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Abstract
We establish continuity and Schatten—von Neumann praseftr Fourier inte-
gral operators with amplitudes in weighted modulation sgaevhen acting on mod-
ulation spaces themselves. The phase functions are nontlsraod admit second
order derivatives again in suitable classes of modulatjzactes.

0. Introduction

The aim of this paper is to investigate continuity and compess properties for
Fourier integral operators with non-smooth amplitudesgonbols), when acting on (gen-
eral, or weighted) modulation spaces. Especially we canegth detailed compactness
investigations of such operators in background of Schatten Neumann theory, when
acting on Hilbert modulation spaces. Here we recall thatgbaces of trace-class or
Hilbert—Schmidt operators are particular classes of $ehavon Neumann type. More
precisely, we establish sufficient conditions on the amgés and phase functions in or-
der to allow the corresponding Fourier integral operatorbé Schatten—von Neumann
of certain degree. Since Sobolev spaces of Hilbert typeaeial cases of these Hilbert
modulation spaces, it follows that our results can be agglecertain problems involv-
ing them.

The phase functions are assumed to be continuous, with deeders of derivatives
belonging to appropriate modulation spaces (i.e. weigtsgistrand classes”) and satis-
fying appropriate non-degeneracy conditions. The angsisuare assumed to belong to
appropriate (weighted) modulation spaces, or more gdypesgpropriate (weighted) co-
orbit spaces of modulation type, where each such space iseddlly imposing a mixed
weighted Lebesgue norm on the short-time Fourier transfafrdistributions. These co-
orbit spaces contain various types of classical smoothiamdpk. For example, for any set
of the smooth functions which belong to a fixed mixed Lebespaes, together with all
their derivatives, we may find a “small” such coorbit spacéchttontains this set. Conse-
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quently, our main results apply on Fourier integral opasatdth such smooth amplitudes.

Furthermore, by letting the involved weight functions ba&i&lly equal to one,
these Sobolev spaces are equalfo In this case, our results generalize those in [7, 8],
where similar questions are discussed when the amplitudgsecond order of deriva-
tives belong to classical or non-weighted modulation space

On the other hand, following some ideas of A. Boulkhemair5h fhe framework
of the investigations in the present paper, as well as in][7/s&o localize the Fourier
integral operators in terms of short-time Fourier transf®r and then making appro-
priate Taylor expansions and estimates. In fact, in [5], IBm@mair considers a cer-
tain class of Fourier integral operators whose symbols afed without any explicit
regularity assumptions and with only small regularity asptions on the phase func-
tions. The symbol class considered by Boulkhemair, in thesgmt paper denoted by
M1 is sometimes called the “Sjostrand class”, and cont% the set of smooth
functions which are bounded together with all their deieg. In time-frequency com-
munity, MP9 is known as a (classical or non-weighted) modulation spaitle @xpo-
nentsp € [1, oo] and q € [1, oo]. The strict definition may be found below or e.g. in
[14, 17, 22]. Boulkhemair then proves that such operatotsnek uniquely to contin-
uous operators om.2. In particular it follows that pseudo-differential opeset with
symbols inM>1 are L2-continuous, as proved by J. Sjostrand in [35], where it seem
that M>>1 was used for the first time in this context.

Boulkhemair's result was extended in [7, 8], where it is gawvhat if the am-
plitude belongs to the classical modulation sp&tg?!, then the corresponding Fourier
integral operator is Schatten—von Neumann of order[1, o] on L2. In [8] it is also
proved that if the amplitude only depends on the phase spatdables and belongs to
MPP  then the corresponding Fourier integral operator is ocotis fromMP-P to
MP-P where ¥p+1/p’ = 1. If in addition 1< p < 2, then it is also proved that the
operator is Schatten—von Neumann of orgeon L2,

We remark that the assumptions on the phase functions infjally they are two
times continuously differentiable. This property is uspaiolated by “classical” Fourier
integral operators (see e.g. [24, 29, 30, 31, 32]). For ekanpis condition is not ful-
filled in general when the phase function is homogeneous gifedgeone in the frequency
variable. We refer to [9, 29, 30, 31, 32] for recent contiious to the theory of Fourier
integral operators with non-smooth symbols, and in ceri@imains with few regularity
assumptions of the phase functions.

In order to be more specific we recall some definitions. Assthmagp, q € [1, o<],

x € Z(R")\ 0 and thatw € Z(R™) are fixed. (See Section 1 for strict definition of
2.) Then themodulation space I}'(R") is the set of allf € ./(R") such that

a/p 1/q
0 thwgs = ([ ([ peordx) de) <o

(with obvious modification whemp = co or g = o). HereV, f is theshort time Fourier
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transformof f with respect to thevindow functiony, i.e. V, f(x, &§) = .7 (fwX)(§),
wheret, is the translation operatay x(y) = x(y — X), % is the Fourier transform on
<'(R") which is given by

Z1E© = f© = @0 | f(0e’ ax

when f € .(R"). For simplicity we setM”® = M{' whenw = 1.

Modulation spaces were introduced by H. Feichtinger in [T4je basic theory of
such spaces were thereafter extended by Feichtinger anch&nigy in [17, 18], where
the coorbit space theory was established. Here we note likaamplitude classes in
the present paper consist of coorbit spaces, defined in saghthat their norms are
given by (0.1), after replacing theP and L% norms bymixed Lebesgue norms and
interchanging the order of integration (see Subsectionabh@ Section 2). During the
last twenty years, modulation spaces have been an actids fiélresearch (see e.g. [14,
15, 22, 27, 39, 42]). They are rather similar to Besov spases [46, 37, 42] for sharp
embeddings) and it has appeared that they are useful inftegeency analysis, signal
processing, and to some extent also in pseudo-differecdilulus.

Next we discuss the definition of Fourier integral operatérsr simplicity we re-
strict ourself to operators which belong (7 (R™),.¥'(R™)). Here we let#(V1, V)
denote the set of all linear and continuous operators fkgmo V,, whenV; and V,
are topological vector spaces. For any approprate’'(RN*™) (the symbolor ampli-
tude for N = n; 4+ n,, and real-valuedp € C(RN*™) (the phase functio)) the Fourier
integral operator Ofa) is defined by the formula

©2)  op@i =@M [[ | aty.fmertrIdy,

when f € #(R™). Here the integrals should be interpreted in distributg@mse if
necessary. By lettingn = n; = n, = n, and choosing symbols and phase functions in
appropriate ways, it follows that the pseudo-differentipkrator

(0.3) Op@e) f(x) = (2r)™" //R” a(x, y, £) f(y)e <Y€ dy de

is a special case of Fourier integral operator. Furthermibre € R is fixed, anda is
an appropriate function or distribution d®?" instead ofR*>", then the definition of the
latter pseudo-differential operators covers the definitsd pseudo-differential operators
of the form

©4) &l D)) =@n™ [ a@-ix+ty () dy e,
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On the other hand, in the framework of harmonic analysis libfes that the map
ar a(x, D) from 7 (R™) to .Z((R"),.~'(R")) extends uniquely to a bijection from
S (R™M) to Z(Z(RM), &' (RM).

In the literature it is usually assumed tteaaind¢ in (0.2) are smooth functions. For
example, ifn; = n; = n, a € S(R™™™) andgp € C®(R™™™M) satisfyp® € § (R™"™)
when|a| = N; for some integeiN; > O, then it is easily seen that Of@) is continuous
on.#(R") and extends to a continuous map frori(R") to . (R"). Here recal@yo(RN)
denotes the Hérmander symbol class which consists of albgmfanctions orRN which
are bounded together with all their derivatives. In [1] ipieved that ifp© € S (R*™)
for all multi-indicesa such thate| = 2 and satisfies

det( (p%*y (p%f >
Pye Pee
for somed > 0, then the definition of Ofa) extends uniquely to ang € Q’O(RZ”“”),
and then Op(a) is continuous onL2(RM).

Next assume thap instead satisfieg® e M>1(R®") for all multi-indicesa such
that |«| = 2 and that (0.5) holds for some > 0. This implies that the condition on
@ is relaxed sinc@?lo C M1 Then Boulkhemair improves the result in [1] by prov-
ing that the definition of Op(a) extends uniquely to ang € Mo L(R2+™) " and that
Op,(a) is still continuous onL?(R").

In Section 2 we discuss continuity and Schatten—von Neurpaoperties for Fourier
integral operators which are related to those which weresidened by Boulkhemair.
More precisely, assume that ; for j = 1, 2 andv are appropriate weight functions,
@ € M(ov‘;'l and 1< p < oo. Then we prove in Subsection 2.4 that the definition of
a ~ Op,(a) from . to Z(~(R"), /'(R")) extends uniquely to ang € M("j)'l, and
that Op,(a) is continuous fromM(ful) to M(foz)- In particular we recover Boulkhemair’s
result by lettingw = w; = v =1andp = 2.

In Subsection 2.5 we consider more general Fourier integpatators, where we
assume that the amplitudes belong to coorbit spaces whicighty speaking, are like
M(’Z;)q for p,q € [1, o0] in certain variables and Iik$/l(‘zj)’1 in the other variables. (Note
here thatM(",j)’1 is contained inM("Cj)’q in view of Proposition 1.1 in Section 1.) If

(0.5)

>d

g < p, then we prove that such Fourier integral operators areiragmis from M(Z;)p'

to M(’Z}S- Furthermore, by interpolation between the latter resall @ur extension
of Boulkhemair’s result we prove that ff < min(p, p’), then these Fourier integral
operators belong to(MZ3, M%3). Here .%(#41, /) denotes the set of Schatten—
von Neumann operators from the separable Hilbert spégeto the separable Hilbert
space.#> of order p. This means thal e 4(s74, J¢3) if and only if T is a linear
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and continuous operator fron¥; to 7% which satisfy

Tl = sup(3IT . 9l?) < oo,

where the supremum should be taken over all orthonormalesegs ;) in 7 and
(gj) in 5.

In Section 3 we list some consequences of our general reisuBection 2. For
example, assume that, g € [1, oo], a(x, y, £) = b(x, £), for someb € M (R™),
and that

(0.6) detie) )| = d

holds for some constarit > 0. Then it follows from the results in Section 2 that if
g = p, then Op(a) is continuous fromM(Ei‘l)p/ to M{,). Furthermore, if in addition
(0.5) andg = min(p, p') hold, then Op(a) € -%.

In the last part of Subsection 3.2 we present some consegsidac Fourier inte-
gral operators with smooth symbols, and finally, in Subsec8.3 we show how the re-
sults in Section 2 can be used to extend some results in [ Pseudo-differential
operators of the form (0.3).

1. Preliminaries

In this section we discuss basic properties for modulatfzaces. The proofs are in
many cases omitted since they can be found in [12, 13, 14,71881 19, 22, 40, 41, 42].

We start by discussing some notations. The duality betweg&rpalogical vector
space and its dual is denoted Ky, -). For admissiblea andb in ./(R"), we set
(a, b) = (a, b), and it is obvious that {, -) on L? is the usual scalar product.

Assume that#; and %, are topological spaces. Thes, — %, means that%; is
continuously embedded ig8,. In the case thatd; and %, are Banach spacess; —
%, is equivalent to#; € HA, and ||x||z, < C||X|l,, for some constan€ > 0 which
is independent ok € %;.

Let w, v € L2 (R") be positive functions. Thew is called v-moderateif

(1.1) o(X +Y) < Co(X)v(y), X,yeR",

for some constan€ > 0, and if v in (1.1) can be chosen as a polynomial, thers
called polynomially moderated. Furthermoieis calledsubmultiplicativeif (1.1) holds
for « = v and v is even. In the sequel we always letand v; for j € N stand for
submultiplicative functions, if nothing else is stated. ‘dlenote by #(R") the set of
all polynomially moderated functions oR".

Assume thatw(xy, Xp) € Z(R™*™), wherex; € RY for j =1, 2. If o(xy, Xp) =
w1(x1) for somew; € Z(R™), then we identifyw with w; and write w(x;) instead
of wi(X1), i.e. w(X1, X2) = w(X1). In such situations we sometimes consideras an
element inZ(R™).
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1.1. Modulation spaces. Next we recall some properties on modulation spaces.
We remark that the definition of modulation spacmgv’)q(R”), given in (0.1) forp,q €
[1, o], is independent of the choice of the windoyw e .#(R") \ 0. (See Propos-
ition 1.1 below). For the short-time Fourier transform in1(j0we note that the map
(f, x) =V, f is continuous from#(R") x .#(R") to .”(R?") which extends uniquely
to a continuous map frortV/(R”) X y’(R”) to .7'(R?™).

For convenience we sé¥l) = M{,°. Furthermore we seMP% = M2 if w = 1.

The proof of the following proposition is omitted, since thesults can be found
in [12, 13, 14, 15, 17, 18, 19, 22, 40, 41, 42]. Here and in windibwrs, p’ € [1, oo]
denotes the conjugate exponentwEk [1, oc], i.e. I/p+ 1/p’ = 1 should be fulfilled.

Proposition 1.1. Assume that [, p;,q; € [1,00] for j = 1,2, and w, w1, w2, v €
Z(R?) are such thaiw is v-moderate andv, < Cw; for some constant G- 0. Then
the following are true
1) f e Z(R") belongs to I\(ﬁ) (R") if and only if (0.1) holds for x € M(v)(R”) \ 0.
Moreover M(w) (R") is a Banach space under the norm (@.1) and different choices
of x give rise to equivalent norms
(2) if p1 = p2 and g = g then

y(Rn) M pinh(Rn) s M P2, Q2(Rn) s y (Rn)

(1)

(3) the L? product(-, -) on.#(R") extends to a continuous map from{f(R") x
M(’{;i;)(R”) to C. On the other handif ||a|| = sup(a, b)|, where the supremum is taken
over all be .#(R") such that||b||Mg/,3)f <1,then|-|| and |- “M(’,’;)q are equivalent norms
(4) if p, g < oo, then.”(R") is dense in Nfy'(R") and the dual space of ff'(R")
can be identified with ) (R"), through the forn(-, -)_.. Moreovey.7(R") is weakly
dense in N (RY).

Proposition 1.1 (1) allows us be rather vague concerning:timéce of y € M(lv)\O
in (0.1). For example, ifC > 0 is a constant and” is a subset of?”, then IIallng;f <
C for everya € &/, means that the inequality holds for some choicey &f M(lv)\o and
everya € «7. Evidently, a similar inequality is true for any other chmiof x € M(lv)\o,

with a suitable constant, larger th&h if necessary.
It is also convenient to Iei\/l(’z;q(R”) be the completion of”(R") under the norm

I - Then Mg, € M with equality if and only ifp < oo andq < oco. It follows
that most of the propertles which are valid fM(w) (R™, also hold for/\/l(w) (RM.

We also need to use multiplication properties of modulaspaces. The proof of
the following proposition is omitted since the result canfbend in [14, 17, 41, 42].
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Proposition 1.2. Assume that pp;, d; € [1, co] and wj, v € PR™M), for j =
0,..., N, satisfy
1 1 1 1 1 1

—Ft ===, — 4+ —=N-1+-
P2 PN Po O an o

and

wo(X, &1+ -+ - +&N) < Coa(X, &1) - - on(X, En), X, &1,...,6n € R,

for some constant C. Theffy, ..., fy) ~ fi--- fy from Z(R") x -+ x Z(R") to
7(R") extends uniquely to a continuous map fronf;f(R") x --- x M{™M(R") to
MP®(RM), and

(wo)

- fullow < Cllfallyzs - | s

for some constant C which is independent pfefM{! (R for i =1,..., N.
Furthermore if ug = 0 when p< oo, v(X, §) = v(§) € £(R") is submultiplicative
fe M(’,’)’)l(R“), and ¢, ¢ are entire functions orC with expansions

oo

$@)=> W, v@=> |ulz
k=0

k=0

then ¢(f) € M{}'(R"), and
e () llype < C¥(Cl fllgp),
for some constant C which is independent o€ M(’,’)')l(R“).

In the following remark we list some other properties for miadion spaces. Here
and in what follows we letx) = (1 + |x|?)Y2, whenx € R".

REMARK 1.3. Assume thap, q,q:, o € [1, oo] and thatw, v € Z(R?*") are such
that w is v-moderate. Then the following properties for modulatiomcgs hold:
(1) if gy < min(p, p), gz > max(p, p)) anda(x, &) = w(x), thenME* S LE ) € MP.
In particular, M(Zw) = L(Zw);
) if w(x, §) = w(x), then M} (R") < C(R") if and only if g = 1;
(3) M1 is a convolution algebra which contains all measuresR3nwith bounded
mass;
(4) if xo € R" is fixed andwo(§) = w(Xo, £), then ME N & = FL{,, N &' Here
F L{,»(R") consists of allf € ./(R") such that

|| an)o|||_q < OQ.
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Furthermore, ifB is a ball with radiusr and center akg, then

CHfllg, <l flwes <Clflg,, fed(®
for some constan€ which only depends on, n, » and the chosen window functions;
(5) if w(x, &) = wo(—£, X), then the Fourier transform o’ (R") restricts to a homeo-
morphism fromM¢,,(R") to M, (R"). In particular, ifw = wo, then M, is invariant
under the Fourier transform. Similar facts hold for parttalurier transforms;

(6) for eachx, & € R" we have

et f (. — Ximps = Colx, E)I| Fllmps,

for some constanC;

(7) if &(x, §) = w(x, —§) then f € My! if and only if f € M2

(8) if s € R and w(x, £) = (£)°, then MZ, agrees withHZ, the Sobolev space of
distributions withs derivatives inL2. That is, H? consists of allf € .7’ such that

F7H(-)3f) € L2 If insteadw(x, §) = (x)S, then MZ, agrees withL3, the set of all

f € Li, such that(-)Sf € L2

loc

See e.g. [12, 13, 14, 17, 18, 19, 22, 33, 42].

For future references we note that the constrh Remark 1.3 (4) is independent
of the center of the balB.
In our investigations we need the following characteratof modulation spaces.

Proposition 1.4. Let {X,}4c1 be a lattice inR", B, = X, + B where BC R" is
an open ball and assume that,fe &'(B,) for everya € |. Also assume that ,m €
[1, oo]. Then the following is true
@) if

1/p
12 f=) f, and F(é)z(Dﬂ(&)w(xa,snp) € LYR"),

acl ael

then fe M{), and fr |[F|Ls defines a norm on ) which is equivalent td - [lwps
in (0.1);

(2) if in addition |J, B, = R", x € Cg°(B) satisfies)", x(- —x,) =1, f € M{}'(R"),
and f, = fx(- —X,), then {, € &'(B,) and (1.2) is fulfilled.



SCHATTEN PROPERTIES FORFOURIER INTEGRAL OPERATORS 47

Proof. (1) Assume thag € C°(R") \ O is real-valued and fixed. Since there is
a bound of overlapping supports df, we obtain

IV, (5, £, £)] = 17(Fx(- — X))ol €)
= Y1 (ax(- —)lx, &)
< ¢(TIZux(- —x)E@x, F) ",

for some constanC. From the support properties ¢f, and the fact that is v-
moderate for some € Z2(R?), it follows that

|7 (fax (- =X))(E)(X, §) = ClF (fax (- —X))(E)0(Xas €),

for some constan€C independent ofx. Hence, for some ball® and B, = x, + B,
we get

1/p
(L17(x =00t oPox)

1/p
=o( ¥ [ 1t —x»(s)w(xa,s)wx)

1/p
< c(z /B,(|f;w(xa, NEIr -)|(s»*’dx>

1/p
<c (Zq fuw(t )l 700, -)|<s»p> < C'F %7000, )[(©)

for some constant€, C’ and C”. Here the last estimate follows from Minkowski's
inequality. By applying theL9-norm and using Young's inequality we get

[ flmes < C7IIF = [Xv(0, )llla < C"[IFllLall X v(0, -)IlLs

Since we have assumed thate L9, it follows that || f ||M(p,)q is finite. By similar argu-
ments we gef|F||Ls < C| f|lypa for some constan€. This proves (1).

The assertion (2) follows immediately from the general thiesd modulation spaces.
(See e.g. Chapter 12 in [22].) The proof is complete. O

Next we discuss (complex) interpolation properties for mation spaces. Such
properties were carefully investigated in [14] for classimodulation spaces, and there-
after extended in several directions in [18], where int&pon properties for coorbit
spaces were established, see also Subsection 1.2. Theifg/lg@roposition is an im-
mediate consequence of Theorem 4.7 in [17].
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Proposition 1.5. Assume thaD < 6 < 1, pj, g; € [1, oo] and thatw; € P2(R?™M)
for | =0, 1, 2 satisfy

1 1-6 6 1 1-6 06 1-9 g
= = 4+ — == +— and wy= i "w,.
Po P P2 Qo O a2

Then
(M@ RD. MEFRD) g = M@ R,
and
(MEYER™, MEER™) ;= MERPR™.
Next we recall some facts in Section 2 in [44] on narrow cogeace. For any

f e (R, we ZR™M), x € Z(R") and p € [1, o], we set

1/p
sl = ([ 1 1 o, P )

DEFINITION 1.6. Assume thaf, f; € M(w) (R", j =1,2,.... Then fj is said to

convergenarrowly to f (with respect top,q € [1,00], x € .Z(R")\0 andw € Z(R?)),
if the following conditions are satisfied:

(1) fj - fin ¥(R") asj tends tooo;

(2) Hy0,p(E) = Htw,p) in LYR") as j tends toooc.

REMARK 1.7. Assume thaff, f, f,,... € /(R") satisfies (1) in Definition 1.6,
and assume thdt € R". Then it follows from Fatou’s lemma that

“Jﬂl[gf Ht 0,p(6) = Ht o,p(§)
and
“?li!lf” fillmea = 1 fllmps-

The following proposition is important to us later on. We onhie proof since the
result is a restatement of Proposition 2.3 in [44].

Proposition 1.8. Assume that pq € [1, oo] with g < oo and thatw € 2(R?™).
Then G°(R") is dense in \jy'(R") with respect to the narrow convergence.
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1.2. Coorbit spaces of modulation space types.Next we discuss a family of
Banach spaces of time-frequency type which contains theuratidn spaces. Certain
types of these Banach spaces are used as symbol classeauftr Fategral operators
which are considered in Subsection 2.5. (Cf. the introduc}i After submitting the
paper, we got knowledge that our coorbit spaces may be, inoadbr context, con-
sidered as modulation spaces (cf. [16]).

Assume thatv; and W, for j =1,..., 4 are vector spaces of dimensioms and
m; respectively such that

(13) V1€BV2=V3@V4=R", Wl@W2=W3@W4=Rm.

We let the euclidean structure Wy and W; be inherited fromR" and R™ respectively.
For convenience we use the notations

V=WN,...,Va), W=(Wy,...,Ws), and p=(p,q,r,5),
for quadruples of vector spaces and the numhgrg, r, s € [1, o], and we set
LP(V) = L5(Va: L™ (Va: L9(V2; LP(V1)))).

Finally, if o € 2(R?), then we IetL?w)(V) be the Banach space which consists of
all F e LE.(R?) such thatFw € LP(V). This means that (,(V) is the set of all
F e LL_(R?™) such that

loc

" a/p r/q s/r 1/s
Fl,m = ([ (] ([ ([ 1Fe o0 oraa) o) ) de)

is finite (with obvious modifications when one or more pfq, r, s are equal to in-
finity). Here dxq, dX;, d&; and d&, denote the Lebesgue measureMp V,, V3 and V,
respectively.

Next, for x € /(R") \ 0, we let@®¢, (V) be thecoorbit spacewhich consists of

all f e .7/(R") such thatV, f € Lg,(V), i.e.
(1.4) Ifller, ) = Vi fllp @) < oo

We note that ifp =q andr =s, then@?w)(V) agrees with the modulation spahq’;')r.
On the other hand, ip # g orr # s, then G)E’w)(V) is not a modulation space on such
form. A more general definition of coorbit spaces can be found7, 18], where such
spaces were introduced and briefly investigated.

The most of the properties for modulation spaces stateddpddition 1.1 and Re-
mark 1.3 carry over tc@?w) spaces. For example the analysis in [22] shows that the
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following result holds. Here we use the convention

p1=p; When p; =(p;,q,rj,sj)) and p1 <P L =0, 1 =Tz I =%,
and

th<p=<t, when p=(p,q,r,s), t,tre[l,o0] and t; <p,q,r,s=<t.

Proposition 1.9. Assume thap, p; € [1,00] for j = 1,2, and o, w1, wz, v €
Z(R?) are such thaiw is v-moderate andv, < Cw; for some constant G- 0. Then
the following are true
(1) if x € M,,(RM)\ O, then fe ©F,(V) if and only if (1.4) holds i.e. ©F, (V) is
independent of the choice gf Moreover @’(’w)(V) is a Banach space under the norm
in (1.4), and different choices of give rise to equivalent norms
(2) if py <p, then

S (R") — 6?;)1)(7) < 6?;2)(7) — Z(RM).
Later on we also need the following observation.

Proposition 1.10. Assume that(x, y) € Vi & Vo = R™*" with dual variables
(€, n) € V4 ® V3, where \{ =V, = R™ and b = V3 = R". Also assume that &
S'(R"), fo € (R, w e 2(R?™) and wy € Z(R¥ M) satisfy

fo(x, y) = f(y) (in ' (R™™")
and

wO(XI Y, é! T)) = w(y! ﬂ)(é)t

for some te R, and that pg € [1, 00]. Then fe M{(R") if and only if § €
0(,,(R™™") and p = (o0, p, q, 1), with V = (Vi, V2, V3, V).

Proof. Letxo= x1® x, wherey; € #(R™) and x € .(R"). By straightforward
computations it follows that

(1.5) Vo fo(X, ¥, & mao(X, y, & m)l = [V F(y, ma(y, n)l 17(E)(E)"].

Since |x1(8)[(£)! turns rapidly to zero at infinity, the result follows by apiply the
LP(V)-norm on (1.5). O

Since interpolation properties for coorbit spaces are itamd to us, we next recall
some of these properties. By Corollary 4.6 in [17] it follogat @‘(’w)(V) is homeo-

morphic to a retract of_?w)(V). This implies that the interpolation properties lo%(V)
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spaces carry over t®(w)(V) spaces. (Cf. Theorem 4.7 in [17].) Furthermore, since the
map f > w- f defines a homeomorphism frohfw)(V) to LP(V), it follows thatL(w)(V)

has the same interpolation propertiesl2¢§V). From these observations together with
the fact that the proof of Theorem 5.6.3 in [2] shows that

(LP{(R™ 1), LP(R™; Z2))e = LP(R™; ),

1 1-6 ¢
when p, p1, p2 €[1,00], X = (%1, By and — = + —,
p P1 P2

it follows that the following result is an immediate consegoe of Theorems 4.4.1
and 5.1.1 [2]. The second part is also a consequence of @orodl.6 in [17] and
certain results in [26]. Here we use the convention

1 1111
- = ( -, = ) when p=(p,q,r,s).
p pagrs
Proposition 1.11. Assume that VC R" and W € R™ for j =1,..., 4 are vector

spaces such thatl.3) holds p;, q; € [1, oc]* for j =0, 1, 2 satisfy

1 1-6 6 1 1-6 0

Po P1 P2 do *[} a’

for somed € [0, 1]. Also assume thab, wj € P(R™) for j = 1,2 Then the following

is true

(1) the complex interpolation spac(é)(w)(V) (~)(w)(V)) (6] is equal to@)(w)(V);

(2) if T is a linear and continuous operator fr0|® (V) —+ (~)(w1)(V) to ® o) (W) +
(wz)(W) which restricts to a continuous map fro®(w1)(V) to ® )(W) for i=1,2,

then T restricts to a continuous mapping frcﬂfu )(V) to G) )(W)

1.3. Schatten—von Neumann classes and pseudo-differemti@perators. Next
we recall some facts in Chapter XVIII in [24] concerning pdewdifferential operators.
Assume thata € .(R?"), and thatt € R is fixed. Then the pseudo-differential oper-
ator a;(x, D) in (0.4) is a linear and continuous operator sf(R"), as remarked in
the introduction. For general € .’ (R?"), the pseudo-differential operatag(x, D) is
defined as the continuous operator fraf(R") to ./(R") with distribution kernel

(1.6) Kea(X, ¥) = (27)™"2(F ra)(1 - t)x +ty, y — X),

where .%,F is the partial Fourier transform of (x, y) € ./(R?") with respect to the
y-variable. This definition makes sense, since the mappifgand F(x, y) — F((1—
t)x+ty, y—x) are homeomorphisms of’(R?"). Moreover, it agrees with the operator
in (0.4) whena € .(R™).



752 J. TOFT, F. CONCETTI AND G. GARELLO

We recall that for any € R fixed, it follows from the kernel theorem by Schwartz that
the mapa — a(x, D) is bijective from.’(R?") to .Z(/(R"), '(R")) (see e.g. [24]).
In particular, ifa € ./(R?") ands, t € R, then there is a unique € .#”’(R?") such that
as(x, D) = bi(x, D). By straightforward applications of Fourier’'s inversiformula, it
follows that

(1.7) as(X, D) = bi(x, D) <= b(x, &) = &9PxDelg(x, &).

(Cf. Section 18.5 in [24].)

Next we recall some facts on Schatten—von Neumann operaods pseudo-
differential operators (cf. the introduction).

For each pairs of separable Hilbert spac#s and ¢, the set.%(s¢1, 73) is
a Banach space which increases wite [1, oo], and if p < oo, then %4 (577, 75) is
contained in the set of compact operators. Furthermgié 71, 5¢3), %-(1, 7¢,) and
(741, 7¢5) agree with the set of trace-class operators, Hilbert—Sidthaperators and
continuous operators respectively, with the same norms.

Next we discuss complex interpolation properties of Selmatvon Neumann classes.
Let p, p1, P2 € [1, o] and let 0< 6 < 1. Then similarcomplexinterpolation properties
hold for Schatten—von Neumann classes as for Lebesguesspacat holds

1-6 0
+—.
P1 P2

1
(1.8) 5o = (s S, When - =

(Cf. [34].) Furthermore, by Theorem 2.c.6 in [25] and its gftotogether with the re-
mark which followed that theorem, it follows that theal interpolation property

2
(1.9) I = (I2, F)o.p. When 0 =1— S

holds. We refer to [34, 43] for a brief discussion of Schatean Neumann operators.
For anyt € R and p € [1, oc], let § p(w1, w2) be the set of ala € .#'(R?") such
thata(x, D) € 4(MZ,), MZ,,)- Also set

lalls,, = llalls pese) = lacX, D)ll,yp(M(zwl),M(zmz))
whena(x, D) is continuous fromMZ ) to MZ,,. Sincea — a(x, D) is a bijective map

from 7/ (R?") to Z(Z(R"), '(R")), it follows that the mapa — & (x, D) restricts to
an isometric bijection froms, p(w1, w2) to AH(ME,), MZ ).
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Proposition 1.12. Assume that poi, g2 € [1, oo] are such that g < min(p, p’)
and @ > max(p, p'). Also assume thabi, w, € Z(R?") and w, wp € Z(R*") satisfy

wp(X —ty, §+ (1 —-t)n) _

(1.10) wi(x+ (L —1t)y, E—tn)

a)(X, év Uk y)

and

(1.11) wo(X, ¥, &, 1) = (I -O)x+ty, t§ = (L =O)n, & + 1,y —X).

Then the following is true
(1) MEER™) € 5 pler, w2) € MESER™);

)
(2) the operator kernel K ofgx, D) belongs to M}, ,(R*") if and only if ac M{,(R*")
and for some constant,@vhich only depends on t and the involved weight functid@ns

holds [K [lwe,, = Cllallwg,
0.

We note that (1.10) and (1.11) are equivalent to

(X, &, n,y) = wo(X—ty, X+ (L-t)y,§ + (1 —-t)n, tn —§) and
(1.12) wa(X, ) -

orly, —m) = Cawo(X, Y, &, n).

Proof. The assertion (1) is a restatement of Theorem 4.135h [The assertion
(2) follows by similar arguments as in the proof of Propasiti4.8 in [45], which we
recall here. Lety, ¥ € .(R™) be such that

Y(X,y) = / x (L —t)x +ty, £)e V) dg.
Rn
By applying the Fourier inversion formula it follows by styhtforward computations that

|- 7 (Ktx—ty,x+@-tyy¥)(E + (1 =t)n, =& +tn)| = [F (@t x)(1, Y)I-

The result now follows by applying thb(‘;) norm on these expressions, and using (1.12).
O

We also need the following proposition on continuity of Bmeoperators with ker-
nels in modulation spaces.

Proposition 1.13. Assume that g [1, o], wj € P(R?M), for j =1,2,and wg €
P (R?™+2%) fulfill for some positive constant C

wa(X, §) _

(113) D

Cawo(X, ¥, &, 1)



754 J. TOFT, F. CONCETTI AND G. GARELLO

Assume moreover that K M(‘;D)(R“l*"z) and T is the linear and continuous map from
S (R™) to .7'(R™) defined by

(1.14) ) = (Kx, -), f)

when fe #(R™). Then T extends uniquely to a continuous map fror(ﬁl)uR”l) to
ME,,(R™).

On the other handassume that T is a linear continuous map fronfwlMRnl)
to M("afz)(R”Z), and that equality is attained irf1.13) Then there is a unique kernel
K e M, (R™*™) such that(1.14) holds for every M, (R™).

Proof. By Proposition 1.1 (3) and duality, it suffices to prabhat for some con-
stantC independent off € .#(R™) and g € #(R™), it holds:

)| < , ,
(K. g P = ClKllup, Il yg Il -

Let ws(X, &) = wi(X, —&). Then by straightforward calculation and using Remark 1.3
(7) we get

(K, g® 1)1 < CallKllug, 19® Flye = CallKllp, 19y 1Tl
< ClKllwy

(wo)

gl

f -
V) Il Méy)

The last part of the proposition concerning the converspeny in the case = oo
is a restatement of Proposition 4.7 in [45] on generaliratib Feichtinger—Grdchenig’s
kernel theorem. O

2. Continuity properties of Fourier integral operators

In this section we discuss Fourier integral operators withpléudes in modula-
tion spaces, or more generally in certain types of coorkaicep. In Subsection 2.3 we
extend Theorem 3.2 in [4] to more general modulation spaces.

2.1. Notation and general assumptions. In the most general situation, we as-
sume that the phase functignand the amplituden depend onx € R™, y ¢ R™ and
¢ € R™, with dual variables respectively e R™, n € R™ andz € R™. For convenience
we use the notation:

(2.1) N=ni+n, and X=(x,y,¢) e R"2@R™ @ R™ ~ RN*™

In order to state the results in Subsection 2.5 weMiebe a linear subspace &N+m
of dimensionN, V, = Vj-, and letV] ~ V; be the dual ofv; for j =1, 2. Also let
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any elementX = (x, y, ¢) € RN*™M and €, 5, 2) € RN*™ be written as
X, ¥y, ¢) =t +---+tnen + 018ns1 + -0 + @meNm
=(t @) = (t, Qviav,
and
(,n2) =718+ -+ TNEN + Uteny1 - + UnmENim
= (7, U) = (7, Uvjav;

for some orthonormal basks, ..., en+m in RNT™. We also IetF;’ denote the gradient

of F e CY{RN*™) with respect to the basiey.1, . .., Enim.

In general we assume that the involved weight functiens € Z2(RN*™Mx RN+™),
wo € Z(R?™M) and w1, w, € Z(R?) and the phase functiop € C(RN*™) fulfill the
following conditions:

(1) v is submultiplicative and satisfies

v(X, &, n,2)=v(&,n 2 and v(-)=<Cy,

(2.2)
XeRNtM £ cR™ pneRM™, ze R™,

for some constan€ which is independent of € [0, 1]. In particular,v(X, &, n, 2) is
constant with respect t&X € RN+™:

(2) ¢ € CRY™ and p@ e MSH(RN™) for all indicesa such thatle| = 2;

(3) there exist some constan®s C; and C, which are independent of

X=(xVY,¢) eRN™ & &, &eR™ n n,neR™, 7,2 eR™

such that
wz(X, §) / / /
2250 < Crap(X, Y, &, 1) < Can(X, & — @(X), 1 — 9(X), =@} (X)),
(2.3) w1(y, —n)
o(X, &1 + &2, m + 02, Z1 + 22) = Co(X, &1, 01, Z1)v(€2, M2, 22)-

We note that the assumptions in (2) imply that the phase ilomat belongs to
C?(RN*™M and is bounded by second order polynomials, since the tiondhat v is
submultiplicative implies thap” € M* € Mt c Cn L™,

It is also convenient to set

Eao(t, @, 7, U) = [V, a(X, &, n, (X, §, 1, 2)],
ga,a)(xa Y, U) = SupEa,w(t; 0,7, u)y
T

whena e .7/(RN*™). Hereu € V; and the supremum should be taken oyee R™
andt € V.
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2.2. The continuity assertions. In most of our investigations we consider Fourier
integral operators Qjfa) where the amplitudea belong to appropriate Banach spaces
which are defined in similar way as certain types of coorbécgs in Subsection 1.3,
and that the phase functian should satisfy the conditions in Subsection 2.1. In this
context we list now the statements which will be proved in fibllowing under appro-
priate assumptions oa, ¢. Here the definition of admissible paira, (p) is presented
in Subsection 2.5 below.

(i) the pair (a, ¢) is admissiblethe kernel K, of Op,(a) belongs to I\(L’,O), and

-1
IKag g, = Cd™ exp(le” ) 1l

for some constant C which is independent of &'(RN*™) and ¢ € C(RN*™);
(ii) the definition ofOp,(a) extends uniquely to a continuous operator fror’gﬂMR”l)
to M(ZZ)(R”Z). Furthermore for some constant C it holds

OB, @y, -, = O * ex(lle” )l
(iii) if in addition 1 < p < 2, thenOp,(a) € H(M(,), M(,,))-

2.3. Reformulation of Fourier integral operators in terms of short time Fourier
transforms. For each real-valueg € C(RN*™) which satisfies (2) in Subsection 2.1,
anda e .7(RN*™), it follows that the Fourier integral operatdr — Op,(@)f in (0.2)
is well-defined and makes sense as a continuous operator $fgR™) to .&'(R™),
that is

©Op,@f 9= @0 [ (@M fygdx,
RN+m
is well-defined whenf € .(R™) and g € .(R™). In order to extend the definition
we reformulate the latter relation in terms of short-timaufer transforms.

Assume that 0< x, ¥ € C(RN™™) and 0< x; € C*(R™) for j = 1, 2 are such
that ¥ = 1 in the support ofy,

///X(X’ Y, O)xi(X)x2(x)dx dy & =1,

and let Xy = (xq, y1, 21) € RN*™M. By straightforward computations we get
(2r)V?(0p,(a) f, 9)
= [ ., 2001 ()63
RN+m

= [ [y B0 XX OGP (Y Y320 KT MO0 X
R +m
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Then Parseval's formula gives
N/2
(2r)"?(0p,(a) f, )

~ [[[ ] FOG £ 07 + ) FTE0+ € 4 X ke

— [[] ] ) FO £ 0V, 1y, )00 B 00D Xkl de
R2N+m

=/// (/ F(X, &, m, §1)d§1>VX1f(y, _Va(x, &)e e+ g x de dy,
R2N+m R™

where

F(X, &, 1, &1) = Fu o€V 00FEDa(X + (-, c))x (-, L)?)(E, n).

Here %1 ,a denotes the partial Fourier transformafl, y, ¢) with respect to thec and
y variables.
By Taylor’'s formula it follows that

Y (XDe(X 4+ X1) = ¥ (X)), x(X1) + ¥r2,x(X1),

where

Y1x(X1) = o(X) + (¢'(X), X1) and
(2.4) 1
Pax(X2) = ¥(Xa) /0 (L - 1)(¢" (X + tX0)Xa, Xa) dit.

Inserting these expressions into the definition FfX, &, n, £1), and integrating with
respect to the;-variable we obtain

/Rm F(X1 Ei 1, gl) d;l

= n)"2Z @V )a( - + X)x)E — ex(X), 1 — @y(X), =L (X))
= (ZH)N/ZHavW(Xi Sa 77)1

where

Ha (X, &, m) = hx s (F(@(- + X)x))E — 0x(X), n = @y(X), —p(X))

2.
(2) and hy = (27)"(N-"2(F (dV2xy)).
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Note here that the convolution of the function

(X! S! 7, Z) = y(a( + X)X))(éjr 7, Z)

should be taken with respect to the variabfes; and z only.
Summing up we have proved that

Op,(a)f, 9)
26 = Ta(f,0)

/ / Harg (X, & 1)(Vo 1), 1) (V@)K B (610D 4 X ks dly.

2.4. An extension of a result by Boulkhemair. Next we consider Fourier in-
tegral operators with amplitudes in the modulation sprE)*l(Rznm), where we are
able to state and prove the announced generalization ofréhme@8.2 in [5]. Here we
assume thah; = n, = n which implies thatN = 2n.

Theorem 2.1. Assume thatl < p < oo, ¢ € C(R*™™M), w, v € 2(R*N+M) and
w1, wp € Z(R?) fulfill the conditions inSubsection 2.1Also assume thaf0.5) holds
for somed > 0. Then the following is true
(1) the map a— Op,(a) from S (R™MM to 2(7(R"), .7’ (R") extends uniquely to
a continuous map from ml(RZ“m) to Z(<(R"), <'(R");

(2) ifae Mgy YR?+™) then the mapOp,(a) from #(R") to .”'(R") extends uniquely
to a continuous operator from ﬁagll)(R") to M(ZZ)(R”). Moreover for some constant C

it holds
(2.7) ||Op¢(a)||M(501)%M&2) < Cd‘1||a||M5:).1 exp(C||<p”||M$,1).
The proof needs some preparing lemmas.
Lemma 2.2. Assume thaib(x, £) = v(£) € L(R") is submultiplicative and satis-

fiesv(t&) < Cv(€) for some constant C which is independent &f[D, 1] and &€ € R".
Also assume that & My Y(R"), x € C*(R") and that xe R", and let

1
o) = X(9) /0 (L 1) F(x + ty)y; v dt.

Then there is a constant C and a functiorEg\/I(lv)(R“) such that||g||M(1v) <C|f ||M(@.3‘1
and [.7 (¢x,j k()] = 4(8)-
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Proof. We first prove the assertion whenis replaced byyo(y) = e2¥*. For
convenience we let

Ya(y) = eV

and

Yaly) = &

and
Hoo, 1 (8) = Slild?(fwl(- —X))(&)!-

We claim thatg, defined by

1
(28) 66 = [ [ a= 0 e gy dt

fulfills the required properties.
In fact, if vi(&, X) = v(X, §) = v(§), then by applyingM(lv) norm ong, and using
Remark 1.3 (6), (7) and Minkowski's inequality, we obtain

1
I, = 18, = | [ (= 0H et =735y

1
M(ul)

1
= [ [ @Ok le gy, dn o
0 JR" t
1 2
<Cu [ [ @Ml Py o) dy
1 2
<Co [ [ @M ole” g dna
= CalHu, rvllc2 = Cal
for some constant€;, C, and Cs.

In order to prove that.7 (¢x,j (&)l = (&), we lety/(y) = ¥j«(y) = ¥ Yk¥o(Y)-
Then

1
ox,jk(Y) = w(y)/0 (1—1)f(x + ty) dt.
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By a change of variables we obtain

1
Tz . = —n/2 _ —i(y.8)
|7 (ox,j k)N = ’(277 )/0 a t)</Rn fx+ty)v(ye dY> dt'

(2.9) -1/ U= DF (U -0/ dt\

1
5/ t (1 —t) sup|Z(f¥((- —x)/D))E/1)| dt.
0 xeR"

We need to estimate the right-hand side. By straightforveamehputations we get

|7 (9 ((- —x)/0)E)I
< @) 21 F(Fya(- =) [ F @ —x)/v(- —x)))(E)
= @n) ™A F(Fya(- = X)) * | FZ (W (- /)v2))(E)

where the convolutions should be taken with respect togtvariable only. Then
(2.10) [ Z(FU((- =X)/DE)] = @) 2 (Hoo, 1 * |Z (W (- /)¥2))(E).

For the estimate of the latter Fourier transform we obseinat t

(2.11) |7 (W (- /)¥2)| = 19;0cF (Yol - /1) ¥2).

Since ¥y and ¥, are Gauss functions and 9t < 1, a straightforward computation
gives

(2.12) F(Wo( - [)V2)(E) = V2" (2 — t2) " 2g PIEIH/AR1)
Thus a combination of (2.11) and (2.12) therefore give
(2.13) [Z W (- /) v2)(E)] < Cre CIEre,

for some constan€ which is independent of € [0, 1]. The assertion now follows by
combining (2.8)—(2.10) and (2.13).
In order to prove the result for generale C5°(R") we set

1
e n(Y) = VoY) /0 (L— 1) (x + ty)y;yi dit,

and we observe that the result is already proved whgn, is replaced byhy ; n.
Moreover ¢x j k = x1hx,j.k, for somex; € C§°(R"). Hence if§o is equal to the right-
hand side of (2.8), the first part of the proof shows that

|7 (#x,1.0E)] = |7 (ahw ik ED] < (20) 25 * Go(6) = 9(5)-
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Since [Igollmy, < CIlI f I and M,y * L{,y € M{, ), we get for some positive constants
Ci, G and C3 that

lgliwg, < Call@l,, < Callalls IGollmg,, < Call Fllu,
which proves the result. U
As a consequence of Lemma 2.2 we have the following result.
Lemma 2.3. Assume thai(x, £) = v(§) € Z(R") is submultiplicative and satis-
fiesv(t€) < Cu(€) for some constant C which is independent &[0, 1] and & € R".

Also assume that;f € M(j)“;’l(R”) for j,k=1,...,n, x € C(R") and that xe R",
and let

1
s = 3 puia) where puuy) = x0) [ A= 0fux+ )y et

j,k=1,...,n

Then there is a constant C and a functigne M(lv)(R“) such that

Wlimg, = exp(C Sj‘jﬂ' fi,k”M(l’?)'l)

and
(2.14) |.F (explex)(€))] < (27)"%80 + W(§).

Proof. By Lemma 2.2, we may find a functiane M(lu) and a constanC > 0
such that

[ Z(x)(E) = (), ligllmy, =C S_Ukp(ll Fialls1)-
N

Set

Do = (27)"%80, Pix = |[F(p)l %% |[F(@)l, | =1,
Yo = (27)V%8, Ti=@*---x§, |>1,

with | factors in the convolutions. Then by Taylor expansion, éhare positive con-
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stantsC; and C, such that

. CI Ny 00 CI ~
|7 (explox(- DEN =Y 1|<I|>|, <> IZITI '
=0 =0

Hence, if

then (2.14) follows withC = C,. Furthermore, since is submultiplicative, it follows
from Proposition 1.2 that

_ |
Iilwg, = @0 2lg - gllwz, < (Callgllwg)s 1= 1,
for some positive constar@;. This gives

(Cillgl,)

n
|wm;<Zj'M“<23 |
=1 |=1 '
o
EI

=1

C2 sup;, k(” fj, k|||\/|°“1))I

IA

Sw%%&whdmﬁy
. ,

for some constant€; and C,, and the result follows. O

Proof of Theorem 2.1. We shall mainly follow the proof of Them 3.2 in [5].
First assume thaa € C3*(R*™™) and f, g € .#(R"). Then it follows that Op(a)
makes sense as a continuous operator frghto .. Since

| F(@Y )] = @) ™MMAFE) x 171 1F @G+ X0l = ValX, o)l
and M(v) - L(v), it follows from Remark 1.3 (5) and Lemma 2.3 that
(215)  [Hao(X, & 0)| < C(G * [V a(X, -))E — ¢x(X), n = ¢y(X), =, (X)),

where G € L(v) satisfies||G||L(1v) <C exp((3||<p”||M(.<;,1), since | x| turns rapidly to zero
at infinity. Here#, , is the same as in (2.5)41(¢, X) = v(€), and the convolution for
V,a(X, &, n, z) should be taken with respect to the variabdes; and z only.
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Next we set

Ea,(u(xr E! n, Z) = |an(x, E! 1, Z)w(X! E! 1, Z)|r
Eaw(&, 1, 2) = Snga,w(Xa £,1,2),

(2.16)
Fu(y, m) = [Vy, £y, mealy, n)l,
Fa(X, §) = [V, 0(x, §)/w2(X, §)I,
and
(2.17) Qaw(X, ¢) = Eaw(X, & — @i (X), n — ¢y (X), —¢; (X)),
and

(2.18) Rawe(X, ¢) = (Gv) * Ea (X, -))(E — ¢x(X), n — ¢y (X), —¢; (X)),
where

X=(xy,¢) and X=(xY,&, n).

Note here the difference betweet and X. By combining (2.3) with (2.15) we get
[ [ ax. & i 0 =nVe0)x, )] dX &
=01 [[[(@x a0 e~ 0100, 1 = 6X), ~0;00)
% 1V, s —1)(Vyu 0%, £)] X c diy

= Ca [ [ Rauol OF sy, ~n)Fax, £ c
Summing up we have proved that
(2.19) I(Cp,(@)f,9)=C // Rawe(X: O)FL(Y, —n)Fa(x, §) d X d dn.

It follows from (2.16), (2.18), (2.19) and Hdlder’s ineqitralthat

(2.20) 0p,@F, ) <Cd- L,

where
E 1/p
1= (/ / (Gv) * Bau(§ — @(X), n = ¢)(X), =@ (X))Faly, —n)Pd X d dn) ,

E : 1/p
2= (// (GU) * Eau(§ — ¢3(X). n = ¢{(X), = (X)) Fa(x, §) dX dsdn) .
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We have to estimatd;, and J,. By taking z = ¢;(X), $o = ¢y(X), y, § andn as new
variables of integrations, and using (0.5), it follows that

) 1p
B (d-l / / (Gv) # Ealt — k1(Y: 2, o), 11— Lo DFa(y, —n)Pdy dz & dn d§0>

= (dl [][©0+Baue. 0 2Rty -nPdy dz ey d;o) Up

= d™P[[(Gv) * Eaoll "I FallLe,

for some continuous functior;. It follows from Young’s inequality and (2.3) that
1(Gv) * Eawlls < G2 I Eawlle.

Hence

(2.21) 3 < d VP(Cexp(Clle s lallypss) P g, -

If we instead takex, yo = ¢;(X), &, n and o = ¢} (X) as new variables of integrations,
it follows by similar arguments that

— Y l ’
(2.21) B = d P (Cexp(Clle ) lalluzt) P lgllyg, -
A combination of (2.20), (2.21) and (2.21pow gives
10, (@) f, @) = Cd*allyill e, lgllye  exp(Clle”lyx1).
@ “1 (1/wp) ()

which proves (2.7), and the result follows whare C(R*™™) and f, g € #(R").

Since  is dense inM{,, and M., the result also holds foa € C3 and f €
M(ﬁ)l). Hence it follows by Hahn—Banach's theorem that the assesigension of the
map a > Op,(a) exists.

It remains to prove that this extension is unique. Therefmsume thah € M(Zf)'l
is arbitrary, and take a sequenage Cg° for j =1, 2,... which converges t@ with
respect to the narrow convergence (see Definition 1.6). 'Ing@a converges toE,,
in L as j turns to infinity. By (2.4)—(2.6) and the arguments at thevabdt follows
from Lebesgue’s theorem that

(Op,(aj)f. 9) = (Op,(a)f, g)
as j tends to infinity. This proves the uniqueness, and the rdelidws. O

2.5. Fourier integral operators with amplitudes in coorbit spaces. A crucial
point concerning the uniqueness when extending the defnitf Op, to amplitudes
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in M(‘jj)'l in Theorem 2.1 is thatC§® is dense inM(",j)'l with respect to the narrow
convergence. On the other hand, the uniqueness of the exensght be violated
when spaces of amplitudes are considered where such demgityality properties are
missing. In the present paper we use the reformulation @.6&xtend the definition
of the Fourier integral operator in (0.2) to certain ampulés which are not contained
in M5t

More precisely, assume thate .7/ (RNt™), f e .#(R™), g € .(R™) and that the
mapping

(X, &, n) = Hao(X, & m)(Vio I, =m)(Vio9)(X, §)

belongs toLY(RN*™ x RN), where?,, is given by (2.5). (Here recall thatl = n; +
nz, where, from now onn; and n; might be different.) Then we leT,,(f, ) be
defined as the right-hand side of (2.6).

DEFINITION 2.4. Assume thaN = n; 4+ ny, v € (RN x RN*™) is submul-
tiplicative and satisfies (2.2} € C(RN*™) fulfills the condition (2) in Subsection 2.1,
and thata € .#/(RV*™) is such thatf + T, ,(f, go) and g = Ta,(fo, g) are well-
defined and continuous fron¥’(R™) and from .#(R™) respectively toC, for each
fixed fo € Z(R™) and go € .(R™). Then the pair &, ¢) is called admissible and
the Fourier integral operator Ofa) is the linear continuous mapping fro¥ (R™) to
'(R™) which is defined by the formulas (2.4), (2.5) and (2.6).

Here recall that if for each fixed, € .(R™) andgo € .#(R™), the mappingsf —
T(f,do) andg — T(fo, g) are continuous from”’(R™) and from.#(R") respectively
to C, then it follows by Banach—Steinhaus theorem thiatg) — T(f, g) is continuous
from .7(R™) x .(R™) to C.

The following theorem involves Fourier integral operaterih amplitudes which
are not contained iM(;".

Theorem 2.5. Assume that Nx, o, j, v, ¢, Vj, V|, t, 7, p and u for j =

0,1, 2 are the same as irBubsection 2.1 Also assume that & .»/(RN*™) fulfills
lall < oo, where

lla]| = ess su;{/ ( sup |Va(X, &, n, Do(X, &, 1, z)|) du),
X,y H

¢eR™, TeV/
and that|det(, ,)| = d for somed > 0. Then(i)—(ii) in Subsection 2.hold for p= oco.

We note that the conditions om in Theorem 2.5 means that should belong to

a subspace oM@ which is a superspace dﬂ(ffj)'l. Roughly speaking it follows that

00,1

a should belong toM¢y in some variables and td1;;~ in the other variables. In
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fact, it follows that the amplitudes in Theorem 2.5 form acgpaf distributions which
is equal t0.71OF,, wherep = (o0, 00, 1,00), @ € Z(R*™*™) is appropriate, and
Z1 is an appropriate partial Fourier transform orf (RN™™). Therefore, this space
of distributions is not a coorbit space of that particulapaywhich is considered in
Subsection 1.2. On the other hand, it is a coorbit spaces iroie meneral context,
considered in [17, 18].

Proof. It suffices to prove (i) in Subsection 2.2.

We use similar notations as in the proof of Theorem 2.1. Funtiore we let

Eaw(X, Y, U) = SUPE4 (X, &, 1, 2)
’,T
and
Gy, (U) = / G, 1. 2) d,
vy

whereE,,, is given by (2.16). By taking, y, —¢,(X), §, n as new variables of inte-
gration in (2.19), and using the fact thiatet(p, ,)| = d we get

R, @) = Ca [ Ko (OF(y, ~MFalx, £) dX

= Cd HIKaw,collL=IFle [Pzl

(2.22)

whereX = (x, y, &, ) and
Kaw,co(X) = /V,((GU) * (Eaw(X, Y, k1, <), 0, O)gnvem — (k2, U)v;evy) du,

for some continuous functions; = k1(X, Yy, U) and k, = x»(X, Yy, U).
We need to estimaté/C, ., cyl|L=. By Young’s inequality and simple change of
variables it follows that

IKa0,6ullLx = 1GVlLr + Jao,

where
Jaw = €SS su;{/ Baw(X, Y, k1(X, Y, U), (2(X, Yy, U), U)v;av;) du)
X Y/
< ess su;{/ SUPEa (X, ¥, ¢, (T, Uvievy) dU) = |al.
X vV, &t
Hence

(2.23) IKa0.collx = IGv[lsflall = C expClle”llyss)lal-
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A combination of (2.22), (2.23), and the facts t&h | . = || f ||M(1 ) and| Rz =
@1
||g||M(11/ , how gives that the pair( ¢) is admissible, and that (i) in Subsection 2.2 holds.
)
The proof is complete. 0

Corollary 2.6. Assume that Nx, wo, wj, v and ¢ for j =1, 2 are the same
as in Subsectio.1. Also assume that & .”/(RN™™), and that one of the following

conditions holds
(1) |det; )| = d and ||| < oo, where

(2.24) lall = sup( [ supiv,arx. &, (X, £.n,2) dz):
X,y R™ ¢,&,n

(2) m=ny, |dety,)| =d and ||a]| < oo, where

(2.25) lall = sup( [ supveacx, & 2io(x, £, n.2) dé):
X,y R" ¢,n,z

(3) m=ny, |dety )| =d and ||al| < oo, where

(2.26) Jall = sup( [ supiv,a(x, &, 2o, &, n, 2l ).
X,y R"™ ¢,&,z

Then the(i)—(ii) in Subsection 2.2hold for p= co.
Proof. If (1) is fulfilled, then the result follows by choogin

Vi =V, ={(&, n 0)e RN™: £ e R™, 5 e R},

Vo =V, ={(0,0,¢) e RN™; ¢ € R™},
0=2¢, t=(&n) andu=zin Theorem 2.5. If instead (2) is fulfilled, then the result
follows by choosing

Vi =V] ={0,7,2 e RN"™; e R™, zeR™,

Vo =V, = {(£,0,0)e RN™™; £ € R™},

0=X,1=(n 2 andu =& in Theorem 2.5. The result follows by similar arguments
if instead (3) is fulfilled. The details are left for the reade O

Next we discuss continuity and Schatten—von Neumann ptiepdor Fourier inte-
gral operators with related conditions on the amplituddsrggto coorbit spaces which
are related to the amplitude space in Theorem 2.5. These utatigns are based on
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estimates of the short-time Fourier transform of the distion kernels of these oper-
ators.

Assume thad € .7/ (RN'™), w, v e 2(R*NM), o (R?) and g € C(RN'™) sat-
isfy ¢ e M3 (RN*™) for each multi-indicesr such thatje| = 2, (2.2) and (2.3), as
before. Formally, the kernel can be written as

Kagl( ) = @02 [ a(x0e# .
Rm
(Cf. Theorem 3.1.) Hence, if & xj € C3°(R™) for j = 1, 2 are the same as in Sub-
section 2.3, then it follows by straightforward computatighat the short-time Fourier
transform of K can be expressed in terms of the formula

(227)  VuerKao)X ¥, & 1) = (Op,@0a(- —y)e ), xa(- —x)et) .

By letting f = x1(- —y)e7 " andg = xo(- — x)€ %), it follows that

(2.28) Vo T (Y1, m)l = [(Vie x) (Y1 = ¥, m1 + )
and
(2.29) Vi, 9(X1, 1) = [(Vio x2) (X1 — X, &1 — )|

Now we chooseNg large enough such thady is moderate with respect to- )Ne, and
we set

F(X) = (Ve x)(y, =m(Ve x2)(x, £)(X)™],  where X = (x,y, &, 7).

Then F is a continuous function which turns rapidly to zero at infiniFurthermore,
it follows from (2.28) and (2.29) that

(2.30) Vi, F (Y1, —11)Vy,9(X1, E1)wo(X)| = CF (X1 — X)wo(X1),
where the inequality follows from the fact that
wo(X) < Cawp(X1)(X — X1)"e.

By combining (2.2), (2.3), (2.19) and (2.27)—(2.30) we abta

@31 [VooeKa 900001 = C [[ 1 Ray s, )R =) dca iy,

for some constanC, with R,,,,, defined in (2.18).
We have now the following result related to Theorem 2.5.
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Theorem 2.7. Assume that Ny, o, wj for j =0, 1, 2,v and ¢ are the same
as in Subsection 2.1Also assume that g [1, oc], and that one of the following con-
ditions hold
(1) ae . (RN™™) and ||a| < oo, where

1/p p 1/p
o= ([, ([ sun /[ 1veax.eondox,ecn apdzan) e ) axay)

(2) |det/ )| > d for somed > 0, a € .#/(R"*™), and ||a| < oo, where

1/p p 1/p
= 7 P .
lall <//RN (/Rmsgp(//RNNXa(X,é,n,z)w(X,é, 1,2)| dsdn) dz) dxdy)

Then the(i)—(iii) in Subsection 2.2hold.

We note that ifa € M?, then the hypothesis in Theorem 2.7 (1) is fulfilled for
o = w; = 1. Hence Theorem 2.7 generalizes Proposition 2.3 in [7] pr [8

Proof. It suffices to prove (i). We only consider the case wf@nand p < o
are fulfilled. The other cases follow by similar argumentsl amne left for the reader.

Let G be the same as in the proof of Theorem 2.1, ancElgt, Q.. and Ra,,
be as in (2.16)—(2.18). It follows from (2.31) and Holder®quality that

| (VX1®X2 Ka, (p)(X)a)o(X) |

<c / / (Ravong (X1, 01)F (X2 — X)YP)F Xy — X)P' dgy Xy
Rm+2N

’ p 1/p
< ClIFI ( /R N ( /R RawpX, cl)dcl) F(xl—X)dxl) :

where ||F|[.: is finite, since F turns rapidly to zero at infinity. By lettindC, =
Cexp(C||<p”||M(.<;,1) for some large constar@, and applying theLP norm and Young's

inequality, we get

p
IKIE, sc:l/ (/ Raos(X, g)d;) dx
(wp) RZN JRM

p
ez =cioll, [ ([ Qubccrdc) ax
p
<6 [ ([ Eatxi & = 6100, 1= 600, 00 ¢ ) x,

for Qaw,e as in (2.17) and some consta@i. It follows now from Minkowski's in-
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equality that the latter integral can be estimated by

EauX, € 6400, 1~ 600, g 00Pde d ) dc) dx dy
(UL
= L] Bt en iz an) ac) axay

By letting C, = C; exp(C2||<p/’||M(o;),1), taking &, n, —¢,(X), X, y as new variables of
integration, and using the fact thatet(y; )| = d, we get for some functior that

c 1/p p
KPR, <=2 // / // Eaw(X, Y, k(X, Y, 2), &, 1, 2)Pdé dn dz) dx dy
Moo d rN \Jrm RN
C‘/’ 1/p >p
d Eao(X, ¥, ¢, &, 1, Pde d d dxd
S L (L ot ) ") o

= Cyllall®.
This proves the assertion O
Next we have the following result, parallel to Theorem 2.7.

Theorem 2.8. Assume that Nx, o, v}, v, ¢, Vj, V|, t, 7, p and u for j =

0,1, 2are the same as in Subsecti@i. Also assume that g [1, ], a € .&/(RN*™)
fulfills |la|| < oo, where

p 1/p
all =/Vé(//vﬂw(esgzvzsup/xa(x,s,n,z)w(x,g,n,z)|> dtdr) du,

and that|det@, .)| = d. Then(i)—(iii) in Subsection 2.Aold.

We note that the norm estimate anin Theorem 2.8 means thate G?w)(V) with
p= (0o, p, p,1) andV = (V,, V4, V{, V). The proof of Theorem 2.8 is based on
Theorem 2.5 and the following result which generalizes Tée02.7 in the cas@ = 1.

Proposition 2.9. Assume that Nx, o, oj, v, ¢, Vj, V|, t, 7, p and u for j =
0, 1, 2 are the same as ifSubsection 2.1 Also assume that & ./(RN*™) satisfies
llal| < oo, where

Jall = [, ess suf [ vatx. 6.0 2o(x, 02l d d ) de iz

and that|det@, .)| = d. Then(i)—(iii) in Subsection 2.hold for p= 1.
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Proof. We use the same notations as in Subsection 2.1 andrtioé @f The-
orem 2.1. It follows from (2.32) that

Kl =y [ [ EalX, € 61000, 1= 65000, —p1(30) de ax

= C‘/’ //|:¢2N+m Ea,w(xi g! m, _902()()) dé‘ dXx

=C,C, //\/1xv2 (//RN Eaw(X, &, 1, —¢;(X)) d& dn> dt do.

By takingt and —¢, as new variables of integration in the outer double integrabl
using the fact thatdet(y, .)| = d, we get

K, < C1Cyd™ /(/Vl (// Eaw(X, &, 1, 2) d& dn> dt> dz
ccc [ (] sl f[. e s a) o

= C1C,d~lal.

This proves the result. O

Proof of Theorem 2.8. We start to consider the case 1. By Proposition 2.9
(i), Minkowski’s inequality and substitution of variablesevobtain

||K||M(1 ) < de ( ess su;{// Eao(X, &, n, 2) d& dn) dt> dz
“0 Vi e€V2
<C,dt / [[] .. subEan(x, & n. 2)dt e dn oz
VixRNTM g€V,

- CiC, (// sup(Ea,w(x,s,n,z))dtdr> du,
\A VixV] @€V,

for some constan€;, and the result follows in this case.
Next we consider the casg = co. By Theorem 2.5 (i) we get

¢, T

<C, / < ess sup(sup(Ea,w(X, £, n, Z)))) du
(t,T)eVixV] \@eV2

and the result follows in this case as well.

The theorem now follows for genera by interpolation, using Proposition 1.11.
The proof is complete. 0

IKlIme, = Cy sup(/v sur(Ea,w(X,é,n,Z))dU>
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By interpolating Theorem 2.1 and Theorem 2.8 we get the ioig result.

Theorem 2.10. Assume that Nx, o, wj, v, ¢, Vj, V|, t, 7, p andu for j =0,1,2

are the same as iBubsection 2.1Also assume that,p € [1, 0], a € ./ (RN*™) fulfills
llall < oo, where

p q/p 1/q
lall = /VZ,</V1,</W<QS€L</EIVX3(X,€,n,Z)w(X,E,n,Z)I) dt) dr) du,

and that in addition i = n, and (0.5) and |det(y, .)| = d hold for somed > 0. Then
the following is true
(1) if in addition p <qg < p, and p, p2 € [1, o] satisfy

1 1 1 1 1
(2.33) —+t—-=—+—=—+
p q P P2 p

1 1 1 1
— and — +—=—+
a Pp P2 P

Q|-

with strict inequality in(2.33)when g< p, then the definition 0Dp,(a) extends unique-
ly to a continuous map from R, to M{2);
(2) if g < min(p, p'), thenOp,(a) € AH(ME,y, M{,).

We note that the norm estimate @in Theorem 2.10 means that e G?w)(V)
with p = (o0, p, g, 1) andV = (Vz, Vi, V], Vy).

Proof. In order to prove (1) we note that the result holds wheng) = (oo, 1)
or g = p, in view of Theorems 2.1 and 2.8. Next assume thpat p’ for p > 2, and
setp; = (00, 00, 1, 1) andp = (o0, 2, 2, 1). Then it follows from Theorems 2.1 and 2.8
that the bilinear form

T(a f)=0Op,(a)f
is continuous from
p p p
®(01)) X M(wl) to M(wz), 1< p<oo
and from
p 2 2
05 X My 10 Mg,

By interpolation, using Theorem 4.4.1 in [2], Propositios and Proposition 1.11, it
follows that if g = p’ < 2, thenT extends uniquely to a continuous map from

p p: |
O ) X Mg, to Mgy,

when p’ < pp = p2 < p. This proves (1) whem = porq=p.
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For g € (p, p), the result now follows by interpolation between the cgse p’
and p; = pz = po wherep’ < pp < p, and the casg = p and p; = p, = p. In fact,
by interpolation it follows thafl extends to a continuous map from

p p p:
O,y X M,y to Mg,

when

1 1-6 6 1 1-6 6 1 1—9+9

A" P P m e P m P
It is now straightforward to control that these conditiome aquivalent with those con-
ditions in (1), and the assertion follows f@r < q < p.

In a similar way, the case € [q, '] follows by interpolation between the cases
p; = (00, q,q, 1) andp, = (00, q', g, 1). The details are left for the reader.

In order to prove (2), it is no restriction to assume that min(p, p’). If p=occ
andg = 1, then the result is a consequence of Theorem 2.1. If instead = p < 2,
then the result follows from Theorem 2.8. The remaining case p = q' < co now
follows by interpolation between the casqs ) = (2, 2) and ¢, q) = (co, 1), using
(1.8) or (1.9), and the interpolation properties in SectioB. The proof is complete.
O

3. Consequences

In this section we list some consequences of the results atidde2. In Sub-
section 3.1 we consider Fourier integral operators whegeathplitudes depend on two
variables only. In Subsection 3.2 we consider Fourier ir@legperators with smooth
amplitudes.

3.1. Fourier integral operators with amplitudes dependingon two variables.
We start to discuss Schatten—von Neumann operators foidfantegral operators with
symbols in M(E)’)Q(RZ“) and phase functions which admit second order derivatives i

M(’U‘;'l(R3”), for appropriate weight functions and v. We assume here that the phase
functions depend om, y, ¢ € R" and that the amplitudes only depend on thand ¢
variables and are independent of thevariable. Note that here we have assumed that
the numbersn;, n, andm in Section 2 are equal tn. As in the previous section, we
use the notatiorX, Y, Z, ... for triples of the form K, y, ¢) € R®".

The first aim is to establish a weighted version of Theoremi2.[8]. To this pur-
pose, we need to transfer the conditions for the weight arm$eliunctions from Sec-
tion 2. Namely here and in the following we assume tat C(R>"), wo, w € Z(R*"),

v € 2(R"), v, € Z(R?™) andv € Z(R%). A condition on the phase function is

(3.) dete) (X)) = d, X = (x,y, ) € R
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for some constard > 0, and the conditions in (2.3) in Subsection 2.1 are modified: i
a)O(X! Y, éi QO;(X)) = CC()(X, ;1 g - (p)/((X), —(pé(X)),

a)z(X, é:) <
m < Cawo(X, ¥, &, n),

wo(X, Y, &, 1+ n2) < Cwo(X, Y, &, n1)vi(n2),
o(X, ¢, &1+ &, 21 + ) < w(X, ¢, &1, Z1)va(&2, 22),
U(X, éi n, Z) = Ul(n)UZ(éi 2)1 X, y1 zZ, Zjv 5: 51: m, g € Rn'

(2.3

For convenience we also set Op,(a) = Op,(a1) whenay(x, y, ¢) = a(X, ¢).

Proposition 3.1. Assume that g [1, o], d > 0, v € Z2(R®) is submultiplicative
and satisfiesu(t -) < Cv when te [0, 1], wo, @ € 2(R™), w1, wr € Z(R?) and that
@ € C(R®) are such thaty is real-valued ¢©® e M(’v‘;'l for all multi-indices o such
that |«| = 2, and (3.1) and (2.3) are fulfilled for some constant C. Then the following
is true
(1) the map

ak— Kaytp(X, y) = /a(x, é—)eigo(x,y,;) d{,

from .7(R™) to .#"(R™") extends uniquely to a continuous map fronf }R*") to
M (R*);

(2) the map a— Op, o, (a) from S (R™M to Z(Z(R"), .7 (R") extends uniquely to
a continuous map from fA(R*") to £(#(R"), &' (R");

3) ifae M(Z)(RZ“), then the definition 0Dp, (,(a) extends uniquely to a continuous
operator from ME;)(R”) to M(E)z)(R”). Furthermore for some constant C it holds

,1 .
10PL0p @y e = Cd ™ exPlle” s Nl :

@

4) ifae M("a‘)’)'l(RZ“) and 1 < p < oo, then the definition oDp, ,,(a) from . (R")
to ./(R") extends uniquely to a continuous operator frona?ulMR“) to M(‘;z)(R“);
(5) if g < min(p, p), a € M (R™), and in addition condition(0.5) holds then
Opy 0,(@) € H(ME,), ME,)).

Proof. We start to prove the continuity assertions. &€k, y, ) = a(x,¢), and let
(X, ¥, ¢, 8,1, 2) = (X, £, §, 2vi(n).

By Proposition 1.10 it follows that; € 9?@(V) with p = (c0, p, p, 1) andV =
(V2, V1, V{, V3). Hence Theorem 2.8 shows that it suffices to prove that (Bdls
after  has been replaced hy.
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By (2.3) we have

wo(X, ¥, & ) < Cwo(X, Y, &, ¢{(X))v1(n — ¢{(X))
< C2o(x, £, £ — ¢'(X), =, (X))v1(n — ¢ (X))
= C%a(x, ¥, ¢, & — ¢'(X), n — gl (X), =@ (X)).

This proves that the first two inequalities in (2.3) hold. thermore, since; is sub-
multiplicative we have

O(X, &1+ &, m+n2, 21+ 22) = w(X, ¢, &1+ &2, 7o + 22)vi(n1 + 12)
< Cw(x, ¢, &1, Z1)va(&2, Z2)v1(n1)v(n2)
= Cw(X, &1, m, z)v(&2, 12, 22),

for some constan€. This proves the last inequality in (2.3), and the contiynaisser-
tions follow.

It remains to prove the uniqueness. pf< oo, then the uniqueness follows from
the fact thats is dense inM_),.

Next we consider the cage= co. Assume that € M, (R™") andb € M{; ., (R™),
and letp(x, y, &) = —¢(X, &, y). Since (3.1) also holds whenis replaced by, the first
part of the proof shows tha€,, ; € M(ll/w). Furthermore, by straightforward computations
we have

(3.2) (Kap, b) = (a, Kp,p)-

In view of Proposition 1.1 (3), it follows that the right-hduside in (3.2) makes sense
if, more generallya is an arbitrary element im/I(O;)(RZ”), and then

-1
@ Kog)l = CdJallu bl exP(Cll0" ),

for some constan€ which is independent o, a € M, andb € M(ll/wo).

Hence, by lettingK, , be defined as (3.2) wheme M, it follows thata — K,
on M! extends to a continuous map ®>. Furthermore, since” is dense inM>
with respect to the wedktopology, it follows that this extension is unique. The gdroo
is complete. O

Finally we remark that the arguments above also give The@dmbelow, which
concerns Fourier integral operators of the form

Opllytzyw(a) f(x) = // a(tix + toy, &) f (y)eiw(tlx+t2y,—t2x+t1y,s) dy dk.
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It is then natural to assume that the conditions (3.1) an8l)(2are replaced by
(3.1) tf+t =1, |det@] (X)) =>d,
and

wo(tiX + Yy, =X + 1y, € + gl (X), —tz§ + tip( (X))

< Co(X, £, & — @3 (X), —¢; (X))

a)Z(X! é:)
-y 27 C , , &, ,
2.3 wnly, ) = ey £
wo(X, Y, & + toanz, n1 + t1n2) < wo(X, Y, &, n1)vi(n2)
o(X, ¢, &1+ &2, 21 + 20) S (X, ¢, &1, 71)va(&2, 22),

U(X, g! n, Z) = U1(’7)”2(§a Z), X, Y, Z, er é,-:r é,-:]l n, ; € Rn'

Proposition 3.1. Assume that g [1, 0], d > 0, v € Z(R®™) is submultiplicative
and satisfiesu(t -) < Cv when te [0, 1], wg, @ € Z(R™), w1, w; € Z(R™) and that
¢ € C(R®) are such thaty is real-valued ¢ e M(j)";'l for all multi-indices o such
that |o| = 2, and (3.1) and (2.3)’ are fulfilled for some constantsg,tt, and C. Then
the following is true
(1) the map

ar—> Ka’(p(x, y) = /a(t]_X + tzy, {)ei(ﬂ(11>(+t2y,7'(2x+t1)’:§) d{'

from .7(R™) to .7"(R™") extends uniquely to a continuous map fromf ¥R*") to
M(E)O)(Rzn)i

(2) the map a— Op, ,, ,(a) from Z(R™M to Z(~(R"), .'(R") extends uniquely to
a continuous map from &})(RZ”) to Z(<(R"), ' (R");

) ifae M(Z)(RZ“), then the definition 0Op, ,, ,(a) extends uniquely to a continuous
operator from l\@l)(R”) to M(ZZ)(R“). Furthermore for some constant C it holds

-1 .
0P, 1,,, (@)l ME MO, < Cd™" exp([l¢”| M(°°)v1) al ME):
en o; 0)

4) ifae M("u‘)’)'l(RZ”) and 1 < p < oo, then the definition oDp, ,, (@) from ”(R")
to ./(R") extends uniquely to a continuous operator fronﬁ)ll)\/lto M(ZZ);

(5) if g < min(p, p), a € M (R™), and in addition condition(0.5) holds then
Op[lytz,w(a) € ‘%(M(Zwl)’ M(sz))

Proof. By letting

Xy =UX+ by, y1=-bx+ty
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as new coordinates, it follows that we may assume that 1 andt, = 0, and then
the result agrees with Theorem 3.1. The proof is complete. ]

3.2. Fourier integral operators with smooth amplitudes. Next we apply The-
orem 2.10 to Fourier integral operators with smooth amgéts We recall that the con-
dition ona in Theorem 2.10 means exactly that G?w)(V) with p = (o0, p, g, 1) and

V = (V2, V1, V], V). In what follows we consider the case whep=n, =m=n and

Vi =V, ={(x,0,¢) eR*"; x,c €eR"} and

(3'3) ’ 3n n
Vo =V;={(0,y,0) e R"; y e R"}.

However, the analysis presented here also holds withowgethestrictions. The de-
tails are left for the reader. We are especially concerneith wpaces of amplitudes
of the form

C&‘;)P(Rsn) = {ae CNR™); ||a||C(rj)5p < oo},
where N > is an integerw € Z(R*") and
@ ) 1/p
ey = HZ:N(//R%”"J‘ (X, -, Deolx, -, )P d¢> .

We also set

C(ocj)’p(RSn) — m C(’;‘),)P(RBn),
N>0

Sen(RY) = {f € C°(R"): wpd* f € L™, Varl,

when wp € 2(R").
The following proposition IinksC('j;)p with @?w)(V).

Proposition 3.2. Assume tha(3.3) is fulfilled for V. = (Vz, V1, V{, V), N = 0
is an integer p,q,r € [1, 00], p = (00, P, q, 1), p1 = (o0, p, 1, 1) and thatp, =
(00, p, 00, 1). Also assume thab € Z(R*"), and let

a)S(Xl ";:1 771 Z) = CI)(X)(%_, 77! Z>S! Se R

If s; < —2n/q" when gq> 1 and § <0 when g= 1, and $ > n(g + 2)/q, then the
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following embedding holds

(3.4) O?i)N) — O?ww) = @)EiN),

p p p
(3.5) Oonis) ™ Olon) ™ Ol
and
(3.6) Cay P> O = Cgyf.

For the proof we consider the se?y(R") of all w € 2(R") N C*®(R") such that
»@/w is bounded for all multi-indicest. (Cf. [43, 45].)

Lemma 3.3. Assume thap = (p,q,r,S) € [1, o0]%, and that N> 0 is an integer.
Then the following is true
(1) if w € Z(R"), then it exists an elementy € £o(R") such that

(3.7) Clwg < w < Cup,

for some constant C
(2) if we PR™), @ € Po(R™) for j = 1, 2 are such thatd(x, &) = @1(x) and
(X, &) = @2(&), and that g € Sy/4,)(R"), then the mappings

f>o-f, and fl—)cbz(D)f

(f>a-f, and frs &(D)f)

are homeomorphismgontinuou$ from @F; (V) and from@©¢; (V) respectively to
0(,(V). Furthermore if

on, N (X, §) = (X, £)(X)M(6)N,

then
(3.8)
0f,, ., ) = (f ¢ 7 R"); x*0P f € ©F,)(V), la| < N, |B] < Ny}

={f e Z/(RY: f,x2f, D" f, x2D* f € ©F ) (V), 1< j, k<n}k
) if w € (R and wy € Po(R®™) are such thatw(X, &, 1, 2) = o(X) and

wo(X, &, 1, 2) = wo(X), then the map a> wp - a is a bijection from Q'USZ)(R%) to
C(N’)p(R:;n)_

Proof. The assertion (1) follows from Lemma 1.2 in [44], ai8) (s a straight-
forward consequence of the definitions. The continuity ’isses on; in (2) follows
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from Theorem 2.2 in [43] wherﬁ)fw)(V) is a modulation space. The general case
follows by similar arguments as in the proof of that theoreWie omit the details.
(Cf. Remark 2.8 in [43].)

Next we prove the continuity for the map+— a; - f. Let

Wy, = Cwi + &g,

where the constant is chosen such thdg;| < Co1/2. Then it follows from the def-
initions that

-1~ ~
Cl w1 = wa < Ciog,

for some constan€;. This proves thatw, € Zo(R"), and the first part of (2) now
shows that the mappings

f>®-f and fr>a-f

are continuous fron@)’(’@lw)(V) to @’(’w)(V). Since f — a; - f is a linear combination
of these mappings, the result follows.

The continuity assertions for the mafp+— a,(D) f follows by similar arguments.
The details are left for the reader.

It remains to prove (3.8). It is convenient to set

ony Ny (X, §) = ()M (5) M.

Furthermore, letMo be the set of allf € @(,, such thatx?3* f € @, when |«| <
N: and || < N, and letM, be the set of alle OE’w) such thatxszai\'lf € O?w) for
j,k=1,...,N. We shall prove thaMy = Mo = (E)’(’UNLNZQJ). Obviously, Mg € Mo. By
the first part of (2) it follows thal@’(’gleNzw) C Mp. The result therefore follows if we
prove thatMo € O, . ). )

In order to prove this, assume first thely = N, N, = 0, f € Mp, and choose
open sets

Q=1{ecR"; ] <2}
and
Q; ={ eR"; 1< |&] < nl§j}.

Then U?:o Q; =R", and there are non-negative functiops ..., ¢n in § such that
suppy; € ©j and Y0_,¢; = 1. In particular, f = >"7_, f; when f; = ¢;(D)f. The
result follows if we prove thatf; € © for every j.

(on,00)
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Now setyio(¢) = on(€)¢o(§) and i (§) = & Non(§)e;(€) whenj = 1,...,n. Then
Y € S for every j. Hence the first part of (2) gives

Ifiller, ., = Callon(D) fllop, = Callv; (D)0 Fllop, < CallaN fllop, < o0

and
Ifolle, ., < Cillon(D) follez, = Call¥o(D) fleg, < Call fllep, < oc,

for some constant€; and C,. This proves that

N
N
(3.9) | fllop §c<||f||%+2||8,» f||®§’w))r

(oN,0) ;
i=1

for some constan€, and the result follows in this case.
If we instead split upf into ) ¢; f, then similar arguments show that

N
(3.10) Illes, ., =C (n Flog, + >t ||%> ,

and the result follows in the cadd; = 0 and N, = N from this estimate.
The general case now follows if combine (3.9) with (3.10),ickhproves (2). The
proof is complete. 0

Proof of Proposition 3.2. The first embeddings in (3.4) felommediately from

Proposition 1.9. Next we prove (3.5). Let> 0 be chosen such that — 2 > n(q +
1)/9, Ea, be as in Section 2, and set

1/p
P12 = ([ sUpBan(. & m. 2P )

yeR"

Then Hoélder's inequality gives

lalor,, = [ ( /.. Fuunte.n 2905 2) My
= L/, Fooneateon 2006, 0272 di a2) T

1/q
=/ ( /[ Fa,wmsz(s,n,z)%,z)W“dgdz) () 9 dy
n R2n
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= CllFawys, llLx = Cllallgrz

(©N+sp)

where

1/q
— —(2n+e¢) —(n+¢)
c (//Rzn@,z) d5d2> /Rn(n) dy < oc.

This proves the first inclusion in (3.5). The second inclosiollows by similar argu-
ments. The details are left for the reader.

Next we prove (3.6). By Lemma 3.3 it follows that we may asstutiveg w = 1
and N = 0. By Remark 1.3 (2) we have
e cM®lccnlL™,

Furthermore, ify € .(R®) is such thaty(0) = (27) 32, then it follows by Fourier's
inversion formula that

a(xX) = /// vea(X, & n, 2)e X+ +.2) g dp dz
R3n

Hence Minkowski's inequality gives

" p 1/p
lallcor = (//2 <sup|a(X)|> dx d;)
R*" \yeR"
p 1/p

= <// Sup(// IV a(X, &, n, 2)| d& dndz> dx d;)
R yeRn R3"
" " 1/p

= /// <// sup|V,a(X, &, n, 2)|Pdx d:) dé dndz = ||a)|em.
R R™ yeR"

This proves the right embedding in (3.6).
In order to prove the left embedding in (3.6) we observe that

IVa(X, &, n, 2)| < (2m)73? /|X(Xl — X)a(Xo)l d X1 = (27)*"2(jal =[x )(X),

which together with Young’s inequality give

1/p
laller = sup(//z sup|V, a(X, &, n, z)[Pdx d;)
Rn

&,n,z yeR"

1/p
- c< [ suptal = linorax dz)
R2n yeR”

1/p
= Clel( [ supaGorax ) = Clclsales.
Rn

yeR"
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for some constanC. Hence if w(X, &, 1, 2) = (&, n, 2)7°"%, then it follows from
Lemma 3.3 that

-1 ()
lallen < Cillo " (D)allexn <C2 Y 2 en

Je|<3n+1
<C, > la®lex <Cs > [a®cosr = Csllallcns,
le|=3n+1 Je]<3n+1
for some constant€;, . .., Cz. This proves (3.6) and the result follows. Ol

Corollary 3.4. Let N, ws and p be as inProposition 3.2 Then

oo, p __ p
Cis” = [ ©funy-
N>0

REMARK 3.5. Similar properties with similar motivations as those Rropos-

ition 3.2, Lemma 3.3 and Corollary 3.4, and their proofspat®lds when the@’(’wN)

spaces ancC('Z';)p spaces are replaced by the modulation spatg)(R") for w €

2(R?") and
{f e Z/R"): 1@ e MITR"), |a] < N}
respectively. (Cf. [44].)

Now we may combine Proposition 3.2 with the results in Secf#ioto obtain con-
tinuity properties for certain type of Fourier integral og®r when acting on modula-
tion spaces. For example, the following result is a consecgief Theorem 2.10 and
Proposition 3.2.

Theorem 3.6. Assume that n=n, = m=n, w € ZR") and @ € Z(R™)
satisfy

o(X, &, 1, 2) = a(X)(€, n, )"

for some constant Nand that x, »j, v and ¢ for j = 0, 1, 2 are the same as in
Subsection 2.1Also assume that g [1, ], a € CE’;)’D(R*?’“), and that|detfy )| = d
and (0.5) hold for somed > 0. Then the following is true

(1) ()—(ii) in Subsection 2.holds

(2) Op,(a) € A(ME,), ME,)).

3.3. Some consequences in the theory of pseudo-differentiaperators. The
results in Secton 2 also allow us to extend some propertigglin43] for pseudo-
differential operators of the form (0.3). In this case weehthvatp(x,y,¢) = (X—V, ),



SCHATTEN PROPERTIES FORFOURIER INTEGRAL OPERATORS 783
wherex, y, ¢ € R", and the conditions in (2.3) imply that

a)Z(X! ‘i: + {) <

(311) oy, n+¢) ~

Ca)(X, y! {! 5! -, y_ X)

for some constan€ which is independent ox, y, £, n, ¢ € R". Hence the following
result is an immediate consequence of Theorem 2.10.

Proposition 3.7. Assume thab; € Z(R*") andw € 2(R*") satisfy(3.11),V; and
V| are the same as i63.3) for j = 1, 2, and assume that & G)E’w)(V) for somep =
(00, p, g, 1) with p,q € [1, co]. Then(1) and (2) in Theorem 2.1thold for (X, y, ¢) =
(x—y,¢).

We may now prove the following result.

Proposition 3.8. Assume thaty; € 2(R?") for j = 1, 2 and v € Z(R*") satisfy

@2(x, §) < Cw(X, X, £), X, £€R",

(3.12) o1 (X, £)

and that ae C(’jo’)"°(R3“) for p € [1, 00]. Then(1) and (2) in Theorem 2.10hold for
(p(X, Y. {) = (X -Y ;)

Proof. Sincew; and w are moderated by - )N for someN > 0, it follows from
(3.12) that

wX, §+¢) _
CU]_(y, n + ;) N

for some constant€ and Np, where

Ca)NO(X. yl Cl ‘é:-:l -1, y_ X)’

a)No(Xv Y, é‘v %—v 7, Z) = w(X, Y, §)(§a 1, Z>ND'

Hence (3.11) is fulfilled after replacing by wy,. The result follows now by combin-
ing Proposition 3.2 with Proposition 3.7. The proof is coetgl ]
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