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1. Introduction

Let p be a prime number and G a finite group with a Sylow p-subgroup P
of order p°. Let be N the radical of the group ring kG of G taken over a field &
of characteristic p. If 8 is the radical of the center of kG, then we see easily
that kRG-BCN. We shall show that R#=kG-B holds if and .only if G is p-
nilpotent and P is abelian.

The nilpotency index of R, which is denoted by #(G), is the smallest integer
t such that '=0. Suppose G is p-solvable, then it is known that a(p—1)+1=
#G)=< p" (Passman [11], T'sushima [12], Wallace [16]). Furthermore if G has
the p-length one, it holds that {(G)=#(P) (Clarke [2]). We see easily from this
that the first equality holds in the above if P is elementary, while the second
holds if Pis cyclic. However the equality {(G)=a(p—1)+1 does not necessarily
imply that P is elementary, as is remarked by Motose (e.g. G=S, p=2, see

Ninomiya [10]). In contrast with this, we shall show that if (G)=p°, then P is
cyclic.

NOTATION: p is a fixed prime number. G is always a finite group and P
a Sylow p-subgroup of order p°. As usual, | X| denotes the cardinality of a set
X. Let K be an algebraic number field containing the |G|-th roots of unity
and o the ring of integers in K. We fix a prime divisor D of p in 0 and we let
k=p[p. We denote by {p,, ---,®,} and {n,, -+, 7,} the set of irreducible Brauer
characters and principal indecomposable Brauer characters of G respectively, in
which the arrangement is such that (;, @;)=3;; and ¢, is the trivial character.

We put s((;-)zg @1

For a block B of kG, we denote by 85 and +rp its block idempotent and the
associated linear character respectively. F(G) (or N for brevity) denotes the
radical of the group ring kG and B the radical of the center of RG. The
nilpotency index of N(G), which will be denoted by #G), is defined to be the
smallest integer ¢ such that R(G)'=0. If G>H, then kG-N(H)=N(H)-kG is
a two sided ideal of kG contained in !, which will be denoted by €, (or & for
brevity). Other notations are standard.
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We shall several times refer to the following Theorem of Green (Green [7],
Dornhoff [4] § 52).

Theorem. Let G[>H and G|H is a p-group.
If Vis a finitely generated absolutely indecomposable kH-module, then V° is

also absolutely indecomposable.

2. Square sum of the degrees of irreducible characters

In this section, we mention some remarks about the dimension of N=N(G),
most of which are direct consequences of our results [14].
Let S be the set of the p-elements of G and ¢=3 x=kG. In[14], we have
res

shown that #(0: ¢) and we have the equality provided G is p-solvable. For
x:ZGa,xEkG, a,€k, we put al,(x)=z; a,. Note that o,(\) is the coefficient
ie i€

of the identity in ¢x. Hence cA=0 if and only if o ,(Ax)=0 for any xEG, or
0: c) = {NERG| a,(x0) = 0 for any xEG}  weeveevereneeenes (1)
Therefore, our result quoted above is written as
Proposition 1. If AN, then o,(x\)=0 for any x of G.

We next discuss the dimension of (0:¢). Let M=M;=(a,,) be the
(1G], |G|)-matrix over k defined as

1, if gh is a p-element
Pon = { 0, otherwise
Then, we have
dim(0: ¢) = |G| —r(M), where r(M) denotes the rank of M over k. -+++++(2)
Indeed, for A=2>laxckG, we have a-ﬁ(xx)=yeglaay, that is

M/ :i\= : for x€G. From this and (1), we get easily (2).
< ax) (0’;,(.?6’7\,) )

Furthermore from that R’ (0: ¢) and (2), we have
5(G) = lGl—dim,,Ngr(M) .................. (3)

If H is a subgroup of G, then M appears in M as a submatrix. In particular
r(Mg)=r(My). Now, recall that we have M=(0:¢) and hence s(G)=r(M)
provided G is p-solvable. Summarizing the aboves, we have

Proposition 2. If G is p-solvable, then we have s(G)=s(H) for any subgroup
Hof G.
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Remark 1. If H is a p’-subgroup, then r(M,)=|H|. Hence we have
from (3) that s(G)= | H| for any p’-subgroup H of G, which has been shown in

Brauer and Nesbitt [1] by the inequalities s(G)zl—G—lg |H |, where u=mn,(1).
u

In connection with the above remark, we give the following, which is essen-
tially due to Wallace [15].

Proposition 3. We have s(G)=|H| for some p’-subgroup H of G if and
only if GD> P, in which case H is necessary a complement of P in G.

Proof. “if part” is well known and easily shown (Curtis and Reiner [3]
§ 64 Exercise 1).

Suppose $(G)= |H| for some p’-subgroup H of G. Then we have
s(G)=ﬂ, which forces that »,=¢;», for any ¢ (1=<:=<7) (see [1] pp. 580). We
u

claim that u=p°. If this would be shown, then H is necessary a complement of
P and 7,(x) is rational for any x&G. Then the argument of Wallace [15] is
valid, concluding G[> P (see also M.R. 22 # 12146 No. 12 (1966)).

Let
p°  if xis p-regular

O(x) = {

0 otherwise
As is well known, 6 is an integral linear combination of 7,’s: =33 m»n,=

1, D) m;p;, where each m; is a rational integer. Comparing the degrees of both
sides, we get u=p” as claimed. This completes the proof.

3. LC type

For convenience, we call a (finite dimensional) algebra 4 over a field to be
LC if its (Jacobson) radical is generated over 4 by the radical of its center.
The objective of this section is to prove

Theorem 4. The followings are equivalent to each other.
(1) kGis LC

(2) the principal block B, of kG is LC

(3) G is p-nilpotent and P is abelian

“(1)=(2)” is trivial. On the other hand, we have already shown “(3)=(1)”
in [13] assuming P is cyclic. The same argument, being simplified by virtue of
the Green’s Theorem quoted in the introduction, will be made below to yeild the
present assertion.

We begin with
Lemma 5. Let GI>H and b a block of kH. Let B, -, B, be the blocks
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of kG which cover b. If a defect group of each B; is contained in H, then we have
NB;=8B, for each i (1=i<5).

Proof. Let b, -+, b, be the blocks of 2H which are conjugate to b under G

and &; the block idempotent of ;.
From the choice of B;’s we have

&= &+-+& = 8+-+86,, where 8§,=385,

Let A=kGE/8DT=kHE/N(H)E. We show that A is semisimple. Let M
be a A-module and N any submodule of M. The inclusion map N— M splits
as T'-modules, since T is semisimple and then it does as A-modules, since M is
(G, H) projective by the assumption. Therefore A is semisimple and our asser-
tion is clear.

The following remark is useful.

REMARK 2.

(1) (well known) If G/H is a p’-group, then the assumption of Lemma 5
is always satisfied and hence we have N=2,.

(2) (Feit [5] pp. 268) If G/H is a p-group, then there is a unique block

which covers b.
The following Lemma is not so essential here, but we write down it for its

own interest. The result is noticed by Y. Nobusato.

Lemma 6. Suppose G>H and G[H is a p-group. Then for any simple
kH-module N, N€ has the composition length [I: H, where I is the inertia group of

NinG.

Proof. Clear from the Green’s Theorem and the orthogonality relations
(77;‘; <P,-)=3i,~-
The following result has been shown in our previous paper [13].
Lemma 7. Let GD>H and [G: H]=p. Let B be a block of kG. Suppose
there is a conjugate class C of G such that C £ H and r5(C)+0, where C= }_," x.
Then, we have RB={B--kG(C —r5(C))85.

Proof. We put §=3§; and =1 for brevity. Let §=2>]e be a decompo-
sition into the sum of primitive idempotents. We may assume each e is
contained in kH by the Green’s Theorem. It suffices to show that RNe=
Le+-kG(C—(C)e. Let aEG be any element not contained in H. We have

(C—(C)yle = at" N+ +ar,.,—y(C)*'e,  where N,EH .

Since ¥(C)=0, this implies that (C—(C))*"%e is not contained in Le=
@ R(H)eD--- DR(H)e. Therefore we have a sequence (note that (C—y(C))8
eNn)
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kGe2(C—y(C)kGeR - 2(C—(C)yP"'kGe R0, where kGe= kGe|Re =
kG Qg kHe|N(H)e.

However, since kGé has at most p composition factors by Lemma 6, we
have (C—y(C))kGe=Ne, that is Ne=Le+kG(C—(C))e as required. This
completes the proof.

Before proceeding, we mention a remark. If B is a block of kG of full defect,
then there is an ordinary irreducible character X belonging to B whose degree is
not divisible by p. If xis a p-element, then X(x¥)=X(1) mod ». Hence it
follows that if C is a conjugate class of a p-element, then B(C): |Cl.

The following proposition proves “(3)=>(1)" of Theorem 4.

Proposition 8. Suppose G is p-nilpotent and P is abelian. Let {C,,+, C.}
be the set of the comjugate classes of p-elements of G. For a (normal) subgroup H
of G containing O,(G), let Ay be the sum of the block idempotents of kH of full
defect and for any C; such that C,C H, let A(C;, H)=(C;— | C;|)Ag.

Then we have §R=§ RGA(C;, H), where H is taken over the subgroups of G

containing O, (G). In particular, kG is LC.

Proof. Let B be any block of RG. If B has the defect smaller than a, then
there is a normal subgroup H of index p which contains a defect group of B.
Then by Lemma 5 and Remark 2, we have #B=%,B. On the other hand,
assume B has full defect. Let H be any normal subgroup of G of index p.
There is some C; such that C;d¢H and 5(C,)=|C;| %0, since P is abelian.
Hence by Lemma 7, we have R®B=8,B-+kG(C,—|C;|)85. From the aboves,

we have N=> SH—i—i] kRGA(C;, G), where H is taken over the normal subgroups
H i=1

of G of index p and thus the result will follow by the induction on the order of
G (note that if HDC;, where HD>O0,/(G), then C; is also a conjugate class of H).
We next go into the proof of “(2)=>(3)".

Lemma9. Let I be the augumentation ideal of kG and 8, the block idempotent
of the principal block B, of kG. If IMS;=NIS,, then G is p-nilpotent.

Proof. Let e be a primitive idempotent of 2G such that kGe/Me is the
trivial G-module. It is easy to see that Je=%e. Hence we have INe=INSe=
NISe=NIe=N%. Recurring this, we get IN'e=N+'e for any s=0. This
implies that G acts trivially on each factor of the series,

kGeDNeD -+ DN’e=0, in other words, kGe has the only (non isomorphic)
simple constituent, the trivial one. Hence G is p-nilpotent.

Lemma 10. Suppose G is a p-group. If kG is LC, then G is abelian.

Proof. We prove by the induction on the order of G. It is clear that if kG
is LC, then k(G/H) is also LC for any normal subgroup H of G.
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Let Z be the center of G and let 2 be an element of Z of order p. We may
assume (/{2 is abelian by the induction hypothesis. Assume G is not abelian.
Then we have G’=[G, G]=<z)>. Since | gG’|=p, gG’ is the conjugate class of
g unless g is central. Therefore, 3 is spanned over & by the set {u—1, xo |uEZ,
xeG—Z}, where a:ﬁéx. Let t=#(Z) be the nilpotency index of N(Z). We

show that 8=0. This will be deduced from the following observations.
(1) xo-yo=xys?=0.
(2) (x0) ﬁ (zi—1)e(xo)N(Z) = (x0)kr =0, where T7=7212. In fact,

2€3

N(Z)~'=k, as is easily shown (for any p-group Z) and o7=p7=0, since G'CZ.
3) ﬁ (2:—1)=0, since t=#(Z), where 2, -**, 2, are arbitrary elements of Z.
i=1

Now, from the assumption, we conclude that '=0. Take yeG—Z.
Then (y—1)7 is not zero and is contained in (y—1)RN(Z)' ' CN*=0, a contradic-
tion. This completes the proof.

Proof of “(2)=(3)”. Let 8,=85,. Since by the assumption NS, is
generated by central elements over kG, we have NI§,=NI§, and hence G is p-
nilpotent by Lemma 9. In particular, B, is isomorphic to k(G/O,(G)) == kP.
Hence kP is also LC, implying P is abelian by Lemma 10. This completes the
proof of Theorem 4.

4. Application of a result of Clarke

In this section we shall show,
Theorem 11. Suppose G is p-solvable. If t(G)=p°, then P is cyclic.

To prove this, the following Theorem is essential.

Theorem (Clarke [2]). If G is a p-solvable group of p-length one, then
HG)=t(P).

Proof (of Theorem 11). We prove by the induction on the order of G. If
G is a p-group, then our result follows from the Theorem 3.7 of Jennings [9].
If G has a proper normal subgroup H of index prime to p, then we have N=28,
and the result follows from the induction hypothesis on H. Hence we may
assume G has no proper normal subgroup of index prime to p. Furthermore,
by the Theorem of Clarke, it suffices to show that G is p-nilpotent.

Let H be a normal subgroup of index p. Since N?C 8y ([11] or [12]), we
find t(H)=p*"'. Hence a Sylow p-subgroup O of H is cyclic by the induction
hypothesis. In particular H has the p-length one. Let K=0,(G)=0,(H).
Then G/K[>QK|K=O0,(H|K). Now, assume G=#PK. Then we have O,(G/K)
=QK/K and Cx(QK|K)=0K|K, as is well known (Hall and Higman [8]).
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Therefore, G/QK is isomorphic to a subgroup of Aut(QK/K), whence G/QK is
abelian, since the automorphism group of a cyclic group is abelian. Since we
have assumed that G has no normal subgroup of index prime to p, G/QK must
be a p-group, contradicting that G==PK. This completes the proof.
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