<|L,|. Iterating of this argument, we may assume that M=L,+4(M,D
--@®M,) and |L,| <s(M;) for eachi. Put M'=M,H---PM, and T=L,NM’".
If T is a zero module, our assertion is clear. Assume |T'|>2. Let S be the
simple submodule of T and denote by z;: T— M, the restriction map of a projec-
tion M,P---PM,—M; for each i. Then by (c,) and Lemma 3.7, z;: S—M,;
is (L,, M;)-extendible, for this is clear in case z; is zero-map. Hence S is
(L,, M')-extendible, so there exists a uniserial submodule L{ such that M=

[+M', |Li|<|Ly| and |LiNM'|<|T| by Lemma 1.1. Iterating this
argument, we may assume M=L,+(M,D---DM,), |L,| <s(M;) for each i=2,
-, 7, and T=L,N(M,D---®M,) is simple. If M; is of I-type for some
j(2<j<r), then =n;: T—M; is (L, M;)-extendible and therefore by Lemma
1.3 M is decomposable. If M; is of I-type for any ¢(2<i<r), then M is
decomposable by Lemma 3.5.

4. The equivalence of (c) and (d)

In this section we study the following condition (Er) (for any integer »>1)
which is a generalization of (c;) (i.e. (E2) implies (c,)).

(Er) For any uniserial modules L, and L, with r<|L,| <|L,|, any iso-
morphism 8: S)(L,)—S,(L,) is (L,, L,)-extenditle whenever 8 is (S,(L,), S,(L,))-
extendible, where 7 is an integer > 1.
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In particular the equivalence of (c) and (d) is shown as an immediate con-
sequence of a necessary and sufficient condition for left serial rings to satisfy
(Er) (c.f. Corollary 4.4).

For submodules L,, -+, L, of a module M. we say that L,, -+, L, are in-

dependent if the sum 3 L, is direct (i.e. 3] L= L,).

Lemma 4.1. Let A be a left serial ring and u,t(eN""'f;) for i=1, ---, n,
where r is an integer, e is an idempotent and f; is a primitive idempotent. Then
the following conditions are equivalent.

() =nA,---,a,A are independent, where u; is a residue class u;-+eN" of u;
in eN""*/eN".

(2) wA, -, u,A are independent and w, AD--- Du,A is a direct summand of
eN™ 1,

Proof. (1)=(2). Assume u,4, -+-,u,A are dependent. Then there are
elements a;=f;a;g of A, i=1, -, n such that wa,+--+u,a,=0 and wa,+0
for some k, 1<k<n, where g p(4). Since Ag is uniserial by the assumption,
there is an integer j, 1<j<m, say j=mn, with Aua,CAu,a,CAg for each
t=1,---,n. Clearly we have Au,=N""'f;, and Au,a,=N°*"'g for some integer
s. Consider a;: Af;— Ag a right multiplication map by ;. Then we have
(N7"'fa,=Au,a,—=N*"'g, which shows s>r and &, induces an isomorphism
VY2 Af [N f,—N*"7g[N°g. Moreover (N'f;)a;=Nu;a;CNu,0,=N°g and so &;
induces a homomorphism r;: Af;/N"f;—>N*"g[N°g. Put =Yy, ==, V)"
and ¢=(¢,, -, @) =vYy,'. Then from wa,+---+wu,a,=0, we have

gnl [u]p:=( Zﬂ [0 )t = [Ei wa;Jys' =0, where [u;] and [2:'—_,‘ u;a;] denote
residue classes u;+N"f; and ﬁu‘aﬁ—NSg, respectively. Clearly @,=vr, "

is an identity map. Hence by Lemma 1.4, #,4, ---, %,4 are dependent. Thus
(1) implies that w, 4, ---, u,A are independent.

Next under the condition (1) we show u, AP+ Pu,A4 is a direct summand
of eN7-1. Since #,4, ---, #,A are independent, there are elements v, E#(eN""'g,);
gi€p(A4), i=1, ---, n, such that (N '=#,AP---Pu,AP0,AP---Pv,A. There-
fore it holds eN" '=u, AP --Pu,APv,APD---Pv,A, for A4, ---, 8,4, 0,4, -,
9, A are independent and eN” is small in eN""%.

(2)=(1). This is clear.

Corollary 4.2. Let A be a left serial ring, e an idempotent of A and r an
integer>1. Assume a right A-module M is a direct summand of eN'"' with
|M|=n. Then we have M= uwA®D - Pu,A for some u; E t(eN""'f,), where
fiep(4) and i=1, ---,n. Therefore M is a direct sum of local right A-modules.
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Proof. If o:eN’"'—>eN""!is a canonical map, M=Mo. By the assump-
tion eN"'=M@ M’ for some submodule M’ of eN”"'. Hence eN""'=
MocPM'o=0AD - Du,ADM'c for some u;&t(eN""'f;) with u;&M. There-
fore by Lemma 4.1, eN" '=4,AD---Pu,APM'. ButuAD---Du,ACM, and

so M=u AP --Pu,A.

Lemma 4.3. Let A be a left serial ring and e a primitive idempotent of
A and r an integer>1. Then the following conditions are equivalent.

(1) For any uniserial modules L, and L, such that S\(L) == Ae and
r<|L,| < |L,|, any isomorphism Q: Sy(L,)—S,(L,) is (L, L,)-extendible whenever
0 is (S,(Ly), S,(L,))-extendible.

(2) The right A-module eN"" is a direct sum of uniserial submodules.

Proof. Note by Lemma 4.1 and the Krull-Schmidt Theorem the condi-
tion (2) is equivalent to the following: For any ve#(eN"'g); gep(4), vA
is a uniserial right A-module.

(D)=>(2). Let vet(eN"'g); g=p(4). By Lemma4.1, eN"'=vAPM for
some submodule M. Assume v4 is not uniserial. Then yN* is not simple for
some s>1. Since eN**""'=oN*PMN", by Lemma 4.2 oN°'=u,AD---Pu, A
for some u;S#eN**""'f,); f;€p(A4), where m>2 and i=1, ---,m. Hence we
have u;=va, for an element a; of 4 with a;=ga;f;, i=1,2. By the assumption
Au;=N**""'f; and Av=N""'g. Put P=Ag/N'g and L,=Af;/N**"f,. Since
Ava;=Au; and N'ga,;=N**"f,, a right multiplication map @;: Ag—Af; induces
an isomorphism +r;: P—S,(L;) with [v]yr; = [1;], where [v] € P and [4;] € L;
are residue classes of v and wu;, respectively. Put @’'=+7'\y,. We have an
isomorphism ¢': S,(L,)— S,(L;) with [u]e’=[u,], and clearly A[u;]=S\(L,).
Then by the condition (1), there is an isomorphism @: L,—L, with [u]p=
[#,). This is a contradiction by Lemma 1.4 and Lemma 4.1.

(2)=(1). Assume (2). Let L, and L, be uniserial modules as in (1) and
0: Sy(L,)—>Sy(L,) be an isomorphism which has an extension @,: S,(L,)—S,(L,).
It suffices to show (1) in the case |L,|=|L,| =s+7 and L,=Af;/N**"f; where
s>1, f;ep(4) and i=1,2. Since L; is uniserial, P=S,(L,)=S,L,) for some
P=Ag/N'g; g = p(4). Hence we have isomorphism +r;: P—S,/(L;);i=1, 2,
with vr@,=1r,, which are induced from right multiplication maps &;: Ag— Af;
by a;=ga;f;€A. Thus for some vet(eN""'g) and u,ct(eN**""1f;); i=1, 2, it
is satisfied A[v]=Sy(P), A[u;]= S\(L;), [va;]=[u;] and [w,)0 =[u,]. By the
assumption v4 is uniserial and hence it holds va,4 D va,A or va,A Cva,A.
If va,A Dva,A, then we have va,=wva,c for some ¢ = ficf,=A. Hence 0 is ex-
tended to the right multiplication map ¢: L,—L, since [4,]c=[va,]c=[va,]=
[va,]=[u,]. The assertion is similarly shown in the case va,4d Cva,4.

By Lemma 4.3 we have the following corollary. In case r=1, the corollary
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implies the last assertion in Corollary 1.6.

Corollary 4.4. A left serial ring A satisfies the condition (Er) if and only
if the right A-module N"* is a direct sum of uniserial submodules.

If 4 is a finite dimensional algebra over a field, 4 is of right local type
if and only if A4 is of left colocal type by the duality. Thus by Propositions
2.4 and 3.8 and Corollary 4.4, we have the following theorem which is shown
by Tachikawa [4, 5] except for the equivalence (c) and (d) for artinian rings
(see the introduction).

Theorem 4.5 (Tachikawa). Let A be an artinian ring and consider the
following conditions.
(a) A is of right local type.
(b) A is of left colocal type.
(c) (c1) Ais left serial.
(c;) For any uniserial left A-modules L, and L, with |L,| <|L,|, any
isomorphism 0: Sy(L,)—S\(Ly) is (L,, L;)-maximal or (L,, L,)-extendible.
(cs) |eN[eN?| <2 for any primitive idempotent e of A.
(d) (d,) A is left serial.
(d;) eN=M,DM,, for any primitive idempotent e of A, where M;
is either zero or a uniserial submodule of the right A-module eN for each i=1, 2.
Then (b) implies (c), and (c) is equivalent to (d). If A satisfies the condition
(D), then (c) implies (b). In particular if A is a finite dimensional algebra over a
field, then the conditions (a)—(d) are equivalent.

5. Examples

ExampLE 1. Let K be a field and 4 a subalgebra of a full matrix algebra
My(K) which is defined by the following:

ay 0 O
A == a21 azz O azz - a33, a"jeK

az A4z ag

Then A4 satisfies (d) (and so (c)). Let e;; be the (7, j)-matrix unit of My(K)
(1<4,j<3) and put e=e,;,. We have Ne= Ke, + Key, where N=radA.
Define a map @: Ne—Ne by (bey+cey)p=>be,+(b+c)es; b, ce K. It is easy
to see that @ is an automorphism of Ne. Since the restriction map ¢,: S;(/Ne)—
Si(Ne) of @ is an identity map, ¢, is (Ae, Ae)-extendible. (More generally
Si(INe) is of first kind, so any automorphism S,(Ne)— S)(Ne) is (Ae, Ae)-ex-
tendible.) But ¢: Ne—Ne is not (Ae, Ae)-extendible, since any automorphism
Ae—Ae is a right multiplication map & by an element a of ede (=K). Thus
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the condition (c;) does not necessarily imply the following: Any isomorphism
0': Sy(Ly)—Sy(L,) is (L,, L,)-extendible for any uniserial module L, and L, with
2<|L;| £|L,|. (This example shows the condition II in Introduction of [4]
is not equivalent to the condition II in [4, Theorem 5.3].)

ExampLE 2. There exists an artinian ring of left colocal type which is
not a finite dimensional algebra over a field and moreover is not serial: Let
K be a field and F a field of quotients of the polynomial ring K[x] in one in-
determinate. Let 7: F—F be a ring endomorphism extended from an endo-
morphism K[x]—K][x] which fixes K and maps x onto ¥*. Put M=F and
consider an (F, F)-bimodule M defined as a-m-b=am(b)r; a, b= F, where the
multiplication in right side of the equality are those in the field M (=F). Let
A=FIXM be a trivial extension of F over M. Then A4 is an artinian ring with
Jacobson radical N=M which satisfies the condition (d). Moreover A4 satisfies
the condition (D) since Hom, (4/N, A/N)=F is a field for a unique simple
left A-module A/N (up to isomorphism). Hence 4 is of left colocal type by
Theorem 4.5. On the other hand A4 is not a finite dimensional algebra over
a field since the center of A is equal to (K, 0). Clearly 4 is not serial.

Next we give an example of an artinian ring which satisfies the condition
(c) but is not of left colocal type. For modules S, L’ and a submodule S’
of L' and a homomorphism 8: S—S’, we denote also by : S—L' the com-
position map S—L’ of the map §: S—S§’ and the inclusion map S'—L’.
The following lemma is due to [1, Proposition 2.6].
B8

a =n
Lemma 5.1. Let 0T — @ P;—M—0 be an exact sequence with colocal

modules P; and a=(ay, -+, a,). Assume each map a;: T—P; is a monomorphism

with Im a;=P; and Coker «, is a simple module. Then M is decomposable if

and only if there exists a map Jr: @ P,—P; for some j(1<j<m) such that
i

alnp=a;, where aj: T— % P; is the map induced from a: T— é}l P,

Proof. Put L,=P,8 and T;=Ta;8. Then it follows from the assump-
tion that M =L,+--+L,, szLjﬂ(@ L;) and L,/T, is simple. If suffices
i*j

to prove that M is decomposable if and only if T is (& L;, L;)-extendible for
i+

some j (see Remark 1). ‘If’ part is immediate from Lemma 1.2. Assume M
has a non-trivial decomposition M=M,HM,. Since L,+---+L,=L,P--PL,
and L; is colocal for each i=2, .-, n, we have Sy(L,)®---DSy(L,) = S|(M,)D
S)(M,)=S,(M) and S,(L;) is simple. Then by [1, Lemma 1.1] there exist a
partition {2, ---,#} =I,UJ, and submodules K, and K, of S|(M) such that
Sy (M) = (D,S:(Ly)) D Sy(M,) ® K, = Sy(M,) D (D 1,S(L;)) D K,, which shows
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M>(@,L)®M, and MOM,@(D,,L). But 2|M| =3} L |+ | M| +| My | +1

since L,/T, is simple and T1=Lln(_€_§2 L). This shows that M= (®,L,)®M,

(so 1,=¢) or M=M,D(D,L;) (so I,+¢). Thus L; is a direct summand of
M for some j, so T'; is (% L;, L;)-extendible by Lemma 1.2.
i

Lemma 5.2. Let A be a left serial ring satisfying (c,) and L a uniserial
module such that |L|>2 and D\(LY2DyL). Then the following statements hold.

(1) L is projective.

(2) Let M be a module such that M=L,+---+L, is a sum of uniserial
submodules L;. If |L|<|L;| for each i=1, ---,n, then any homomorphism 0:
Sy(L)—>S(M) is (L, M)-maximal or (L, M)-extendible.

Proof. (1) Assume L=Af|N'f; fep(A), and N'f=£0. Then for L'=
AfIN™'f we have D(L)DD,L")2D4L') since we may assume D,(L")=
Dy(L) and Dy(L")=D,L). This contradicts (c,) by Lemma 3.1. Therefore
N'f=0, so L is projective.

(2) We may clearly assume € is a monomorphism. Put P;=L; and let
P, B---DP, be the outer direct sum of Py, ---, P,, We have an epimorphism
B: P®---®dP,—~M. Suppose § is not (L, M)-maximal. Then 0 is extended
to a map 0': Sy(L)—M. Since S,(L) is projective by (1), there is a map
@'=(p1, -+, @1): Sy(L)—>P,D---DP, with ¢’8=0". Hence the restriction map
@i S)(L)—=>P; of @l: Sy(L)—P; is not (L, P;)-maximal and so is extended to a
map @;: L— P; for each i=1, ---,n by (c,). As easily seen @3: L— M is an
extension of @ for the map ¢p=(¢,, ‘-, @,): L>P,D---DP,.

Let A be a ring satisfying the conditions (c). Let S be a simple module
of second kind and L, L, and L, uniserial modules such that S&SLCL,CL,

(see Lemma 3.4 (3)). Consider an exact sequence 0—>SﬁLIEBL2—'8>M —0 with
a=(\, 15); N, 1s&D,(L), where for amap v: S—S we denote also by v: S—L;
the composition map S—L; of v: S—S and the inclusion map S—L;. Then
by Lemma 2.1 and (c;), M is indecomposable if and only if A: S—S is (L, L)-
maximal, i.e. ANED,(L). Assume M is indecomposable. In this case M is
of I,type and so colocal. Let 6: S)(L)— S(M) be an isomorphism. Then
we have 0=pB,=(u, 0)8 for some peD,(L), where 8=(8,, 3;)” (see the proof
of Lemma 3.7). Since by Lemma 5.2 L is projective, 0: S(L)—S,(M) is
(L, M)-extendible if and only if there exists a map @ =(p,, @,): L—L, @L,
such that @B3: L—-M is an extension of §. By the same argument in proof
of Lemma 3.7 and the fact that 8,: L,—M is a monomorphism, it is easily seen
that @B: L— M is an extension of  if and only if an equality u=@,15—@,\
holds in D,(L), where we regard ¢; as a map @;: L—L (CL;); i=1,2. Thus by
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Lemma 5.2 we have

Lemma 5.3. Let A be a ring satisfying (c) and M be a module of I,-type
such that S\(M) is a simple module of second kind. Assume L is a uniserial module
with |L| <s(M) and 6: S\(L)—S,(M) is an isomorphism. Then under the above
notation, 0 is (L, M)-maximal if and only if Dy(L)1sD D,y(LYNDDy(L)pC Dy(L).

ExampLE 3. There exists an artinian ring which satisfies the condition
(c) (or equivalently (d)) but is not of left colocal type: Let F and G be divi-
sion rings such that G is a subring of F and dim F;=2, dim; F>3. There
exist these rings by Cohn [2]. Let

G

GG
GGG
FFFF

A=

be a subring of a full matrix ring M,(F). Then as easily seen A satisfies the
condition (d) and consequently (c). But A4 does not satisfy (b) (i.e. 4 is not
of left colocal type). In order to show it, we construct an indecomposable
module which is not colocal. Put L=A4e,, L;=N**L(1<i<4) and S=1L,
where e, is a (1, 1)-matrix unit of M,(F), and N=rad A. Then L; is uni-
serial with |L;|=7. We can identify D,(L) and D,(L) with F and G, respective-
ly. Let A and p be elements of D,(L) such that D,(L)1PDy(LYNPD,(L)p
CDy(L) and let a’'=(n, 15): S=L,®BL, and a’=(A, 15): S—L;PL,; be mono-
morphisms. Then by Lemma 1.2 we have the following exact sequences with
colocal modules P, and Pj:

0—S-5 LaL, 2 P— 0

7 1/
0— S— L,pL,—> P,— 0.

Let a,: S—P, be the composition map of (u,0): S—L,PL, and B’, and let
ozt S—P; be the composition map of (u,0): S—>L;PL; and B”. Define a
monomorphism «a: S—P, SP,BP; by a=(a;, &, ), where P,=L and

a,=1;, and consider an exact sequence 0—>SO—C>PIEBPZEBP3—>M—>O. Suppose
M is decomposable. Then by Lemma 5.1 there exists a map @,=(@u, @i):
P;®P,—~P, with a;p,,+a;0,,=(a;, a;)ps=ay, where (4, j, k) is a permutation
of (1,2, 3). Since the Loewy lengths of P, and P, are 4 and 3, respectively, P,
is not isomorphic to P;. But it holds |P,|<<|P,|=|P;|. This shows that
there are no monomorphisms P;— P; for any ¢ and j with 74j and /4 1.
Therefore a;p;; =0 if =7 and 741. Thus for some k (k=2 or 3), we have
spu=sa,p=sa, (s € S), which implies a,: S—P, is (P, P,)-extendible.
This is a contradiction by Lemma 5.3. Hence M is indecomposable. But the
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map (B, Bs): P,BP;—M induced from @ is a monomorphism. Therefore M
is not colocal.

From Theorem 4.5 and Example 3, the following question arises.

Question: Whether does any ring of left colocal type satisfy the condition
(D)?

Though we can not answer the question, we study it in relation to simul-
taneous equations over a division ring. Let 4 be a ring which satisfies (c)
but not (D). Then there is a uniserial module L with |L|=2 and dimy,;,D,(L)
>3. Put S=S5,(L) and let ; and g, (=1, 2) be elements of D,(L) with
Dy(L)15D Dy(LYN; @ Dy(L)p; © Dy(L). Then as in Example 3, consider the
following exact sequences:

(k,’, 18) Bz

,0,,0
0—> S g 2)LEBM1€BM2——>M-—>0

0—> S — M;—0

where 0;: S—M; is a map with 8;=(u;, 0)B; for a map (u; 0): S—LABL
(=1, 2). Then M; is a module of I,-type and 6; is (L, M;)-maximal by Lemma
3.6 and 5.3. Moreover M is not a colocal module. On the other hand by
Lemma 5.1 M is decomposable if and only if there exists a map J: LOM,—
M; with (15, 0,y =0, for some permutation (z,5) of (1,2) (see the proof of
Example 3). Next we give a necessary and sufficient condition in order that
there exists a map yr: LOM,—M, with (15, 8,)y»=0,. Consider the following
diagram with exact rows:

(O, 7\'1) 1 ) L) B)
0—> S > LP(LBL) > LEBMl —0

i i
l !
P \P:
(12, 0) ;
(N 15) v B V

0 > S > LPL M, >0.

As easily seen there exists a map r: LOM,— M, with (15, 6, =46, if and
only if there exists a map @: LO(LBL)-—~LOL with (Im(0, A, 15))p(=(Ker
(1, B)"@)CKer B, and (1, ,, 0)pB,= (12, 0)B,, that is for any s&S it holds
(0, sy, 5)@B,=0 and (s, sp1, 0YpBr=(sps, 0)B,. Put Br,=(By, Bz)": LOL—M,
and ¢ =(;;): LO&L® L— L® L, where (p;;) is a matrix of type (3, 2) with
coefficients @;;. Since $'N,B;,+5"Bp=5"(Ns, 15)B,=0, by using maps @;;, we
can rewrite the above equalities as following:
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(5Pt 501P21)— (5PN P2)N2)Br2 = 0 and
((5Put$1:92) — (5125 11P2)N2) Brz = S22 -

But B,,: L—»M, is a monomorphism and s is any element of S. Hence the
equalities are equivalent to the system of equalities

(Pa+21P2) — (Pat+MPo)A, = 0 and
(Put11P0)—(Pot p1Pu)Ns = py in Dy(L).

Thus we have

Proposition 5.4. Under the above notation, there exists a map r: L M,—
M, with (1g, O, )Nr=0, if and only if the following simultaneous equations with 6-
unknowns have a solution in D,(L):

(SE) { (x+MP)HE+AuN =0
(7)+Il'1y)+(‘w+.“1u)7\'2 = My .

If A;=X, and p,=p, then the above simultaneous equations (SE) have
a solution in D,(L) since M;=M, and 6,=60,. Moreover note that D,(L)®D
MDy(L) = Dy(L)D p,D(L) = D,(L) because \,, pu, & Dy(L) and dim D,(L)p,;)
(=m(L))=2 by Lemma 3.3.

Let (SE)’ denote the simultaneous equations obtained by exchanging 1
and 2 each other in the indices of (SE) above. Assume that for any division
rings F O G with dimgF>3 and dim F;=2 there exist elements \;, p; of F with
G1BGNDGu;CF (=1, 2) such that both (SE) and (SE)’ have no solution
in G. Then the following conditions would be equivalent.

(1) A4 is of left colocal type.

(2) A is a ring satisfying (c) and (D).

ExamPLE 4. An artinian ring which satisfies (c) but is not of right local
type: Let FOG be division rings as in Example 3 and put

oG 3) m 1-(3)

Then A4 is a ring which satisfies (c) but does not (D) and L is a unique non-
simple projective module. Moreover we can regard division rings D,(L)D
Dy(L) as FOG. It is an open problem whether A4 is of left colocal type or
not. If there exist elements \;, u; as above, then 4 would be not of left colocal
type. On the other hand we can show 4 is of not right local type.

Let A, and A, be elements of F with G1DGAT'PGA;' CF and put
S=(G, 0), S;=(\,G,0), P=(F, F) and L,=P|S;. Denote by 6;: S—L; the
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composition map of the inclusion S—P and the canonical epimorphism o;:
P—L;,. (We write homomorphisms between right modules on the left side.)

0,, 0,
Let 0—>S(—L——Z)> L,®L,—~M~—0 be an exact sequence of right modules. We

show M is indecomposable. Suppose M is decomposable. Then there exists
an isomorphism +r: L,—L, with y-0,=8, by Corollary 2.2. Since P is a pro-
jective, the map +r can be lifted to a map Z: P—P which is a left multiplica-
tion map by pEF, so Ya,=0,%. This shows u(\,G, 0)=pu(Ker o)) CKer o,=
(MG, 0) and ay(1, 0)=01, 0)=y(1, 0) = ra(1, 0) = (1, 0) = (1, 0).
Hence un;=N,a and pu=1-+4X,b for some a and b in G, so b—ari'+r;'=0,
which contradicts G1PGAT'@GAz;'CF. Thus M is indecomposable. But
clearly M is not local.
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