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第 1章緒言

滑走艇まわりの流場を知る上で重要なことは，あらかじめ艇の浸水面を特定で、きないと

いう未定浸水面問題を解決することである 1)2) .本論はこの未定浸水面問題に対する新た

な変分原理を見出し，変分直接法によって未定浸水面を定めることを試みるものである.

近年の輸送システムの高速化に伴い，高速艇の 1 っとして滑走艇が注目されるように

なってきた.滑走艇は，現状ではレジャー用あるいは競走用に使用目的が限定されている

ものの，重量が比較的大きい場合の高速町週日に適しているため，将来的には近海域におけ

る高速輸送手段の 1 っとして開発されることが期待されている.そのためには?波浪中の

耐航性能が悪いことなど乗り越えるべきいくつかの課題がある.その中で最も基本となる

のは平水中の定常滑走性能の推定であり，滑走艇まわりの流場を把握することである.

滑走艇の性能推定は現在のところ実験的な研究に基づくものが主であり，研究の数も多

い.代表的なものとしては， Savi七Sky')4)5) によるものが知られている.彼は詳細な実験デ

ータに基づき，滑走艇の種々の性能推定式を与えている.一方，滑走艇まわりの流場の理

論的な研究6)7)8) も古くから行われており，船体を揚力で支えることから，翼理論になぞら

えて理論が展開されてきた.滑走艇の揚力分布は浸水面に依存し，そのモーメント特性を

大きく左右するから，未知の浸水面の推定が重要で、ある.しかし，未定浸水面問題を扱っ

たものは少なく，未だに理論と実現象の聞には大きな隔たりがある.

滑走艇まわりの流れを初めて未定境界の問題として論じたのは， Wagner9) で、ある.彼

は， 2 次元の模型の落下衝撃の問題を dead rise angle を持つ滑走艇の問題に適用した.未

定浸水面を定め得たのは，波面の盛り上がりを考えたからである.直線的な自己相似流れ

が仮定されたために，船体側方の波面の盛り上がりのみが考慮され，スプレールートライ

ンは静止時水線よりv'2倍だけ広い直線となる.しかし，滑走艇前方の盛り上がりは考慮、

できないため，艇前方への浸水面の広がりはなくなってしまう.これに対し松村ら 10) は，

滑走艇前方の波面の盛り上がりも考慮し，滑走艇船首付近では，かまぼこ状に盛り上がっ

た波面上を滑走すると仮定すれば，スプレーノレートラインが放物線11)12) となる相似解が

あることを示した.かまぼこ状波面の生成原因は，船体後方からの排水影響であると考え
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られるものの，細長体理論に基づく定式化によるものであるため，船体後方の影響を盛り

込むことができず，理論的にかまぼこ状波面を求めることはできない.細長体理論を用い

なければ，滑走艇前方の波面の盛り上がりを考慮、できるはずである.松村ら 13) は，細長体

理論とは逆の発想で，滑走艇を高アスペクト比と仮定し，揚力線理論に基づいて，滑走艇

の未定浸水面を求めることを試みた.未定浸水長を求める積分方程式が示され，未定浸水

長んは，滑走艇の循環 r と密接に関連づけられることが示された.以上に挙げた研究は，

重力の影響を無視するものである.重力影響を考慮した滑走艇の未定浸水面問題は，別所

14)によって研究がなされた.この理論では，完全な未定境界問題を解くのではなく，滑走

艇の静止時の浸水面を基準とし，浸水長変化はその摂動として求め得ることが示された.

これらの研究は，すべて微分方程式，あるいは，積分方程式による定式化であり，それ

らを解くには格段の工夫を要する.それに代わり得る手法として変分直接法がある.この

手法は，満たすべき方程式を解くのではなく，求めたい未知量を変関数とする汎関数の変

分問題に置き換えるものである.変分直接法の利点は，満たすべき方程式を何ら厳密に

解く必要はなく，求めるべき未知量を使い手が自由に仮定することができることである.

その未知量が，物理的な現象に沿っていれば，近似の度合いに応じた結果を得ることがで

き，解が持つべき性質が損なわれることもない.このような長所にも関わらず，一般に未

知の問題に対して変分原理そのものを見出すことは困難であり，滑走艇の未定浸水面問題

に対する変分原理は知られていない.本論で扱おうとする滑走艇の未定浸水面の問題は，

複雑な積分方程式を解くことが要求されるから，変分原理がそれを解く有効な手段となる

と考えられ，変分原理を見出す労苦以上の結果を期待できる.

本論はこのような観点から，滑走艇の未定浸水面問題を変分直接法により解くことを考

え，その基となる変分原理を見出すことを試みたものである.
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第 2 章 滑走艇まわりの流れ

この章は滑走艇まわりの流れが，あらかじめ浸水面が定められない問題であるとの立場

に立ち，その理論的取り扱いについて述べるものである.拘束状態にある滑走艇まわりの

流場が得られない限り自由航走状態での流場は求め得ないので，拘束状態の流場角材庁を進

める.本論では線形理論を用いる.滑走艇まわりの流れのように非線形現象が顕著に表れ

るものに対しても，浸水面を求めるという観点からは，線形理論が十分有効であることを

検証する.結論として，滑走艇まわりの流場が 2 つの未定境界の積分方程式を解くことで

定められることを示す.

2.1 理論の背景

滑走艇の研究は，船体を揚力によって支持することから，翼理論になぞらえて理論が展

開されてきた.しかし無限流体中にある翼とは異なり，水面が存在するために航走時の浸

水面が静止時に比べて変化する.実現象を見るために，写真 1 に柱状滑走艇模型の航走時

の様子を撮影したものを示す.拘束状態にある滑走艇を定常滑走させると，静止時にはく

さび型で、あった水線 (calm w抗er line) が仮，Ij方へ拡がり，放物線形状となる.浸水面の境界

(スプレールートライン)から前方，あるし 1は側方へ薄し慎状のスプレーが飛び出す様子が

観察される.写真2 は比較的横長の滑走板の場合である.浸水面形状は，船底悌↓ (dead

rise) がないため静止時水線と同様の長方形に近い.しかし浸水面はほぼ 2倍程度にまで増

加している.このような現象は通常の翼には見らない滑走艇まわりの流場の特徴であり 3

その理論的取り扱いを困難にしている原因でもある.

船舶流体力学においては，自由表面波形の形状を求める問題も同じ未定境界の問題であ

る.しかし，特に非線形影響を問題としなければ，静水面を仮の境界とでき，流揚が確定

したあとで自由表面形状を求めることができる . 滑走艇の場合，拘束状態で、あってさえ，

ともすれば浸水面は静止時の 2倍程度にも遣するから，静止時水線を仮の境界とすること

はできない.この意味で両者は本質的に異なる問題である.
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滑走艇の未定浸水面問題を最初に扱ったのはWagner9) で、ある.彼は小さな船底傾斜角

(dead rise angle) を有する滑走艇の浸水面を求めた.彼の得た浸水面は静止時浸水面の必

倍だけ広く，またスプレールートラインからは膜状のスプレーが飛び出すとしづ現象があ

るため，全体として非線形的現象との感を強く受ける.彼の理論の特徴は，側方へ押し

出された波の盛り上がり (pile up) を考慮したことである.船底傾斜角が大きい場合や排

水量型船舶では，水線面近傍で、の波面の盛り上がりは取るに足りない量であり，無視でき

る.しかし，滑走艇の船底は平らに近いため，静止水面からわずかでも水面が盛り上がる

と，船底とぶつかり，新たな浸水面となる.水面の盛り上がりがたとえ微小であっても，

船底傾斜角も微小であれば，未定浸水面問題を生じさせることになる.

一般に船底傾斜角やトリム角が小さければ，線形理論が適用でき，それは微小な波高し

か生じさせなし 1から，未定浸水面問題は線形理論の枠組みで、論じることができる.

一方，スプレー現象は，スプレールートラインより外側で生じるものであり，スプレー

は薄い膜状のため?その部分では圧力はほぼ大気圧と考えられる.したがって揚力はほと

んど発生していなし\ただ，スプレールート，すなわちスプレーが飛び出す根元では，流

れの方向が 1800 回転する部位も存在するため，本質的に非線形流れとなっている.摂動

論的観点からは，スプレ)ルート近傍は部分的に拡大して非線形的に流場解析が行われ

る.局所流場は外部の翼理論的な圧力の特異性を吸収する役害IJを担っている.逆に，この
局所流場から外側の流場，すなわち浸水面全体に対する影響は，スプレー厚さの分だけ波

面の盛り上がりを減少させることである.これは高次影響に過ぎなし 1から，スプレールー

トラインは浸水面の単なる外縁と考えてよく，またスプレールートラインでは波面と滑走

艇底面の高さは一致すると考えてよい.

同種のことは，ハードチャインから発生する非線形な波についても言える.

以上のことを総合すると，未定浸水面問題は滑走艇の船底傾斜が小さい，またはトリム

角が小さいことにより生じるものであり p 浸水面全体にわたる圧力等の流場の諸量は，線

形理論の枠組みで求め得ると考えられる.また，スプレー厚さを無視し，スプレールート

ライン上では，スプレー厚さを無視し，線形理論で得られる波高とその位置での滑走艇底

面の高さを等しいと考えてよい.

2.2 線形理論

座標系はz=o を静水面とし，主流方向をx ， 船幅方向を0軸にとる (Fig.l 参照).滑走艇

の後端の位置を企 =0，艇の半幅を b とする.艇は姿勢を拘束された状態にあり，その底

面の高さはH(x ， y) ， 静止時の水線は企 = -lR(Y) の曲線(包線)で表されるとする.この滑

走艇を拘束状態のまま前進速度U∞で定常滑走させた結果，浸水面の境界(スプレールー

トライン)が￡ニ -lw(y) となった場合を考える.静水面より上方に設定された滑走艇につ

いても考察の対象とし，航走時に水面に撹乱を与えるなどして定常滑走に至った状態を考

える.この場合の静止時水線lR(Y) は滑走艇底面の後端からの延長面と静水面の交わる線

として定義する.このとき ， lR(Y) く O である.

流体は非粘性，渦なしであるとし，速度ポテンシヤルをるとする.

角勃庁の便利のため，すべての有次元量を，長さの次元は滑走艇の半幅 b， 速度の次元は

滑走艇の前進速度U∞，力の次元はpUoo 2 を用いて以下のように無次元する.

x _ y z 
Z 云五， y 云 b ' z 云五

争ー争 __ _ ﾟ 
- U，∞b ' r - pU~ 

なお， p は圧力である.

無次元化の結果， Fig.1 に示すxyz座標においては，半幅 1，船底の高さが H(x ， y) ， 静止

H寺水線x = -lR(Y) の滑走艇が前進速度 1 で定常滑走し，スプレールートラインが x=lw(y)

となった場合を考えることになる.

本論では線形理論を用い，重力影響を考慮した滑走艇まわりの流れを扱う.速度ポテン

l f1 lR 
R - -;- , lw == lw w- 1 , 

《

H
一b三H

 

(2.2.1) 
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(2.2.4) 

(2.2.5) 

[L] はラプラスの方程式であり， [F] は線形化した自由表面条件である.式中 Koは
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T/  _ gb _ 1 
1¥.0 =万三=下記 (2.2.6) 

と定義したものであり，滑走艇の半幅ベースの無次元波数を表す• [B] は滑走艇底面で、の

線形化した物体表面条件である.

重力の影響は複雑な積分表現とならざるを得なし 1から，なんらかの近似を行う上で，で

きるだけ意味の明瞭な表現にしておく必要がある.ここでは，重力の影響によらない部分

と重力影響の部分に分けて定式化しておく.あらかじめ重力の影響による部分を分離して

おくと ， [L] と [F] を満足する速度ポテンシャルゆ(x ， y ， z) は，船底圧力poを用いて，以下

のように書ける 17)18).

ゆ(x ， y ， z)

1 {l (O f)_ { r _ ¥ J z (1 , X -� ¥ 
=一 I I _ _. 2po(乙 η)~い+i14πムl ムlw(η) {(u-η)2 + z2 ¥ ~ I Kx ーと)2+ (y- η)2 + z2 ) 

Ko r~ ぷ∞ ekz
l-F L Y-A90sin(k(z ーと)cos B) COS( k(y - η) sin B)dkdB 

π J-~ JO 

一吋:ek山田川s(K1山一と)sec B) 

×川…C∞ωOω叩S

式中，第 1 項は重力に左右されない一定の量であり，いわゆる重力を無視したときの滑

走艇まわりの流れの速度ポテンシャルである.これは無限流体中の翼まわりの流れの速

度ポテンシヤルに相当する.第2項は重力影響による局所波を表し，第3項は自由波を表

す.ゅの第 l 項は Fig.2 に示すように，滑走艇の浸水面上に強さ 2po(x ， y) の微/J\j馬蹄渦によ

る速度ポテンシャルを重畳したものと考えることができる.

滑走艇底面上で物体表面条件 [B] を課せば以下の積分方程式が得られる.

付H (,.,. ".¥ _ 1.J/ (o f)_ { r _ ¥ J 1 (1' X -� ¥ 
三二 (x ， ν) = A ~_ I/I I _ _ _ 2po (い) ~ い+ r=:=-==....，~I:.==- I 
dx' 'v  I 4πJ二 1 ムlw(η) -.rU¥":>I-(j l (ν-η)2\-' Kx ーと)2+ (y_ η)2) 

Kn rきょ∞ 問c3B 
15Rk 一長一一2 tJ州的ーと)∞s B) ∞s(k(y - η) sin B)d酬

一ん21;山州民(x 一山B)

×叫(y-1'/) sec2 0 sin O)dO } (2.2.8) 

6 

以後，この積分方程式を滑走艇の傾きに関する積分方程式と呼ぶ.積分記号のH はHadamard

の意味での発散積分の有限部分をとることを意味する.

lw(ν) が既知であれば， (2.2.3)~(2.2.5) 式に加え， Kutta の条件

[Kuttα] Po(O , y) = 0 (2.2.9) 

を課すことで、POは一意に定められ， したがってゆを定め得る.これは従来とられてきた船

舶流体力学の立場である.

しかし，既に述べたように，場合によっては浸水面は静止時浸水面の 2倍程度にも達し，

自由航走状態となればなおさらである.このような場合， (2.2.7) , (2.2.8) 式の積分下限に

現れた浸水長分布， lw(y) をあらかじめ特定できていなし\から，このままでは積分の実行

すらできず，問題は閉じない.これが未定境界問題である.

松村らは13)問題を閉じさせるために，既知の滑走艇の高さと波面の高さが一致すると

いう条件を，滑走艇のスプレーノレートライン上，または後端で課せばよいことを示した.

波高九(x ， y) は，自由表面での線形化した運動学条件

[K] 笠-坐= 0 on z = 0 (2.2.10) 
θzθz 

に従う必要がある.無限前方でh=O となるようにゆを (2.2.10) 式にしたがって積分すれ

ば，波高九は

h(x , y) = よ腕1 r~ ，， 2po(と η)~ (~. 1~\2 (いZ 一寸と什+吋ゾ山(x 一 ç )2+川+川(y 一引
4πjこ 1 J一-lw(付ωη川) ~.t' U\':.' '1/ l (y 一 η)戸2 ¥ - .." V ¥ - ~ / 'v "J 

Kn r~ ょ∞ sec4FJ 
+」 l や , v 0;� cos(k(x ーと) cos FJ) cos(k(y - η) sin B)dkdFJ 

π J-~JO κ- 1¥0 sec" ぴ

-叫 s山n(ん日secFJ) 

xc叫ん(y 一行)山n FJ)dいη (2.2.11) 

となる. (2.2.11) 式は水面波高のみならず，滑走艇の高さを与える式にもなっている.前

者の場合は発散積分の有限部分をとる必要はない.波高が滑走艇の高さに一致するとし 1 う

条件を，ここでは未知のスプレーノレートライン上で課す.

[5] H( -lw(Y) , y) 二九(-lw(Y) ，y) (2.2.12) 

7 



これはスプレー条件と呼ばれる.具体的に書き下せば

H( -lw(y) , y) 

=土手 r~ 1_¥ 2po(ç, 7])~ (n , 1 ~\2 ( -lw(y) ーと+ゾ(-lw(y) ーと)2+ (y_ η)2ì 4πJ二 1 ムlw{η) -rv\~ ， '1/ l (y _ η)2 ¥ vvv ¥::1/ ':, I V ¥ "W¥::IJ ~J I ¥Y "J) 

Kn r~ 1..∞ sec4 B 
+」 fl ι ~~ 0'-",,,2 (J cos(k( -lw(y) ーと)cos B) COs( k(y - η) 幻nB)dkdfJ 
7r J 一言 JO

ーんζs山i叫ん(-lw(y) 一ご)田cB)

×刈…Cωω州州叩陥附ん削(川詑山州

が成立している必要がある.この関係、は浸水面全体で課すものではなく，スプレーノレート

ライン上でのみ課されていることに注意する.以後，この積分方程式を滑走艇の高さに関

する積分方程式と呼ぶ.

これでpo(x ， y) と lw(Y) を未知とする 2 つの積分方程式が得られたので，問題は閉じたこ

とになる.実際，松村ら13)は，重力の影響を無視するなどの近似を行っているものの，未

定?受水面問題を解いている.したがって，重力の影響がその本質を左右しなければ， (2.2.8) 

式と (2.2 . 13) 式を連立させて解けば船底圧力とスプレールートラインの形状が決定される.

しかし，いずれの積分方程式も重力の影響のために核関数が非常に複雑である.仮にこれ

が解けたとしても未定境界であるからスプレールートラインの形状を仮定し，両方の積分

方程式を満足するようにスプレールートラインを定めなければならないことになる.

2.3 2 章のまとめ

第2章は，滑走艇まわりの流れを未定浸水面の問題とし，線形理論に基づいて未定浸水

面と船体に働く圧力を求めるための定式化を行った.結論は以下の通りである.

l 浸水面を既知とする問題の場合，物体表面条件から得られる積分方程式は， Kutta 

の条件を課すことで船底圧力を， したがって流場を定め得る.

未定浸水面問題で、は，物体表面条件から得られる積分方程式は，船底圧力に加え，

浸水面も未知で、あるため， 1 つの積分方程式だけでは流場を定め得ない.

2. 流場を定めるためにはもう l つの条件が必要となる.そのためには波面の盛り上が

りを考慮しなければならない.線形理論で、はスプレーは鰍見で、きるため，盛り上がつ

8 

た波面は滑走艇のスプレールートライン，あるいはトランサムスターンで滑走艇底

面の高さに一致することが要求される.本論では，この条件を未知のスプレールー

トライン上で課すことにより，もう l つの積分方程式を得た.

3. 船底圧力とスプレールートラインの形状の 2つを未知とする， 2つの未定境界の積分

方程式を連立させて解けば，流場を定めることができる.

4. 積分方程式は核関数が複雑であること，さらに未定境界であることからこれらを解

くことは困難が予想される.
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第 3章 滑走艇の未定浸水面問題の変分原理

この章では，前章で示した滑走艇まわりの流場を定めるために，解くべき 2 つの未定境

界の積分方程式の解法について述べる.積分方程式は重力影響のために核関数が複雑と

なっている.問題の本質を見失わないように重力の影響を無視した場合から考える.重力

を無視した積分方程式は高アスペクト比近似を用いて既に解かれている 13) これに対し

本論では変分直接法の観点からこれを解くことを考え，オイラーの方程式が満たすべき積

分方程式となる新しい変分原理を示す.さらにこの原理を重力の影響を考慮、した場合に拡

張し，重力影響のあるなしに関わらず，同じ原理が成り立つことを示す.

3.1 重力影響を無視した滑走艇の未定浸水面問題

重力の影響を無視した場合，滑走艇まわりの流れの速度ポテンシャルは以下のように

なる.

仲， y, z) = 去μ:(力)2P点、 η〕

× ((u-J2+Z2(lV(z ーの x-çη)2+ル (3.1.1) 

これは，前章で示した，速度ポテンシヤル (2.2.7) 式の第 1 項である.

したがって，滑走艇の傾きに関する積分方程式と滑走艇の高さに関する積分方程式は以

下のようになる.

θH . 1 __fl rO 
ァ(x ，y) = ァ可 I . 2po(い)
ox Q1T J-IJ-lw (η) 

(1 + I x- Eid5dη 
(y - η)2\-' J0;ーと)2+ (y - η)2 ) 

H( -lw(Y) , y) = 却にwJ川

(3.1.2) 

× (UJη)2 ( -lw{y) ーと+ゾ(-lw(y) 一小 (y -刈 dçd仰1. 3)

10 

重力の影響を無視した場合，滑走艇の傾きに関する積分方程式 (3. 1. 2) 式は，スプレー

ノレートラインの形状lwが既知ならば，浸水面を揚力面とする通常の揚力面の積分方程式

に他ならず，核関数の意味は微小馬蹄渦による重畳効果を表す.

揚力面の積分方程式の解法としては?船底圧力の解を mode function で仮定する mode

function 法，揚力面を離散的な馬蹄渦の集まりとして取扱う渦格子法 (VortexLatice Method) 

などの数値解法が知られている.これらの方法をもとに未知のスプレールートラインを求

めようとすると，まずスプレールートラインの形状を仮定して滑走艇の傾きに関する積分

方程式を解き，その後，滑走艇の高さに関する積分方程式を満足するようにスプレールー

トラインの形状を定めるという繰り返し計算の手法が考えられる.このような手法の問題

点は，収束性の確保が難しいことと，重力影響の計算が現在でも困難なことである.

本論ではこれらの未定境界の積分方程式の簡単な解法として変分原理を用いる方法を

示す.変分直接法は方程式を解く代りに汎関数の極値問題に置き換えるものであり，解を

単純な試験関数で近似しでも良い結果が得られる.このため，流体力学を含めて工学上の

多くの問題について用いられてきた19)20) .しかし，未知の問題に対して変分原理そのも

のを導出することは一般に困難であり，本論で扱おうとする滑走艇の未定浸水面問題に対

する変分原理は知られていない.ただ，既知の浸水面の場合には， 2つの変分原理が知ら

れている. 1 つは，滑走艇の傾きに関する積分方程式を解くための Flax1S) の変分原理で、あ

り，もう l つは滑走艇の高さに関する積分方程式を解くための別所16) の変分原理である.

あるべき変分原理の性質を知るために，これらの 2つの変分原理を調べておく.

3.1.1 Flax の変分原理

Flax1S) は無限流体中の 3次元揚力面の積分方程式 (3. 1. 2) 式を解く問題を，船底圧力分

布po(x ， y) と，別にpo(x ， y) なる未知量を導入し，この 2つを変関数とする汎関数の変分問

題に置き換えた.汎関数は以下のようである.

I[po ， 角l

三 j_11 j_:叫ん肌品川 - 2p川主仇ぺ同
十j;j!iwJG〔川
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x{手引w(η)30153(l+ 山一;ゐ-7])2) df;dη)州 (3.1.4) 

ただし，後述の本論で示す変分原理の汎関数にあわせて， (3.1.4)式を原著論文と符号を逆

にしている.この汎関数の第 1 変分をとると

�1 ニ t[~ιんムW川内州JJ(ωωJνωy) ó[メ川6司p陥肌2柄角削仇(x ， y)]夙?ω州叶J{十一与誓い
+_;_ >>f (0 2勾恥p仇o(ぼ5乙い7川ηL ( 1噌 • z 一e ¥ ÀCÀ~ì 
引1 人lw(η) (y- η)2rJ(z-5)2+(u-川 dÇdηjぬdy

+[よ: zιんんW川内JJ(ωωJνω21) ó[メ川6引p防伽2勾恥制p仇州O“(x ，y)J { 与μ 
+土J1 (0 2角(ぼごι1川川η川)げf 寸 • 5 一 x ¥ .~. 1 
ぱ1 人lw(η) (y- η)2 ¥ 1 + V(� -X)2 + (ν- 77)2 )ωηドxdy (3.1.5) 

となる.第 1 項，変分ópoに対するオイラーの方程式は，滑走艇の傾きに関する積分方程

式， (3. 1. 2) 式である.さらに第2項，変分ópoに対するオイラーの方程式は，以下に示す
積分方程式である.

θH . 1 r1 rO 
石川)二会玖1 J-lW (η)2ぬ(乙 η)

1 { ~ E-X ¥ 

× (U 一 η)2 ~ 1 +ゾ(5-J2+(U一川 dçdη (3.1.6) 

これは，滑走艇の傾きに関する積分方程式 (3. 1. 2) 式の核関数のz ととを入れ換えたもので

ある.この積分方程式は， Fig.3 に示すように滑走艇のトリムを変えずに1 一様流の方向

だけが反対の流れに対応する.この流れは逆流れ (reverse fiow) と呼ばれ，当初意味不明

であったぬは逆流れの船底圧力を意味することになる.

この変分原理は，主流方向の対称性を持たない， x ととを入れ換えると本来の物理現象

に対する意味を失うとしづ問題であるために，逆流れの介在を必要としている.この意味

でFlax の変分原理はポテンシヤル論で通常見られる最大原理とは様相を異にし，随イ半変

分原理と呼ばれる.それでも?財て面を既知とするならば， Kutta の条件を課すことで，汎

関数を停留させる POは滑走艇の傾きに関する積分方程式を満足する.

このような反対称性は後曳き渦がほぼ主流にのって流され，決して前方に流れ去ること

がないことを反映したものである.船舶流体力学ではこのような反対称性は波の生成に対

しでも見られる.定常航走する場合に限れば，船体前方には波が存在せず，後方にのみ波
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が生ずるというような現象がある.このような反対称性は本論で重力影響を扱うときに考

慮、すべき性質である.

3.1.2 別所の変分原理

別所ら 16) は Flax の変分原理とは別に，滑走艇の高さに対する積分方程式を満足する新

たな変分原理を示した.別所の原理は重力影響を考慮、した 2 次元問題を扱っている.これ

を重力影響を無視した 3 次元問題にあてはめると，汎関数は以下のようになる.

J[po ， 角]

三 tl[~んんムW川内J(ων
+ 乙tムんんW川州ω(ωωνω) 2柄剃角似(いz
f 1 T/;I (0 2po(ç乙3η) ( r , /, r\? , I ¥?¥ 7r 7 1 
ﾗ{-F l (z ーと+ゾ(x ーと)2+ (y _ η)2 ) dÇdη~ dxdy (3.1.7) 

l4πj二 l 人lw(η) (y- η)2 ¥ ~ ':>' V \~ ':>J '¥::1 '1/) "-，，，，:> ~'I 1 

やはり?逆流れに対する船底圧力向の仲介を必要とするが?この汎関数の第 1 変分をとると

6 J = L山Z川州JνωJ)メ6
1 T,l (0 2po(ç乙?η) (_ r , /, r\? , I ¥? ¥ I r I 1 
事 l lz ーと+ゾ(x ーと)2 + (y - η)2 )々dη ~dxdy

4πJ二 1J -lw(7J) (y- η)2 ¥ - ":>' V ¥ - ":> I '¥<:1 '1/) -":> _., 1 

+ [11日バ内JJ)グ川6引刷[
1 T,l r戸o 2戸角ã(ぽ5乙? ηω) (1- /'1- __\?, (. a¥?¥ .11-.1_.1 
事 /2(ご -x+ ゾ(と - x)2 + (y- η)2 ) dÇdη ~dxdy (3.1.8) 

4πJ二 1 J-lw (η) (y- η) 2 ¥ ":> W I V ¥ ":> - I '¥  <:1 . 1/ ) -':> _., 1 

となる.第 l 項，変分ópoに対するオイラーの方程式は，制℃面全体に対する滑走艇の高さ

に関する積分方程式 (3. 1. 3) 式である.第2項，変分ðpo~こ対するオイラーの方程式は，浸

水面全体に対する逆流れの滑走艇の高さに関する積分方程式である.

しかし，この変分原理でも浸水面，すなわち積分範囲に現れた lw(Y) を既知としている.

滑走艇の高さに関する積分方程式は， lw を自由に与えてしまうと Kutta の条件を満足さ

せ得ないことを別所ら 11) 自身が示している. したがって (3. 1. 7) 式を基礎に浸水面を求め

るには，繰り返し計算等の複雑な手続きを要することは否めない.
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3.1.3 滑走艇の未定浸水面問題の変分原理

本論では先に示した Flax の変分原理や別所の変分原理を拡張し，浸水面も未知として

取り扱うことを考える.

浸水面を未知とした場合，積分方程式の積分範囲が定められないことになるため，変分

法としては自由端問題となる.自由端問題の単純な解決法としては， Flax の変分原理に

スプレールートライン上で波高と滑走艇の高さが一致する条件 (2.2 . 12) 式を課すことが考

えられる.また別所の変分原理を自由端問題として取り扱うことも考え得る.しかし，両

原理の変関数Po~ま，自由端(スプレールートライン上)で 1/ゾlw(y) -xの特異性を持っと

考えられるから，自由端の変化に伴う汎関数の変分は有限値とはならなくなる.したがっ

て，スプレールートライン上のPOの特異性を除去できない限り，自由端問題として取扱う

ことは困難になる.

これに対し，松村ら 13)が示した浸水長を決定する積分方程式では，高アスペクト比近

似も手伝っているが，未定浸水長 lwは滑走板の各断面周りの循環r と r 二 1rTlWの関係で

結ぼれている6). 2 次元翼理論で知られているように，翼周りの循環rは本来自由に設定で

きるものであり，物理的観点から Kutta の条件が導入され，決め得る量となっている.滑

走艇の場合には，適当に lwを定めれば，それに応じてpoが得られる.しかし，適当に lw

を定めてしまえば，スプレー条件を満足させ得ない.これは，翼まわりの流れで，適当な

循環を選んでしまうと翼後端で流体が滑らかに流出できないのと同じ事情にある.この

ように考えてくると， lw と滑走艇の縦切り断面まわりの循環rは類似性をもっており， lw 

を決定するような自由端問題は， rを決定する自由端問題に置き換え得る可能性を示唆す

る.このことは，滑走艇の傾き，および高さに関する積分方程式で， rを未知とするよう

な冗長性を持たせることで達成できると考えられる.

圧力の特異性に伴う問題は，未知量poのかわりに，その積分，すなわち

速度ポテンシヤノレゅはμを用いると以下のように表すことができる.

ゆ(x ， y ， z)

1 (1 (0 . . I z I x ¥ I 
=ム I I r(η) ~町い+ - • -._ -1> 
-4π 人1 人lw(η) -¥. /J l (y - り)2+ Z2 ¥ - , J X2 + (y - η)2 + Z2 ) J 

+十 {1 (oμ(れ) _ • z _ _ 3 dçdη 
明ムl ムlw(η) . - .. {(x ーと)2+ (y_ η)2 + Z2}2 

この表現は単に (3. 1. 2) 式を部分積分して得られるものに過ぎないが， μの滑走艇後端での

(3.1.10) 

値μ(O ， y) をμ とは区別してf(y) と表したものである. (3. 1. 10) 式，第 2項は滑走艇の浸水

面上に強さμ(x ， y) の鉛直下向きのダブレットを分布させたものである. 3次元ダブレット

は微小渦輪と同等の作用を持つ.μをこのように解釈し直すと，船底でのダブレット分布

は， Fig.4に示すように，循環μの渦格子を配置したことになる.各渦格子の循環強さベク

トノレγは

γ= 一 (k x マ)μ
、
、B
1
J

1
1
ム

吋1

ム
ー
，
ム

円
ペ
リ

，
f
l

‘
、

で与えられ， μ=一定の線は渦の強さ密度ベクトノレに接する.この意味で、μ=一定の線は

渦線となり， μ こを渦線関数と呼ぶ. Fig.4 に示したように船体後方には， トランサムスタ

ーンから流出した渦が直線的に延びる. Kuもta の条件が満足されているならば，

[Kuttα]μ(0 ， y) = f(y) (3.1.12) 

仇y) 三 flw(U)2po(ω)dご (3.1.9) 

の強さの渦糸，言い換えると， dfの強さを有する微小馬蹄渦が流出することになる.こ

のことを表現したものが (3. 1. 10) 式，第 l 項である.

これにより希望通り，ゆをrで表現することができる.未知数は船底圧力poのみであっ

たのが， μ と Fの 2つになり?流場を定める上で自由度が増したことになる.

μと滑走艇の縦切り断面まわりの循環分布rを用いれば，滑走艇の傾きに関する積分方

程式と滑走艇の高さに関する積分方程式は以下のように書くことができる.

θH I ¥ 1 Tfr1 r(η) {1 I X ¥ _] 
一(x ，y) = 一事 11+ ", ", Id 

4π1二 1 (y- η)2 ¥ -, .Jx2 + (y _ η)2 ) 

1 Tfr1 (oμ(乙 η)
+ァ班 I "'-¥':>"1/ 3 dÇdη 

4πι1 J -lw(η) {(x ーと)2+ (y- η)2} 2 
(3.1.13) 

で表される loading function 21)22)μを用いれば解決できる. (3. 1. 9) 式から明らかなように，

スプレールートライン上でpoが 1/ゾlw(y) -xの強い特異性を持っても， μはJlw(y) -x 

の程度の弱し、特異性を持つに過ぎない. こうしてμは?滑骨走艇上の至る所で

po σのコ特異性除去の観点からは問題がなくなる. H州山)=試日バ-lw(Y
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+ _!_{/ (0μ(乙 η)
一一一
釘T-1 ムω(η) (y- η)2 

( , -lw(Y) -� ¥ 
ﾗ1 1+/l  dfdり (3. l. 14)
¥ ゾ (-lw(Y) ーと)2+ (y _ η)2 ) 

(3. 1. 13) , (3. 1. 14) 式で重要なことは， μ と rを独立に扱うことである.したがって Kutta

の条件は，制約条件として課す必要がある.

μ， f , lwをそれぞれ独立な変関数とし，さらに随伴変分原理となるように逆流れの変

関数，長， f'も加えて， Flax の変分原理 (3.1.4)式，別所の変分原理 (3. l. 7) 式に倣い，次の

汎関数を定義する.本論の立場は以下の汎関数を停留させるものが (3 . l. 13) ， (3. l. 14) 式

を満足することである.

三日w(ν) {一イ叫骨β以仰(μ川Z

) d7) d向η +叫L山ZんんんιW川内州w(y) p，(ωωνω)川ι以仰山川(μ仇川z丸川川， y川Uωぺ)ぺ(試札(J山九九f片勾斗づ仏ル)戸7: ( 1 + Jρμジれ2 」よ↓y-77川川一寸吋千ηωザ1))2) d戸2) d7) 
士K引よ州川)川{
+ [11 { 一F町旬川(ωωUω)H町(←一 JルW内(ωU山) 一f(y)H 仰3 叫dy 

+ [11 f' (yぺ去説K(JJ三川九f乃勾斗づ弘ル)戸2 (十←H川一-lw叫lωlw(以(仙ゾψ山州Jルlw(川(仙い

引;1fzんlWW(J 叫 (十1+ ゾ川(トμ凶一」匂州一JlωM…JW川一J(4J;;;そ?台叩(:2r::;
制約条件 μ(0 ， y) = r(y) 

ただし，制約条件は Kutta の条件である.

(3.l.15) 

汎関数の第 1 項，第2項に滑走艇の傾きに関する積分方程式を盛り込み，第3項，第4

項に滑走艇の高さに関する積分方程式を盛り込んでいる.また，随伴変分原理となるよう

に，滑走艇の傾きに関する積分方程式の項には，逆流れの渦線関数戸を掛け合わしF 滑走

艇の高さに関する積分方程式の項には逆流れの循環?を掛け合わしている.

汎関数をこのように定義すると，自由端lwの変化に伴う汎関数の変分をとることがで

きるようになる.これを以下に示す.
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汎関数日の第 l 変分は以下のようになる.

cSTI 二 fιlZんWJρμ

×ぺ(争， y仙Uω伽)+去胡正 A2(lVZ2+;-Jη

士叫州)仰一 οJr(
Uω ) + [11ρ1メF6斤向r町(ωω

×ぺ(引一ω州(ωωUω川)

剖1 ftんムんんlw(川川W川山州川JJ(何ω川Jη川川JJ)パJJ(;C;f(そ(;，ゴヰ?713;;ユ?2(1+ ゾ川(トμ凶一」匂JルM…JぷW川一よ(jJに;;土;仕rr問山とT台吋叫(:2Z::ユrU;iLr口2えご乙:了コ5〈(ωU 一1))2 ) df，d向η)ドdy
+flfiw山川

×(-FJ)+ 試(ごう)2 (1 十ゾ(-Jw(rr川2) dη 

士山w(η) {伶(μ川日Zトパべ一イ寸ç)♂)
+ 1'1 ﾓr(y) 

×ぺ(一H川+去討K(JJ戸月ιfz勾斗i乙ル)戸2 (十←何川一」匂叫lω川W以(附ゾψル!ルW仙い

剖剖1J心ムムf~んんんιlωM川川川JW川山州川(何ω川Jη川川J)パJ(;:(:fゴゴ771;;;2 (千1+ J作炉川ごPれバ2斗」+」(;U 一Jとμ拘吋d向付仲ηサ十)ドd
+ j_1
1 
blw(y) 

x [以川一」匂叫!ルw(ωUω山川)，y必Uω寸)

剖 (J月凸九:Z勾斗づ乙ル)戸7:(1 + ゾれ(←μ一」lJ:山;たf山九r?れ九):LL(ωU
+去剖正 Zんムムん川山川(何η柿) れ什ド川一」匂叫JωWω 三日 (y -村々dη)

ー ι -lw 川{-誓(-lw(Y) ，y) 
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+土J/ _I(ηL (1 + -lw(y) い
47f J~l (y- η)2 ¥ i I 0w(げ + (y 一川 αη

+説 l: μ(ç ， r;)3々dr; ~ 1 dy 山6)
-lw(η) {( -lw(y) ーと)2+ (y- η)2} 五 JJ 

汎関数 (3. 1. 15) 式が停留するとき， )1慎流れ，すなわち本来の物理的な流れについて次の

ことがいえる.

j)変分旬( (3. 1. 16) 式右辺第 1 項)に対するオイラーの方程式は，滑走艇の傾きに関する

積分方程式 (3. 1. 13) である.

ii) 変分8f'( (3. 1. 16) 式右辺第2項)に対するオイラーの方程式は，滑走艇の高さに関する

積分方程式 (3. 1. 14) である.

逆流れに対しては，

iii) 変分5μ( (3. 1. 16) 式右辺第3項)に対するオイラーの方程式は，逆流れの滑走艇の傾き

に関する積分方程式である.

iv) 変分8f( ( 3.1. 16 )式右辺第4項)に対するオイラーの方程式は，逆流れの滑走艇の高さ

に関する積分方程式である.

ただし，逆流れに対する滑走板の傾きに関する積分方程式と滑走板の高さに関する積分方

程式とは， )1慎流れに対するそれら (3. 1. 13) ， (3 . 1. 14) で ， X を ， -x に置き換えたものであ

る.逆流れは， )1慎流れと同じ滑走面を持たせているため，逆トリム状態となっており，両

条件を満足する逆流れが実際に存在するかどうかは疑問に思われる.本論で、は，逆流れは

あくまで仮想の流れと考え，その存在の有無は問題としないことにする.

第5項目は，やや複雑であるが，変分8lwに対するオイラーの方程式は，スプレールー

トラインにおける順流れと逆流れの滑走艇の傾きに関する積分方程式となる.しかし一般

に積分方程式が浸水面全体で満足されたとしても，境界線上(スプレールートライン及び

トランサムスターン)で積分方程式を満足することが要請されているわけで、はなく，端点

における積分値は任意の値をとることが許される. したがって，変分8lwに対するオイラ
ーの方程式は

v)μ(-lw(y) ， y) = 0 
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vi) f'(y) = β(-lw(Y) ， y) 

となる. v) はμの定義式 (3. 1. 9) 式から明らかなことであるが，物理的にはスプレールート

ラインが渦線となるべきことを示している. vi) は逆流れの Kut凶の条件に相当する.

以上から，汎関数日が停留するとき，すべての条件が満足されるので，その lw(y) がス

プレールートラインの形状であることがわかる.

3.2 重力影響を考慮した滑定艇の未定浸水面問題の変分原理

これまでに重力の影響を無視した場合について，滑走艇の未定浸水面問題を変分直接法

の観点から解くことを考え， 2つの未定境界の積分方程式をオイラーの方程式とする汎関

数を示した.この節では，この変分原理を重力の影響を考慮した場合に拡張する.

重力影響を考慮、したとき?満たすべき積分方程式 (2.2.8) ， (2.2.13) 式は重力影響を無視

したときの積分方程式 (3. 1. 2) ， (3. 1. 3) 式に重力の影響を表す項が加わっただけで，積分方

程式そのものの性質は変わらないと考えられる.したがって重力を考慮、した場合にも重力

を無視した場合と同じ原理が成り立っと考えられる.

重力影響を考慮したときの速度ポテンシヤルゆ((2.2.7) 式)は，前節と同様に渦線関数μ

と滑走艇の後曳き渦の循環分布rを用いると以下のように表される.

ゆ(x ， y ， z)

1 (1 _ . . r z I x ¥ 
=二 I r(η) ~ I ~い+ -. - -I 

4π 人1 -¥'11 l (y - η)2 + z2 ¥ - , . .j x2 + (y _ η)2 + z2 ) 

Kn r"i .I.∞ ekz sec3 B 
J f p F V つハ sin(kxcos ﾐ) cos(k(y - η) sin B)dkdB 
π J-~ JO 

ーん ζekozsedosec30co山secB)

×叩(y -.,,) sec2 i1 sin (1)di1 } dη 
1 (1 (0 . I z 
+i-I I μ(乙 η) ~ 
明ム1 ムlw(η). -_. "l{(x ーと)2+ (y- η)2 + z2} 玉

Kn r "i ょ∞ kekzsec2 B 
~ I や y v つハ cos(k(x ーと)cos ﾐ) cos( k(y - η) sin B)dkdB 
π) -"i )0 κ- 1¥0 se 

+ん24 ekoz九州n(Ko(x -山)
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×叫(y -'7) sec2 11 sin l1)dl1 }ωη 
(3.2.1) 

重力の影響を無視した場合の速度ポテンシャルは

ゆ(x ， y ， z)

1 { 1 (o ~" I z f x ¥ I = A-_ I I .. r(η) ~ I ~'l. 'l 11 + ~ I ~η 
4π ム1 ムIw何) -¥'/' l (y - η)2 + Z2 ¥ ~ I Jx2 + (y _ η)2 十 Z2 ) f リ

十子 (1 (0 μ(乙 η) _ Z 3 df.dη 
日 J-1 J-lw (η) . - '{ (x ーと)2+ (ν-η)2+ジ}2 ~ ・

(3.2.2) 

であったから， (3.2.1) 式は (3.2.2) 式に重力の影響を表す項が加わっただけである. (3 , 2.1) , 

(3.2.2) 式ともに第 1 項は，滑走艇の浸水面に強さμ(x ， y) のダブレットが分布した速度ポテ

ンシャルであり，第2項は滑走艇後端に強さ df(y) の微小馬蹄渦が分布した速度ポテンシャ

ルを表す.この意味で両者は全く同じ意味を与える.

重力の影響を考慮した滑走艇の傾きに関する積分方程式(2.2.8) 式と滑走艇の高さに関

する積分方程式 (2.2.13) 式は

空(μz川， y
OZ 

1 _L 1 _, , I 1 I x ¥ 
=二事 f(η) ~ I ~ ¥'l 11 + "" I 

4π工 1 -¥ '" l (y - η)2 ¥ -I Jx2 + (y_ η)2 ) 

Kn r~ 工∞ Rec3B 
~ I -~ r:. 1_ . • ;;-二つ ÎÏsin(kx cos B) cos(k(y - η) sin B)dkdB 
πJ-5刈

ーん24se川山secB) 

ﾗ 叩(ωU 一M 似仙山Bsin B)叫9め)μdB

+ 兵矧~l (0 μバ(ぽご乙ωω?川川η川川)~ 
日ム1ιlw(η) ., l {(x ーと)2+ (y- η)2} 2 

Kn r~ 工∞ K2sec2 B 
~ I -" r:. 1_ '. ~-~ム。 cos(k(x ーと)cos B) cOs( k(y - η) sin B)dkdB 
π J-~JO κ- 1¥n 

+叫んec6B si叫ん(x ーと)sec B) 

×叩(y -'7) sec2 11 sin l1)dl1 }ωη 
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(3.2.3) 

H( -lw(Y) , y) 

=土事lr(η) ~ I 1 __ ¥? (ト一lωW仰(ωωνω) 十ゾρlw川仰(ωUω)2 +刊(y 一的
π丈l~\' l/ l(ωU 一 η川)2 ¥ 'YY '''' V 'yr  '''' ¥.:7 1;) 

弓江μA∞ k1;L仰げ2句0C∞伽州Oω州S可(叫(ωωUω) c州 C∞Oω州S
0め) 一ん 1ι: Se川n叫(一Kωd山州1汎W川内州4ゲ以刈rベ々制(ωωUω山仰向)s同同S臼悶ωe印cB州

×吋(y -77) sec2 B sin B)dB}dη 

剖CんムんιW川山州W(77) J.1(何ωJη的77) J.1(戸〆μ以バ州川(ぽ仏川と乙いç ， TJ)川川ηω){し(ωぷ山山山UJム山J九斗斗ηωげ)戸2(1+ Jゾ(←一lω…W川一J(ムJ口jJ;
与 Aμ10=∞ kfz::29Sin(k(-lw(U)-ωめ州U 一 η)sin B)d凶

ーん3た se♂ 9州ん(-lw(Y) ーと)sec B) 

×叫(y - η)白川叫~dη

と表される.

Q(川い)三土~ {A. 1 ~\2 (仏Z 一ごい+ゾ山(x 一 ç)げ)戸2斗川+刊(y 一 ω
4πl (y 一 η)戸2 ¥ - ~ V ¥ - ":) I 'v 1/) 

+ Ko r~ t∞ m4B 
π J-~ l� k -Ko sec2 B 
x cos(k(x ーと)cos B) cos(k(y - η) sin B)dkdB 

-ん1ζん;子S山
×刈C叫(ωU日川一→吋ηωω)

(3.2.4) 

を定義すれば， Q(x ， y; 乙 η) は(乙 η) の位置に循環強さ 1 の微小馬蹄渦があるときの (x ， y)

での波高をあらわす.よって Q のとについての微分仏(x ， y; ， と?η) は微小渦輸によって生じ

る波高である . Q, Q，の Z についての微分Qx(x ， y; ， と.η) ， Qçx(x , y; 乙 η) はそれぞれ馬蹄渦

と微小渦輸によって生じる波の傾斜，すなわち水面での Z方向の流速を表す.このような

Q を用いれば，重力影響のあるなしに関わらず，滑走艇の傾きに関する積分方程式と滑走

艇の高さに関する積分方程式は統一的に

θH , _L1 
石(x， y) = 1-1 Qx(X ， y;O ， η)r(η)dη 
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-itwhpzEMMμ(ç， 'rJ)d軼r; (3.2.6) 

H民〔←同一

一fr._ll引1Jjf!:lJミ~(←-lw(:ω伽め札山， y川川 (3.2.7) 

と表される.

(3.2.6) , (3.2.7) 式を用いれば，先に示した汎関数 (3 . 1. 15) 式は以下のようになる.

山，f山3

+ i: i~んんムW川内州w(y) jl(ωωJνωy) jl(川ρ以仰山(μ仇Z久川， y){正 仏似(川 O仏h川叩?川川η川)刊η

-k tw(η)Qzf(丸山+1'1 {ト付何一J引F穴(仰(叫
+ 1'1 f'(哨 Q(ール(y) ， y;O ，'rJ)f(η)dη

-f(1ん(η)QE(-Jw(U)3山川)矧η}dY

制約条件 μ(0 ， y) = r(ν) 

汎関数の第 1 変分をとると以下のようになる.

6 口 = よZιムムW川山(ωJνω)
一1(1 j_~んんムι川州州(何η川)夕Q仏似ωωいz吋ぷ山~(ρ仇(μ仇Z丸?山) μ (ç, 州

+ よ山6町印川叶νωぺ)イ{-H引(←一Jω凶州州W川仰刷州(ωω叫Uω外山州)，y必Uω)叫Q( 叫), y;ぶ川U弘ωi刈0，川川川川川η引v州川川)r川附r町附川(付ωη川)d向η 

一1(1 j_~ムムんιM山川(何η引) 仏似(←一刈
+ 乙ZんんW川J(

一fr_
1

1 j_~んんんん川州川(付η引)夕Q仏似ωωQx~(ç ，ぷx~(ç，点必(ぽ仏ご乙?仰川?川η帆州
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(3.2.8) 

+ 1', ðT(Y){-H(O， Y)叫 Q(-ω(η) ， 山)f'(η)dη

-k tw(η)帆弘O仏h川?川η

Uω ) ), y川+ 乙ρ山6釘lωM州州叶W川仰州(ωω叶νωぺ斗)[十[トμ以川(ト付一」匂Jωw(ωUω山州
x{ 一誓(←一 JルM刷州州W川仰州川(ωω叫Uω札山川)，y川Uω)叫仏似(叫)川， y;-パ~一」匂lωW州 η的ポ帆州山)庁削内州r町何川f'('rJ )d付ωη川)d向η 

一正 ZんムムんW川州州(何ωη的) 仏弘ωωωfμ必必(ぽ仏5乙ω】

×イ寸(十一誓(ト一ωM凶州叫(ωω叫Uω札山州)，y】J川Uω) 叫Qx( -lw(Y) , y; 0, η)r(η)dη 

-K1w(η)Qzf(-lw(山
(3.2.9) 

第 1 項目，変分仰に対するオイラーの方程式は， )1慎流れの滑走艇の傾きに関する積分方

程式である.第 2 項目， 8f'に対するオイラーの方程式は， )1慎流れの滑走艇の高さに関する

積分方程式である .

第3項目，変分6μに対するオイラーの方程式は，逆流れの滑走艇の傾きに関する積分方

程式であり?第4項目，変分8rに対するオイラーの方程式は，逆流れの滑走艇の高さに関

する積分方程式である.

第5項目，変分8lw~こ対するオイラーの方程式は，スプレールートラインが渦線となる

関係，および逆流れの Kutta の条件である.

このように重力のあるなしに関わらず，本論で示した滑走艇の未定浸水面を求める変分

原理が成立し，汎関数日が停留するとき満たすべき積分方程式 (3 . 2 . 6) ，(3.2. 7) 式をともに

満足する.

3.3 3 章のまとめ

第3章では第 2 章で示した，満たすべき 2つの未定境界の積分方程式を変分直接法によっ

て解くために，その基となる新たな変分原理を示した.結論は以下の通りである.
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1.浸水面を既知とする問題に対しては，従来から Flax の変分原理と別所の変分原理が

知られていた.未定浸水面問題に対する展望を得るために，この 2 つの変分原理に

ついて調べ，逆流れを含めることが重要であることがわかった.

これらの原理は船底圧力を変関数としており，船底圧力のスプレールートライン上

で、の特異性のために，未定境界問題を解決する手段とはなり得ないことがわかった.

2. 渦線関数を用いれば，船底圧力の特異性に伴う問題を解決できる.さらに渦線関数

の滑走艇後縁での値は，スプレ)条件を課した上でさらに， Kutta の条件を課す余

裕を持たせるために，渦線関数とは独立な循環分布として扱い，方程式に自由度を

持たせることが重要であることを示した.

3 禍線関数と循環分布，未定浸水長分布を独立とし，さらに随伴変分原理となるよう

に逆流れの渦線関数と循環分布を加えて， Kutta の条件を制約条件とする汎関数を
示した.

オイラーの方程式が満たすべき滑走艇の傾きに関する積分方程式と滑走艇の高さに

関する積分方程式となり，当初の目的が達せられたことを示した.

さらに?随伴変分原理であるため，逆流れに対する積分方程式もオイラーの方程式

となり，また未定浸水長の変分に対するオイラーの方程式は，スプレーパ(トライン

が渦線となる関係、，および逆流れの Kutta の条件に相当する式で、あることを示した

4. 本論で示した変分原理が重力影響のあるなしに関わらず成り立つことを示した.
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第4章 変分原理による滑走板の浸水面の決定

この章では，前章で示した滑走艇の未定浸水面を求めるための変分原理を用いて具体的

に滑走板の浸水面形状を求める.重力の影響を無視する場合については，高アスペクト比

の滑走板の浸水面形状が求められている 13)から，この結果と比較し変分原理による解法

の有効性を確認する.さらに重力の影響を考慮に入れた場合の滑走板の浸水面を求める.

また細長滑走板の浸水面について，変分原理を用いる解法の指針を示す.

4.1 重力影響を無視した高アスペクト比滑走板の浸水面

本論で示した変分原理 (3. 1. 15) 式は，線形理論の範囲内ではすべての条件を満足する.

既に述べたように変分直接法の観点からは3 どのような近似に基づいた試験関数を用い

ても，その程度に応じた解が得られる.一方，汎関数自身も何ら厳密に計算する必要はな

く，まだ若干の近似を行える余裕がある.

本節では，汎関数 (3. 1. 15) 式に高アスペクト比近似を施せば，どのような近似積分方程

式が得られるかについて調べ，さらにどのような試験関数を用いるのが適当か考える.

汎関数 (3. 1. 15) に表れた項は， θゆ/θz]z=O ， h( -lW(Y)l y) とそれらの随伴mE;hAこ対応する

項から成り立っている.θゆ/θz]z=O ~こ対応する (3. 1. 15) 式第 2項は

θゆ 1 T{;.l r(η) J1 I X l J 
一(x 1Yl 0) =一事 ~ 1 + ~， , n } d ôz ,--, .::n- , 4πJ二 1 (Y- η) 2 t -, ¥/ X2 + (y 一行)2J 

1 Tj;l (O μ(乙 η) 汁ー
十一一班 I �':>' '1/ ~ df.dη 
知J-1 J-lwCη) {(x ーと)2+ (y _ η)2} 言 ー

1 Tj;O I ~ ¥ d� I 1 T{;.l r(η) 
信一~r(y)'='+ ~腕 μ(ω) +-R 2dη (4 , 1.1) 

π X I 271"]二 lwCν)ï\':>'V/(X ーと)2 ' 4J二 1 (y - η) 

と近似でき，同様に h(-lW(Y)l y) に対応する (3. 1. 15) 式第4項は

1 T{,. l r(η) ( J I \, /7 I _ ¥? I I _ . __ ¥? � 
h( -lW(Y)l y) ニ -F1-lw(u)+ ゾlW(y)2+ (ν-η)2 ~ dη 

47r)二 1 (y- η)2 l UVY ¥V/ V -H  ¥V/ ¥V '1/ J 

+土{Il (Oμ(乙 η)
4πY二 1 }-lwCη) (y - η)2 
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と近似できる.

{1+ V(-J;2?と(y -17)2} dJ;dη 

+討凸叶ん(ν)-JCULF

(4. 1. 1) 式は書きかえると

( 4.l.2) 

θø ， ,,' 1 ぷo 2po(乙 u) Ir , 1 ぷ 1 f'(η) 
万二(川， 0) 勾 -zーlw(U) z-f df+dlFfη (4.l.3) 

となる.第 1 項は U断面を 2 次元的に見たときの上向き誘導速度であり，第2 項は後曳き渦

による吹き下し効果を表すから， (4. l. 1) 式は Prandt1 の揚力線理論と同等の近似である.

(4. 1. 2) 式も同様に書きかえると

九(-lw(y) ， y) 信一土!~ ，， 2po(乙 η)log ト lw(y) ーとIdç
271" J-Iw {ν) 

f (y) f1 , _ _ 1") ¥ I 1 Tfr 1 f (η) 
ーす一(ト log 2) 十一事\. 1/ • dη (4.1.4) 271" ,,- --0  - , ' 4πJ二 1 Iy- η| 

となり，第 1 項，第2項は 2 次元的波高，第3 項は後曳き渦による影響を表す.

このような近似を行えば，汎関数の近似， TIαは

日α[μ?β ， r ， f ， lwl

三以内){一山)誓(x ，y) -仰?4叶dx dy 

+LIltw(JM(十吋+会fwM57U)(Z え)2}叫
+よ {-f'(y)H( -lw(y) , y) -f(y)H川dy

+Ar叶誓log Ilw(y)J 一翌(υl 一叫10均O句g

去んんωω)JA;fムυ1〉}ごF々 +剖凸凸d咋U

制約条件 μ(0 ， y) = f(y) (4.l.5) 

となる.本来の Plandtle の揚力線理論では(4. 1. 3) 式のように吹き下しの影響が考慮され

るが，波高に後曳き渦が考慮、されているので省略した.
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これまでμ と rを独立として扱ってきたが，物理的な観点から考えれば，Kutta の条件は

滑走板の後端で、μがrに等しくなることであり， 2 次元的特性が顕著に表れることを考え， μ

は

μ(x ， y) 三 f(y)μ*(x) (4.1.6) 

のように表すことができるとし，変数z を

Z 三 lw(Y) x. ( 4.1.7) 

と変換する.

試験関数は既に述べたように，制約条件を満足する限り，どのような関数を用いても，

その程度に応じた停留解が得られる.ここでは汎関数の核が 2 次元的要素の強し\近似をし

たので，試験関数として以下に示す， Birnbaum級数が適当であると考えられる.

みo(ω)=α1再叫-ç(ç+ 1)刊3Ç~ーとい)+α3ç2~ーとい)+ 山)
本論の例はすべて平板の滑走艇を考えているため，初項だけ取り出し

〆(♂) =刊日々
何)=江胃炎 (4.1.9) 

と選ぶことにする.被積分関数は 2次元平板翼に対する線形圧力分布を意味する.このよ

うに与えたので

μ(0 ， y) = f(y) (4.l.10) 

β(-lw(y) ， y) = f(y) (4.l.11) 

となり， }I頂流れ?逆流れに対して Ku七回の条件を課したことになる.

このとき，近似汎関数， IIαはr ， [', lwを独立な変関数として，次のようになる.

日α [f ， f ， lwl

三日:lw(y) {一町旬川Uω山)

+バよひt，f'(町(ωω戸叶一￥守]午去シ+号号翌;子2f， (:.ι1刀Ji〆2〆バd々可ç*傘)川
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+ 乙{ -ﾏ'( 似(-lw(y) , y) -f町山川(ωωUω川州)川H町(ωO， y) 

+ 乙ひt f'(町(ωω叶叶Uωぺ)イ十(十一嬰苧i仙O
+話前rωi凸UP古凸宇竺有万司i+配信~dÇ'}dY 

平板を考えているから

ZM 二一

H(O , y) = Ho : const. 

H( -lw(y) , y) = Ho + ァ lw(Y)

lR(y) 二 lR : const. 

(4.1.12) 

(4.1.13) 

(4.1.14) 

(4.1.15) 

(4.l.16) 

であり， (4 . 1. 9) 式の実際の形を代入すると，汎関数日αの第 1 変分は以下のようになる.

5口α =tb �f'(y) [ま川(y) -f(y)} 
J U _1 1_.¥ f(y) 
叶 -Ho ーァJw(U)-3Flog lJw(U)l 

+主回 10庄内+土語b 旦~d7}¥ 1 dり
2π--0 
_ , 

4πJ二 b Jy-η1~"II~:f 

+心的)[ま(州w(y) -f'(y)} 
(-F(U) 向) 1 

_ _ 
f) I 
1 Tr/ ﾏ' (η~I d7)} 1 2πog Ilw(y)J + 一一均2+ 一斑 η~I 針。 4πJこ b Iy-η| リ l

rb ^'--_(",\ I スヶ ァ 1 .， I 1"1 
f(y) 1 �/ J + よムb 釘伽州W川(ωωUω)l τFr町山削(ωωUω) 一 z寸iい1+ 2℃π ア JルW内刷(ωωUω川)jドr川川(ωωUω仰)

f , f , lルWを独立に扱う限り仇，必ずしも有用な方程式は得られないが，その片鱗を見出す

ことができる.実際， (4. 1. 17) 式の8f' (y) に関する変分の項(第 l 項)の内，第 1 項目は滑走
板の浸水長とrを規定する関係，第2項目は滑走板の高さに関する積分方程式である.同
様のことは8f(y) に関する変分の項についても見られる.

(4. 1. 17) 式の変分が実際的な意味を持つよう r と lw を独立に扱うことを止め

f(y) =πTlw(y) (4.1.18) 
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すなわち， 2 次元平板翼に対する翼弦長と循環の関係、で拘束する.これはμ専を(4. 1. 9) 式の

ように与えたときの，滑走板の傾きに関する積分方程式の解である. 8f' (y) に関する変分

(右辺第 1 項)が O であるとき以下の積分方程式を満足する.

f(y)L_17 f_\ ,, 3f(Y)'__n , 1Tfrb f(η) 
Ho + Tlw(y) = 一一一 10g Jlw(y) I +一一一 10g2 + A~_ JfI一一~dη (4.1.19) 

2π2π4πJ二b Iy-η| 

これは

Hn ー 盟 102" -;-ーと f(y) 什 _1 ん土J 工仕1η一一一 一一一.一一 一-
v 2π 一。 Ilw(y)1 π ぃ 一。ード 4π丈b Iy-ηI~'I 

( 4.1.20) 

とも書ける.これは松村ら13) が摂動論的に厳密な角勃庁で示した積分方程式に他ならず，ス

プレールートライン上で波高と滑走板の高さが一致する条件である.これにより，本論で

おこなってきた近似が妥当なもので、あったことが分かる.

一方，逆流れに対しでもF と lw を滑走艇の傾きに関する積分方程式を満足する関係，す

なわち

f(y) =πTlW(Y) (4.1.21) 

で拘束すると，釘(y) に関する変分(右辺第2 項)が O であるとき以下の積分方程式を満足

する.

r(y) , 11 / \1 , 3f(y) , n , 1 Tfrb f(η) 
Ho = 一一一 10g Jlw(y)1 + ~~ '<1

1 10g 2 十一事一一'---;dη (4.1.22) 
2π4πJ二b Iy-η| 

これは，逆流れに対する滑走艇の高さに関する積分方程式である.ただr と Fは同値とし

ているから， (4. 1. 19) と (4. 1. 22) を同時に満足することはないと考えられる.先に逆流れ

の存在に対しての疑問を示したが，これを見る限り少なくとも順流れと同じ浸水面を持

ち， Kutta の条件を満足するような逆流れは存在しないと考えられる.それでも， f と lw

を(4.2.25) 式で拘束したとき，汎関数日αのFに関する変分，すなわちδ日α/θFが 0 となると

きの lw(ν) が求めるスプレールートラインの形状である.このようなことは，滑走艇の高

さに関する積分方程式を，逆流れの循環Fを重み関数とした重率残差法であると解釈すれ

ば問題ない.実際，随伴変分原理ではこのような意味があることが知られている.

松村らは (4. 1. 20) 式を角料、て解を得ているが，変分原理によればはるかに簡単に，かっ

本来持つべき性質が損なわれない近似解が得られることを示す.近似汎関数 (4. 1. 12) 式は

lw と Fの関係を拘束したので、lwのみの関数となっている.ここでは，例えば単純に
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lw(y) = lWoflヲ2 (4.1.23) 

を用いてみることにする.

f(y) ニ π7lW(Y) ( 4.1.24) 

と拘束しているから， δ日α/θFが 0 となる関係は

aIL (1  ,_ _ _ _ _, _ 2 _ _ , _ , 1 Hn) -穰U 

= 7 t -~(7 一 10 log 2)lwo -~l計戸匂h旬ω川L切w.ゲ'0 1ωOδf l 3 ' . ----0 -r yy 0 3 . YY 0 --0 ' • YY 0/ 2" T J 
( 4.1.25) 

となる .7は O ではないと考えているから， θ日α/θFが 0 となる lwoは HO/Tのみに依存する.

Ho/ァは滑走板の静止時水線の座標(-lR) を表すので，滑走板の静止時の浸水長が同じで

あればスプレールートラインの形状はトリムには依存しない.

θHα/θf~こは lw.。に関する対数非線形項が含まれるため， 0 となる点に多様性を生じさせ

る . lwo く O となることは物理的にありえないので， lwo > 0 に限って考える.解の性質を

見るためにθHα/θrを図示すると Fig.5 のようになる浸水長lwに対してθ口α/δ?を置点し

ているので，それが 0 となる点が実際の浸水長で、ある.この点は，静止時浸水長 lRに対し

以下の 3つの場合に分けられる.

i) lR く O の場合(滑走板の後端の高さが静水面より下にある場合)

θ日α/θFが 0 となる点は 1 つ.

ii) -0.15 くらく O の場合(滑走板の後端の高さが静水面よりも上にある場合)

θ口α/θFが 0 となる点は 2 つ.

iii) lR く -0.15 の場合(滑走板の後端の高さが静水面よりも上にある場合)

θHα/θrは lwo > 0 に 0 となる点を持たない.

らと lw.。の関係を図示すると Fig.6 のようになる.

松村らは13)1'骨走板の浸水面は滑走板の後端高さが静水面より下にある場合は l つ，滑走

板の後端高さが静水面より上にある場合は 2つの解があり，後者の場合，解を持つために

は滑走板の後端の高さには限界があることを示したが，本論で示した汎関数は，非常に簡

単な試験関数を用いているにも関わらず，このような性質を失つてはいなし\

このことは，重力影響を考慮し数値的にも解くことが困難になる場合にも，変分原理に

よる解法は方程式の性質を反映した解を導くことを期待させる.
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計算によって得られた浸水面形状を示す. Fig.7 は松村らの計算結果との比較である.解

の形を楕円分布と仮定しているため，滑走板の側端で松村らの計算結果のように浸水長が

有限値をとるような挙動は示さないが，その違いを除けば，両者はよく一致している.

実験結果を Fig.8 に示す.これは全幅800[mm] のアクリル製の滑走板を U∞ = 3.0[m/s] 

(Fnb = 1.515) ,7 = 60で曳引したときの浸水面形状である.なお，図中の数値は滑走板

の半幅で無次元化したものである.実験で、滑走板が接水する限界の高さはら = -0.07 に

相当し，計算で求めた値， lR = -0.150 に近い値をとる.しかし，浸水面は実験値に比べ

2倍程度大きく見積もられている.この原因は重力の影響を考慮、していないことが考えら

れる.重力の影響は滑走板の近傍での局所波を低減する効果があると考えられ，それに

伴って浸水面の減少が見込まれる.

4.2 重力影響を考慮した高アスペクト比滑定板の浸水面

前節で重力を無視したときの滑走艇の未定浸水面を変分原理を用いて求め，簡単な試

験関数を用いても 満たすべき積分方程式の良い近似解が得られることを示した本節で

は?さらに重力の影響を含めて計算を行うことを試みる.汎関数は重力影響を含めると，

複雑になるため，近似なしに計算することは困難である.重力影響に対する知見を得るた

めに，前節で、行った高アスペクト比近似を施すことにする.

高アスペクト比近似は， 2 次元翼断面内流れを考え，それに吹き下しの影響，波高の後

曳き渦による補正を行うことである.

重力影響を考慮した場合， 2 次元翼断面内流れに対応する流れは， 2 次元滑走艇まわり

の流れである. 2 次元の場合，重力を考慮しなければ，遠方では波高の対数的下降を生じ，

基準水面を決められなくなるが，別所14) によれば重力を考慮した 2次元滑走艇，あるいは

単なる渦糸による波流れは，無限前方で波高が 0 となる (radiation condi tion) 条件を課す

ことができ，波高の対数的特異性は消える.また，船体後方に生成される波長はb よりも，

むしろ lwに依存して変化するから，前節で重力を無視したときに表れた，波高の logIlwl 

の項にフルード数の影響が入り込むことが予測できる.このように，重力影響を考慮、し，

かっ高アスペクト比近似を行うことは，浸水面形状に及ぼす重力影響を知る上で、重要な意

味を持つ.

31 



前節で示した同じ論法をここでも適用する. 2次元断面内流れは別所14) によれば

か = t釘(十KんOぬSら制Ss(K1ん印刷ρ糾Z刈)

+去剖バWパ(し(ごムJ人Z刈げ)戸2+尚ん2SCん仰一ο小(ぽω5心似)附々 (μ4山川2幻刈lリ) 

九(-lw) = か'c(-Kol) 

+去剖i~w {十一二一JJι山Jιム一寸5f+ んω仙SぬS仲ルトい一寸ç)小)
と表される.ここに

S(KoZ) 三 J∞ピ瓦 exp[-ikZ]dk 
イトー

S(Kox) 三 Sc(Kox)+ iSs(Kox) 

(4.2.3) 

(4.2.4) 

と定義されており， S(KoZ) は原点にf=2πの強さの渦糸がある場合の複素ポテンシャル

を表している • Ss と SCを図示すると Fig.9 のようになる.

高アスペクト比近似と 2 次元流れが直接的に結ひ。つくと考えることができるのであれば，

SCの x= ∞での挙動は， 3次元的意味でも横波であり， 3 次元流れの近似としては発散波

は無視できると考えるのが自然である.このような観点から， θゆ/θZ]z=o及び九(-lw(y) ，y) 
を見直すと

主川0) 二一klJ:;AE(23U; 乙 η)μ(ç ，7])dçdη (4.2.5) 

九(-lw(y) ，y) = 一-fr_
1

1ιιム(何Jη)Q仏f山(山 (4.2.6) 

と書き表されるから， 2 次元流れを導くには， ηに関する積分区間をト∞?∞!とする必要

がある.しかし，このような近似は3次元性を完全に無視することになる.そこで

θゆ T[.1 r∞ 
万二 (x ， y ， O) = -yr_ 1J-Iw (η)Qzz(ZFMη)μ(れ)dçdη

=-HJ:広JzfMfJ)μ(ç ，7])dçdη

+ i知出{i:一6~hM川r町r(7])付ωηω)問Q仏机z

+寸1.:ムレ:Lン5jρ川r町m叩(付η
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九(-lw(y) , y) = 一_fr_1正11ιιム:::LL::LL;Lい(何Aη)刈Q仏似Eぷ(一ω州川(ωω机Uω札山山)，yμμ山;芯為とιい?川η
= -i: j_7w(η) Q�( -lw(Y) , y; ç ， η)μ(乙州η

+ i加切{tl-
6

r叩(叫)， y ，小川U払ω， 0，川川可ω)

一-f川川(ωωνω) ιj_Y~8 Qα(←一ω川州(ωωUω山)，y小ν払】山η 

+ 1.:ムレ:Lン6Jρ川川r円m川(付ωη引)Q似(一ルlw(Y州(ωωUω山)
一-f川川(ωωUω) ιど6 Q似(ト一ω州州川(ωω札Uω外山川)，y ，小川U払ω， 0 ，例

とすれば，極限をとる部分は

fl r(7))Q(-ω (y)小 0 ， ω

三 i同当{tいι{tl-
6

江rf;f7〉一」九6~h川r町町叩(付η

+寸Lムレ:Lン6J川r町町叩(付η

五円η)Qx(X ， y , 0, 7])dη 

三同(fl-6r(η)Q川山η 一 f(げJQz川川η

(4.2.8) 

+ (1 f(η)Qx(x ， y , 0 ， η)dη-r(U)ju-6Qz(ZEU303η)dη~ (4.2.10) 
Jν+6 J-∞ j 

のように発散積分の有限部分をとることをを意味し，これらの項は，本来の 3次元性の影

響と， 2 次元流れと近似してしまったことによる補償部分を表している.

ここには高次項が含まれるからこれを展開し，吹き下しと発散波を無視することにす

る. (4.2.7) , (4.2 . 8) 式の近似は以下のようになる.

� f 1"1¥ _ 
r(y) ( 1 

I T/' C' (T/, _¥1 
子(x ， y, 0) 応 7-1 一一+KoSs(Kox) ~ 
cJz . "刀 l X ) 

l 前o j 1 2-K02Sc(Ko(z ーと)) ~μ(ω)dç 
2π丈l(y) l (x ーと)2 --u -V¥--V¥-- ~I I 

J 
(4.2.11) 

f(y) 
h( -lw(Y) , y) 店三五.!__Sc(-Kol(y)) 
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+ 土 (~， , ~ 一 l__+KIん.08ぬSらs(が仏(ぱ尚附Kん削O“(←一 JルW山刷(ωωUω) 一 ごのω)リ) ~いいμ以バ(ぽ5乙ωω】J川Uω)
π 人んIωω(ωωνω) l 一-lw(ωωνω) 一� , --V-�--V¥ -yy ¥i::I/ ""//1 

1 Th1 f(η) 1 
( 4.2.12) 

釘j二 1 Iy- η「

θゆ/θzは down wash を無視したために 2 次元流れの式となっているが，九(-lw(y) ， y) には

第3項に 3 次元性の寄与を表す項が残っている.この項は重力影響を無視した場合にも現

れていた項である.

Ko くく l とすれば最終的に (4.2.7) ， (4.2.8) 式は以下のように近似できる.

θゅ f(y) (1π\ 
τ(x ， y , 0) 店一τート +~Ko)
UZ L/Tr ¥X  L ノ

1 Thoμ(乙 y)
事 2 dç 一三2μ(X ，y) 

2πJ二 lw{ν) (x ーと)

f(y) {l~~(T/ 1 (..¥¥ I _ .¥ 1 (oμ(乙 y)
h( -lw(山)店一三τ干(怜h均矧gば(仰Kんω.ol州J

2針π ムlw(川(ωνω) 一 tωw(ωωUω) 一 f

+土Th1 工包Lri伽η 
4πj二 1 Iy- ηI~" 

γ: Euler' s constant 

( 4.2.13) 

(4.2.14) 

重力のない場合との違いは，最低次の項について言えばh の log(lw(y)) が log(Koi~w(Y) ) に

変わり，当初の予測に合致した結果を得る.一方， θゆ/θzJz=o ~こは O(Ko) まで取り入れて

いる.これは摂動論的には高次項であり，無視されるところである.しかし，変分原理の

立場からはある程度の近似の自由が許され，それが変分原理の利点でもあるので，後で述

べるように実験とのよい対応を得るために，ここでは O(Ko) まで、取った.

これらを用いると近似汎関数日αは以下のようになる.

ル川ルJ= 山内) {-β(x ， y)誓M一向)誓叶のdy

+11w(U)β(川l{与 G+判
+対w(y)山;2df- 今μ(X ， Yl}d均
+ j_1
1 
{ -f(仰(-lw(山) -f(仰(O ， y)}dy

+lr叶
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制約条件 μ(0 ， y) = f(y) (4.2.15) 

滑走平板を対象としているので，

θH �-; (x , y) = -T  : const. (4.2.16) 

H(O , y) = Ho : const. (4.2.17) 

H(-l(y) , y) = Ho + T l(y) 

lR(y) = lR : consも

である.

ここで， x 三 l(y)♂と変数変換し，試験関数を以下のように与える.

μ(l(y川三早川♂)

25Eicιdç 

=勾??U)CR々
f(y) = fo{lヲi

β(川 =βo{l弓2

lw(Y) = lwofïコ

(4.2.18) 

(4.2.19) 

( 4.2.20) 

(4.2.21) 

( 4.2.22) 

( 4.2.23) 

( 4.2.24) 

これはμ?βに 2 次元平板翼の解の形を与えるものであり， )1慎流れに対してはμ(O ， y)=f(ν)

となるから Kutta の条件を課したことになる .

汎関数llaの変分旬に対するオイラーの方程式は，滑走艇の傾きに関する積分方程式で

あるから， θIIa/θβ=0 となる関係でr と lw を拘束する.

Aπ" (1 (0. , ~ ') 

ττ:: = I I lo(l ーゾ)戸 (x*)
oμ J-1 J-1 

f ~ fo V l' hて三 (1 Iμ牟 (x*) ，1 ri ，.. *ri削
x <ア一 一一一一一1\. nln.../l- 'IJ~I-+ 一一一一一一 I >αzαυ 
lπlwo v V y - v ¥ 4π) j V 

=0 
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を要求するから

fn =πTlWO -
v 1 + Kolwoα 

( 4.2.26) 

�) -0.06 く 1/Fnr2 く O の場合(滑走板の後端の高さが静水面よりも上にある場合)

θIIa/θFが 0 となる点は 2 つ.

iii) 1/ Fn/ く -0.06 の場合(滑走板の後端の高さが静水面よりも上にある場合)

θ日α/δFが O となる点はない.
しだた

α= 芸 +;fl 〆 (x.川・)dx. (4.2.27) 
これは求められる浸水面の解は，滑走板の後端高さが静水面より下に設定された場合に

は 1 つ，静水面より上に設定された場合には 2つあり，後端がある高さ以上に設定された

滑走板は滑走状態に入れないことを意味する.この解の性質は重力の影響を無視したとき

の高アスペクト比滑走板の場合と同じである.

Fig.10 に Fnr と Fη の関係、を示す.滑走板が滑走するための設定限界高さは滑走板の前

進速度によってことなるが，静止時浸水長ベースのフノレード数Fnrに対して

でなければならない. Ko = 0 のときには， fo 二介TlwO となり，重力を無視したときの解

に一致する.

( 4.2.25) 式の関係でr と lwを拘束すれば，汎関数IIaの変分げに対するオイラーの方程式

は滑走艇の高さに関する積分方程式であるから， θ日α/θr=o であるとき，満たすべき積

分方程式をともに満足する.したがって求めるべき浸水面は以下の関係によって定まる.

安=主{~ (市)-H古)
+1Jipα (-~log (会) + ~IOg2 ート -D}

円h
u
nu 
nu 

一
一ー

一
川

(4.2.31) 

となる.これは実験によって得た結果

( 4.2.28) 円
。
n
U
 

ハ
U一

一ー
一
川

( 4.2.32) 

式中 Fnrは静止時の滑走板の浸水長ベースのフルード数を ， Fη は航走時の滑走板のセン

ターラインで、の浸水長ベースのフルード数を表し，以下のように定義される.

Fn.,.
2 = u，∞

2 

- ---
1 -

glR 

Fn2 二 U∞2
-

glwo 

(4.2.29) 

に近い値をとる

得られた浸水面形状を重力の影響を無視したときの結果と比較したものを Fig.12 に，実

験結果と比較したものを Fig.13 に示す.浸水面は実験値の高々1.5倍の範囲に収まり，重

力の影響を無視した場合に比べ本論の結果は実験結果にかなり近づくことが分かる.

(4.2.30) 

なお滑走板が静水面より上に設定されている場合，静止時浸水長を負と定義しているた

め， FTh・2 く O となる . (4.2 . 28) 式は既知の FnT2に対し未知の Fn2が求められることを表

すから， トリムァに関わらず，静止時の浸水長ベースのフルード数が同じ滑走板は，航走

時の浸水長ベースのブルード数が同じになるような浸水面をとる.

δHα/θF と Fn2の関係を Fig.10 に示す. θHα/δFが 0 となる点は，静止時の浸水長ベース

のフノレード数に対し以下のようになる.

4.3 細長滑走艇の浸水面

i) 1/ Fnr 2 > 0 の場合(滑走板の後端の高さが静水面より下にある場合)

θHα/θFが 0 となる点は 1 つ.

これまで，アスペクト比の大きい滑走艇を取扱ってきたが，細長滑走艇について調べて

みる.重力の影響は無視することにする.

細長滑走艇を取扱う上でまず考えられる方法は細長体近似である.しかし，細長体近似

は前方の流場の影響を後方に伝えるのみで，後方の影響を前方には反映できない近似で

ある.言い換えると船首で初期値を与えると船尾までの流れが定まってしまう初期値問

題の形式となり，決して船首と船尾の両方で条件を課せる境界値問題とはなっていない.

Kutta の条件は船尾(トランサムスターン)で滑らかな流れの流出を期待して課されるが?
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この条件は，細長体理論にとっては後方の境界条件となるため，そのような条件は課せ

ない.

2 次元翼理論では， Kutta の条件を課すことで，後端での影響を及ぼす効果を有するが

摂動論的観点からは，細長体理論における Kutta の条件は，むしろトランサムスターン近

傍の流場にだけ影響を及ぼす役割を持っと考えられる.細長体理論は，横断面内流れを 2

次元的に取扱えるとしづ最大の利点を持つ.この両者の意味で，通常， Kutta の条件をは

ずして船尾部を除いた細長体の主要部の流れを解くとしづ態度がとられる.

しかし，本論で示してきた変分原理は Kutta の条件を制約条件としており，渦線関数μ

とは独立して循環rを必ず求める必要がある. したがって Kutta の条件を課せないような

近似を汎関数に施せなくなる.

横断面内流れを厳密に 2次元的に取扱うとしづ意味では細長体近似とは必ずしも呼べな

いが?揚力面理論に解決手段を見出すことができる.細長揚力面理論の特徴は，幅方向に

一定強さの渦糸を配置することであり，このことで揚力面積分方程式を簡略化している.

Bollay の積分方程式で、は流出渦を主流方向には流さず，ある程度の非線形性を備えている

が，上述の扱いであることに違いはない. Bollay の積分方程式のような非線形効果を持た

せることはできないが，細長揚力面近似の本質を

と，逆流れの渦線関数 βの試験関数はμと前後対称な形で与えることになる.ιのステッ

プは 3/4浸水長の位置にあり， Weisinger の考えとよく似た試験関数の組みと考えられる.

)1慎流れに対しては Kutta の条件を課し，循環rはμの滑走板後端で、の値に等しいとする.逆

流れに対してはKu七回の条件を課さずβ と Fは独立として扱う.

汎関数日， (3. 1. 15) 式の計算については，第2項の被積分関数は(x , y) = (-1/ 4l w , 0) で

の値を全積分範囲で用い，第4項の被積分関数は (x ，y) = (-lw , 0) での値を全積分範囲で

用いることにする.滑走板の浸水長lwが l より十分大きいと仮定しているので汎関数日の

近似Hαは以下のようになる.

3 . _ 3 
I1a[f , p, f , lwl = ~Tlwr + ~Tlw ，ü 

3 _ I r¥ 
+ ~lwβ( 一一 l

L, ¥ 7rノ

-2f(Ho + TlW) -2r Ho 

+ 2[' (三日 (4.3.1) ¥ ， 1ι同/ノ

)1慎流れに対してあらかじめ Kut凶の条件を課したため， μ と rは独立でなくなり，汎関数

の変関数はf， p, Ï', lの 4 つになる.

この近似汎関数が停留するとき，以下の方程式が満足されなければならない.

i) 滑走艇の幅方向に一定強さの渦糸を配置する.

ii) 滑走艇のセンターライン上で，物体表面条件をあわせる.

ことと考えれば，本論の汎関数を近似でき，高アスペクト比近似とは異なった有用な結論

を得るに違いない.上述の近似は，本論では

i)μ(x ， y) は z のみの関数

ii) 汎関数に含まれる yに 0 を代入すること

=寄=;川- ~) 

= 争=;川ーの
-2 (HO - ~~w) 

(4.3.2) 

(4.3.3) 

( 4.3.4) 

を意味する.

未定浸水面が長方形と考え，単純に幅方向に一定強さの馬蹄渦を l 本だけ配置すること

を考える. Fig.14 に示すように滑走板の揚力中心と考えられる先端から 1/4浸水長の位置

に置く.渦線関数 μの値はその場所までに生じた渦の総和で、あるから，そのような配置に

対するμは， Fig.15 に示すような滑走板の先端から 1/4 浸水長の位置にステップを有する

ステップ関数となる.このような翼理論的な考えに基づいた渦線関数を試験関数に用いる

(4.3.5) 

(4.3.2) , (4.3.3) から順流れの循環rと浸水長 lwは

-
円
4

一

T
一
A
H
A

一
+
-
q
L
 広

一
針

+
一

門
u
­

.
H

一

化
一
一

一
一
一
一

r

w

 

,a''u 

(4.3.6) 

(4.3.7) 

と求まる .lwは静止時浸水長 lRを用いて
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Jw=hFZ (4.3.8) 
2. 浸水面形状を単純な関数で、表し，停留解を求めたところ，簡単な代数計算にも関わ

らず，満たすべき積分方程式の解とよく一致し，解の定性的な性質もなんら損なわ

れていないことがわかった.しかし，重力影響を無視した計算は実験結果との対応

が悪く，実験結果より 2倍程度大きく浸水面を見積もる.

3 重力影響が滑走艇の浸水面に与える影響を調べるために，重力影響を考慮、した汎関

数に対して，重力影響を無視したときと同じ観点で高アスペクト上ヒ近似を行った.

重力影響を無視したときと同じ試験関数を選び，浸水面形状を求めたところ，重力

影響を考慮、した場合は，静止時浸水長ベースのフルード数が同じ滑走板は，航走時

のセンターラインでの浸水長ベースのフノレード数が同じになるような浸水面をとる

という関係、があることがわかった.

とも書けるから浸水長はトリムァには依存しない.航走時の浸水長lw と静止時の浸水長lR

の関係、を Fig.16 に示す.小松ら23)の解説書によれば，アスペクト比が l よりも小さい場合，

滑走板の航走時浸水長lw と静止時浸水長lRに対して，経験的に

lw = lR + 0.6 (4.3.9) 

の関係があるとされている.両者を比較すると，計算によって得られる浸水長は経験式に

よるものより若干小さくなるが，定性的な傾向はよく一致する.

これに対し，停留条件から求まる逆流れの渦線関数戸と循環Fは lR>> 1 のとき以下の

ようになってしまう.

7
 

7

f

H

 

f

H

4

 

可i

一
丹
、u

一

一
一
一
一

一μ
F

(4.3.10) 

(4.3.11) 

5. 浸水面は静水面より下に設定された滑走板に対しては l つの解が，静水面より上に

設定された滑走板に対しては 2 つの解が得られ，さらにある高さ以上に設定された

滑走板は滑走状態に入れないことがわかった.これは重力の影響を無視したときの

高アスペクト比滑走板の性質と同じである.変分原理を用いて得た結果は浸水面形

状，滑走板の設定限界高さ共に重力影響を無視した場合に比べ，実験結果に近い値

をとる.

6. 細長体を取扱う上での汎関数の近似の仕方について考察した. Ku七回の条件を課す

ことができない細長体近似は不適当であるが， Bollay の積分方程式のような細長揚

力面理論にならい，滑走艇の幅方向に一定強さの渦糸をおくような近似を行えば，

汎関数はその特性を損なうことなく，単純な形で表すことができる.停留条件から

得られる浸水面は実験から得られる経験式に見合った結果を得た.

これらは逆流れに対する Kutta の条件を満足していなし、. )1慎流れと同じ浸水面を持ち，

Kuttaの条件を満足する逆流れはやはり存在しないと考えられる.

以上のように，細長体に対しでも，本論で示した変分原理が滑走艇の未定浸水面を求め

る上で有効であることが言える.

4.4 4章のまとめ

4章では 3章で示した滑走艇の浸水面形状を定めるための変分原理を用い，具体的に滑

走板の浸水面形状を求めた.結論は以下の通りである .

1.重力影響を無視した場合の汎関数に対し，高アスペクト比近似を施し，その近似汎

関数のオイラーの方程式として，松村らが示した浸水長分布に関する積分方程式が

得られることを示した.もう l つのオイラーの方程式として，逆流れの浸水長分布

に関する積分方程式が得られるが，両者は両立し得ないことがわかった.そこで逆

流れに物理的な意味合いを持たせず，逆流れの循環分布Fを重み関数と位置づけ，重

率残差法と考えれば，問題なく順流れを解き得ることを示した.
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第 5 章 自由航走状態の性能

とすると，この時

α=;r。 (5.1.7) 

2 
Xc 二一一two

7f 
( 5.1.8) 

これまでに変分原理を用いて拘束状態にある滑走板の未定浸水面と滑走板に働く圧力

が求められた.拘束状態で、の流場が確定したので，自由航走時の滑走艇の浸水面と航走姿

勢，および船体に働く抵抗を求める.代表船型として，最も単純な箱船を選ぶ.

となる.これは，浸水長分布と循環分布を上述のような楕円分布と仮定したためであり，

試験関数が異なれば係数も異なる.

滑走状態では，重量と揚力は釣り合いF 重心と揚力中心は等しし\から

5.1 自由航走時の浸水面と航走姿勢

F
L
 

π

一4一
一年-

w

( 5.1.9) 

1. 2 
ーーし=一~lwn3 ~πrr V (5.1.10) 

箱船は，全幅 2b ， 重量Wとし，静止時にはトリムァS! 無次元浸水長 lsで浮かんでいたと

する.無次元重量ωと無次元重心Xcは，重量分布とは無関係に以下のように与えられる

九
w
-
J
M
 

U
 

eU 

1
i
Z
J
 

一
一
G
 
Z
 

一方，拘束状態での揚力係数CLと揚力中心 (-Xc) は

ん Lift
UL  = -:; 

jバbρ2 

_ j_11ρ/1 r(戸川r町川削(ωωUω)

1Zρl」F叫州州)
Xc = 一晶 -

LノL

となる.滑走艇の場合，翼とは異なり底面のみに圧力が働いているから，

なっている • Xcの分子は滑走艇に働く後端まわりのモーメントである.

前章で変分をとる際に用いた試験関数を用い

同) = lwoV1 -y2 

f(y) = fo{ï弓7
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となる.ここに， Fnsは静止状態で、の浸水長んに基づくフルード数である.

重心と揚力中心が等しいという関係、から
、
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(5.1.2) となり，浸水長分布を楕円分布と仮定した場合，自由航走時のセンターラインで、の浸水長

は，常に静止状態で、の浸水長 lsのπ/6倍になる.

一方， (4.2.26) 式より

f() = 7fTlWO -

v 1 + Kolwoα (5.1.12) 

(5.1.3) である.α は浸水長分布と循環分布を椅円分布と仮定した場合， (4.2 .27) 式で与えられ，お

よそα= 1. 66 である.α はμの試験関数の選び方によっても異なる.力の釣り合い式 (5. 1. 9)

に (5. 1. 11) の関係を用いると，
(5.1.4) 

/佐7fα 1

f 24 +一一一τ iア- 1-. I Fn/' I 1 
一九一! π3 I Fηs2 

を得，静止状態でのトリムと航走時のトリムの関係、が分かる. この関係を図示すると，

揚力は半分に (5.1.13) 

(5.1.5) 
Fig.17 のようになる.ブルード数が小さいところでは激しい船尾トリムとなり，フノレード

数が大きくなると，ほぼ水平に近い状態で滑走するとしづ結果となる.これは，滑走艇に

は一般的に見られる現象である.(5.1.6) 

43 

E-ーーーーーーーーーーーーーコ



船体に働く抵抗は船底圧力の抵抗成分であるから，抵抗係数は

ハ Drag
vD = τ 

;バb2

= T [11 f(y)dy 
第 6章結言

(5.1.14) 
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(5.1.15) 

滑走艇まわりの流れを知る上で重要なことは、航走H寺の浸水面があらかじめ定められな

いとしづ未定浸水面問題を解決することである。本論は未知の浸水面を求める問題に対す

る変分原理を見出し、その問題を変分直接法により解くことを試みたものである。本論で

得た結論をまとめると以下のようになる.

1.滑走艇まわりの流場が、 2 つの未定境界の積分方程式を連立させて解くことによっ

て定められることを示した。

2. 満たすべき， 2 つの未定境界の積分方程式をオイラーの方程式とする変分原理を見

出すことを試みた。これに先立ち、従来から知られていた浸水面が既知の問題に対

する 2 つの変分原理について、その特性を論じ、随伴流れを含めることが重要であ

るとしづ結論を得た。しかし、船底圧力を未知とするこれらの原理は、船底圧力の

浸水面前縁で、の特異性のために、未定境界問題を解決する手段とはなり得ないこと

を示した。それに代わって、渦線関数と循環分布の 2 つを変関数とすることにすれ

ば、上述の問題点を解決することができ、実際に新たな変分原理を示した上で、オ

イラーの方程式が満たすべき 2つの積分方程式となることを示した。

3. 本論で示した変分原理を用いて、変分直接法により 、 実際に浸水面を求める方法を

示した。まず、重力影響を無視し、高アスペクト比滑走板の浸水面形状を求めた。

変分直接法による解は、簡単な計算によって得られるにも関わらず、満たすべき積

分方程式を解し 1た解とよく一致し、持つべき解の性質も損なわれないことが分かつ

た。さらに重力影響を考慮に入れた結果は、重力影響を無視した場合に比べて実験

値とのよい一致を示した。また、 フノレード数と浸水面の簡明な関係、を得た。

4. 本論で示した変分原理を用いて、自由航走時の滑走艇の浸水面形状、 航走姿勢、な

らびに艇に働く抵抗を求めた。変分原理を用いれば、いずれの量もフノレード数の簡

明な式で与えられることを示した。

となる.すべての量を静止時の量で表すと

C
D 
= よ Js <) ( 24 +竺仏2 Ts 2τ 
針。ロ I ーとf. ¥ - - • Pn/ ) Pn/ 
Pns 

(5.1.16) 

となる.この関係を図示すると Fig.18 のようになる.

箱船としづ特殊な船型を選び，かっ浸水面形状に乏しい試験関数を用いた結果である

が，試験関数に工夫を加えれば，実用上も適用可能と考えられる.この意味で実用上の基

礎的結果を得たと考える .

5.2 5 章のまとめ

5章では，本論で示した変分原理を用いて確定した拘束状態にある滑走板の浸水面形状

ム滑走板の底面圧力分布を用いて，自由航走状態にある滑走艇の浸水面ならびに航走姿

勢を求めた.

代表的な船型として，単純な箱船を選び，船体重量と重{A:立置を与えて自由航走時の状

態を求めた. 自由航走時の浸水面，航走姿勢， ならびに抵抗係数はし 1ずれもフルード数の

簡明な式で表すことができた.浸水面形状を楕円分布と仮定した場合，自由航走時のセン

ターラインでの浸水長は， 常に静止時浸水長のπ/6倍となる . 航走時のトリムは，ブルー

ド数が小さい場合は激しい船尾トリムとなるが，フルード数が大きくなるとほぼ水平で、航

走する . これは，一般的な滑走艇に見られる現象をよく表している.
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m
d

マ2ゆ =0

θ2ゆ δゆ
一一 +Ko一一二 O
θX2 --vθz 

on free surface (A.0.1) 

[R] \lゆ→ o as X →-∞ 

である.

ゆp 三ゆ(x)

としたとき，任意関数c+に対し?グリーンの公式

[ {C~QマL ゆp 一 cþp\l~ G~Q} dV 
r (~*θCÞR / å(コRQ� 
= I ~ G~D ~'PJt - cþR一一旦~ dS (A.0.3) 
JSR l- ro..t θnR TH  蚣R  J 

が成り立つ.添字のRは境界における値を表す.

ゅの自由表面条件が陽に表れるように (A.0.3) 式を変形する.自由表面を SF ， 浸水面を

(A.0.2) 

SBl 無限遠を S∞とし，浸水面の内側の境界を CBi ， 外倶IJの境界を CBe1 自由表面の無限

遠での境界を C∞とすると ， (A.0.3) 式は

ん {G~Q\l~ ゆp -cþp\l~ G~Q} dV 
1 r ( ~+ (δ2CÞR θね\ 1 (月2 C~ 月刊 ¥1 
I ~♂ (-T+Ko-l 一向 (-52+Ko」皇) ~ dS 

-瓦 jsMFl RQIU4LRθZR)- \f/Jt

\ θzLh/j 
1 r θr rT*θゆR J. δ GRQ 1 ,1 0 

一五んB+SF 否~1 
\JRQ高-Cf'勺XR f 

UU  

+ム {GRQ誌-ゅ#)dS 山)
と表される .

左辺第 1 項はゆがラプラスの式を満足するから 0 である.左辺がゆQ となるためには，
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マ2C~Q = -4πó(X -XQ) 

が要求される.

(A.0.4) 式の右辺を見ると，ゅは自由表面SFで、は， 自由表面条件

θ2ゆRθゆR
τーっ +Koτ一一 =0
aXRゐ aZR

を満足し，浸水面SBで、は

θ2ゆRδゆRθ'PR
一一τ +K()一一一=一一­
藕R2 . --vθZR θXR 

(A.O.5) 

(A.0.6) 

(A.0.7) 

の関係、があるから， (A.O.4)式でゆを陽に表すためには，まず右辺第 1 項の 2 番目の]賓が SF

と SB で、 0 とならなければならない.

。2Cもハ θGもハ
て一二子 +KoτW~ = 0 on Z = 0 
aXR" aZR 

が要求される.さらに右辺第 2項は

1 (δ{川 θ<ÞR .1. θ CRQ 1 JCl 
-Ko J山F 否~) I...7 RQ広一 γ勺XR r LLI.J 

1 1 f n* θゆR .1. θ CRQ 1 J1 
ー-瓦 1CB:� I...7 RQ広一 ψ勺ZFfuL

+土 ， f C~ θゆR .1. θ GRQ 1d 
Ko 1CB

e 
l l...7 RQ θXR 仰 åXR I LL 

1 1 f ハ*δ<ÞR .1. θ CRQ 1 J1 
一石 1CB∞ l l...7RQ 蛉 R - l.jJ勺XR f LL~ 

と変形できる.

マゆ→ o as X →一∞

(A.0.8) 

(A.0.9) 

(A.0.10) 

であるから ， X →+∞のとき波が発生し，ゆ→ 0(1/y'x)となる .0∞での線積分項が疑問

なく 0 となるためには，

\7CRQ • o as X →∞ (A.0.11) 

となることが要求される.

(A.O.4)式右辺第 3項については，8，∞で速度ポテンシヤルゅはダブ、レット挙動をするか

ら，その積分はO である.
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以上のように C*が

マ2CpQ = -4πó(X -XQ) 

θ2Cもハ θGもハ
τ一二子 +Koつニ三= 0 on Z = 0 
σXR"" aZR 

\7CRQ • o as x →∞ 

を満たすとすれば，グリーンの公式は

47f<゙Q = 品叫-詑) dS 

一札(唯一向守} dl 
+ ~ t [C~ θゆR .1. δ CRQ 1d 
瓦 1CB_� 1...7~石i-vR万五;-[U 

(A.O.12) 

(A.0.13) 

となる . C*は境界Cs.， CB で連続であるから，ゆ θゆ/θz が同じ値をとると仮定すれば

r r't* ( θPR ¥ 
4ゆQ= γ 1_ C~Q I -:~n. ) dS (A.0.14) 

1¥ 0 J S B . ~ ¥ ax R J 

となる.船底圧力が浸水面の前後縁で0 になると考えれば，部分積分によって，

1 r θGエハ ーー
4ゆQ= 瓦んB3ZPRαδ (A.0.15) 

を得る.これにより，ゆを船底圧力と C*を用いて，陽に表すことができた.

ゆと C*の満たすべき条件の違いはゆが，無限前方で波なしであるのに対し， C*は無限後

方で波なしとなることである.これは，一様流の方向が逆であるイメージを抱かせる.Cネ

は本論で示した随伴変分原理の逆流れを表す量に相当し，随伴グリーン関数と呼ばれる.

ゅは物理的イメージに見合った表現，変分原理で言えば， )1慎流れによる表現が可能である.

マ2CpQ = -4πó(X -x(1) 

θ2CoλθCoñ 
マ」子 +Koτ二二三 =0 
aXR" aZR 

マCPQ → o as X →一∞

on Z = 0 (A.0.16) 

の，ゆと同じ条件を満足する CpQ を，ゆp の代りに (A.O.4)に代入すれば，右辺はG と C*

の境界条件から 0 となり ，

CQQ =GミQ (A.0.17) 
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の関係を得る.両者は単に変数を入れ換えただけであり，随伴変分原理における )1慎流れと

逆流れの関係と同じである.Gはグリーン関数と呼ばれる.

G を用いれば，速度ポテンシャルゅは

fθσPR 
πφP= 一一 I -_-，二土 VRdS

， ~ Ko JSB θZR -

と表され，船体表面の特異点分布で、表現される.

Xp 三 (x ， y ， z)

XR 三(乙 η1() 

とすれば，所要の条件を満足するグリーン関数G は

G = 
1 

J(x ーと)2+ (y -η)2 + (z 
_ ()2 

となる.

0x ーと)2+ (y 
_ η)2 + (z + ()2 

2子乙白川
ぷ∞ exp[k(z + ()] 
先 k -Koseωcos {怜ーと)ω B} ω {k(y - η) sin B}dk 

+ 2んζんe叫ん川)μ同附S民蹴ωe閃ec2♂2

x sin {Ko(μz 一ごç)s印ecB} cos {Ko(Y- η) sec2 B . sin B} sec2 BdB 

θGI 2Ko r~ J.∞ kekz sec B 

θと Jç=oπ J-~ Jó k -Kosec2 B 

x sin {k(x ーと) cos B} cos { k (y - η) sin B}dB 

-吋ζんe…
xc∞Oωs {Ko(μZ 一 �) 印悶cB}cos{Ko(y- η ) 民c2 B ・sin B}dB 

であるから， (A.O.18) より，速度ポテンシャルは

ゆ(x ， y, z) = 会 (1_ (~ .. 2po(れ)
￡士列 J-1 J-lw (ν) 

× l-iAA12Z 。

(A.O.18) 

(A.O.19) 

(A.O.20) 

となる.

x sin {k(x ーと)cos B} cos {k (y - η) sin B}dkdB 

-kojjfz叫ec3B 

×刊

重力を無視した場合には，速度ポテンシャルは

ゆ仲(伊仇川Z丸3

X {(y_ry~2+Z2 (千1+ x ーと )}ωη (y - η)2 + Z2 ¥ 
-, 

v(x ーと)2+ (ν-η)2 + Z2 ) J 
(A.O.22) 

と書け3 これは積分表示に直すと

ゆりふり二法ktw(η) 勾o川;AfekzseC9

x sin{k(x -�) cosB}刈(ν-7]) sin B川々dη (A.O.23) 

となる。したがって，速度ポテンシヤノレは重力影響によらない部分と重力影響を表す部分

に分離された形で

ゆ(x ， y ， z)

(0 ~ I 
'" 

¥ r z f ., , x-� ¥ 
--ﾇ--I I 2po (乙 η)~い+ .，~ 

0) 

，~ ~ I 4π よ1 人lw(η) l(u-η)2 + Z2 ¥ 
-, 

J(X ーと)2+ (ν-η)2+ジ/
Kn r~ ょ∞ kz

υl-P F V 一一つÏ)sin( k (x ーと)cos B) cos(k(y - η) sin B)dkdB 
7r J-~JO 

一んζe♂K川S印蹴e伐Cω

× ω(ん(y - 引 se川B)dB}ωη (A.O.24) 

と表すことができ， (2.2.7) 式の結果を得る .



付録B 重力影響を無視したときの高アスペクト

比近似

第4章の第 1 節の (4. 1. 1) ， (4. 1. 2) 式で示した，重力影響を無視した場合の滑走艇底面で

の z方向の流速， δゆ/θzlz=o とスプレーノレートライン上での波高，九(-lw(y) ， y) の高アス

ペクト比近似について述べる.重力影響を無視したときの滑走艇底面でのZ方向の流速

δゆj8z]z二Oは

θゆ 1 Tfr1 r(η) L , x 1 
τ(x ， y ， O) = 一事 ~ 1 + '" ~η 
驀z' J 07J- , 4ι1 (y- η)2l~ ' Jx2 +(y- η)2 J リ

{1 (oμ(乙 η)
+ァ l l3dとdη
日 J-1 J-lw (η) {(x ーと)2+ (y _ η)2} 2 

(B.0.1) 

である.高アスペクト比の滑走艇を考えているので，浸水長は 1 に比べて十分小さい.そ

こで

t 三 ε王 、 ミ三 εミ， lw 三 εlw (8.0.2) 

と変数変換し， ê → 0 の極限を考える.ηの積分区間を卜1 ，y -8] , [y -8, y + ó] , [y + ó, 1] 

の 3 つに分ける.パラメタの大小は

ε<<8<<1 

とする. (B.0.1) 式の第 1 項を 11，第 2項をんとおくと 11 は

1 fY-� r(η) f ~， 鷙 . r-.f ~\ ~ 
f{1+?で +O(ε3) ~ dη 

4π ム1 (y- η)2 1 ~ , y 一η[

1 r1 r(η) f ~. ci; • r-. f ~ J 
f {l+ 士一 +O(ε3) ~ dη 

4πjν+ó (y- η)2 1η-uf 

+土Tf?+Ó r(ηl J 1+ ε乏 し竹
47r J�-� (y- η)2 l'" , J�2i;2 + (y- η)2 J LÑ リ

と展開できる. 11の第 3 項を 113 とおく • 113について
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(8.0.3) 

(B.O.4) 

η 三 y+ εt (B.0.5) 

と変数変換すると

T~~ (n/.\ , dr(y)_.L'  /l/_2J 1 (" i; 1 
一一事 ó~r(y)+ 一一εt + O(ε) ~τ寸 εdt (B.0.6) 

4π丈-i du j c b i dT字予 j

となる.このうち，第2項の dI'jdyの項は t の奇関数の積分であるため 0 となる.したがっ

て， 113を厳密に積分すると

113 =話r(y)会{1+ふい O(c)

二知):[凸(品一歩}dt 

となる.

+出品-去}dt -2 {1 +去Hl +O(ε) 
二抗日(一戸主α: -~} + O(ε) 

ニーか吋

(B.0.1) 式の第 2項，んについても同様の変数変換を行えば，

{Y-6 (0_μ(ε乙 η) ~ε3 + O(ε3) ~ d~ 
釘人1 ) -é1w(η) l(u-η)3 ' -¥-I J 

土 {1 (O_μ(ε乙 η) ~ε3 + O(�3) ~ ~ 
4π )y+6 ムdw(η) r\-~" I/ 1 (η _y)3' -'-/J 

+土 [Y+6 [0. êμ(c乙 η) 令 dη
釘 Jy-6 んル(η) {�2(i; -~)2 + (ν- 州五

と展開できる.んの第3項を h3 とおき， 123について

η =y+ εt 

と変数変換すれば，

ん3戸= 会ι乙 江ムル似川川J何ω(") {Jl(ηωパ){トいいいμ以附以悶山(作ば氏εdêÇ，乙， yω)+す告附εêt +刊叫O(仰(作ε

ε{(伊￡一 ;2+t♂2}戸3 伊
55 

(B.0.7) 

(8.0.8) 

(B.0.9) 

(B.0.10) 



となる.ここでも，第2項のθμ/d仰の項は t の奇関数の積分であるため 0 となる.したがっ
て， h3は

エ= J_ {~ (Oμ(εç， y) 
47r J-Q J ・ "3 dçdt+ O(ε) 
π ムE ム川)ε {(i-()2 +咋

=zjEffp(53U)11-/t _1 ~ dと +O(ε)
J -ëlw {η) ε l(i ーと)2 V(i -~)2十 t2 J 一重

~ {O II( c� n,\ 1 2(6/ε) 
-47r J-~iur( .，，) μ(εω).: ー /dご+ O(ε) 

←ëlw(ηj ε (i ーと)2ゾ(i ーの 2 + (62/ε2) 

=対;w(ν)μ川:(2JO2d+O(ε)
となる.以上からθゆ/θzJz=Oは

学(x ， y, 0) = -出土+斗。 μ(εU) ぷ
d z' . ~， , 27r Ei ' 27r]二dル(ν)ε2(i ーと)2~

+土 I (y-6 f(η) 内 f(y) , dT'， バ1
4πl人 1 (y- η)2 UI(- -6~ 十石崎 01

+土 Ie f(η) -1_ f(y) df 1 J 
4πlん+6 (y- η)2aη 6 dy 同 61 + O(ε) 

と展開される.第3項，第4項の積分は6 → O のとき

土語1 f(η) 山= lim r J_ f (y-6 f(η) -1_ f(y) , df , J 
叫1 (y- η)2町一向 l4π い1 (y- η)2切 -7十石町

+土 J (1 f(η_) rln _ f(y) _ df 、 λ1
4π{ん+6 (y- η)2 U1'- -8--dy 崎 oﾌ I 

と定義され，発散積分の有限部分をとることを意味する. したがって

祭(川 0) = -型~+ ;_moμ(匂)_rlf
u"c. 祝日討ムdル(ν)ε(i ーと)2一、

+土Jrl f(η) 
れ 2dη+O(ε)

4πJ二 1 (y- η) 

となり) (4. l. 1) 式の結果を得る.

(B.0.l1) 

(B.0.12) 

(B.O.13) 

(B.O.14) 

次にスプレールートライン上での波高，九(-lw(y) ， y) の高アスペクト比近似にっし\て述
べる.

スプレールートライン上での波高) h( -lw(y) , y) は

h( -lw(y) , y) 
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哩 二二二二三竺竺一一一ーー「

1 Th-1 f(η) ( 1 1 _ \, / I 1. ¥ ') , 1 ._ ¥ ') � 
二一事 2' ~ -lw(Y) + ゾlW(y)2 + (y - η)2 ~ dη 

4πY二 1 (y - η)L V vv '''' v V VY '"  I '" . 1/ J 

剖剖1 ftんムムんωM川川W川州(何ωη引川JJぷ)パJJ(5C♂;f手(ぞf ;;川;Lパ沖2イ小(十l +Vv(←一 JルM…JW川一J(GJ口;J;
と表される.第 1 項をん，第2項をんとする.これまでと同様の変数変換を行えばーらは

1 rν-6 f(η) ( _ J 1 ¥ 1 \, /¥ 1 .2¥ 1 I V I_L \'I_~\? i -ElW(Y) + (y- η) + O(ε2) ~ dη 
釘人1 (y- η)2 l --YY'''I ""  '1/' ~，- IJ 

1 r1 f(η) ( J 1 ¥ 1 \, /¥1 .2¥ 1 I _ I L ¥IIJ¥') i -ElW(Y) + (η - y) + O(ε2) ~ dη 
4π )y+6 (y - η)2 l --YV ,,,, "'/ "" ~\- 'J 

1 Th-ν+6 r(η) ( 1 1 . . \, /1 I _ . ¥ ') , 1 _ __ ¥ ') � 
事~ -lw(y) + ゾlW(y)2 + (y- η)2 ト dη

4π]~-6 (y- η)2 l -YY ¥v' V -YY ¥vl ¥v '1/ j 

と展開される.第 3項をおとし， η 三 y+ εt と変数変換すれば，

ん3 =話 (r(U)+232Et +0(t:2) } 
Xt~ {-川) -ゾルω)2 +印t

=叔;EjP(-Jw(U) ーん(げ +t2} dt + O(♂) 

=守 {-2 + 21og2 -210g l-lw(y)1 + 2附 +0 (~) 
となる.一方，んは

ん=去fムJTZ(ε+ε2(下?と[+ O(ε3)} ~dη 

+ 去訂J.~ム:L6心ムんん(何ωJη引J)JC♂ぎ可叫;手引朴iパ斗(十ε +fεd代2η(でiナγ一寸とç) +叫O(ω(いゲ吋εE3

+ r fJW(η) C3 (ε + ゾρμ向Eρ代2汽(ぷ:fr出目山とT台t2(::2口;;ユ;j2
と展開される.第3項を 143 とし， η 三 y+ εt と変数変換すれば，

ん143戸= 去話民んムんωων)冷(トいμ以山(

占討沖汁(十ト1H+ J山(一L山山t;L江)三1二ゴih=LL;LLL(LL+什刊+t2 };}dμ 
= -4~tw(ν)Jfttdd+0(;) 
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(B.0.16) 

(B.O.17) 

(B.O.18) 

(B.O.19) 



となる.以上からスプレールートライン上での波高は

f(y) ー 1 (oμ(ε~ ， y) 
日w(山) =一三Flog| 一川)|-d

F ムlw(y) -lw(Y) -� 
f(y) 

一三五一 (1-1og2)

1 f (y-� f(η) .1. , n f \, c 1 
一~ I 一一~dη+f(y) log り4πl人1 (y- η) _., , ~ ¥::1 / ~~b ~ 1 

1 f (1 f(η) 1 , nf ¥ 1 C 1 . ,,( � ¥ 
一~ I 一一~dη+f(y) log ó い O(~)
4π lJν十ó (η _y)-'" -¥<);--O-j '~'\ノ

と展開される.第4項，第5項の積分は6 → O のとき

1 J/ f(η) ,}_ _ 1:_ r 1 r (y-� f(η) .1. , n f ¥ 1 C � 
-vi一一~dη 三 till}I L り 一一一-:-dη+f(y) 10g� ~ 47よ1 Iy 一 η1-'/ -�::� l4πi人1 (y- η) "", I I ... \~ J J.V� V f 

1 1 (1 f(η) J , rlf \, C 11 
A-_ ~ I 一一一dη + f(y) log り 14πt Jy+� (η_ y) _., I ~ ¥::1 / ~~b ~ 11 

と定義され，発散積分の有限部分をとることを意味する. したがって

r(Y)l~~1 ~1 IA.¥I 1 {oμ(é~， y) 
いw(山)一ーす log 1 一川)|-d

何ムlw(ν) -lw(ν)-ç 

f(y) 11 1__t)¥ I 1 ir1 f(η) J.. , /¥(饅 
一一一(1 -1og2) +一事一一~dη+0 (~) 

作工 1 Iy- η1-" , ~ ¥�) 

となり， (4. 1. 2) 式の結果を得る.
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付録C 重力影響を考慮したときの高アスペクト

比近似

(B.0.20) 
第4章の第2節で示した，重力影響を考慮したときの高アスペクト比近似について述べ

る.ここで、はスプレーノレートライン上でのの波高，九(-lw(Y) ， y) の漸近展開を示す.

Spray root line を x = -él(y) とすると，スプレールートライン上での波高は

(B.0.21) 
九(-εl(y) ，y) 

T~l r∞ r 1 ( 一εl(y) ーと) ¥ 
=一事十 μ(乙 η){ |1+f 1 

4πJ二 1 んl(ν){(u-η)2 \ゾ(-εl(y)_ç)2+(y - η)2) 

Ko r~ ぷ∞ ksec3 B 

π J-~ Jó k -Ko sec2 B 

x sin(k( -d(ν) ーと)cos B) cos(k(y - η) sin B)dkdB 

ーん2ζse川s(ん(-él(y) - と)sec B) 

x co叫ん(y 一 η) se州n叫ωη (C.0.1) 

である.ηに関する積分区間を卜1 ，y -ó] , [y -ó, y + ó] , [y + ó, 1] の 3 つに分け， 1 番目と

3番目の区間を外部領域， 2番目の区間を内部領域呼ぶ.内部領域ではさ以ことに関する積

分区間を [-εl(y) ， M] , [M， ∞l に分け，それぞれの区間を内部前方領域，内部後方領域と

呼ぶことにする.ただし

(B.0.22) 

ε <<M<<ó<<l (C.0.2) 

とする.各領域を図示すると Fig.19 のようになる.

外部領域では滑走艇はu軸上の-1 く U く 1 に縮退するので，この領域から生じる波高

九。は以下のように表される.
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+ Ko r~ rt∞ sec4 B 
π J-~ Jõ k -Ko sec2 B 

x cos(-kεl(y) cos B) cos(k(y - η) sin B)dkdB 

ーん2九 se州n(-KOEl(y) 間cB)

×叩い

これはε → 0 では Fig.2初O に示すようなU軸上の{ト一 1 ， y 一 6何]， [ωy+ 8， 1] に強さ f(η) の馬蹄渦が

分布していると考えることができる. (C.O.3) 式の表現は高次項を含んでいるが，内部領

域とのマッチングを考え今はこのままの形でおいておく.

次に内部後方領域について考える.ηをεでスケーリングし， η 三 y+ εt と変数変換する.

このとき内部後方領域から生じる波高 hiaは以下のように表される.

九(-ε川) = 去却話晃記~~{いh(什h仰r町山(ω仙U

×ら(-l(y) ートイ(-l(y) 一千r+t2) 
十五 r~ rtOO 町内

π J -~ J� k -K 0 sec2 B 

x cos( -kEl(y) cos B) cos( -kEt sin B)dkdB 

-叫s山川-KOEl(y)s旬。)

×川…C∞ωO凶s(ト一ん~ωωいEt山向ts胤tsec閃飢e伐d山c2ω仏ω2匂切Bs

この領域ではr町(句ω) が第 l 近似的にはr町(yω) となり変化しなし、から，縦渦がキャンセルし

Fig.21 に示すようなと =M上の強さf(y) の拘束渦と η =y-8 と η =y+8から後方へのび

る縦渦が存在すると考えることができる.

ここでt の積分範囲を [-8/ε ， 8/ε]= ト∞?∞] -[一∞， -8/ε] -[8/ε，∞!とたしあわせる

と， 1 番目の項は強さf(y) の拘束渦が y[-∞?∞l に存在することになるから流れは2 次元

となる. 2 番目， 3番目の項について変数を t からηに戻せばんαは

f(y) 
んα(一εl(y) ，y) rv 三FSc(-KoM))

一引に+ぶ)
×((Jη)2 (イ(y) -M + [(切) -M川y- η)

Ko r~ ょ∞ sec4B 

+7 ム~J6 k -Ko sec2 B 
x cos(k(一εl(y)-M) cos B) cos(k(y- η) sinB)dkdB 

ーんζse州n(ん(-El(y) -M) sec B) 

x co叫ん川田川。内
となる 14).

次に内部前方領域について考える.η 三 y+ εt とし，さらに5 三 εごと変数変換する.内

部前方領域から生じる波高 hifは以下のようになる.

1 心; (c  I 1;:  円川 -;:: ¥ _ L , ,,/ _2¥ I 
hif( -El(y) , y) = ,,'"_ff. I :. . ~μ(εç ， y) +云 (E乙 y)εt 十 O(E~) ( 
J ¥ --¥<7/1<7/ 41T・-~ J-f(y)I/\~'VI 艙' '''''( "J  

ﾗ(i(H -l(y) ーと;+ t
2
) 

t2 ¥ -, v(-l(y) -�)2 + t2} 
一竿AA12::20
x sin(k( -l(y) ーと)cos B) cω( -kEt sin B) dkdB 

-ん2〈 s山叫ん(-l(y) -�) sec B) 

Cωω川0ω州6め) ×れω…C∞ωO凶s(←一んいεd山向ts同S印蹴山山山e伐d山山山C♂ω仏川2句切2B si制S討i叫e}~d必t (仰附川

第 1 近似的にはμ以(ε5乙7η引)がμ以(Eë乙， yω) となつて変化しないので，流れは Fig.22 に示すように浸

水面の部分に強さμ(乙 y) の幅の大きな渦輪が分布し，後流面にはf(y) の渦輪が存在した

もの考えることができる.ここでも内部前方領域と同様に t の積分範囲を卜8/ε ， 8/ε]=

卜∞?∞]-卜∞， -8/ε] - [8/εp ∞!とたしあわせると， 1番目の項は 2 次元の流れを表し，

hifは以下のようになる.

f(y) ((1 / r.r 1/ ¥¥ (1 I T./ ~，， \1 
if (一εl(y) ，y) rvτ:J ~ Sc( -Koεl(y)) -Sc( -KoM)} 

L;/I 、，

+一一 - く -
2π ムf(ν)l -l(y) ーと

+ んい川εdぬ州Sむ制s(仏山川(陥陶州叶んル刷叶E吋叶(ト一ωω恥)ト一 ω叫州}トドμ以(Eë幻州川， y川訓yω似)d

古 Aι) 山) (作与ト+刊Oq4叫(4φ3必引)う)μd 
2 番目 ， 3番目の項からの寄与は高々 O(ε18) であることが分かる.

(C.O.7) 



それぞれの領域から生じる波高を変数をもどして合成すると，スプレールートライン上

での波高は以下のようになる.

九(一εl (y) , y) 

ぷ(U)-ttps'c(-Kocl(y)) 

+去 {f:~Ó +ム} r(η) { (y ~ 7)バ-cl(y) + ゾε21(y)2+ (y 一川

+ぞtfrk 一立:ω
x cos( -kcl(y) cos B) cos(k(y - η) sin B)dkdB 

ーん2五 sec4B sin( -Kocl(y) 記cB) 

×州Ko(Y ーかe内sin仰)尚

早(ど+ぶ)
x{ (y ~ 同Uω)ト一 M+吋ゾ(←一d刈仰(ωωUω)ト一 M川一ω(y 一 η)戸2 ¥ --, J 

+ぞ f: Þa∞ K1L。
x cos(k(-εl(y) -M) cω B) cos(k(y-η) sin B)dkdB 

ーんζs山叫ん(-cl(y) -M) secB) 

×州Ko(Y 一行) se♂ oω (C.O.8) 

第4項目のηに関する積分は∞，一∞で0 に収束すると考えられる.第3 項はη → y(η 竺 U 土 8)

のとき r(η) → f(y) であるので，第4項目と合わせて核関数の特異性を相殺することにな

り， 8 → 0 の極限をとっても第3項と第4項の和は有限値をとる.すなわち発散積分の有

限部分をとることを意味し，その和を Iとすると数学的には

三土手lr(η)~ (~. 1~\2 (一εl(y) + 戸21(y)2+ (y _ ηFÎ 
J二11(u-η)2 ¥ ~Y\:j/ I y'-- U¥::Jj I ¥::1 'IJ) 

+五~ (% rt∞回c4B 
π J-~ J� k -Ko sec2 B 

x cos(-kεl(y) cos B) cos(k(y - η) sin B)dkdB 

-附2ζs山n(ーん佐仙
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×叫b(y-1]) sec2 B sin B)dB ( C.O.9) 

と書くことができる • 1にはεについての高次項が含まれるのでこれを展開し，さらに発散

波の寄与は小さいと考えることにする.このとき九は

f(y) 
(一ε l (y) , y) ぉ τ:5!_!_Sc ( -Koεl(y) ) 

L，π 

+土 (0 _ ~ _ 7/ 1, ~ + K 0 S s ( K 0 ( -εl(y) ーと)) ~μ(ω)de 
2π んl(ν) l -εl(y)-ç . ~ -，~， W/  J//) 

1 T~l r(η) 
( C.O.10) 

的j二 1 Iy-η| 

となり， (4.2.12) 式の結果を得る.
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図表一覧

Photo.l Observation of wetted surface of planing ship model 

Photo.2 Observation of wetted surface of high aspect ratio planing plate 

Fig.l Coordinate system and defmitions of basic quantities 

Fig.2 Flow configuration around a planing ship represented by horseshoe vortices 

Fig.3 Direct flow and reverse flow 

Fig.4 Flow configuration around a planing ship represented 

by horseshoe vortices and vortex lattice on 出eplate 

Fig.5 Admissible types ofthe solution ofwetted length in the center plane without gravitational 

effects 

Fig.6 Wetted length to still water length at the centerline obtained by the variational method 

Fig.7 Calculated spray root lines to variable restricted conditions 

Fig.8 Measured spray root lines coπesponding to various restrained conditions 
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Fig.14 Flow model of a slender planing plate 

Fig.15 Trial function for the variational principal used for a slender planing plate 

Fig.16 Comparison the calculated wetted length of slender p凶1Íngplate with the experimental one 
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Photo.l Observation ofwetted surface ofplaning ship model 

( white line : calm water line ) 

Photo.2 Observation ofwetted surface of high aspect ratio planing plate 

( white line : calm water line ) 
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Fig.15 Trial function for the variational principal used for a slender planing plate 
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Fig.19 Definition of outer and inner region 

Fig.18 Drag coe百icientof planing ship for various still water length 
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Fig.21 Flow configuration 凶 inneroff region represented by horseshoe vortex 
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Fig.22 Flow configuration in inner fore region represented by vortex lattice 
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