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1. Introduction

Let M be a complex manifold of dimension #» and P(M) denote the set

of plurisubharmonic functions on M. For usP(M)N C* M), we write (dd‘u)*

for ddu Nddu/N\ ---dd”u| where d°=+/—1(0—0). In the case k=n, the operator
]

k times
u—(dd‘u)” is called a complex Monge-Ampére operator. In general, let u be
a locally bounded plurisubharmonic function on M. In [5], [6], Bedford and
Taylor defined a positive (k, k) current (dd‘u)* inductively by

S YA (ddu)t = S w~ddy N (ddu)t

for any smooth (n—k, n—Fk) form +)» with compact support on M. In the same
paper they studied the Dirichlet problem for the complex Monge-Ampére
operator on strongly pseudoconvex bounded domains in C”".

In this paper we shall consider the Dirichlet problem at infinity on certain
negatively curved Kihler manifolds. Before stating our main theorem, we
recall some definitions in [10]: Let M be a simply connected complete Rie-
mannian manifold of nonpositive curvature. Two geodesic rays 7,, v, para-
metrized by arc length are called asymptotic if the distance d(7v,(2), v(?)) is
bounded for £ =0. The equivalence classes of geodesic rays are called asymptotic
classes, the set of which will be denoted by M(co). Then M=M U M/(co)
equipped with the “cone topology” is a compact topological space homeomorphic
to a cell.

Theorem. Let M be a simply connected complete Kahler manifold whose
sectional curvature K satisfies

(1) —a*=K=-—1 (az1).

We denote by o the Kahler form on M and by r(x) the distance function relative
to a fixed point oM. Then for any continuous function f on M(oo) and for any
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nonnegative continuous function p on M=M U M(oo) which satisfies
(2) 0= p(x) =C exp(—2n-r(x))

for some constant C>0, there exists a unique continuous plurisubharmonic function
u on M such that

(3) { (dd°u)" = p-o"[n! in M

u=f on M(oo).
By applying the argument of Cegrell [8], we get more generally

Corollary. Under the same assumption as in Theorem, let H(t, x) be a
Lebesgue measurable nonnegative function on (— oo, sup )X M with

(29 0=H(t, x)=C -exp(—2n-r(x))

for some constant C>0. If H(t, x) is a continuous function in t, then the Dirichlet
problem :

{ (ddu)" = H(t, x)o"|n! in M
lim () = ) for any g M(o)

has a solution u€ P(M)N L= (M, loc), where P(M)N L=(M, loc) denotes the set
of locally bounded plurisubharmonic functions on M.

We mention here some works previous to ours. In [20], H. Wu proposed,
among other things, the following question: Is a simply connected complete
Kahler manifold with nonpositive Riemannian curvature and with negative
holomorphic sectional curvature bounded away from zero biholomorphic to
a bounded domain in C"? (See also Aomoto [2].) Around this problem, a
number of interesting results has been obtained (cf. e.g. [17]). In particular,
in [11], Greene and Wu showed a geometric method of constructing suitable
bounded plurisubharmonic functions on a Kihler manifold M as in theorem,
and applying the L?—3 theory to M, they proved that M possesses the Bergman
metric. As a Riemannian counterpart to the above problem, Choi [9] and
Kasue [13] considered the Dirichlet problem at infinity for Laplace operator
on a simply connected complete Riemannian manifold satisfying (1). Then
Anderson [1] showed that such a Riemannian manifold possesses abundant
global convex subsets, which allows to solve the Dirichlet problem for Laplace
operator (cf. [9], [13]). We depend essentially on Anderson’s result; in fact,
we can construct so called barrier functions, by making use of his result.

(39

ReMARK. The decay conditions (2) and (2’) would be reasonable for
our situation. In the case of complex # ball with Bergman metric, these con-
ditions correspond to the boundedness of density function measured by the
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usual Lebesgue measure. After finishing this work, H. Kaneko treats our
problem from the probabilistic standpoint and showed that the decay condition
can be weakened ([14]).

The author wishes to thank Doctor A. Kasue for his valuable suggestions.

2. Proof of the Theorem

In what follows, we preserve the notations introduced in Theorem. Let
us denote by B(p, f) the class of subsolutions to the Dirichlet problem (3), i.e.
the set of functions v&e P(M)N L=(M, loc) satisfying

(4) (dd°v)"Zp-w"|n! (in the sense of Bedford-Taylor [5], [6])
lin; sup v(x) = f(E) for any EeM(c0).

The upper envelope of the class B(p, f) is by definition the function

(5) u(x) = sup {v(x): vEB(p, f)} (xeM).

We first show the following

Lemma 1.

(1) B(p, f) is not empty.
(2) The upper regularization u* of the upper envelope u belongs to the class B

(p, f) and satisfies
lim ¥(x) = f(€)

for any EEM(o0). In particular, u=u*.

Proof. Set
(6) B(x) = exp 2 S:"" (sinh £)'dt,
where 7(x) stands for the distance function between a point x and a fixed point
o of M. By the Hessian comparison theorem (cf. [11]: Theorem A.)
(7) dd‘B=2p3 (sinh7r) % w on M—{o}.
Here o denotes the Kiahler form on M. It follows from (7) that
(8) (dd°B)" = (26)"(sinh 1)+ o"

as positive currents on M. This shows that for some constants C;>0 and C,,
C,8+C, belongs to B(p, f), because of the assumption (2). Now we fix a point
£eM(o0). By a theorem of Anderson ([1: Theorem 3.1]), for any positive
number & there exists an open neighborhood U , of £ in M such that
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[ —fE)|<¢  neM(o)NU¢.,
M—U;, is a totally convex domain in M .

By the approximation theorem, we may assume that the boundary of M—U},
is smooth (cf. [12], [13: Corollary (2.5)]), so that the distance function 7¢(x)
to the boundary of M— U}, is smooth on U}, N M (cf. [B—O]). Now we set

(9) Be.o(#) = exp 2 S'E’*(’) (cosh #)dt .
1

By the Hessian comparison theorem for hypersurfaces (cf. [13: Theorem 2.49])
(10) dd‘Bg c=2(cosh rg o) 2 min{l, sinh 7¢ .} r0

on MN U, We take two constants
A= exp(—2 SI (cosh#)™'df) B — exp(2 Sw(cosh f)tdry,
0 1

and extend B, to a plurisubharmonic function on M by setting B¢.=A on
M—U;, Weset
(11) By (%) = f(§)—26+Cy(Be,.(x)—B)+Cy(B(x)—C),
where C=exp 2 Sm(sinh t)~'dt, C;>0 and C,<0.
1
It follows from (8), (10), (11) that B¢, belongs to B(p, f) and satisfies
Be.2f(§)—3€ on U .NM
for a small neighborhood U ,C U}, of £ in M. Then we have

(12) wx)= B ()=f(§)—3€  (x€Ug.NM).
Set
(13) B,o(x) = (f(§)+26)—C(Bs,.(x)—B) ,

where Cs is a positive constant. Then, for a sufficiently small neighborhood
U, of £, we have

(14) B = f(E)+3¢ on Ug.NM.
Since the function B¢, is plurisuperharmonic, we have
(15) u* =Bt on Ug,NM.

Since € is an arbitrary small positive constant, it follows from (12), (14), (15)
that
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lin;1+s£up w*(x) = f(&) .

This proves the last statement of Lemma 1. Now we shall complete the proof
of the Lemma. We may choose an increasing sequence of functions ;€ B(p, f)
such that u*=(lim #;)*. Then we see that

oo

(dd‘w*)" = lim (dd‘u;)" < p+o"[n!
jroe

([6: Theorem 7.4]). 'This implies u*&B(p, f), which proves the Lemma 1.
Let {Z;},<i<. be a frame of holomorphic vector fields on M. Here we
remark that the holomorphic tangent bundle is holomorphically trivial. Let
Q be a relatively compact domain of M. For sufficiently small positive con-
stant 8, we can define a smooth map ®: A;x Q—M (A,={z=C:|z|<8}) by

(16) ®(w, x) = Exp(Re S wiZ)(x)  (w=(w,, -, w,) EA}).
For we A}, we denote the holomorphic map x— ®(w, x) by ®,. Now we shall
prove the following

Lemma 2. The function u defined by (5) is a continuous function on M.

Proof. Given £€>0 and £ M(c0), we choose a neighborhood Uy, of &
inM as in Lemma 1. For sufficiently large R>0, M is covered by {Ug o} tcpm(e)
and the geodesic ball B(o, R)={x&M: r(x)<R}. For sufficiently small §>0,
we may assume that

|u(x)—u(@u(x)) | <€  (wEA}, xE0B(0, R))

because of (12), (14), (15). Now we define a plurisubharmonic function U(x)
on M by

u(x) if x&M—B(o, R)

(17) U(x)={max{u(x), uo®,(x)—26+Cy(B(x)—C)} if x€B(o, R)

where C is a positive constant and w €Aj. Then for any >0, it follows from
(8) that on B(o, R),

(18) [dd*(uo®,+CeB)]" 2 [dd (uo®,)]"+C5(dd’8")
=(p—n)w"+2"CiR"(sinh r)™*-o"/n! .

Now we see that U € B(p, f), by setting

C = »" sup sinh »

B(o,R) ,8

In particular,
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uo®,—264-Ce(B—C)<u on B(o, R)(wEA}) .

That is,

uo®,(x)—u(x)<264-CiC .

By taking (<€) sufficiently small, we obtain

uod,—u=¢€ on B(o, R) (wEA}).

This shows the continuity of u.

Now lemma 1, lemma 2 and the original argument of Bedford-Taylor ([5:

Theorem 8.3]) show that

(dd°u)" = p+w"|n! on M
u=f on M(c0).

Thus our theorem has been proved.
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