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1. Background

The concentration on the fundamental group of a complement of a branch curve
of an algebraic surface with respect to a generic projectiononto CP2, leads us to
the computation ofπ1( Gal) the fundamental group of the Galois cover of with re-
spect to this generic projection. Galois covers are surfaces of a general type.

Bogomolov conjectured that the Galois covers corresponding to generic projections
of algebraic surfaces toCP2 have infinite fundamental groups.

In [7] we justify Bogomolov’s conjecture by proving thatπ1( × )Gal is an infi-
nite group.

In order to computeπ1( × )Gal, we have to enclode the braid monodromy fac-
torization of the branch curve of × . Then we have to apply the van Kampen
Theorem on the factors in the factorization in order to get relations for π1(C2 − ∗)
the fundamental group of the complement of inC2.

The fundamental group of the Galois coverGal is known to be a quotient of a
certain subgroup of the fundamental group of the complementof .

We recall shortly the computations from [6].
Let = × be an algebraic surface (where is a complex torus) embedded

in CP5, and : → CP2 be a generic projection. We degenerate to a union of
18 planes 0([6, Section 3]). We numerate the lines and vertices as shownin Fig. 1.

We have a generic projection0 : 0 → CP2. We get a degenerated branch curve

0 which is a line arrangement and compounds nine 6-points. We regenerate each
6-point separately.

We concentrate for example in a regeneration in a neighbourhood of 2. We con-
sider the local numeration of lines meeting at2 ([6, Figure 6]). First, the diagonal
lines 4 and 5 become conics which are tangent to the lines 2, 3 and 1, 6 respectively,
see Fig. 2.
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Now, concentrating in a neighbourhood of the left 4-point (the intersection point
of 1, 2, 3, 6), the two horizontal lines become a hyperbola. Each one of the two
vertical lines is replaced by two parallel lines, which are tangent to the hyperbola,
see Fig. 3.

Finally, the hyperbola is doubled. Each one of the tangent points is replaced by
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three cusps ([6, Theorem 13]). Naturally, it occurs that each node is replaced by two
or four ones.

We end up with a regenerated cuspidal curve, which has a degree of 12.
We do so to each one of the 6-points and get regenerated curves, 1 ≤ ≤ 9.

The union of these curves is the regenerated branch curve . Deg 0 = 27, thus deg =
54. The reason is that each intersection point of the curve0 with the typical fiber
was replaced by two close points{ ′}.

In order to define a g-base for the fundamental group of the complement of
in C2, we present the following situation (following Fig. 4 to understand the below
notions).

is an algebraic curve inC2, 54 = deg .π : C2 → C a generic projection on the first
coordinate. ( ) ={ | ( ) ∈ } is the projection to the -axis ofπ−1( ) ∩ . Let

= { | # ( ) < 54} and ′ = { ∈ | π| is not étale at } such thatπ( ′) = .
Assume #(π−1( )∩ ′) = 1, ∀ ∈ . Let (resp. ) be a closed disk on -axis (resp.

-axis), such that ′ ⊂ × , ⊂ Int( ). We choose ∈ ∂ , ≪ ∀ ∈ .
C = { 1 1′ . . . 27 27′}.

We now specify a standard set of generators for the fundamental group
π1(C2 − ), where is a point outside .

Write ∩ C = { 1 . . . 27′}. Let γ be paths from to ∀ , such that
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the γ do not meet each other in any point except . Letη be a small oriented
circle around . Letγ′ be the part ofγ outside η , and take =γ′η (γ′ )−1.
In the same way we specify generators′ . The set{ ′}27

=1 freely generates
π1(C − ) [40]. Such a set is called a g-base forπ1(C − ).

By Lemma 12 we have a surjectionπ1(C − )
ν→ π1(C2 − ) → 0, so

the set{ν( )} generatesπ1(C2 − ). By abuse of notation, we shall denoteν( )
by . A presentation forπ1(C2 − ) is obtained by the van Kampen Theorem,
from a list of braids in 54[C C ∩ ].

The groupπ1(C2 − ) acts on the points inC . This leads to a permutation
representaionψ : π1(C2 − ) → 18, 18 is the number of planes in0.

Let 〈 2 2
′ 〉 denote the normal subgroup generated by2, 2

′ .

DEFINITION 1. Define

π̃1 =
π1(C2 − )

〈 2
′〉

Since is stable, and 2
′ induce a transposition in18 so that

〈
2
〉
⊆ kerψ.

The map ˜π1 → 18 is also denotedψ.
By the isomorphism theorems, we have an exact sequence

(1) 1→ kerψ → π̃1
ψ→ 18 → 1
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DEFINITION 2. Consider the fibered product

× · · · ×︸ ︷︷ ︸ = {( 1 . . . ) ∈ : ( 1) = · · · = ( )}

and the diagonal

= {( 1 . . . ) ∈ × · · · × | = for some 6= }

The surface Gal is the Galois cover of with respect to the generic projection
: → CP2. That is the Zariski closure of the complement of :

Gal = × · · · × −

Let Aff
Gal be the part of Gal lying over C2 (⊆ CP2). There is a surjective map

Aff
Gal → Gal.

Theorem 3 ([16, Secion 0.3]). π1( Aff
Gal) is isomorphic to the kernel ofψ : π̃1 →

18.

We denoteA = π1( Aff
Gal).

The exact sequence (1) gets the form

(2) 1→ A = kerψ → π̃1 =
π1(C2 − )

〈 2 2
′〉

ψ→ 18 → 1

The plan is to use the van Kampen Theorem and the braid monodromy technique
to obtain a presentation ofπ1(C2 − ) and by adding the relations2 = 2

′ = 1
to get a presentation of ˜π1. Then we use the Reidemeister Schreier method to obtain
a presentation ofA (see [7]).

1.1. Braid monodromy. Recall that is the branch curve of , deg = 54.
Recall the above , ′, ( ), , C , , . Let 54[ C ] be the braid group,
and 1 . . . 53 be its frame. Let ∈ ∂ and π1(C2 − ) is the fundamental
group of the complement of , with a g-base1 . . . 27′ .

The braid monodromy of is a mapϕ : π1( − ) → 54[ C ] defined as
follows: every loop in − starting at has liftings to a system of 54 paths in
( − ) × starting at 1 . . . 27′ . Projecting them to we get 54 paths in
defining a motion{ 1( ) . . . 27′ ( )} of 54 points in starting and ending atC ,
0 ≤ ≤ 1. This motion defines a braid in54[ C ].

Theorem 4 (The Artin Theorem). Let be a curve and letδ1 . . . δ be a
g-base ofπ1( − ). Assume that the singularities of are cusps, nodes and branch
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points. Letϕ : π1( − ) → 54[ C ] be the braid monodromy. Then for all,
there exist a halftwist ∈ 54[ C ] and ∈ Z, such thatϕ(δ ) = and
depends on the type of the singularity: = 1, 2, 3, for branch point, node, cusp re-
spectively.

Proposition 5 ([17, Proposition VI. 2.1]). Let be the regenerated branch curve
of degree54 in CP2. Let π, , , , C be as above. Letϕ be the braid mon-
odromy of with respect toπ, . Let δ1 . . . δ be a g-base ofπ1( − ). Then∏

=1ϕ(δ ) = 2
54.

2. The braid monodromy factorization ∆
2
54

2.1. Ci. There are some lines in 0 which do not meet, but when projecting
them toCP2, they may intersect. These intersections˜ , = 1 . . . 9 are called para-
sitic intersections.

Recall from [6, Section 5]:˜ 1 =
∏

=1 2 4 6 13 22 , ˜ 2 =
∏

=3 7 9 14 17 , ˜ 3 =∏
=5 10 18 23 , ˜ 4 =

∏
=8 11 15 19 , ˜ 5 =

∏
=12 20 24 , ˜ 6 =

∏
=16 25 , ˜ 7 =∏

=21 26 , ˜ 8 = 27, ˜ 9 = Id.
, 1 ≤ ≤ 27, are regenerated. We use the Complex Conjugation [6, Subsec-

tion 7.2] and obtain the following results (denoted as above):

1 = 2 = 3 = Id 4 = 2
33′ 44′ 5 =

(4)(4′)
2
11′ 55′ 6 = 2

33′ 66′ · 2
55′ 66′

7 =
∏

=2 4

(6)(6′)
2
′ 77′ · 2

55′ 77′ 8 =
3∏

=1

(6)−(7′)
2

′ 88′ 9 =
∏

=2 4−6 8

2
′ 99′

10 =
∏

=1 4 6 7

(9)(9′)
2
′ 10 10′ · 2

88′ 10 10′ 11 =
∏

=1−3 6 7

(9)−(10′)
2

′ 11 11′

12 =
5∏

=1

(9)−(11′)
2

′ 12 12′ 13 =
12∏

=3
6= 4 6

2
′ 13 13′ 14 =

11∏

=2
6= 3 7 9

(13)(13′)
2
′ 14 14′ · 2

12 12′ 14 14′

15 =
10∏

=1
6= 4 5 8

(13)−(14′)
2

′ 15 15′ · 2
12 12′ 15 15′ 16 =

8∏

=1

(13)−(15′)
2

′ 16 16′ 17 =
16∏

=2
6= 3 7 9 14

2
′ 17 17′

18 =
15∏

=1
6= 2 3 5 10

(17)(17′)
2

′ 18 18′ · 2
16 16′ 18 18′ 19 =

14∏

=1
6= 4 5 8 11

(17)−(18′)
2

′ 19 19′ · 2
16 16′ 19 19′

20 =
15∏

=1
6= 6−8 12

(17)−(19′)
2

′ 20 20′ · 2
16 16′ 20 20′ 21 =

12∏

=1

(17)−(20′)
2

′ 21 21′
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22 =
21∏

=3
6= 4 6 13

2
′ 22 22′ 23 =

20∏

=1
6= 2 3 5 10 18

(22)(22′)
2

′ 23 23′ · 2
21 21′ 23 23′

24 =
19∏

=1
6= 6−8 12

(22)−(23′)
2

′ 24 24′ · 2
21 21′ 24 24′ 25 =

20∏

=1
6= 9−12 16

(22)−(24′)
2

′ 25 25′ · 2
21 21′ 25 25′

26 =
19∏

=1
6= 13−16

(22)−(25′)
2

′ 26 26′ ·
(21)(21′)

2
20 20′ 26 26′ 27 =

16∏

=1

(22)−(26′)
2

′ 27 27′

During the regeneration, each̃ is regenerated to , 1≤ ≤ 9.
Each is now a product of the certain regenerated (as shown for˜ ).

2.2. HVi . Recall that the regenerated branch curve compounds nine 6-points ,
= 1 . . . 9. We regenerate in their neighbourhood. are the resulting regener-

ated braid monodromies. We computed in detail for = 1, 4, 7 in [6, Sec-
tions 8, 9, 10]. In this section we present the resulting and the paths which corre-
spond to their different factors. We have proved in [4] an Invariance Property to each

, therefore in the following tables, one can see expressionssuch asρ4ρ3 34ρ
−
3 ρ−4

where ρ4 = 44′ and ρ4 = 33′ , , ∈ Z. The meaning is that we can consider any
relation we need for calculations, but setting = =±1 is enough in order to derive
all other possibilities.

There are two tables which correspond to each . The first tablepresents the
paths which correspond to the factors in and some complex conjugates, the braids
themselves and the exponent of the braids according to the Emil Artin Theorem. The
second table presents the same ones but for the factors of theform ˆ1 · ( ˆ1)ρ

−1
.

1 =
�

2
4′

�
=22′ 55′ 6 6′

·

3
33′ 4 ·

�
2
4

� 2
33′ 4

=22′ 55′ 6 6′ ·
3
11′ 4 ·

�
44′

� 2
33′ 4

2
11′ 4

·

3
55′ 6 ·

�
2
6

� 2
22′

2
33′ 4

=11′ 33′ ·

3
22′ 6 ·

�
2
6′
� 2

6
2

55′
2

22′
2
33′ 4

=11′ 33′ ·

�
66′

� 2
55′ 6

2
22′ 6

·

�
ˆ1( ˆ1)

−1
33′

−1
55′

� 2
55′ 6

2
33′ 4.

The paths/complex conjugates The braids The exponent
of braids

(1)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ4ρ 4ρ
−

ρ
−
4

= 2 5
ρ6ρ4 4′6ρ

−
4 ρ

−
6

2

(2)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ4ρ3 34ρ
−
3 ρ

−
4 3
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(3)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ4ρ ˜4 ρ
−

ρ
−
4

= 2 5
ρ6ρ4˜46ρ

−
4 ρ

−
6

2

(4)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ4ρ1 14ρ
−
1 ρ

−
4 3

(5)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

˜44′ 1

(6)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ5 56ρ
−
5 ρ

−
6 3

(7)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ ˜ 6ρ
−

ρ
−
6

= 1 3
2

(8)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ2 26ρ
−
2 ρ

−
6 3

(9)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ ˜ 6ρ
−

ρ
−
6

= 1 3
2

(10)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

˜66′ 1
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ˆ1 · ( ˆ1)

−1
33′

−1
55′

� 2
55′ 6

2
33′ 4

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ3ρ2 23ρ
−
2 ρ

−
3 3

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ5ρ3 3′5ρ

−
3 ρ

−
5 2

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ5ρ3˜35ρ
−
3 ρ

−
5 2

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ5ρ2˜25ρ
−
2 ρ

−
5 3

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

12′ 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

1′2 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ
−1

12′ 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ
−1

1′2 1
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2 = 3
33′ 4·

�
2
4

� 2
22′

=11′ 5 5′ 66′ ·
3
22′ 4·

�
2
4′
� 2

4
2

33′
2

22′

=11′ 5 5′ 66′ ·

�
44′

� 2
33′ 4

2
22′ 4

·

3
5′ 66′ ·

�
2
33′ 5

� 2
33′ 4

·

2
22′ 5·

3
11′ 5 ·

�
2
33′ 5′

� 2
33′ 5

2
5′ 66′

2
33′ 4

·

�
2
22′ 5

� −2
11′ 22′

·

�
55′

� 2
22′ 5

2
11′ 5

2
5′ 66′

·

�
ˆ1( ˆ1)

−1
33′

−1
66′

� −2
5 66′

2
33′ 4.

The paths/complex conjugates The braids The exponent
of braids

(1)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ4ρ3 34ρ
−
3 ρ

−
4 3

(2)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ4ρ ˜ 4ρ

−
ρ
−
4

= 1 6
ρ5ρ4˜45ρ

−
4 ρ

−
5

2

(3)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ4ρ2 24ρ
−
2 ρ

−
4 3

(4)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ4ρ ˜ 4ρ
−

ρ
−
4

= 1 6
ρ5ρ4˜45ρ

−
4 ρ

−
5

2

(5)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

˜44′ 1

(6)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ5 56ρ
−
5 ρ

−
6 3

(7) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ5ρ3˜35ρ
−
3 ρ

−
5 2

(8)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ5ρ2 25ρ
−
2 ρ

−
5 2

(9)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ5ρ1 15ρ
−
1 ρ

−
5 3
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(10)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ5ρ3˜35′ρ

−
3 ρ

−
5 2

(11)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ5ρ2˜25ρ
−
2 ρ

−
5 2

(12) 1 2 3 4 5 6

7+i

7-i

˜55′ 1�
ˆ1 · ( ˆ1)

−1
33′

−1
66′

� −2
5 66′

2
33′ 4

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ3ρ2 23ρ

−
2 ρ

−
3 3

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ6ρ3 3′6ρ

−
3 ρ

−
6 2

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ3˜36ρ
−
3 ρ

−
6 2

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ2˜26ρ
−
2 ρ

−
6 3

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

12′ 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

1′2 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ
−1

12′ 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ
−1

1′2 1
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3 =
�

2
3

�
=22′ 5 5′ 66′

·

3
3′ 44′ ·

3
11′ 3 ·

�
2
3′
� 2

3
2
3′ 44′

=22′ 5 5′ 66′ ·
�

33′
� 2

11′ 3
2
3′ 44′

·

�
2
5

� 2
22′ 3

2
11′ 3

=11′ 44′ ·

3
5′ 66′ ·

�
3
22′ 5

� 2
22′ 3

2
11′ 3

·

�
2
5

� −2
22′

2
22′ 3

2
11′ 3

=11′ 44′ ·

�
55′

� 2
5′ 66′

2
44′ 5

2
22′ 5

2
22′ 3

2
11′ 3

·�
ˆ1( ˆ1)

−1
44′

−1
66′

� 2
22′ 3

2
11′ 3

−2
5 66′ .

The paths/complex conjugates The braids The exponent
of braids

(1)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ3 3 ρ
−
3 ρ

−

= 2 6
ρ5ρ3 35ρ

−
3 ρ

−
5

2

(2)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ4ρ3 3′4ρ
−
3 ρ

−
4 3

(3)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ3ρ1 13ρ
−
1 ρ

−
3 3

(4)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ3 3′ ρ
−
3 ρ

−

= 2 6
ρ5ρ3˜3′5ρ

−
3 ρ

−
5

2

(5) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ˜33′ 1

(6)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ5ρ ˜ 5ρ
−

ρ
−
5 2

= 1 4

(7)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ5 5′6ρ
−
5 ρ

−
6 3

(8)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ5ρ2˜25ρ
−
2 ρ

−
5 3
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(9)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ5ρ ˜ 5ρ
−

ρ
−
5

= 1 4
2

(10) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ˜55′ 1�
ˆ1 · ( ˆ1)

−1
44′

−1
66′

� 2
22′ 3

2
11′ 3

−2
5 66′

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ4ρ2 24ρ
−
2 ρ

−
4 3

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ6ρ4 4′6ρ
−
4 ρ

−
6 2

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ4˜46ρ
−
4 ρ

−
6 2

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ2˜26ρ
−
2 ρ

−
6 3

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

12′ 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

1′2 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ
−1

12′ 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ
−1

1′2 1
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4 =
�

2
2′
�

=33′ 55′ 6 6′
·

3
11′ 2 ·

¯3
2′ 44′ ·

�
2
2′
� −2

44′

=33′ 55′ 6 6′ ·
�

22′
� 2

11′ 2
2
2′ 44′

2
2′ 33′

·�
66′

� −2
33′ 6

−2
55′ 6

·

�
2
6′
� 2

11′ 2
=11′ 44′ ·

�
3
33′ 6

� −2
55′ 6

·

�
2
6

� −2
55′ 6

2
11′ 2

=11′ 44′ ·

3
55′ 6 ·

�
ˆ1( ˆ1)

−1
11′

−1
55′

� 2
11′ 2

−2
55′ 6.

The paths/complex conjugates The braids The exponent
of braids

(1)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ2 2′ ρ
−
2 ρ

−

= 3 5
ρ6ρ2 2′6ρ

−
2 ρ

−
6

2

(2) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ2ρ1 12ρ

−
1 ρ

−
2 3

(3)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ4ρ2 2′4ρ
−
2 ρ

−
4 3

(4)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ2˜2′ ρ
−
2 ρ

−

= 3 5
ρ6ρ2˜2′6ρ

−
2 ρ

−
6

2

(5) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ˜22′ 1

(6)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

˜66′ 1

(7)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ ˜ 6′ρ
−

ρ
−
6

= 1 4
2

(8) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ6ρ3˜36ρ
−
3 ρ

−
6 3
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(9) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ ˜ 6ρ
−

ρ
−
6

= 1 4
2

(10)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ5 56ρ
−
5 ρ

−
6 3�

ˆ1 · ( ˆ1)
−1
11′

−1
55′

� 2
11′ 2

−2
55′ 6

1 1’ 2 2’ 3 3’ 4 4’ 5 5’ 6 6’

ρ3ρ1 1′3ρ
−
1 ρ

−
3 3

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ5ρ4 45ρ
−
4 ρ

−
5 3

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
34′ 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
3′4 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ
−1

34′ 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ
−1

3′4 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ5ρ1˜1′5ρ
−
1 ρ

−
5 2

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ5ρ1 15ρ
−
1 ρ

−
5 2
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5 = 3
1′ 22′ ·

�
66′

� −2
44′ 6

−2
55′ 6

·

2
33′ 6′ ·

¯3
44′ 6 ·

�
2
33′ 6

� −2
55′ 6

·

�
2
22′ 6′

� 2
1′ 22′

·

�
2
22′ 6

� 2
1′ 22′

−2
55′ 6

·�
ˆ1( ˆ1)

−1
22′

−1
55′

� 2
1′ 22′

−2
55′ 6

·

3
55′ 6 ·

�
2
1′
� 2

1′ 22′

=44′ 55′ 6 6′ ·
¯3

1′ 33′ ·
�

2
1

�
=44′ 55′ 6 6′

·

�
11′

� 2
1′ 33′

2
1′ 22′ .

The paths/complex conjugates The braids The exponent
of braids

(1)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ2ρ1 1′2ρ
−
1 ρ

−
2 3

(2) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ˜66′ 1

(3) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ6ρ3 36′ρ

−
3 ρ

−
6 2

(4)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ4 46ρ
−
4 ρ

−
6 3

(5) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ6ρ3˜36ρ
−
3 ρ

−
6 2

(6) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ6ρ2˜26′ρ

−
2 ρ

−
6 2

(7) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ6ρ2˜26ρ
−
2 ρ

−
6 2

(8)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ5 56ρ
−
5 ρ

−
6 3

(9) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ ρ1˜1′ ρ

−
1 ρ

−

= 4 5
ρ6ρ1˜1′6ρ

−
1 ρ

−
6

2

(10)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ3ρ1 1′3ρ

−
1 ρ

−
3 3

(11)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ1 1 ρ
−
1 ρ

−

= 4 5
ρ6ρ1 16ρ

−
1 ρ

−
6

2

(12) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ˜11′ 1
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(
ˆ1 · ( ˆ1)

−1
22′

−1
55′
) 2

1′ 33′
2
1′ 22′

x
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ3ρ2 23ρ
−
2 ρ−3 3

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ5ρ4 45ρ
−
4 ρ−5 3

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ 34′ 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ 3′4 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ−1

34′ 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ−1

3′4 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ5ρ2˜2′5ρ
−
2 ρ−5 2

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ5ρ2 25ρ
−
2 ρ−5 2
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6 = 3
1′ 22′ ·

�
2
1′

� 2
1′ 22′

=33′ 5 5′ 66′ ·
�

3
1′ 44′

� 2
1′ 22′

·

�
2
1

�
=33′ 5 5′ 66′

·

�
11′

� 2
1′ 44′

2
1′ 22′

·�
55′

� ¯−2
33′ 5

−2
5′ 66′

·

�
2
5′
� −2

5′ 66′
2
1′ 22′

=22′ 44′ ·
¯3

33′ 5 ·
�

2
5

� 2
1′ 22′

=22′ 44′ ·
3
5′ 66′ ·

�
ˆ1( ˆ1)

−1
22′

−1
66′

� 2
1′ 22′

−2
5′ 66′ .

The paths/complex conjugates The braids The exponent
of braids

(1)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ2ρ1 1′2ρ
−
1 ρ

−
2 3

(2)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ1˜1′ ρ
−
1 ρ

−

= 3 6
ρ5ρ1˜1′5ρ

−
1 ρ

−
5

2

(3) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ4ρ1˜1′4ρ

−
1 ρ

−
4 3

(4)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ1 1 ρ
−
1 ρ

−

= 3 6
ρ5ρ1 15ρ

−
1 ρ

−
5

2

(5) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ˜11′ 1

(6)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

˜55′ 1

(7)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ5ρ ˜ 5′ρ
−

ρ
−
5 2

= 2 4
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(8)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ5ρ3 35ρ

−
3 ρ

−
5 3

(9) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ5ρ ˜ 5ρ

−
ρ
−
5 2

= 2 4

(10)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ6ρ5 5′6ρ
−
5 ρ

−
6 3

(
ˆ1( ˆ1)

−1
22′

−1
66′
) 2

1′ 22′
−2
5′ 66′

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ3ρ2 2′3ρ
−
2 ρ−3 3

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ6ρ4 46ρ
−
4 ρ−6 3

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
34′ 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
3′4 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ−1

34′ 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ−1

3′4 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ6ρ2˜2′6ρ
−
2 ρ−6 2

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ6ρ2 26ρ

−
2 ρ−6 2
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7 =
�

2
2′
�

=33′ 4 4′ 66′
·

3
11′ 2 ·

�
3
2′ 55′

� 2
2′ 33′

·

�
2
2

�
11′ 2

=33′ 4 4′ 66′ ·
�

22′
� 2

11′ 2
¯2

2′ 55′
2
44′ 55′

·

3
33′ 4 ·�

2
4′
� 2

11′ 2
=11′ 55′ ·

¯3
4′ 66′ ·

�
2
4

� 2
33′ 4

2
11′ 2

=11′ 55′ ·

�
44′

� ¯2
4′ 66′

2
33′ 4

·

�
ˆ1( ˆ1)

−1
11′

−1
33′

� −2
4 55′

−2
4 66′

2
11′ 2.

The paths/complex conjugates The braids The exponent
of braids

(1)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ2 2′ ρ
−
2 ρ

−

= 3 6
ρ4ρ2 2′4ρ

−
2 ρ

−
4

2

(2)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ2ρ1 12ρ
−
1 ρ

−
2 3

(3) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ5ρ2˜2′5ρ

−
2 ρ

−
5 3

(4)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ2˜2 ρ
−
2 ρ

−

= 3 6
ρ4ρ2˜24ρ

−
2 ρ

−
4

2

(5) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ˜22′ 1

(6)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ4ρ3 34ρ
−
3 ρ

−
4 3

(7) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ ρ4 4′ ρ
−
4 ρ

−

= 1 5
2

(8)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ6ρ4 4′6ρ

−
4 ρ

−
6 3

(9)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ4ρ ˜ 4ρ
−

ρ
−
4

= 1 5
2
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(10)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
˜44′ 1

(
ˆ1 · ( ˆ1)

−1
11′

−1
33′
) −2

4 55′
−2
4 66′

2
11′ 2

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ3ρ1 1′3ρ
−
1 ρ−3 2

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ5ρ3 3′5ρ

−
3 ρ−5 3

1 3 6’54’43’2’21’ 5’ 6

1 3 6’54’43’2’21’ 5’ 6

1 3 6’54’43’2’21’ 5’ 6

ρ3ρ1˜1′3′ρ
−
1 ρ−3 2

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ5ρ1˜1′5ρ
−
1 ρ−5 3

1 3 6’54’43’2’21’ 5’ 6

56′ 1

1 3 6’54’43’2’21’ 5’ 6

5′6 1

1 3 6’54’43’2’21’ 5’ 6 ρ−1

56′ 1

1 3 6’54’43’2’21’ 5’ 6 ρ−1

5′6 1
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8 = 3
11′ 2 ·

�
2
2′

�
=3 3′ 44′ 55′

·

�
3
2′ 66′

� −2
55′ 66′

·

�
2
2′
� −2

66′

=3 3′ 44′ 55′ ·
�

22′
� 2

2′ 66′
2
2′ 55′

2
11′ 2

·

3
3′ 44′ ·�

2
3′
� 2

3′ 44′
2
11′ 2

=11′ 66′ ·
¯3

3′ 55′ ·
�

2
3

� 2
11′ 2

=11′ 66′ ·
�

33′
� 2

3′ 55′
2
3′ 44′

·

�
ˆ1( ˆ1)

−1
11′

−1
44′

� 2
11′ 3′

2
3′ 44′

2
11′ 2.

The paths/complex conjugates The braids The exponent
of braids

(1)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ2ρ1 12ρ
−
1 ρ

−
2 3

(2)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ2 2′ ρ
−
2 ρ

−

= 4 5
ρ3ρ2 2′3ρ

−
2 ρ

−
3

2

(3) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ6ρ2˜2′6ρ

−
2 ρ

−
6 3

(4)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ2˜2′ ρ
−
2 ρ

−

= 4 5
ρ3ρ2˜23ρ

−
2 ρ

−
3

2

(5) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ˜22′ 1

(6) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ4ρ3 3′4ρ

−
3 ρ

−
4 3

(7) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ ρ3˜3′ ρ

−
3 ρ

− 2

= 1 6

(8)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ5ρ3 3′5ρ

−
3 ρ

−
5 3

(9) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ ρ3˜3 ρ

−
3 ρ

− 2

= 1 6

(10) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ˜33′ 1
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(
ˆ1 · ( ˆ1)

−1
11′

−1
44′
) 2

11′ 3′
2
3′ 44′

2
11′ 2

1 3 6’54’43’2’21’ 5’ 6

ρ4ρ1 1′4ρ
−
1 ρ−4 2

1 3 6’54’43’2’21’ 5’ 6

ρ5ρ4 4′5ρ
−
4 ρ−5 3

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

1 3 6’54’43’2’21’ 5’ 6

ρ4ρ1˜1′4′ρ
−
1 ρ−4 2

1 3 6’54’43’2’21’ 5’ 6

1 3 6’54’43’2’21’ 5’ 6

ρ5ρ1˜1′5ρ
−
1 ρ−5 3

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ 56′ 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ 5′6 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ−1

56′ 1

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’ ρ−1

5′6 1
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9 = 3
1′ 22′ ·

�
2
1′

� 2
1′ 22′

=3 3′ 44′ 66′ ·
�

3
1′ 55′

� 2
1′ 22′

·

�
2
1′

� 2
1′ 55′

2
1′ 22′

=3 3′ 44′ 66′ ·

�
11′

� 2
1′ 66′

2
1′ 55′

2
1′ 22′

·

3
3′ 44′ ·

�
2
3

� 2
1′ 22′

=22′ 55′ ·
�

2
3′
� 2

3′ 44′
2
3

2
1′ 22′

=22′ 55′ ·

�
3
3′ 66′

� 2
3′ 44′

·

�
33′

� 2
3′ 66′

2
3′ 44′

·�
ˆ1( ˆ1)

−1
22′

−1
44′

� 2
22′ 33′

2
3′ 44′

2
1′ 22′ .

The paths/complex conjugates The braids The exponent
of braids

(1) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ2ρ1 1′2ρ

−
1 ρ

−
2 3

(2)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ1˜1′ ρ
−
1 ρ

−

= 4 6
ρ3ρ1 1′3ρ

−
1 ρ

−
3

2

(3) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ5ρ1˜1′5ρ

−
1 ρ

−
5 3

(4)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ1˜1′ ρ
−
1 ρ

−

= 4 6
ρ3ρ1˜13ρ

−
1 ρ

−
3

2

(5)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

˜11′ 1

(6) 3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ4ρ3 3′4ρ

−
3 ρ

−
4 3
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(7)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ3˜3 ρ
−
3 ρ

−

= 2 5
2

(8)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

ρ ρ3˜3′ ρ
−
3 ρ

−

= 2 5
2

(9)

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’
ρ6ρ3˜3′6ρ

−
3 ρ

−
6 3

(10)
3 3’ 4 4’ 5 5’ 6 6’1 1’ 2 2’

˜33′ 1

(
ˆ1 · ( ˆ1)

−1
22′

−1
44′
) 2

22′ 33′
2
3′ 44′

2
1′ 22′

6’3 54’43’ 5’ 61 2’21’ ρ4ρ2 2′4ρ
−
2 ρ−4 2

6’3 54’43’ 5’ 61 2’21’

ρ5ρ4 4′5ρ
−
4 ρ−5 3

1 3 6’54’43’2’21’ 5’ 6

1 3 6’54’43’2’21’ 5’ 6

6’3 54’43’ 5’ 61 2’21’ ρ4ρ2˜2′4′ρ
−
2 ρ−4 2

6’3 54’43’ 5’ 61 2’21’

6’3 54’43’ 5’ 61 2’21’

ρ5ρ2˜2′5ρ
−
2 ρ−5 3
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1 3 6’54’43’2’21’ 5’ 6 56′ 1

1 3 6’54’43’2’21’ 5’ 6 5′6 1

1 3 6’54’43’2’21’ 5’ 6
ρ−1

56′ 1

1 3 6’54’43’2’21’ 5’ 6 ρ−1

5′6 1

2.3. Properties of∆2
54. Now we are checking if the braids we have found are

the only ones. For that, we assume that254 =
∏9

=1

∏
be the braid mon-

odromy factorization. are factors corresponding to singularities that are not cov-
ered by

∏9
=1 , and each is of the form , is a positive halftwist and

0 ≤ ≤ 3. We compute degrees of all factors involved. By [6, Theorem8], deg 2
54 =

54 · 53 = 2862.
On the other hand,

∏9
=1 compounds 864 factors, so deg

∏9
=1 = 864 · 2 =

1728. In the computations of each , 1≤ ≤ 9, degˆ1 = deg(ˆ1)ρ
−1

= 24, so
deg ˆ1( ˆ1)ρ

−1
= 48. The factors outsidê1( ˆ1)ρ

−1
in each are: 20 degree two fac-

tors, 12 degee three factors, 2 degree one factor. The sum of the factors’ degrees re-
sulting from each is 20· 2 + 12 · 3 + 2 · 1 = 78. Thus deg = 78 + 48 = 126
for 1 ≤ ≤ 9, and therefore deg

∏9
=1 = 126· 9 = 1134. Finally deg

∏9
=1 =

1134 + 1728 = 2862.
Therefore, deg

∏9
=1 = 2862· 2862−1 = 1. Since∀ , is a positive exponent of

a positive halftwist, we get = 1∀ .
Finally, 2

54 =
∏9

=1 .
In the following lemma we prove the Invariance Property for .

Lemma 6 (Complex Invariance of ). For every , = 1 . . . 9 and ∀ ∈ Z,
1 ≤ ≤ 27, is invariant under

∏27
=1 ′ .

Proof. We apply Invariance Rule II and Invariance Remark (iv) [6, Subsec-
tion 7.3] on each of the factors of of the form2

′ ′ .

We can summarize the properties of254 in the following theorems.
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Theorem 7 (Invariance Theorem for 2
54). Let ρ =

∏27
=1 ρ for ρ = ′ and

1 ≤ ≤ 27. Then 2
54 is invariant underρ for every ∈ Z.

Proof. By Invariance Properties of ([4, Sections 3.1–3.9])and by Lemma 6.

Theorem 8 (Complex Conjugation Theorem). 2
54 is invariant under complex

conjugation.

Proof. The same proof from Lemma 19, [22].

2.4. Consequences from the Invariance Theorems.Recall that (0) = is the
regenerated branch curve. Every factor of a braid monodromyfactorization 2

54 in-
duces a relation onπ1(C2 − ). The Invariance Properties are an essential addition
to the van Kampen Theorem, since we get more relations inπ1(C2 − ).

Theorem 9 ([6, Section 3.10]). Let , ϕ, 54 be as above. If a sub-factorization∏
= of 2

54 is invariant under any element, and
∏

= induces a relation 1 ·
· · · · on π1(C2 − ) via the van Kampen method, then ( 1) · · · · · ( ) is also
a relation.

Corollary 10. If is any relation inπ1(C2− ), then ρ is also a relation in
π1(C2− ), where ρ is the relation induced from by replacing and ′ with
( )

ρ
and ( ′)

ρ
respectively for1 ≤ ≤ 27, whereρ =

∏27
=1 ρ and ρ = ′ .

Proof. By Theorem 7.

Corollary 11. π1(C2− ) satisfies all the relations induced in( 2
54), all the

relations induced from( ( 2
54))ρ and all relations induced from the complex conjuga-

tion of 2
54.

Proof. By Theorems 7 and 8.

3. 1(C2 − S M) and ˜1

3.1. The van Kampen Theorem. The van Kampen Theorem induces a finite
presentation of the fundamental group of complements of curves by meaning of gen-
erators and relations.

We obtained the regenerated braid monodromy factorization2
54 =

∏9
=1 . We

have to apply the van Kampen Theorem on the paths, which correspond to the factors
in 2

54. We take any path from to , cut it in , then towards along the path,
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Fig. 5.

around and coming back the same way. Consider as an element ofthe funda-
mental group. Do the same to to obtain . So , are conjugations of and
respectively, see Fig. 5.

Lemma 12 ([40]). { } can be extended to a -base ofπ1(C − ) denoted
by { ′}27

=1.
Moreover, there is an epimorphismπ1(C − ) → π1(C2 − ).

Theorem 13 (van Kampen for cuspidal curves).Let be the regenerated cus-
pidal branch curve, , , ϕ, , defined as above. Let{δ } be a -base of
π1( − ). Let ϕ(δ ) = ν , be a halftwist, ν = 1, 2, 3. Let { ′}27

=1 be
a -base forπ1(C − ). Then: π1(C2 − ) is generated by the images of ,

′ in π1(C2− ) (denoted also by , ′ ) and we get a complete set of relations
from those induced fromϕ(δ ) = ν , as follows(when , are expressed in terms of
{ ′}):
(a). = , whenν = 1;
(b). [ ] = 1, whenν = 2;
(c). 〈 〉 = = 1, whenν = 3.

Recall that

π̃1 =
π1(C2 − )

〈 2
′〉

Let us apply the theorem on three examples, taken from the table corresponding
to 2. We follow Figs. 6, 7, 8.

Following Fig. 6, and are conjugations of5 and 5′ respectively. All factors
in the conjugations are with a positive exponent since =−1 and ′ = −1

′ in π̃1.
We construct by proceeding from towards 5′ above 6′ and 6 encircling 5′

counterclockwise and proceeding back above 6 and 6′. Therefore = 6′ 6 5′ 6 6′ =
( 5′) 6 6′ . In a similar way, = 5 2′ 2 1′ 1 5 1 1′ 2 2′ 5 = ( 5) 1 1′ 2 2′ 5 .

This path is related to a braid which is induced from a branch point. Therefore by
Theorem 13, = . The derived relation is: (5) 1 1′ 2 2′ 5 = ( 5′) 6 6′ .
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52
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Fig. 7.

Following the same technique in Fig. 7 we get three relationsaccording to three
paths. These paths represent the three braids derived from three cusps. The relations
are: 〈 2′ 4〉 = 1, 〈 2 4〉 = 1, 〈( 2′ ) 2

4〉 = 1
Following the same technique in Fig. 8, we get two relations corresponding to the

two paths. These paths represent the two braids derived fromtwo nodes. The relations
are: [ 5 ( 2) 1′ 1 ] = 1 and [ 5 ( 2′) 1′ 1 ] = 1.

Since we followed the process on the point2, we continue and present the
list of relations for 2. We get an infinite number of relations by Corollary 10.
We present partially the infinite list for 2, following the list of paths and braids
involved in 2 (Subsection 2.2). Recall that the generators involved in this cer-
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tain case are{ ′} =1 3 7 9 14 17 (see [4, Fig. 6]) which are numerated locally as
{ ′} =1 2 3 4 5 6. Moreover, we add the relations2 = 2

′ = 1.

3.2. RelationsHV2. The following relations are induced from the factors in2

and their paths in the first table.
Relation[1] : 〈 3 4〉 = 1
Relation[2] : 〈 3 4′〉 = 1
Relation[3] : 〈 3′ 4〉 = 1
Relation[4] : 〈 3′ 4′〉 = 1
Relation[5] : [ 1

( 2′ · 2)
4 ] = 1

Relation[6] : [ 1
( 2′ · 2)
4′ ] = 1

Relation[7] : [ 1′
( 2′ · 2)
4 ] = 1

Relation[8] : [ 1′
( 2′ · 2)
4′ ] = 1

Relation[9] : [ ( 2′ · 2)
4 5] = 1

Relation[10] : [ ( 2′ · 2)
4 5′ ] = 1

Relation[11] : [ ( 2′ · 2)
4′ 5′ ] = 1

Relation[12] : [ ( 2′ · 2)
4′

5′

5 ] = 1

Relation[13] : [ ( 4· 2′ · 2)
4′ 5] = 1

Relation[14] : [ ( 4· 2′ · 2)
4′

5
5′ ] = 1

Relation[15] : [ ( 2′ · 2)
4 6] = 1

Relation[16] : [ ( 2′ · 2)
4 6′ ] = 1

Relation[17] : [ ( 2′ · 2)
4′ 6] = 1

Relation[18] : [ ( 2′ · 2)
4′ 6′ ] = 1

Relation[19] : 〈 2 4〉 = 1
Relation[20] : 〈 2 4′〉 = 1
Relation[21] : 〈 2′ 4〉 = 1
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Relation[22] : 〈 2′ 4′〉 = 1
Relation[23] : [ 1 4] = 1
Relation[24] : [ 1 4′ ] = 1
Relation[25] : [ 1′ 4] = 1
Relation[26] : [ 1′ 4′ ] = 1
Relation[27] : [ ( 3′ · 3· 2′ · 2)

4
5′

5 ] = 1

Relation[28] : [ ( 3′ · 3· 2′ · 2)
4 5′ ] = 1

Relation[29] : [ ( 4· 3′ · 3· 2′ · 2)
4′ 5] = 1

Relation[30] : [ ( 4· 3′ · 3· 2′ · 2)
4′ 5′ ] = 1

Relation[31] : [ ( 4′ · 4· 3′ · 3· 2′ · 2)
4 5] = 1

Relation[32] : [ ( 4′ · 4· 3′ · 3· 2′ · 2)
4

5
5′ ] = 1

Relation[33] : [ ( 3′ · 3· 2′ · 2)
4 6] = 1

Relation[34] : [ ( 3′ · 3· 2′ · 2)
4 6′ ] = 1

Relation[35] : [ ( 3′ · 3· 2′ · 2)
4′ 6] = 1

Relation[36] : [ ( 3′ · 3· 2′ · 2)
4′ 6′ ] = 1

Relation[37] : ( 3′ · 3· 2′ · 2)
4 = 4′

Relation[38] : 〈 5 6〉 = 1
Relation[39] : 〈 5 6′〉 = 1
Relation[40] : 〈 5′ 6〉 = 1
Relation[41] : 〈 5′ 6′〉 = 1
Relation[42] : [ 4

3 5] = 1
Relation[43] : [ 4′

3 5′ ] = 1
Relation[44] : [ 4

3′ 5] = 1
Relation[45] : [ 4′

3′ 5′ ] = 1
Relation[46] : [ 2 5] = 1
Relation[47] : [ 2 5′ ] = 1
Relation[48] : [ 2′ 5] = 1
Relation[49] : [ 2′ 5′ ] = 1
Relation[50] : 〈 1 5〉 = 1
Relation[51] : 〈 1 5′〉 = 1
Relation[52] : 〈 1′ 5〉 = 1
Relation[53] : 〈 1′ 5′〉 = 1
Relation[54] : [ 4

3
( 6· 6′ · 5)
5′ ] = 1

Relation[55] : [ 4
3′

( 6· 6′ · 5)
5′ ] = 1

Relation[56] : [ ( 4· 4′ · 4)
3

( 6· 6′ · 5· 5′ · 5)
5 ] = 1

Relation[57] : [ ( 4· 4′ · 4)
3′

( 6· 6′ · 5· 5′ · 5)
5 ] = 1

Relation[58] : [ ( 1′ · 1)
2 5] = 1

Relation[59] : [ ( 1′ · 1)
2 5′ ] = 1

Relation[60] : [ ( 1′ · 1)
2′ 5] = 1

Relation[61] : [ ( 1′ · 1)
2′ 5′ ] = 1
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Relation[62] : ( 1· 1′ · 2· 2′ · 5)
5 = ( 6· 6′ )

5′

Relation[63] : 1 · 1 = 1
Relation[64] : 1′ · 1′ = 1
Relation[65] : 2 · 2 = 1
Relation[66] : 2′ · 2′ = 1
Relation[67] : 3 · 3 = 1
Relation[68] : 3′ · 3′ = 1
Relation[69] : 4 · 4 = 1
Relation[70] : 4′ · 4′ = 1
Relation[71] : 5 · 5 = 1
Relation[72] : 5′ · 5′ = 1
Relation[73] : 6 · 6 = 1
Relation[74] : 6′ · 6′ = 1

3.3. Relations F̂1(F̂1)
−1

.
(

ˆ1( ˆ1)ρ
−1) −2

5 66′
2
33′ 4 are conjugated by −2

5 66′
2
33′ 4.

Therefore, the corresponding elements , in this case are conjugations of the corre-
sponding , ′ by −2

5 66′
2
33′ 4, 1≤ ≤ 6.

We denote the conjugated and′ by ¯ and ¯ ′ respectively.
¯ = for = 1, 1′, 2, 2′, 4′.
We can view the other ones in the following figures.

3̄ 3̄′ 4̄:

3 3’ 4 4’ 3 3’ 4 4’
Z2

33’,4Z5,66’
-2_

3̄ = 4
3

3̄′ = 4
3′

4̄ = ( 3· 3′ · 4)
4 .

5̄:

Z2
33’,45 5’ 6 6’ 5 5’ 6 6’

Z5,66’
-2_

5̄ = ( 6′ · 6· 5)
5 .

5̄′ :

Z2
33’,45 5’ 6 6’ 5 5’ 6 6’

Z5,66’
-2_

5̄′ = ( 6· 6′ · 5· 6′ · 6· 5)
5′ .
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6̄ 6̄′ :

Z2
33’,45 5’ 6 6’ 5 5’ 6 6’

_Z5,66’
-2

6̄ = 5
6

6̄′ = 5
6′ .

The following relations are induced from the factors in
(

ˆ1( ˆ1)ρ
−1) −2

5 66′
2
33′ 4 and

their paths in the second table of 2.
Relation[1] :

〈
2̄ 3̄

〉
= 1

Relation[2] :
〈

2̄ 3̄′
〉

= 1
Relation[3] :

〈
2̄′ 3̄

〉
= 1

Relation[4] :
〈

2̄′ 3̄′
〉

= 1

Relation[5] : 〈 2̄ ¯ 3̄
3′ 〉 = 1

Relation[6] : 〈 2̄′ ¯ 3̄
3′ 〉 = 1

Relation[7] : [ 3̄′ 6̄] = 1
Relation[8] : [ ¯ 3̄′

3 6̄′ ] = 1

Relation[9] : [ 3̄ ¯ 6̄
6′ ] = 1

Relation[10] : [ (̄ 2̄· 2̄′ · 3̄)
3 6̄] = 1

Relation[11] : [ (̄ 2̄· 2̄′ · 3̄′ )
3′ 6̄′ ] = 1

Relation[12] : [ (̄ 3̄· 2̄· 2̄′ · 3̄· 3̄′ · 3̄)
3′

¯ 6̄
6′ ] = 1

Relation[13] : 〈 ¯ 3̄
2 6̄〉 = 1

Relation[14] : 〈 ¯ 3̄′

2 6̄′〉 = 1

Relation[15] : 〈 ¯ 3̄
2′ 6̄〉 = 1

Relation[16] : 〈 ¯ 3̄′

2′ 6̄′〉 = 1

Relation[17] : 〈 (̄ 3̄· 3̄′ · 3̄)
2

¯ 6̄
6′ 〉 = 1

Relation[18] : 〈 (̄ 3̄· 3̄′ · 3̄)
2′

¯ 6̄
6′ 〉 = 1

Relation[19] : 1̄ = (̄ 3̄· 6̄)
2′

Relation[20] : 1̄′ = (̄ 2̄′ · 3̄· 6̄)
2

Relation[21] : 1̄ = (̄ 3̄· 3̄′ · 3̄· 6̄· 6̄′ · 6̄)
2′

Relation[22] : 1̄′ = (̄ 2̄′ · 3̄· 3̄′ · 3̄· 6̄· 6̄′ · 6̄)
2

3.4. Relations Ci. In the same way as above, we derive relations from the
braids . The list appears in [4, Section 4.11] in a global numeration of the gener-
ators.
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4. Results

In this paper we presented the list of braids and the braid monodromy factoriza-
tion 2

54 corresponding to the branch curve of× . Recall that compounds nine
curves, each one of them is treated in [4]. The computations in detail appear in [4,
Chapter 3].

We quoted the van Kampen Method and Theorems and we used them to obtain
relations for the fundamental groupπ1(C2 − ). We presented some relations, the
complete list appears in [4, Chapter 4]. Setting2 = 2

′ = 1, we can get a presentation
for the group ˜π1.

Through this paper we concentrated on the 6-point2 and showed complete com-
putations concerning this point. As quoted above, all othercomputations appear in [4,
Chapters 3 and 4].

In [7] we compute the fundamental groupπ1(( × )Gal) of the Galois cover of
× with respect to a generic projection toCP2. Recall that the fundamental group

π1(( × )Aff
Gal) is the kernel of the surjectionψ : π̃1 → 18.

The Galois cover is a surface of a general type. In [7] we verify the Bogomolov
Conjecture. Bogomolov conjectured that if a surface of a general type has a positive
index, then it has an infinite fundamental group.

Let be a surface, : → CP2 is a generic projection, ⊂ CP2 its branch
curve, = deg , = # nodes in ,ρ = # of cusps in ,µ = # of tangency points in

for a generic projection toCP1, = deg . Then

2
1( Gal) =

!
4

( − 6)2

2( Gal) = !

( 2

2
− 3

2
+ 3− 3

4
− 4ρ

3

)

and the index

τ =
1
3

(
2
1( Gal) − 2 2( Gal)

)

see [16, pp. 603–604].
We compute the index of (× )Gal.

By the above computations, = 18µ = 54 ρ = 216 = 1080 = 54. 2
1( Gal) =

576 · 18! and 2( Gal) = 282 · 18!. Thereforeτ ( Gal) = 4 · 18!. The index is positive
and the group we derive in [7] is infinite.

5. Notations

( ) = −1 = .
an algebraic surface, ⊆ CP .

0 a degenerated object of a surface ,0 ⊂ CP .
an algebraic curve defined overR, ⊂ C2.
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(resp. ) be a closed disk on the -axis (resp. y-axis) with the center on the
real part of the -axis (resp. y-axis), such that{singularities of π1} ⊆ ∗
( − ∂ ).
π : → .

( ) = π−1( ).
= { ∈ : # ( )< }.
real number such that ≪ ∀ ∈ .

C = π−1( ).
ρ = ′ .
ϕ = the braid monodromy of an algebraic curve in .

[ ] = the braid group.
2 = ( 1 · · · −1) .

π1(C2 − ) = the fundamental group of a complement of a branch curve .
π̃1 = π1(C2− )

〈 2 2
′ 〉

.

= complex torus.
(resp. ¯ ) = a path from to below (resp. above) the real line.

The corresponding halftwists are: () = ; (¯ ) = ¯ .
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