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1. Background

The concentration on the fundamental group of a complemét laranch curve
of an algebraic surfac&  with respect to a generic projeatiolo CP?, leads us to
the computation ofri1(Xga) the fundamental group of the Galois cover f  with re-
spect to this generic projection. Galois covers are susfatea general type.

Bogomolov conjectured that the Galois covers correspantbngeneric projections
of algebraic surfaces t6@P? have infinite fundamental groups.

In [7] we justify Bogomolov’s conjecture by proving that (7' x T)ga is an infi-
nite group.

In order to computeri(T x T)ca, We have to enclode the braid monodromy fac-
torization of the branch curvé df x T. Then we have to apply the van Kampen
Theorem on the factors in the factorization in order to gédti@ns for 71(C2 — S, )
the fundamental group of the complementSf GA.

The fundamental group of the Galois covEgy is known to be a quotient of a
certain subgroup of the fundamental group of the compleroérs.

We recall shortly the computations from [6].

Let X =T x T be an algebraic surface (whefe is a complex torus) embedded
in CP% and f :X — CP? be a generic projection. We degenerae  to a union of
18 planesXy([6, Section 3]). We numerate the lines and vertices as shiawkig. 1.

We have a generic projectiofy: Xo — CP?. We get a degenerated branch curve
So which is a line arrangement and compounds nine 6-points. ¥generate each
6-point separately.

We concentrate for example in a regeneration in a neighloauftof V,. We con-
sider the local numeration of lines meeting Wt ([6, Figure 6]). First, the diagonal
lines 4 and 5 become conics which are tangent to the lines 2d31a6 respectively,
see Fig. 2.
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Erlangen-Nurnberg university, Germany.
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erva Foundation of Germany), the Excellency Center “Grohpodretic Methods in the Study of Alge-
braic Varieties” of the Israel Science Foundation, and ERGEU network, HPRN-CT-2009-00099).
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Now, concentrating in a neighbourhood of the left 4-poifte(tintersection point
of 1, 2, 3, 6), the two horizontal lines become a hyperbolachEane of the two
vertical lines is replaced by two parallel lines, which aemgent to the hyperbola,
see Fig. 3.

Finally, the hyperbola is doubled. Each one of the tangemitpds replaced by
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three cusps ([6, Theorem 13]). Naturally, it occurs thatheacode is replaced by two
or four ones.

We end up with a regenerated cuspidal curve, which has a elegr&?2.

We do so to each one of the 6-points and get regenerated cfryvds< i < 9.
The union of these curves is the regenerated branch cirve g Sgpe27, thus deg =
54. The reason is that each intersection pgint  of the cSpveith the typical fiber
was replaced by two close poinfg;, ¢, }.

In order to define a g-base for the fundamental group of theptement of §
in C?, we present the following situation (following Fig. 4 to werdtand the below
notions).

S is an algebraic curve it?, 54 = degS .7: C? — C a generic projection on the first
coordinate.K £ ) ={y | (x,y) € S} is the projection to they -axis of ~1(x) N S. Let

N ={x | #K(x) <54} and M’ = {x € § | m|, is not étale atc} such thatr(M') = N.
Assume #~1(x)NM’')=1,Vx € N. Let E (resp.D ) be a closed disk an -axis (resp.
y-axis), such thatM’ ¢ E x D, N C Int(E). We chooseu € 9E, x < u Vx € N.
C.={q1.qv. ... q27.q27}.

We now specify a standard set of generators for the fundahegitoup
m1(C? — S, M), where M is a point outsidé

Write S N C, = {g1,...,q27}. Let v; be paths fromM tog; Vj, such that
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the v; do not meet each other in any point excegt . ketbe a small oriented

circle aroundg; . Lety; be the part ofy; outsiden;, and takeT; :yjnj(y;)—l.
In the same way we specify generatdrg. The set{l“j,l“j/}fll freely generates
m1(C, — S, M) [40]. Such a set is called a g-base fer(C, — S, M).

By Lemma 12 we have a surjection(C, — S, M) = m(C? — S, M) — 0, so
the set{v(I';)} generatesr;(C?— S, M). By abuse of notation, we shall denat€l";)
by I';. A presentation forri(C? — S, M) is obtained by the van Kampen Theorem,
from a list of braids inBs4C,, C, N S].

The groupm(C? — S, M) acts on the points irC,. This leads to a permutation
representaion): m1(C% — S, M) — Sig, 18 is the number of planes ifj.

Let (I'2, T'%) denote the normal subgroup generatedIy I'z,.

Derinimion 1. Define

B m(C? — S, M)

M=
(P2.Ty)

Since f is stablel’; and@% induce a transposition if1g so that(I'?) C kery.
The mapni — Sig is also denoted).
By the isomorphism theorems, we have an exact sequence

1) 1 kerg) — 71 % Sig — 1.
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DeriniTion 2. Consider the fibered product

XxXpoooxp X={(x1,...,x0) € X" ¢ f(x1) =--- = fxn)},
—

n

and the diagonal
A={(x1,....x) € X xXp---x7; X | x; =x; for somei # j}.

The surfaceXga is the Galois cover ofX with respect to the generic projection
f: X — CP2 That is the Zariski closure of the complement &f

XGa|:X><f---><fX—A.

Let XA" be the part ofXga lying over C2 (C CP?). There is a surjective map
Xéfafll — XGal-

Theorem 3 ([16, Secion 0.3]). Wl(Xé;) is isomorphic to the kernel of: 7 —
Sis.

We denoteA = ﬁl(Xéf; .
The exact sequence (1) gets the form

- m(C% =S, M
(2) 1—>A:ker'l/)—>ﬂ'1:wﬂs18—>l.
VAR

The plan is to use the van Kampen Theorem and the braid momydiechnique
to obtain a presentation ofy(C? — S, M) and by adding the relationg? = I'?, = 1
to get a presentation af;” Then we use the Reidemeister Schreier method to obtain
a presentation ofd (see [7]).

1.1. Braid monodromy. Recall thatS is the branch curve of , d&¢g = 54.
Recall the aboveN M’, K(x), u, C,, E, D. Let BsyD,C,] be the braid group,
and Hi, ..., Hs3 be its frame. LetM € 9D and m1(C? — S, M) is the fundamental
group of the complement of , with a g-ba¥e, ..., I'z7.

The braid monodromy of is a map: mi(E — N,u) — Bs4 D, C,] defined as
follows: every loop inE — N starting atu has liftings to a system of 54 paths in
(E — N) x D starting atq, ..., gz7. Projecting them toD we get 54 paths i
defining a motion{q1(¢), ..., g27(¢)} of 54 points in D starting and ending &,

0 <t < 1. This motion defines a braid iBs4[ D, C,].

Theorem 4 (The Artin Theorem). Let S be a curve and leby,...,d, be a
g-base ofr1(E—N, u). Assume that the singularities 6f are cuspsdes and branch
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points. Lety: m(E — N,u) — Bs4[D, C,] be the braid monodromy. Then for all
there exist a halftwistV; € BssD,C,] and r; € Z, such thaty(s;) = V" and r;
depends on the type of the singularity = 1, 2, 3, for branch poinf node cusp re-
spectively.

Proposition 5 ([17, Proposition VI. 2.1]). Let S be the regenerated branch curve
of degree54 in CP2. Letw, u, D, E, C, be as above. Letp be the braid mon-
odromy of S with respect tar, u. Leté1,...,d, be a g-base ofri(E — N, u). Then

2. The braid monodromy factorization AZ,

2.1. C;. There are some lines iXg which do not meet, but when projecting
them to CP?, they may intersect. These intersectiais i = 1,...,9 are called para-
sitic intersections.

Recall from [6, Section 5]C1 = [[,=1 546132001 C2 = [;=37914170:: C3 =
[l=51018 23D, Ca = Hx:&n 1519010 Cs5 = [li212 2024010 Co = [lj=16 25010 C7
[1,=21 26D1» Cg = D27, Co = Id.

D,, 1 <t < 27, are regenerated. We use the Complex Conjugation [6,e8ubs
tion 7.2] and obtain the following results (denoted as alove

@)
_ _ _ _ 52 _ 72 _ 52 2
D1 =Dy =D3=1d, D4 =233 40, Ds = Ziy 55, D6 = Z33 65 = Z55 66>
(6)(2’) ) 3 (6)—(27') 5
D7 = H Ziyr7r - Lsg 77> D8 = H L' gy Do = H Ziir 99>
i=2.4 i=1 i=2,4-6,8
(9)(3’) ) (9)7(210 )
Do = Ziir 1010 "Zgg 10 10 D11 = L1111
i=1,467 i=1-3,6,7
5 (9-(11) 12 11 (13)(13)
_ _ 2 _ 2
D1 = L5 1212, D13 = H Zjis 1313, D1a = Ziis 1414 L1212 14 14>
i=1 i=3 i=2
i#4,6 i#3.7.9
10 (13)—(14) 8 (13)-(15) 16
_ 2 2 _ 2 _ 2
Dis = Z%1 1518 ‘L1212 1518, D16 = 2% 1616 D17 = H Zii 17 17>
i=1 i=1 i=2
i£i58 i#3.7,914
15 (17)(17) 14 (17)-(18)
_ 2 2 _ 2
Dig = Zii 1818 L1616, 18 18> D19 = 2% 1919 "Zi16 16, 19 19>
i=1 i=1
i#2,3510 i#4,5811
15 (17)-(19) 12 (17)—(20)
_ 2 _ 2
Do = 2% 2020 L1616, 20 20> D21 = 2 i 21 21>
i=1

i=1
i#6-8,12
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21 20 (22)(22)
Da2 = H Zizi/.ZZ 22+ D23 = ]___[ Zizi/.za 23 23 2v,23 23>
#4613 i#2351018
19 (22-(23) 20 (22)—(24)
D24 = Z%iir 24 24 -Z5 21,24 24> D25 = Z%i 25 25 Z5 21,25 25
i#6-8.12 i#9°12,16
19 (22-(25) (21)(27) 16 (22)—(26')
Da2e = L% 2628 ©  £20 20,26 26 D27 = L5127 27 -
i#13-16 =

During the regeneration, eadf is regenerated t@; , £ i <9.
EachC; is now a product of the certain regenerafgd (as shown';jor

2.2. Hy,. Recall that the regenerated branch curve compounds niren&p/; ,
i = 1...,9. We regenerate in their neighbourhoafy, are the resultaggmer-
ated braid monodromies. We computed in detdi, for =1, 4, 76€n $ec-
tions 8, 9, 10]. In this section we present the resultiig dmpgaths which corre-
spond to their different factors. We have proved in [4] anahience Property to each
Hy,, therefore in the following tables, one can see expresssoigh aSp£p5234p§iij
where p} = Zj, and p, = Zky, i, j € Z. The meaning is that we can consider any
relation we need for calculations, but setting j= +#% is enough in order to derive
all other possibilities.

There are two tables which correspond to edg)) . The first tpi@eents the
paths which correspond to the factors Afy, and some complejugates, the braids
themselves and the exponent of the braids according to thié Atm Theorem. The

1

second table presents the same ones but for the factors dormeF - (ﬁl)P_ .

2 2
Z Zi 22123y,

z2 2 2
— (72 3 2\%33.4 3 Z3y 4L .4 . 73 2 4
Hy, = (24"')i:22’.55/.6.6’ “Zyya- (ZM):'=22’,55/.6,6’ “Ziva (Z‘W) sy 6 (Ziﬁ)izll’,BB/ )

%7272, ,72 2 2 N g—l,—1 g2 2
3 2 \ZieZ; 55/ Zi 220 233, Z5y oL Zoy Zeg | %55 6%
VARER (Ziel)iﬂy.gg’ 2204334 (266’) 55/ 6222/ 6 . (Fl(Fl) 33 %55 ) 55,6739 4
The paths/complex conjugates The braids l—fhf’;raﬁjxsponen

Ly 2 0z 3 3@ & & 5 5 85 08 p£ p; 24 p';i p;j
M oL m=2"8 2

j i —i _—i
PePaZyePs Ps

Paps23aps Py’ 3
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pﬁp:‘ng‘lmp;ip;j
(3 m=2,5
PepaZaspy P
@) Papiziay 00
(%) Zaw
(6) phpszseps ' pg’
iy i =
7 PePmZméPm Pg
) m=1 3
@) Popbzre05 " 06
Jooi —i =]
9 PePmeGPm Pe
©) m=13
(10) Zoe/
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(Fl . (Fl)Z33/ Zog )ZSS’.6233/‘4
: ‘ : ! : : Joio =i =)
Poroa ifpN s s e 5 8 5| phphzepstes 3
1 1 2 2 3. 73:. ;\ 5 6 6' i —i =i
. R P5P3Z35P3 Ps 2
. i i~ —i _—i
d S0 P5P323503  Ps 2
1 .6 .6'
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1 6 6 Joim —i —]
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1 / ;I Zl /71 / )/ Zz / /
HVZ = ZgS’ (Z ), 1212' 5,5 .66/ Zgz’ (214’), iy 335/ eéfz (Z4 ) 33 AT ZS’ 66/'(253’ ) 33 4 222’
-2
Zil/,s . (253/‘5/)233"525’ o6/ 253 4 . (Zzz/ ) 10,22 . (255/)Zzz’.sgn’.szs’.ee’ . (Fl(Fl)Zg3/ 66/ )—s.ee/ e
. : The exponen
The paths/complex conjugates The braids )
P P 1ug of braids
() PaPsZaaPs P’ 3
pf;p:n 21714P,;i9;j
2 m=16 2
P5PaZaspy Pg
®3) PaPb2a007 02" 3
Pﬁpfnz}ﬂp:;ip;j
4 m=106 2
P5PaZaspy P
(5) Zaw 1
(6) phpszseps ' pe” 3
@) plpsZasps ps’ 2
(®) Phpbz,ep; 05’ 2
©) phpizispr ps? 3
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(10) PéPgZa‘s/ pa—ipgj 5
) plpbZaspy ps? 2
(12) . 1
(F.- (1?"1)233326}3)%‘.&/253«4
e P3Po2sspy Py’ 3
F pgpggs/ep;"pg" 2
ll .1Y
Pl pepsZ3603 P 2
-l -1
l1 -1'
joi~ i -] 3
PeP22260 Pg
-1 -1
.
) 212 1
.
) 212 1
o1
21 1
—1
22 1
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2 52
VA IVA
— 2 3 3 2 \E3i“3 4y
Hy, = (231'),':22/_5’5/’66/ L3y - Liv s (Z3’i)i=22’,5.5/.66’

-2 2 2
2 2 2 2 2
3 3 Zow 3211 3 2 \ %22/ 1722/ 37113 Zs1 66 Laa 52220 5722 34110 3
Zs 66 (Zzz’.s) o (ZiS)izll’.M’ ’ (Z55’) ' ’

Z Z Z

. (233,)711/.3 a4,

z2 z?

(

=i

2 2
Zzz/.sgu’s

2
Z'S)i=11',44/

(ﬁl(ﬁl)z@lzs}l) 222’341’.3;;526/ .
i ; The exponen
The paths/complex conjugates The braids )
P P "o of braids

Pn0ss, P53 on’

(1) m=26 2
P5P3Z35P3 Ps

@ PaPhZy a3 Pa” 3

3) Pipiziep1 p3” 3
P{;:Pisza’nng_ip;;j

4) m=26 2
P5P3Za5P3 s

) Z33 1

©) Lo Zmsp’ pa ! 2
m=14

7 PoPsZs6Ps Do 3

®) plpbZaspy ps’ 3
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|
9 P5PmZm5Pm Ps
©) m=14
(10) Zsy
(Fy - (B %on ) P22 520 o2

L

S

o
‘a
L3

F | papszaups P’

i i —i —i
» P6PaZyePs Ps

L

L

L

pepaZaspy g

-

PpaZ26p; g’
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-2
_ z 2 2 2
2 3 3 2 \&iaw 21y 2Ly a4 L1 33
Hy, = (Zz/i)i:SS’.SS’.G.G/ Livo Lyaw - (ZZ/i)i=33/.55’,6.6/ ’ (222/) )
2 -2 72 —2 772 72 " A —l,—1 2 -2
Zoar 6Z 2 11,2 3 Z 2\ “55/ 6711 .2 3 z,Z Ziy 52
(Zoe )57 - (Zg ) iatiiaw  (L336) 59° - (Zie)istyoaw  ~ Zows - (Fu(F2) 7w 7ss ) 0 275,

The exponen

The paths/complex conjugates The braids of braids

PmP2Zy, P2 P’
m=35 2
PeP2Zr6P2 Po.

@

Q| ~&F S ¢ s e oy 3
Poro2 2 PN s s o888
3) ‘ p£p£§2/4p;ip;j 3

1 1 2 2 3, 3’ 4 4 5 5 6 6’
& & NS NS d 0
Jois i =
/
1 2 2 3 374 4 5 5 6 6 Pinp2z2/mP2 Pm
R LA R

4) m=3,5 2

[ i —i o —i
PeP2Z26Ps ' Pg

©®) 2 1

(6) Zoor 1

(7) pépjnzmﬁ/p;ipa_j 2
m=14

8) plosZaens 3
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11 2 2 3 3 a4 5 5 \6 6
$ ¢ & & i S i $
Joais —i =]
(9) 1 1 2 2 3 3 4 4 6 6 PePmZm6Pm Pe 2

s s ,
v m=14

, , , , S B —
1o+ & F 5SS E S L T | pepbesens g 3

A R R R A _
J i —i =]
V P3P1Zy/3P1 P3 3
3 J i —i =]
* p5p4g45p4 Ps 3
& 34 1
-61 234 1
, -1
¢ Zhy 1
6 p_l
. 314 1
, P im i i
N Ps5P121'5P1 Ps 2
l6 ISv . . . .
U —1 —1
PsP1Z15P1 Ps 2
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! ZBB/ 6 "

Z 44’

< Zgy_e)zs’s?.s

Zl/ 22/

Z £55 .6

(Z )1 =44/ 55 6.6/

2
: (Zgzas/)zll'zz : (Zzz/ )

Z.

1 22 55’ 6

sy (L) s g - (Z0) 725702

: . The exponen
The paths/complex conjugates The braids i
P P 1ug of braids
I B N A I i
1) |~~~ PaP1ZV2P1 " Py 3
@ |& v 2 2 3 3@ & &8 N85 |Zew 1
@ |+ & & F L d FF S iz pyes! 2
oro2 o2 o3 @ s 5 NS §
4 PePatacli Ps’ 3
(5) PhpsZsens pg” 2
(6) PiphZe Py pe 2
@) phpbZaepy pa’ 2
(8) pipszseps pg’ 3
PP mpy P’
9 m=4,5 2
PeP1Z16P1 Pg
(10) PapAzyepy Py 3
PPz, P1 P’
(11) m=4,5 2
P6P1Z16P1 Po
(12) Z1r 1
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: : ! J i —i —J
X S P3P22230P2 P3
1 1 2 3 3 4 Py 5 6 & jo —i —]J
A S @ P5Pa245P4 Ps
oy 2 SIS )& 8§ 234
& F 2 s 3 L A 234
[T 6 6 pt
. . . . 234/
1 1 6 6 p— 1
B . . . 2314

: 6 & ii —i _—i

o8 s g P5P22505  Ps
Lo 5 &

P5PazasP2 s
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2 2 2 2
—_ 73 2 z /22! 3 Z3) oot 2 ZY1 qur 251 oot
HVS - Zl/vzz/ : (Zl’i)i:133%.25,5’,66/ ' (Zl’.44’) ez (Zli)i=33/5_5/yee/ . (lel) varTn e
- __» 25272, — 72 A A —l—1 2 —2
(2551)233/'525/'66/ (Z5) 555 23y s (25) 5550 - Z8 69 - (FA(F )72 “ed )Zl/'ZZ/ P
The paths/complex conjugates The braids Ipira%);ponen
(h) papzr2py Py’ 3
PP Zmpy pr’
(2 m=36 2
PsP1Z1/501 Ps '
®) papiZvapy oy’ 3
PnPAZy,, Pr P’
4) m=3,6 2
P5P1Z15P1 Ps '
(5) Zaw 1
(6) Zsy 1
) PLPlZms P P5” 2
m=24
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-l -1‘ .2 3 -4 5 .6 '6
i =i i
(8) s & | PsPaZasPs Ps
o S
9) Y| PePnimspm s’
m=24
o 2 3 & 2 L Ay I —i —j
(10) = PePs25'6P5 Pe
N a1 12 —2
(Fl(Fl)Zzz/lzes/l) 122 e sy
1" 2 2' 3 3 4 4" 5 5 6 6’ PR . .
J &y 8 ¥ & i —i —j
(& Phphrsny' o3
2 2 3 3 4 4 5 &5 6 J i —i =]
o223 S PePaZacPa Pg
.1, Z34/
-1' Z3/4
, ot
I1 Z34/
. ot
ll Z3/4
r PP i
‘ PeP2Z22'6P2 Pg

Plépizézspz_ oy
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2
Hy, = (Zg’i);zasf.4.4'.ee/ ’ Zfl'.z' (Zg'.ssl)zzl‘%/ ’ (Zgi)

72 _ 72 72
(ZZ ) 11,2 'ZS 3 (ZZ) 33,4711/ 2
£id4’ ) i=11 .55 4,66 ° \=i4)i=11 55

Zyy 2
i=33,4,4 .66/

) (Z44,)2§/.66/Z§3’.4 . (ﬁl(ﬁl)zﬂ}%})élﬁglléZiaz_
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2 52 2
Z31 2251 551 Zawt 55/ 3
. (222’) w2"2.sy “ad s L 73,

The exponen

m=15

The paths/complex conjugates The braids .
P P g of braids
1 1 2 3 3 6 6'
LR IR P i
SN 2 pmp2§2/mp2 Pm
(1) m=36 2
PaP22y4P2 o
) PypAz,P1 Py 3
® plpbZzspy ' ps? 3
P{;I pi222m pz_'pr;j
(4) m=36 2
Pap2ieap; Py
(5) Zoo 1
(6) 423403 P2 3
£ o —i —j
AT : . . PmPala'mPys Pm
(M| & grengi e o 8 ap & e x| el 2
Loy oz oy o 2T N 8
(8) 1 1 2 2' 3 3 4 4 5 5 6 6' pép’454/6p;’p6_j 3
Joim i =
(9) PaPmZmaPm Py 2
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(10) Zaw 1
1 1 2 2’
~ ~ N -2 —2 72
(Fl . (Fl)zu/lzsyl)zkss'zzt,ey Ziy,
/’1'\\ 2 ) 4 4 5 5 6 6 i i R
},_ N sy e 8 el /)lapllgl/spl 03 2
Sy J i —i =
P5P3ZzsP3 Ps 3
C—
58| papZvapr g 2
Joiz. i
P5P121501 Ps 3
256/ 1
756 1
p—l
Zog 1
p—l
Z5g 1
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-2
_ 53 2 3 z 2 2 \Ziew 22 oo 25 55 22 3
HVB - le’.2 : (ZZ/i),':3_3/.44/.55/ ) (ZZ/.GG’) 55/.6¢ . (ZZ’i),‘=3’3IY44/_55/ . (222’) 27,66 2/,55 “41/,2 Z3’.44’ :
2 Z?Z,’.44’ Zfﬂ.z =3 2 Z%l’.z Zg/ 55/ Zg/ a4’ 2 pz izt Zil/ 3 Z%/ a4/ Zflz 2
(Z3)i57 0 " - Z3 55 - (25) 1217 60 - (Zaw)™ A (Fy(Fy) o e ) 503 -
The paths/complex conjugates The braids The €xponen
of braids
1 1 2 2 3 3 4 4' 5 5 6 6 i —j =7
(1) -@- o . . . . K . o pépllglzpl lpz J 3
-1 -1 2 2’ E -3‘ R & 5 5 '6 '6 . . . .
L PinP2Zg1,, P2 P’
) , m=4,5 2
' P3P2Zp3P7 P53
3) PeP2Z260s P 3

Pn05Z2mpPy P’
m=4,5 2
P3P2Z23p; Pz

(4)

(5) Zo 1
(6) PaP3ZaaPs Pa” 3
(7 p'jn pgz?m p;ip};j 2
m=16
-l -l -2 .2 -3 3 -4 .4' 5 -5 .5 -6
i i
8) 1 r 2 2 3 3 4 & 5 5 5 0§ PsP3lysP3 Ps 3
R =
O EE R SRR O S Y s 2
m=16
10| r 2 2 G Zay 1
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(]'5‘1 . (ﬁ‘l)zﬂ/lz@l>zil’.3’ 73 aw 73y 2

¢ i i —i i
PaPiZ14P1 Pa 2
< J i i —=J
S ; i -
P5PaZysPs Ps 3
s &
£ | PaphZrapr oy 2
s &
L
Jois. =i =]
P5P121/501 Ps 3
.6 -6
! 256 1
‘ 756 1
ot
Zog 1
ot
56 1
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3 2 \4
fIV9 = Zl/,22/ . (Zl’i)

73 aa - (25)

" —l,—1 2 2 2
(Fl(Fl)ZZZ’ Zyy )Zzz/.33’ 23 a0 211 2 .

2 2
211 55 Zl/‘22’

2
' (Zi’.ssl)zl/‘zzl : (Zi’i)i=3.3/.44’,66/
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2 2
Zy e/ 2

()

344

2 2 2
. (le,)gl"SG’Zl"SS’ 2y 20

The paths/complex conjugates

The braids

The exponen
of braids

1)

*a
‘o

Joi —i =]
P2P12172P1 P2

3

)

PP Zmpy P’
m=4,6
P3P1Zy/5P1 P3

®)

J iz —i —J
P5P1215P1 Ps

(4)

p{vllpg_zl’mpl_’.pr;j
m=46
p3piZ13py p3

(®)

le’

(6)

J o —i —j
PaP3234P3 Py




FuNDAMENTAL GRouPS BRAID MONODROMY, BRANCH CURVES

881

iz —i =]
7 PmP323mP3 Pm 2
@) m=25
(8) pr/;lpng:”mp?,_iPWTj 2
m=25
9) pLoEzens Pe” 3
(10) Z3y 1
(}"71 . (iyl)Zz_z,lZ;‘,l)222/.33/25/‘44’ Zf/.zz/
o S| Papazaary pa’ 2
1 3 . L
PLPazaspy ps’ 3
Il ll‘ 16Y
2 r & pilp,'zzz,wpz—ipzi 2
B & &
& S 8
pEpaZzspy ps’ 3
1 6 &
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1 1 2 Z 1
. 56/

1 X 2 756 1
p—l

11 Z5g 1
p—l

1 1 756 1

2.3. Properties of AZ,. Now we are checking if the braids we have found are
the only ones. For that, we assume thsd, = H[.gzl CiHy, [[b; be the braid mon-
odromy factorization.b; are factors corresponding to siagties that are not cov-
ered by]_[,.gz1 CiHy,, and eachp; is of the forn¥/’ y; is a positive halftwist and
0 <1 < 3. We compute degrees of all factors involved. By [6, TheoBjndegAZ, =
54.53 = 2862.

On the other hand]‘[?:1 C; compounds 864 factors, so dEﬁzl C; =864-2 =
1728. In the computations of eaddy, ,<d i < 9, degF; = deg(F1)” = 24, so
degFi(F1)? " = 48. The factors outsidéi(F1)”  in eachHy, are: 20 degree two fac-
tors, 12 degee three factors, 2 degree one factor. The summeofattors’ degrees re-
sulting from eachH,, is 202+ 12-3+2-1 = 78. Thus de@l,, = 78+ 48 = 126
for 1 <i <9, and therefore delg.., Hy, = 126- 9 = 1134. Finally de§[.., C;Hy, =
1134 + 1728 = 2862.

Therefore, degﬂ?:l b; = 2862- 286271 = 1. SinceVi, b; is a positive exponent of
a positive halftwist, we geb; = Yi.

Finally, A2, = [, C:Hy,.

In the following lemma we prove the Invariance Property r

Lemma 6 (Complex Invariance ofC; ). For everyi, i =1,...,9 and Vm; € Z,
1< j <27, C; is invariant under]_[fz1 z7.

Proof. We apply Invariance Rule Il and Invariance Remark (§, Subsec-
tion 7.3] on each of the factors a@f; of the forﬁﬁ,’jj,. O

We can summarize the properties A, in the following theorems.
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m;

Theorem 7 (Invariance Theorem fonZ,). Letp = H?Zl pm; for p,, =77}, and

1< <27 Then A§4 is invariant underp for everym; € Z.

Proof. By Invariance Properties d@f,, ([4, Sections 3.1-3&j}l by Lemma 6.
]

Theorem 8 (Complex Conjugation Theorem).AZ, is invariant under complex
conjugation.

Proof. The same proof from Lemma 19, [22]. [l

2.4. Consequences from the Invariance Theorems.Recall thatS© = § is the
regenerated branch curve. Every factor of a braid monodréeyorization A2, in-
duces a relation om(C? — S, M). The Invariance Properties are an essential addition
to the van Kampen Theorem, since we get more relations, (€2 — S, M).

Theorem 9 ([6, Section 3.10]). Let S, ¢, Bs4 be as above. If a sub-factorization
[1i-, Zi of AZ, is invariant under any elemerit, and [];_ Z; induces a relationl;, -
... .Ty, on m(C?— S, M) via the van Kampen methpthen (T;,);, - --- - (I';,), is also
a relation.

Corollary 10. If R is any relation inm1(C2—S, M), then R, is also a relation in
71(C?— S, M), where R, is the relation induced fronR by replacing; and: with
. . 27 mj
(Fj)pl;,- and (Fj/)p:;,- respectively forl < j <27, wherep =[], pm; and p,; = Z;;.
Proof. By Theorem 7. U

Corollary 11. m(C2—S, M) satisfies all the relations induced iR(AZ,), all the
relations induced fron(R(A§4))p and all relations induced from the complex conjuga-
tion of AZ,.

Proof. By Theorems 7 and 8. O

3. 7[1(((:2 — S M) and «;

3.1. The van Kampen Theorem. The van Kampen Theorem induces a finite
presentation of the fundamental group of complements ofesuby meaning of gen-
erators and relations.

We obtained the regenerated braid monodromy factorizatify= H?:l CiHy,. We
have to apply the van Kampen Theorem on the paths, which sgngl to the factors
in A2, We take any path front té , cut it i/ , then towards along thehpat
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Fig. 5.

aroundk and coming back the same way. Consider as an elemehe dunda-
mental group. Do the same i0 to obtaBh . 80B, are conjugatiéris, @and I';
respectively, see Fig. 5.

Lemma 12 ([40]). {A, B} can be extended to @ -base of(C,—S, M) denoted
Moreover there is an epimorphismy(C, — S, M) — m1(C? — S, M).

Theorem 13 (van Kampen for cuspidal curves)Let S be the regenerated cus-
pidal branch curve u, M, ¢, A, B defined as above. Le{s;} be a g-base of
m(E — N,u). Let o(&;) = V, Vi be a halftwist v; = 1, 2, 3 Let {I';, T;/}°], be
a g-base formy(C, — S, M). Then 711(C? — S, M) is generated by the images b,
[join m1(C?— S, M) (denoted also by, I';:) and we get a complete set of relations
from those induced fromp(5;) = V/, as follows(when A, B are expressed in terms of
Ly, Tjrd):

(a). A =B,wheny; = 1;
(b). [A, B] =1, wheny; = 2;
(c). (A, B) = ABABAB =1, wheny; = 3.

Recall that

- m1(C? — S, M)
11— - < -
(P3.Ty)

Let us apply the theorem on three examples, taken from the tabresponding
to Hy,. We follow Figs. 6, 7, 8.

Following Fig. 6,A andB are conjugations Df andI's: respectively. All factors
in the conjugations are with a positive exponent silige ijiL andT'; = Fjil in 7.

We constructB by proceeding frome  towards &bove 6 and 6 encircling 5
counterclockwise and proceeding back above 6 dndlgereforeB 5Ty sy =
(F5/)F6F6'. In a similar way,A =T'sI'pI'2['y'1I'sI'Lyol2 5 = (F5)F1F1/F2F2'F5.

This path is related to a braid which is induced from a branaintp Therefore by
Theorem 13,4 =B . The derived relation ig7s§ " o'y s = (I's)TeTe
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Fig. 7.

Following the same technique in Fig. 7 we get three relataosording to three
paths. These paths represent the three braids derived frme tusps. The relations
are: <F2/, F4> =1, <F2, F4> =1, <(F2/)F2, F4> =1

Following the same technique in Fig. 8, we get two relatioogasponding to the
two paths. These paths represent the two braids derived immodes. The relations
are: s, (T2)'v"] =1 and ['s, (T2)"v "] = 1.

Since we followed the process on the poivit, we continue and present the
list of relations for V,. We get an infinite number of relations by Corollary 10.
We present partially the infinite list foV,, following the list of paths and braids
involved in Hy, (Subsection 2.2). Recall that the generators involved is ter-
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Fig. 8.

tain case ar<—:~[l"j,l“jl},.:l_,“,‘zg14 17 (see [4, Fig. 6]) which are numerated locally as
{T;,Tjr}ic1 2345 ¢ Moreover, we add the relatiorléf = Ff, =1

3.2. RelationsHy,. The following relations are induced from the factorskf,

and their paths in the first table.

Relatiofl] : ('3, T4) =1
Relatio2] : ('3, Ts)=1
Relatio3]: (T'y, T4y =1
Relatiof4]: (I'y,Ty)=1
Relatiorf5] : [T, F%FZ"“)] =1
Relatiorf6] : [, T2 2]=1
Relatioff7] : [Ty, rgﬂ'“’] =1
Relatiofg] : [I'y, r{7 2] =1
Relatiof9] : [IV2 "™ Tg]=1
Relatiorf10] : [F%FZ"FZ), rs]=1
Relatiorj11] : [F?P"“), I's]=1
Relatiof12] : [I{? "™ ri¥]1=1
Relatiorf13] : [r%?“'rz/“), I's]=1
Relatiorf14] : [I{*™ ™ rls1=1
Relatiorf15] : [F%FZ"FZ), e = 1
Relatiorf16] : [F{Z"FZ), Fe]=1
Relatiof17] : [r??Z"Fz), el = 1
Relatiof18] : [I0? ™ rg]=1
Relatiorf19] : (T2, T4 =1
Relatiorf20] : (T2, Ty) =1
Relatiorf21] : (T'»,T4) =1



Relatiorj22] :
Relatiorj23] :
Relatiorj24] :
Relatiorj25] :
Relatiorj26] :
Relatiorj27] :
Relatiorj28] :
Relatiorj29] :
Relatiorj30] :
Relatiorf31] :
Relatiorj32] :
Relatiorf33] :
Relatiorj34] :
Relatiorj35] :
Relatiorf36] :
Relatiorj37] :
Relatiorj38] :
Relatiorj39] :
Relatiorj40] :
Relatiorj41] :
Relatiorf42] :
Relatiorf43] :
Relatiorj44] :
Relatiorj45] :
Relatiorj46] :
Relatiorf47] :
Relatiorj48] :
Relatiorf49] :
Relatiorf50] :
Relatiorf51] :
Relatiorf52] :
Relatiorf53] :
Relatiorf54] :
Relatiorj55] :
Relatiorj56] :
Relatiorf57] :
Relatiorj58] :
Relatiorj59] :
Relatiorj60] :
Relatiorj61] :

FuNDAMENTAL GRouPS BRAID MONODROMY, BRANCH CURVES

<F2/, F4/> =1
[[1, T4 =1
[, T4]=1
[Ty, T4]=1
[Ty, Tg]=1

Iy T3y T s
[F(3 312 2)’1—~55]

[F(m Ty -T3-Ty -T) Ts] =

=1
[F(F3/-F3-F2/~F2) F ]_

[F(F“ Ty T Ty Fz) Ty]=

[F(FA/ 4Ty T3 Ty - Fz) T ] —
[F(F4/ Ty FS’ I's- FZ’ FZ) FFS] —_ 1

[Fgr3/ IEE le Fz)7 F ] —

[F(F3/-F3-F2/'F2)’ FG/] =1

4
[ng.rg.r‘z,»l“z)’ FG] — 1

[I“A(ll:&-1_‘3-1_‘2#1—‘2)7 FG/] = 1

FA(lry TaToT2) _p

<F5, F6> =1
<F5, F61> =1
<F5/, F5> =1
Ty, Tg)=1
[F?, I's] =
1y e =1
[Floz/‘, I's] =
[F3/ ) FS’] -
[["2, Ts] =

[[2, Ts]= 1
[, T5]=1
[[2,Ts]=1
<F1, F5> =1
<F1, F5/> =1
<F1/, F5> =1
<F1/, F5/> =1

[FF4 F(FG'Fel'FS)] - 1
Ty F(FG 1"6/-1"5)] =1

[r

[Fér‘ll F4/ F4) I‘(FS'FG/'FE"FS/'FE‘)] - 1
[F(]/"A.FA/-F‘;)’ FS_‘S.FG,.FS.FS,.Fs)] — 1

[F(Fl/'rl)’ Ts]=1
[ra ™. re]=1
1/'F1)’ 1—~5] =1
1/'F1)’ 1—~5,] =1

[T
[T

3

fr

2/

’

887
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Relatiorj62] : T+ v T2z Te) = p{eTe)
Relatiof63]: TI'y;-I'1=1
Relatiori64] : T'y -y =1
Relatiof65]: Ty T =1
Relatior{66] DTy Ty=1
Relatiof67]: T's-T'3=1
Relatior{68] D Ty T3 =1
Relatiof69]: T'y-T'y=1
Relatiof70]: Ty Ty =1
Relatiorf71] : TI's-I's=1
Relatior{72] DIy Iy =1
Relatiof73]: Te-Teg=1
Relatiorf74] : TI'e - I'e = L

3.3. Relations F1(F1)* . (Fl(ﬁl)”fl)zf’-ggz;“‘ are conjugated byZg 273y ,-
Therefore, the corresponding elemerdts B, in this case afegations of the corre-
spondingl’; ,I'; by Z5 35734 4, 1< j <6.

We denote the conjugateld;  aly, by 1:j and I:j/ respectively.

Fj :Fj for j =1, 1/, 2, Z, 4,

We can view the other ones in the following figures.

2 2 -
3 3 a4 & ZS,SG' ZSS',4 . s 4
- 3 . . —_— .
I's, 'z, T4t \
\
|
=TIy
F3/ = F:l;/4

1:5/ . \

IT5/ _ 1—-(1—‘5'1—‘5/'1—‘5'1—‘5/-1—‘5-1—‘5)
- 5 .
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5’ 6 ’6' 6
I, I'e': / J
/
/
Te=T4°
Fe =g’

N A _ -2 52
The following relations are induced from the factors (iﬁl(Fl)P 1)55-66/233’-4 and

their paths in the second table é&fy,.

Relatiorfl] : (T, I3) =1

Relatiof2] : (', Tz)=1
Relatio3] : (T'»,I'3)=1
Relatiof4] : (T2, 113,> -1
Relatiorj5] : (2, T'3°) =1
Relatiorf6] : (2, I'3%) =1
Relatiof7] : [I'y, '] =1

Relatiorjg] : [T, FG/] -1
Relatiof9] : [T, T T L] =1
Relatiorf10] : [F(FZ Ty T3) ,Te] =
Relatiof11] : [I§* 1:2/ _Fs)_ I ] _
Relatiof12] : [I’(F3 [Ty 3Ty Ta) _1"6] _
Relatiorf13] : (I'}*, Tg) =1
Relatiorf14] : (T',?, Te)=1
Relatiorf15] : (I}, Tg) =1
Relatiorf16] : (I',?,Tg) =1
Relatiorf17] : <F(F3 Ty T3) Ts> 1
Relatiorf18] : <r(F3 Ty Ta) Ty =1
Relatiorf19] : T’y = F(Fs o)
Relatiof20] : Ty = F(Fz/ ['3-Ts)
Relatiorj21] : I = f(Fs T3 -T3-T6: T -Te)
REIatIOYIZZ] . I: = F(FZ’ I3 Fs’ T3-Te- 1_'6/ Te)

889

3.4. RelationsC;. In the same way as above, we derive relations from the
braids C; . The list appears in [4, Section 4.11] in a global maten of the gener-
ators.
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4. Results

In this paper we presented the list of braids and the braidosi@my factoriza-
tion AZ, corresponding to the branch cunfe Bfx 7. Recall thatS compounds nine
curves, each one of them is treated in [4]. The computationdeitail appear in [4,
Chapter 3].

We quoted the van Kampen Method and Theorems and we used therbtdin
relations for the fundamental group,(C? — S, M). We presented some relations, the
complete list appears in [4, Chapter 4]. Settlhfgz FJZ, =1, we can get a presentation
for the groupni.

Through this paper we concentrated on the 6-péihiand showed complete com-
putations concerning this point. As quoted above, all ott@mputations appear in [4,
Chapters 3 and 4].

In [7] we compute the fundamental group((T' x T)ca) Of the Galois cover of
T x T with respect to a generic projection @P?. Recall that the fundamental group
m1((T X T)éfefu) is the kernel of the surjectiogh: 71 — Sis.

The Galois cover is a surface of a general type. In [7] we yetie Bogomolov
Conjecture. Bogomolov conjectured that if a surface of aegantype has a positive
index, then it has an infinite fundamental group.

Let X be a surfacef X — CP? is a generic projectionS C CP? its branch
curve,m =ded d =# nodes i§ p=4# of cusps inS ,u =# of tangency points in
S for a generic projection t€P, n = degf . Then

n!
C¥(Xga) = Zm = 6)°,

m?  3m 3d 4p
=l —-—+3- — - =
Cao(Xga) = n ( > " 7 3)

and the index
1
r= §(C]2_(XGaI) — 2C2(Xea|)),

see [16, pp. 603-604].

We compute the index off{ x T)ga-
By the above computations, =18 =54, p=216 d =1080 m =54C?(Xga)=
576- 18! and Ca(Xgqa) = 282- 18!. Thereforer(Xga) = 4- 18!. The index is positive
and the group we derive in [7] is infinite.

5. Notations

(A)g =B 1AB = A8,

X an algebraic surfacey C CP".

X, a degenerated object of a surfake Xq C CPV.
S an algebraic curve defined ov&, S c C2.
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E (resp.D ) be a closed disk on the -axis (resp. y-axis) with theter on the
real part of thex -axis (resp. y-axis), such thggingularities of m1} C E x
(D —9D).

m. S — E.

K (x) = 7 x).

N ={x € E : #K (x) < n}.

u real number such that < u Vx € N.

C, =7 (u).

pj=Zjj-

= the braid monodromy of an algebraic cur§e fin

Bp[D, K] = the braid group.

A2 =(Hy---Hy 1)

1 (C? — .ZS M) = the fundamental group of a complement of a branch curve
1= ey

T = compljex torus.

% (resp.z;; ) = a path from; tg; below (resp. above) the real line.

The corresponding halftwists arél z, 0 = Z;; ; H(zi;) =Z;;.
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