

Title	On approximate sufficiency
Author(s)	Kusama, Tokitake
Citation	Osaka Journal of Mathematics. 1976, 13(3), p. 661-669
Version Type	VoR
URL	https://doi.org/10.18910/4140
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kusama, T.
Osaka J. Math.
13 (1976), 661-669

ON APPROXIMATE SUFFICIENCY

TOKITAKE KUSAMA

(Received October 10, 1975)
(Revised March 10, 1976)

H. Kudō defined the notion of approximate sufficiency in his paper ([4], [6]) and proved some interesting results. In this paper we obtain some characterizations for it.

1. Notations and definitions

Let (X, \mathcal{A}) be a sample space consisting of a set X and a σ -algebra \mathcal{A} of subsets of X . The reader should understand by the word “ σ -algebra” and “algebra” a sub- σ -algebra and subalgebra of \mathcal{A} , respectively. Given a σ -algebra \mathcal{B} and a finite measure λ on \mathcal{A} , $E_\lambda(f|\mathcal{B})$ denotes the conditional expectation of a λ -integrable function f over X given \mathcal{B} with respect to λ : i.e., $E_\lambda(f|\mathcal{B})$ is a \mathcal{B} -measurable function such that $\int_B f d\lambda = \int_B E_\lambda(f|\mathcal{B}) d\lambda$ for every $B \in \mathcal{B}$. When a probability measure P on \mathcal{A} is absolutely continuous with respect to λ (we write $P \ll \lambda$), $\frac{dP}{d\lambda}$ denotes the Radon-Nikodym derivative. It is clear that $E_\lambda\left(\frac{dP}{d\lambda}|\mathcal{B}\right)$ coincides with the Radon-Nikodym derivative $\frac{dP}{d\lambda}|_{\mathcal{B}}$ of $P|\mathcal{B}$ with respect to $\lambda|\mathcal{B}$, where $P|\mathcal{B}$ and $\lambda|\mathcal{B}$ are the contractions of P and λ to \mathcal{B} respectively.

For a finite signed measure m , $\|m\|_{\mathcal{B}}$ denotes the value $\sup_{B \in \mathcal{B}} |m(B)|$. When $m \ll \lambda$ and $m(X) = 0$, it is well known that $\|m\|_{\mathcal{B}} = \frac{1}{2} \int_X \left| \frac{dm}{d\lambda} \right|_{\mathcal{B}} d\lambda$ ($= \frac{1}{2} \int_X |E_\lambda\left(\frac{dm}{d\lambda}|\mathcal{B}\right)| d\lambda$). Here and hereafter the integration without any assignment of its domain should be understood as that extended over the whole space X .

Let $\{\mathcal{A}_n\}$ be an increasing sequence of σ -algebras and $\{\mathcal{B}_n\}$ a sequence of σ -algebras satisfying $\mathcal{B}_n \subset \mathcal{A}_n$. According to Kudō ([4], [6]), $\{\mathcal{B}_n\}$ is said to be approximately sufficient for a pair $\{P, Q\}$ of probability measures on \mathcal{A} , if for each n there is a pair of probability measures $\{P_n, Q_n\}$ on \mathcal{A}_n such that

$\lim_{n \rightarrow \infty} \|P_n - P\|_{\mathcal{A}_n} = \lim_{n \rightarrow \infty} \|Q_n - Q\|_{\mathcal{A}_n}$ and that \mathcal{B}_n is sufficient for $\{P_n, Q_n\}$ on \mathcal{A}_n for every n . We shall consider this notion in the case of an arbitrary family of probability measures.

REMARK. A slight errata in Kudo's definition of approximate sufficiency in [4] is corrected in [6].

Let $\mathcal{P} = \{P_\theta | \theta \in \Omega\}$ be a family of probability measures defined on \mathcal{A} , where Ω is a parameter space. A sequence $\{\mathcal{B}_n\}$ of σ -algebras is said to be approximately sufficient for \mathcal{P} if for each n there is a family of probability measures $\mathcal{P}_n = \{P_{\theta, n} | \theta \in \Omega\}$ on \mathcal{A}_n such that $\lim_{n \rightarrow \infty} \|P_{\theta, n} - P_\theta\|_{\mathcal{A}_n} = 0$ for all $\theta \in \Omega$ and that \mathcal{B}_n is sufficient for \mathcal{P}_n on \mathcal{A}_n for every n . Throughout this paper we assume

$$(A1) \quad \bigvee_{n=1}^{\infty} \mathcal{A}_n = \mathcal{A},$$

where $\bigvee_{n=1}^{\infty} \mathcal{A}_n$ denotes the σ -algebra generated by $\{\mathcal{A}_n\}$, and assume that

$$(A2) \quad \mathcal{P} \text{ is dominated by a finite measure } \lambda \text{ on } \mathcal{A}.$$

$$(A3) \quad \mathcal{A} \text{ is countably generated.}$$

Let $L^1(X, \mathcal{A}, \lambda)$ be the space of all λ -integrable, real valued, \mathcal{A} -measurable functions defined on X with the metric $\rho_\lambda(f, g) = \int |f - g| d\lambda$. The distance between f ($\in L^1(X, \mathcal{A}, \lambda)$) and A ($\subset L^1(X, \mathcal{A}, \lambda)$) is defined by $\tilde{\rho}_\lambda(f, A) = \inf_{g \in A} \rho_\lambda(f, g)$. Let $L_\lambda(\mathcal{B})$ denote the set of all \mathcal{B} -measurable elements, which is a subspace of $L^1(X, \mathcal{A}, \lambda)$.

Let $\{\mathcal{B}_n\}$ be a sequence of σ -algebras. The subfamily of \mathcal{A} consisting of B ($\in \mathcal{A}$) for which there are $B_n \in \mathcal{B}_n$ such that $\lambda(B \Delta B_n) \rightarrow 0$ ($n \rightarrow \infty$) is called the lower limit of $\{\mathcal{B}_n\}$ and denoted as $\lambda\text{-liminf } \mathcal{B}_n$. Here $B \Delta B_n$ means symmetric difference of B and B_n . $\lambda\text{-liminf } \mathcal{B}_n$ is a σ -algebra ([5] Theorem 3.2).

Since \mathcal{P} is dominated and \mathcal{A} is countably generated, there exists $\Omega^* = \{\theta_1, \theta_2, \dots\}$ of Ω such that $\mathcal{P}^* = \{P_\theta | \theta \in \Omega^*\}$ is dense in \mathcal{P} ([1]). Let $\lambda_0 = \sum_{i=1}^{\infty} \beta_i P_{\theta_i}$ ($\beta_i > 0$, $\sum_{i=1}^{\infty} \beta_i < \infty$). Then it is easy to see that λ_0 is equivalent to \mathcal{P} (we write $\lambda_0 \approx \mathcal{P}$). We write $f_\theta = \frac{dP_\theta}{d\lambda_0}$.

2. Some characterizations for approximate sufficiency

Theorem 1. *Under Assumptions (A1)~(A3) in §1, the following four assertions are all equivalent.*

- (a) $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} .
- (b) $\tilde{\rho}_{\lambda_0}(f_\theta, L_{\lambda_0}(\mathcal{B}_n)) \rightarrow 0$ ($n \rightarrow \infty$) for every $\theta \in \Omega$.

(c) $\rho_{\lambda_0}(f_\theta, E_{\lambda_0}(f_\theta | \mathcal{B}_n)) \rightarrow 0$ ($n \rightarrow \infty$) for every $\theta \in \Omega$.
 (d) $\mathcal{B}_0 = \lambda_0$ -liminf \mathcal{B}_n is sufficient for \mathcal{P} .

Proof. (a) \Rightarrow (b). Since $\bigvee_{n=1}^{\infty} \mathcal{A}_n = \mathcal{A}$ by assumption in §1 we have

$$(1) \quad \rho_{\lambda_0}(E_{\lambda_0}(f_\theta | \mathcal{A}_n), f_\theta) = \rho_{\lambda_0}(E_{\lambda_0}(f_\theta | \mathcal{A}_n), E_{\lambda_0}(f_\theta | \mathcal{A})) \rightarrow 0 \quad (n \rightarrow \infty)$$

for every $\theta \in \Omega$ ([7]).

Since $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} , there exist $\mathcal{P}_n = \{P_{\theta, n} | \theta \in \Omega\}$ ($n = 1, 2, \dots$) on \mathcal{A}_n such that $\lim_{n \rightarrow \infty} \|P_{\theta, n} - P_\theta\|_{\mathcal{A}_n} = 0$ for every $\theta \in \Omega$ and that \mathcal{B}_n is sufficient for \mathcal{P}_n . Define $\lambda_n = \sum_{i=1}^{\infty} \beta_i P_{\theta_i, n}$ on \mathcal{A}_n with $\theta_i \in \Omega^*$. Hence we have

$$(2) \quad \|\lambda_n - \lambda_0\|_{\mathcal{A}_n} \rightarrow 0 \quad (n \rightarrow \infty).$$

Putting $f_{\theta_i, n} = \frac{dP_{\theta_i, n}}{d\lambda_n}$ for every i , we have

$$(3) \quad \|f_{\theta_i, n} d\lambda_0 - P_{\theta_i}\|_{\mathcal{A}_n} \leq \|f_{\theta_i, n} d\lambda_0 - f_{\theta_i, n} d\lambda_n\|_{\mathcal{A}_n} + \|f_{\theta_i, n} d\lambda_n - P_{\theta_i}\|_{\mathcal{A}_n} \\ = \|f_{\theta_i, n} d\lambda_0 - f_{\theta_i, n} d\lambda_n\|_{\mathcal{A}_n} + \|P_{\theta_i, n} - P_{\theta_i}\|_{\mathcal{A}_n}.$$

The first term of the right hand side of (3) tends to 0 as $n \rightarrow \infty$ from $f_{\theta_i, n}(x) \leq \beta_i^{-1}$ for all x and (2) and by assumption the second term tends also to 0 as $n \rightarrow \infty$. So we have

$$(4) \quad \|f_{\theta_i, n} d\lambda_0 - P_{\theta_i}\|_{\mathcal{A}_n} \rightarrow 0 \quad (n \rightarrow \infty)$$

for every i . It follows from (1), (4) and the \mathcal{A}_n -measurability of $f_{\theta_i, n}$ that

$$(5) \quad \rho_{\lambda_0}(f_{\theta_i, n}, f_{\theta_i}) \leq \rho_{\lambda_0}(f_{\theta_i, n}, E_{\lambda_0}(f_{\theta_i} | \mathcal{A}_n)) + \rho_{\lambda_0}(E_{\lambda_0}(f_{\theta_i} | \mathcal{A}_n), f_{\theta_i}) \\ = \int |f_{\theta_i, n} - \frac{dP_{\theta_i}}{d\lambda_0}|_{\mathcal{A}_n} d\lambda_0 + \rho_{\lambda_0}(E_{\lambda_0}(f_{\theta_i} | \mathcal{A}_n), f_{\theta_i}) \\ \leq 2 \|f_{\theta_i, n} d\lambda_0 - P_{\theta_i}\|_{\mathcal{A}_n} + \rho_{\lambda_0}(E_{\lambda_0}(f_{\theta_i} | \mathcal{A}_n), f_{\theta_i}) \\ \rightarrow 0 \quad (n \rightarrow \infty)$$

for every i . $f_{\theta_i, n}$ is not only \mathcal{A}_n -measurable but also \mathcal{B}_n -measurable since \mathcal{B}_n is sufficient for \mathcal{P}_n ([3] Theorem 1). The \mathcal{B}_n -measurability of $f_{\theta_i, n}$ and (5) imply

$$(6) \quad \tilde{\rho}_{\lambda_0}(f_{\theta_i}, L_{\lambda_0}(\mathcal{B}_n)) \rightarrow 0 \quad (n \rightarrow \infty).$$

As \mathcal{P}^* is dense in \mathcal{P} , it follows from (6) that $\tilde{\rho}_{\lambda_0}(f_\theta, L_{\lambda_0}(\mathcal{B})) \rightarrow 0$ ($n \rightarrow \infty$) for every $\theta \in \Omega$.

(b) \Rightarrow (c). Since $\tilde{\rho}_{\lambda_0}(f_\theta, L_{\lambda_0}(\mathcal{B}_n)) \rightarrow 0$ ($n \rightarrow \infty$) by assumption, there exist \mathcal{B}_n -measurable $g_{\theta, n} \geq 0$ ($n = 1, 2, \dots; \theta \in \Omega$) such that

$$(7) \quad \rho_{\lambda_0}(f_\theta, g_{\theta, n}) \rightarrow 0 \quad (n \rightarrow \infty)$$

for every $\theta \in \Omega$. Since $g_{\theta,n}$ and $E_{\lambda_0}(f_\theta | \mathcal{B}_n)$ are \mathcal{B}_n -measurable, we have by (7)

$$\begin{aligned}
 (8) \quad \rho_{\lambda_0}(g_{\theta,n}, E_{\lambda_0}(f_\theta | \mathcal{B}_n)) &\leq 2\|g_{\theta,n} d\lambda_0 - E_{\lambda_0}(f_\theta | \mathcal{B}_n) d\lambda_0\|_{\mathcal{B}_n} \\
 &= 2\|g_{\theta,n} d\lambda_0 - f_\theta d\lambda_0\|_{\mathcal{B}_n} \\
 &\leq 2\|g_{\theta,n} d\lambda_0 - f_\theta d\lambda_0\|_{\mathcal{A}} \\
 &\leq 2\rho_{\lambda_0}(g_{\theta,n}, f_\theta) \rightarrow 0 \quad (n \rightarrow \infty)
 \end{aligned}$$

for every $\theta \in \Omega$. It follows from (7), (8) that

$$\rho_{\lambda_0}(f_\theta, E_{\lambda_0}(f_\theta | \mathcal{B}_n)) \leq \rho_{\lambda_0}(f_\theta, g_{\theta,n}) + \rho_{\lambda_0}(g_{\theta,n}, E_{\lambda_0}(f_\theta | \mathcal{B}_n)) \rightarrow 0 \quad (n \rightarrow \infty)$$

for every $\theta \in \Omega$. This establishes (c).

(c) \Rightarrow (d). It suffices to prove the \mathcal{B}_0 -measurability of f_θ ([13] Theorem 1). For this purpose it is sufficient to prove $\{f_\theta \geqq a\} \in \mathcal{B}_0$ for a real number a in a dense set A of the real line. Since $A_\theta = \{a | \lambda_0(\{f_\theta = a\}) = 0\}$ is dense, we shall prove $\{f_\theta \geqq a\} \in \mathcal{B}_0$ for $a \in A_\theta$. Writing $g_{\theta,n} = E_{\lambda_0}(f_\theta | \mathcal{B}_n)$, we have $\rho_{\lambda_0}(f_\theta, g_{\theta,n}) \rightarrow 0$ ($n \rightarrow \infty$) by assumption. We prove $\lambda_0(\{f_\theta \geqq a\} \Delta \{g_{\theta,n} \geqq a\}) \rightarrow 0$ ($n \rightarrow \infty$) for $a \in A_\theta$. Let ε be a given positive number. Then

$$\begin{aligned}
 \lambda_0(\{f_\theta \geqq a\} \Delta \{g_{\theta,n} \geqq a\}) &= \lambda_0(\{f_\theta \geqq a, g_{\theta,n} < a\}) + \lambda_0(\{f_\theta < a, g_{\theta,n} \geqq a\}) \\
 &\leq \lambda_0(\{f_\theta \geqq a + \varepsilon, g_{\theta,n} < a\}) + \lambda_0(\{a \leqq f_\theta < a + \varepsilon\}) \\
 &\quad + \lambda_0(\{f_\theta < a - \varepsilon, g_{\theta,n} \geqq a\}) + \lambda_0(\{a - \varepsilon \leqq f_\theta < a\}) \\
 &\leq \lambda_0(\{|g_{\theta,n} - f_\theta| > \varepsilon\}) + \lambda_0(\{|f_\theta - a| \leqq \varepsilon\}) \\
 &\rightarrow \lambda_0(\{|f_\theta - a| \leqq \varepsilon\}) \quad \text{as } n \rightarrow \infty.
 \end{aligned}$$

Since ε is arbitrary and $\lambda_0(\{f_\theta = a\}) = 0$ by assumption, we have $\lim_{n \rightarrow \infty} \lambda_0(\{f_\theta \geqq a\} \Delta \{g_{\theta,n} \geqq a\}) = 0$. From $\{g_{\theta,n} \geqq a\} \in \mathcal{B}_n$ and the definition of \mathcal{B}_0 , it follows that $\{f_\theta \geqq a\} \in \mathcal{B}_0$.

(d) \Rightarrow (a). At first we shall prove that for a given $\varepsilon > 0$, there exist n_0 and non-negative \mathcal{B}_n -measurable $g_{\theta,n}$ for $n \geqq n_0$ such that $\rho_{\lambda_0}(f_\theta, g_{\theta,n}) < \varepsilon$ and $E_{\lambda_0}(g_{\theta,n}) > 0$. Perhaps n_0 may depend on θ . Since \mathcal{B}_0 is sufficient by assumption, f_θ is \mathcal{B}_0 -measurable. Hence there exists a non-negative \mathcal{B}_0 -measurable function $h_\theta = \sum_{i=1}^{k_\theta} \alpha_{\theta,i} I_{A_{\theta,i}}$ with \mathcal{B}_0 -measurable sets $A_{\theta,i}$ such that $\rho_{\lambda_0}(f_\theta, h_\theta) < \frac{\varepsilon}{2}$, where I_A is the defining function of A . Consequently there exists an n_0 such that for each $n \geqq n_0$ we can choose $C_{n,1}, C_{n,2}, \dots, C_{n,k_\theta}$ from \mathcal{B}_n satisfying $\lambda_0(A_{\theta,i} \Delta C_{n,i}) < \frac{\varepsilon}{2k_\theta \max(\alpha_{\theta,1}, \dots, \alpha_{\theta,k_\theta})}$. We note that $n_0, C_{n,i}$ may depend on θ .

$g_{\theta,n} = \sum_{i=1}^{k_\theta} \alpha_{\theta,i} I_{C_{n,i}}$ is \mathcal{B}_n -measurable and we have for $n \geqq n_0$

$$\begin{aligned}
(9) \quad \rho_{\lambda_0}(h_\theta, g_{\theta, n}) &\leq \sum_{i=1}^{k_\theta} \alpha_{\theta, i} \int |I_{A_{\theta, i}} - I_{C_{n, i}}| d\lambda_0 \\
&= \sum_{i=1}^{k_\theta} \alpha_{\theta, i} \lambda_0(A_{\theta, i} \Delta C_{n, i}) \\
&< \frac{\varepsilon}{2}.
\end{aligned}$$

$\rho_{\lambda_0}(f_\theta, h_\theta) < \frac{\varepsilon}{2}$ and (9) yield $\rho_{\lambda_0}(f_\theta, g_{\theta, n}) < \varepsilon$ for $n \geq n_0$. Thus we have proved that, for a given $\varepsilon > 0$, there exist n_0 and \mathcal{B}_n -measurable $g_{\theta, n}$ for $n \geq n_0$ such that $g_{\theta, n} \geq 0$, $E_{\lambda_0}(g_{\theta, n}) > 0$ and $\rho_{\lambda_0}(f_\theta, g_{\theta, n}) < \varepsilon$.

Let a \mathcal{B}_n -measurable $h_{\theta, n}$ be such that $h_{\theta, n} \geq 0$, $E_{\lambda_0}(h_{\theta, n}) > 0$ and $\rho_{\lambda_0}(f_\theta, h_{\theta, n}) \rightarrow 0$ ($n \rightarrow \infty$). From what we have just proved, it is easy to see that such $h_{\theta, n}$ exist. Define $h_{\theta, n}^* = E_{\lambda_0}(h_{\theta, n})^{-1} h_{\theta, n}$, $dQ_{\theta, n} = h_{\theta, n}^* d\lambda_0$ and $P_{\theta, n} = Q_{\theta, n} / \mathcal{A}_n$ is clearly a probability measure on \mathcal{A}_n . Noting $E_{\lambda_0}(h_{\theta, n}) \rightarrow E_{\lambda_0}(f_\theta) = 1$ ($n \rightarrow \infty$), we obtain

$$\begin{aligned}
(10) \quad \|P_\theta - P_{\theta, n}\|_{\mathcal{A}_n} &\leq \|P_\theta - Q_{\theta, n}\|_{\mathcal{A}} \leq \rho_{\lambda_0}(f_\theta, h_{\theta, n}^*) \\
&\leq \rho_{\lambda_0}(f_\theta, h_{\theta, n}) + \rho_{\lambda_0}(h_{\theta, n}, E_{\lambda_0}(h_{\theta, n})^{-1} h_{\theta, n}) \\
&= \rho_{\lambda_0}(f_\theta, h_{\theta, n}) + |1 - E_{\lambda_0}(h_{\theta, n})^{-1}| E_{\lambda_0}(h_{\theta, n}) \\
&\rightarrow 0 \quad (n \rightarrow \infty)
\end{aligned}$$

for every $\theta \in \Omega$.

The \mathcal{B}_n -measurability of $h_{\theta, n}^*$ implies sufficiency of \mathcal{B}_n for $\{P_{\theta, n} | \theta \in \Omega\}$. This, together with (10), implies that $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} .

Corollary 1. Suppose that $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} . If $\rho_{\lambda_0}(E_{\lambda_0}(f_\theta | \mathcal{B}_n), E_{\lambda_0}(f_\theta | \mathcal{B})) \rightarrow 0$ ($n \rightarrow \infty$) for every $\theta \in \Omega$, \mathcal{B} is sufficient for \mathcal{P} .

Proof. By Theorem 1, we have $\rho_{\lambda_0}(E_{\lambda_0}(f_\theta | \mathcal{B}_n), f_\theta) \rightarrow 0$ ($n \rightarrow \infty$) and therefore $f_\theta = E_{\lambda_0}(f_\theta | \mathcal{B})[\lambda_0]$. This shows that \mathcal{B} is sufficient for \mathcal{P} .

Corollary 2. Suppose that $\{\mathcal{B}_n\}$ is approximately sufficient. Then there exist probability measures $P_{\theta, n}$ on \mathcal{A} ($\theta \in \Omega$, $n = 1, 2, \dots$) having the following properties.

- (i) \mathcal{B}_n is sufficient for $\{P_{\theta, n} | \theta \in \Omega\}$.
- (ii) $\|P_\theta - P_{\theta, n}\|_{\mathcal{A}} \rightarrow 0$ ($n \rightarrow \infty$)
- (iii) $\|P_\theta - P_{\theta, n}\|_{\mathcal{B}_n} = 0$ ($n = 1, 2, \dots$).

Proof. Define $dP_{\theta, n} = E_{\lambda_0}(f_\theta | \mathcal{B}_n) d\lambda_0$. Since $\rho_{\lambda_0}(f_\theta, E_{\lambda_0}(f_\theta | \mathcal{B}_n)) \rightarrow 0$ ($n \rightarrow \infty$) by Theorem 1, we have $\|P_\theta - P_{\theta, n}\|_{\mathcal{A}} \rightarrow 0$ ($n \rightarrow \infty$). (i) and (iii) are clear from the definition of $P_{\theta, n}$.

Corollary 3. Suppose that $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} . If λ_0 -liminf $\mathcal{B}_n \subset \lambda_0$ -liminf \mathcal{C}_n , $\{\mathcal{C}_n\}$ is also approximately sufficient for \mathcal{P} .

Proof. This corollary is clear from (a) \Leftrightarrow (d) in Theorem 1 and we omit the proof.

REMARK 1. In [5] λ_0 -liminf \mathcal{B}_n is characterized as the σ -algebra \mathcal{B}_0 having the following properties.

(i) \mathcal{B}_0 satisfies

$$(A) \quad \liminf_{n \rightarrow \infty} \int |E_{\lambda_0}(f | \mathcal{B}_n)| d\lambda_0 \geq \int |E_{\lambda_0}(f | \mathcal{B}_0)| \lambda_0 d\lambda_0$$

for every bounded \mathcal{A} -measurable f , and

(ii) any σ -algebra \mathcal{B} satisfying (A) is contained in \mathcal{B}_0 . λ_0 -limsup \mathcal{B}_n is also defined there. A σ -algebra $\tilde{\mathcal{B}}$ is denoted by λ_0 -limsup \mathcal{B}_n if

(i)' $\tilde{\mathcal{B}}$ satisfies

$$(B) \quad \limsup_{n \rightarrow \infty} \int |E_{\lambda_0}(f | \mathcal{B}_n)| d\lambda_0 \leq \int |E_{\lambda_0}(f | \tilde{\mathcal{B}})| d\lambda_0$$

for every bounded \mathcal{A} -measurable f , and

(ii)' any σ -algebra \mathcal{B} satisfying (B) contains $\tilde{\mathcal{B}}$.

It is proved that, if $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} , λ_0 -limsup \mathcal{B}_n is sufficient for \mathcal{P} ([4] Theorem 1). Since λ_0 -liminf $\mathcal{B}_n \subset \lambda_0$ -limsup \mathcal{B}_n ([5] Theorem 3.4), our result (a) \Leftrightarrow (d) in Theorem 1 is an improvement though the assumption (A3) is necessary.

REMARK 2. From Theorem 1 the following question will naturally arise. If there exists $\{P_{\theta,n} | \theta \in \Omega\}$ on \mathcal{A}_n ($n = 1, 2, \dots$) such that $\|P_{\theta} - P_{\theta,n}\|_{\mathcal{A}_n} \rightarrow 0$ ($n \rightarrow \infty$) for every θ and that \mathcal{B}_n is minimal sufficient for $\{P_{\theta,n} | \theta \in \Omega\}$, is λ_0 -liminf \mathcal{B}_n minimal sufficient? The answer to this question is negative as shown by a very simple counterexample: $X = [0, 1]$, \mathcal{A} : Borel field on $[0, 1]$, ν : Lebesgue measure on \mathcal{A} , $\mathcal{B}_n = \mathcal{A}_n = \mathcal{A}$ ($n = 1, 2, \dots$), $P_1 = P_2 = \nu$. We define $f_{1,n}(x) = \frac{1}{n}x + 1 - \frac{1}{2n}$, $f_{2,n}(x) = -\frac{1}{n}x + 1 + \frac{1}{2n}$. Clearly we have $\|f_{1,n}d\nu - P_1\|_{\mathcal{A}_n} \rightarrow 0$, $\|f_{2,n}d\nu - P_2\|_{\mathcal{A}_n} \rightarrow 0$ and $\nu = \frac{1}{2}f_{1,n}d\nu + \frac{1}{2}f_{2,n}d\nu$. It is easy to see that the smallest σ -algebra with respect to which $f_{1,n}$, $f_{2,n}$ are measurable is \mathcal{A} itself. Hence \mathcal{B}_n ($= \mathcal{A}$) is minimal sufficient for $\{f_{1,n}d\nu, f_{2,n}d\nu\}$. But $\hat{\mathcal{B}} = \{X, \emptyset\}$ is sufficient for $\{P_1, P_2\}$. So ν -liminf $\mathcal{B}_n = \mathcal{A}$ is not minimal sufficient.

3. Pairwise approximate sufficiency

In this section we shall give an alternative characterization of approximate sufficiency by pairwise approximate sufficiency.

Theorem 2. *Under the same condition as in Theorem 1, if $\{\mathcal{B}_n\}$ is approxi-*

mately sufficient for any pair of two P_1, P_2 in \mathcal{P} , then $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} .

Proof. We divide the proof into the several steps.

The first step. We shall show that it suffices to prove approximate sufficiency of $\{\mathcal{B}_n\}$ for \mathcal{P}^* , the dense subset of \mathcal{P} . If $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P}^* , we have $\tilde{\rho}_{\lambda_0}\left(\frac{dP}{d\lambda_0}, L_{\lambda_0}(\mathcal{B}_n)\right) \rightarrow 0$ ($n \rightarrow \infty$) for every $P \in \mathcal{P}^*$.

As we have stated in the proof of $(a) \Rightarrow (b)$ in Theorem 1, we have $\tilde{\rho}_{\lambda_0}\left(\frac{dP}{d\lambda_0}, L_{\lambda_0}(\mathcal{B}_n)\right) \rightarrow 0$ ($n \rightarrow \infty$) for every $P \in \mathcal{P}$. Hence, by $(b) \Rightarrow (a)$ in Theorem 1, $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} .

The second step. We shall prove that $\{\mathcal{B}_n\}$ is approximately sufficient for any finite subset $\{P_1, P_2, \dots, P_m\}$ of \mathcal{P}^* . For this purpose we use the mathematical induction with respect to m . Under the assumption that, for $l \leq k$, $\{\mathcal{B}_n\}$ is approximately sufficient for any $\{P_1, P_2, \dots, P_l\}$ in \mathcal{P}^* , we prove that $\{\mathcal{B}_n\}$ is approximately sufficient for any $\{P_1, P_2, \dots, P_{k+1}\}$ in \mathcal{P}^* . Let $\mu = \sum_{i=1}^{k+1} P_i$. By $(a) \Leftrightarrow (b)$ in Theorem 1, it suffices to show $\tilde{\rho}_\mu\left(\frac{dP_i}{d\mu}, L_\mu(\mathcal{B}_n)\right) \rightarrow 0$ ($n \rightarrow \infty$) for every $i = 1, 2, \dots, k+1$, and in particular to show $\tilde{\rho}_\mu\left(\frac{dP_1}{d\mu}, L_\mu(\mathcal{B}_n)\right) \rightarrow 0$ ($n \rightarrow \infty$) since the proof of the case $i \neq 1$ is quite analogous. Put $\mu_1 = \sum_{i=1}^k P_i$, $\mu_2 = P_1 + P_{k+1}$ and $f_1 = \frac{dP_1}{d\mu_1}$, $f_2 = \frac{dP_1}{d\mu_2}$. By assumption we have $\tilde{\rho}_{\mu_1}(f_1, L_{\mu_1}(\mathcal{B}_n)) \rightarrow 0$ ($n \rightarrow \infty$) and $\tilde{\rho}_{\mu_2}(f_2, L_{\mu_2}(\mathcal{B}_n)) \rightarrow 0$ ($n \rightarrow \infty$). So there exist $\{g_n\}$ and $\{h_n\}$ such that $g_n \in L_{\mu_1}(\mathcal{B}_n)$, $h_n \in L_{\mu_2}(\mathcal{B}_n)$ and $\rho_{\mu_1}(f_1, g_n) \rightarrow 0$, $\rho_{\mu_2}(f_2, h_n) \rightarrow 0$. Since $0 \leq f_1, f_2 \leq 1$, we can take g_n, h_n such that $0 \leq g_n, h_n \leq 1$. Define $\bar{g}_n = \max\left\{g_n, \frac{1}{n}\right\}$, $\bar{h}_n = \max\left\{h_n, \frac{1}{n}\right\}$. It is clear that $\rho_{\mu_1}(f_1, \bar{g}_n) \rightarrow 0$ and $\rho_{\mu_2}(f_2, \bar{h}_n) \rightarrow 0$. Hence there exists a monotone increasing sequence $\{n_i\}$ of positive integers such that $\bar{g}_{n_i} \rightarrow f_1$ (a.e. μ_1) and $\bar{h}_{n_i} \rightarrow f_2$ (a.e. μ_2).

We have

$$\begin{aligned} \frac{dP_1}{d\mu} &= \frac{f_1 f_2}{f_1 + f_2 - f_1 f_2} && \text{if } f_1 f_2 > 0 \\ &= 0 && \text{if } f_1 = 0 \text{ and } f_2 = 0 \end{aligned}$$

([12] p. 136). Without loss of generality we determine f_1, f_2 such that $\{f_1 > 0, f_2 = 0\} = \{f_1 = 0, f_2 > 0\} = \phi$. Put $\psi_n = \frac{\bar{g}_n \bar{h}_n}{\bar{g}_n + \bar{h}_n - \bar{g}_n \bar{h}_n}$. ψ_n is well-defined because $0 < \bar{g}_n, \bar{h}_n \leq 1$. Noting $\mu \approx \mu_1, \mu \approx \mu_2$ on $\{f_1 f_2 > 0\}$, we have

$$(11) \quad \psi_{n_i} \rightarrow \frac{dP_1}{d\mu} \quad \text{a.e. } \mu \quad \text{on } \{f_1 f_2 > 0\}.$$

For $x \in \{\bar{g}_{n_i} \bar{h}_{n_i} \rightarrow 0\}$, it is easy to see $\psi_{n_i}(x) \rightarrow 0$ ($n \rightarrow \infty$). We have therefore

$$(12) \quad \psi_{n_i}(x) \rightarrow \frac{dP_1}{d\mu}(x)$$

for all $x \in \{\bar{g}_{n_i} \bar{h}_{n_i} \rightarrow 0\} \cap \{f_1 = 0 \text{ and } f_2 = 0\}$.

Since $\mu_i[\{\bar{g}_{n_i} \bar{h}_{n_i} \rightarrow 0\} \cap \{f_1 = 0 \text{ and } f_2 = 0\}] = 0$ ($i = 1, 2$),

$$(13) \quad \mu[\{\bar{g}_{n_i} \bar{h}_{n_i} \rightarrow 0\} \cap \{f_1 = 0 \text{ and } f_2 = 0\}] = 0.$$

It follows from (11)~(13) that $\psi_{n_i} \rightarrow \frac{dP_1}{d\mu}$ (a.e. μ). Since $|\psi_{n_i} - \frac{dP_1}{d\mu}| \leq 1$, by

Lebesgue's bounded convergence theorem we have $\rho_\mu\left(\frac{dP_1}{d\mu}, \psi_{n_i}\right) \rightarrow 0$ ($i \rightarrow \infty$).

Since ψ_{n_i} is \mathcal{B}_{n_i} -measurable and bounded, we have $\psi_{n_i} \in L_\mu(\mathcal{B}_{n_i})$. So

$\tilde{\rho}_\mu\left(\frac{dP_1}{d\mu}, L_\mu(\mathcal{B}_{n_i})\right) \rightarrow 0$. By quite a similar to given above, we can prove that,

for any subsequence $\{m_n\}$ of $\{n\}$, there exists $\{l_i\} \subset \{m_i\}$ such that $\tilde{\rho}_\mu\left(\frac{dP_1}{d\mu}, L_\mu(\mathcal{B}_{l_i})\right) \rightarrow 0$ ($i \rightarrow \infty$). This shows $\tilde{\rho}_\mu\left(\frac{dP_1}{d\mu}, L_\mu(\mathcal{B}_n)\right) \rightarrow 0$ ($n \rightarrow \infty$). Thus

$\{\mathcal{B}_n\}$ has been shown to be approximately sufficient for any finite subset of \mathcal{P}^* .

The third step. As the final step we shall prove that $\{\mathcal{B}_n\}$ is approximately sufficient for $\mathcal{P}^* = \{P_1, P_2, \dots\}$. Put $\lambda_m = \sum_{i=1}^m \beta_i P_i$, $\lambda_0 = \sum_{i=1}^\infty \beta_i P_i$ ($\beta_i > 0$, $\sum_{i=1}^\infty \beta_i < \infty$). $\|\lambda_m - \lambda_0\|_{\mathcal{A}} \rightarrow 0$ (as $m \rightarrow \infty$) is clear. $\frac{dP_i}{d\lambda_n}$ exists for $n \geq i$ and $\frac{dP_i}{d\lambda_n} \rightarrow \frac{dP_i}{d\lambda_0}$ ($n \rightarrow \infty$) (a.e. λ_0) for every fixed i ([2] p. 136). From this and $\frac{dP_i}{d\lambda_n} \leq \beta_i^{-1}$ ($n = 0, i, i+1, \dots$), we get

$$(14) \quad \rho_{\lambda_0}\left(\frac{dP_i}{d\lambda_n}, \frac{dP_i}{d\lambda_0}\right) \rightarrow 0 \quad (n \rightarrow \infty)$$

for every i . Since $\{\mathcal{B}_n\}$ is approximately sufficient for $\{P_1, \dots, P_n\}$ we have $\tilde{\rho}_{\lambda_n}\left(\frac{dP_i}{d\lambda_n}, L_{\lambda_n}(\mathcal{B}_k)\right) \rightarrow 0$ ($k \rightarrow \infty$) for every i, n with $n \geq i$. Hence there exists $\{h_{k,n,i}\}$ such that

$$(15) \quad h_{k,n,i} \in L_{\lambda_n}(\mathcal{B}_k), \quad \rho_{\lambda_n}\left(\frac{dP_i}{d\lambda_n}, h_{k,n,i}\right) \rightarrow 0 \quad (k \rightarrow \infty).$$

Since $\frac{dP_i}{d\lambda_n} \leq \beta_i^{-1}$, we can assume $0 \leq h_{k,n,i} \leq \beta_i^{-1}$ and hence $h_{k,n,i} \in L_{\lambda_0}(\mathcal{B}_k)$.

Let ε be a positive number. We choose n_0 such that $\|\lambda_{n_0} - \lambda_0\|_{\mathcal{A}} < \varepsilon$ and $\rho_{\lambda_0}\left(\frac{dP_i}{d\lambda_0}, \frac{dP_i}{d\lambda_{n_0}}\right) < \varepsilon$. It follows from (15) that there exists k_0 such that

$$\rho_{\lambda_{n_0}}\left(\frac{dP_i}{d\lambda_{n_0}}, h_{k, n_0, i}\right) < \varepsilon \text{ for } k \geq k_0.$$

$$(16) \quad \begin{aligned} & \left| \rho_{\lambda_{n_0}}\left(\frac{dP_i}{d\lambda_{n_0}}, h_{k, n_0, i}\right) - \rho_{\lambda_0}\left(\frac{dP_i}{d\lambda_{n_0}}, h_{k, n_0, i}\right) \right| \\ &= \left| \int \left| \frac{dP_i}{d\lambda_{n_0}} - h_{k, n_0, i} \right| d\lambda_{n_0} - \int \left| \frac{dP_i}{d\lambda_{n_0}} - h_{k, n_0, i} \right| d\lambda_0 \right| \\ &\leq 2\beta_i^{-1} \|\lambda_{n_0} - \lambda_0\|_{\mathcal{A}} < 2\beta_i^{-1} \varepsilon. \end{aligned}$$

Hence we have for $k \geq k_0$

$$\begin{aligned} \rho_{\lambda_0}\left(\frac{dP_i}{d\lambda_0}, h_{k, n_0, i}\right) &\leq \rho_{\lambda_0}\left(\frac{dP_i}{d\lambda_0}, \frac{dP_i}{d\lambda_{n_0}}\right) + \rho_{\lambda_0}\left(\frac{dP_i}{d\lambda_{n_0}}, h_{k, n_0, i}\right) \\ &< \rho_{\lambda_0}\left(\frac{dP_i}{d\lambda_0}, \frac{dP_i}{d\lambda_{n_0}}\right) + \rho_{\lambda_{n_0}}\left(\frac{dP_i}{d\lambda_{n_0}}, h_{k, n_0, i}\right) + 2\beta_i^{-1} \varepsilon \\ &< \varepsilon + \varepsilon + 2\beta_i^{-1} \varepsilon. \end{aligned}$$

Consequently we have $\rho_{\lambda_0}\left(\frac{dP_i}{d\lambda_0}, h_{k, n_0, i}\right) \rightarrow 0$ ($k \rightarrow \infty$) for every fixed i , which shows $\tilde{\rho}_{\lambda_0}\left(\frac{dP_i}{d\lambda_0}, L_{\lambda_0}(\mathcal{B}_k)\right) \rightarrow 0$ ($k \rightarrow \infty$) for every i . By (a) \Leftrightarrow (d) in Theorem 1 we see that $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P}^* . Thus the proof has been completed.

WASEDA UNIVERSITY

References

- [1] A. Berger: *Remark on separable space of probability measures*, Ann. Math. Statist. **22** (1951), 119–120.
- [2] P.R. Halmos: *Measure Theory*, D. van Nostrand Co., New York, 1950.
- [3] P.R. Halmos and J.L. Savage: *Application of the Radon-Nikodym theorem to the theory of sufficient statistics*, Ann. Math. Statist. **20** (1949), 225–241.
- [4] H. Kudō: *On an approximation to a sufficient statistic including a concept of asymptotic sufficiency*, J. Fac. Sci. Univ. Tokyo, Sec. IA **17** (1970), 273–290.
- [5] H. Kudō: *A note on the strong convergence of σ -algebras*, Ann. Probability **2** (1974), 76–83.
- [6] H. Kudō: *Correction to “On an approximation to a sufficient statistic including a concept of asymptotic sufficiency”*, J. Fac. Sci. Univ. Tokyo, Sec. IA **22** (1975), 449.
- [7] J. Neveu: *Mathematical Foundations of the Calculus of Probability*, Holden-Day, San Francisco, 1965.

