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0. Introduction

Let G be a finite group, B a p-block of G, where p is a prime. In [5],
Dade conjectured that the alternating sum of the numbers of irreducible
characters of certain heights in some blocks of subgroups of G related to
B vanishes. (See Section 1 below.) Moreover, he showed that the con-
jecture holds for blocks with cyclic defect groups and for any blocks of the
first Janko group and the smallest Mathieu group. (See Sections 9, 10
and 11 of [5].) The cyclic defect group case can be handled since the
structure of such blocks is well known by Dade’s work. So, the answer
to the conjecture in this case is completely due to him. On the other hand,
by virtue of [4], [8] and [6], the structure of tame blocks, that is, 2-blocks
whose defect groups are dihedral, quaternion or quasidihedral, is also well
known. Thus, one could expect that the conjecture can also be proved in
these cases. In fact, the purpose of the present paper is to show that one
form of Dade’s conjectures, whose concern is extended to the number of
ordinary irreducible characters invariant under the action of given automor-
phisms, holds for tame blocks. (See Section 1.) Thus, for example, the
principal 2-block of the smallest Mathieu group, which is treated concretely
in Section 11 of [5], is just an example of our case.

Notations and terminologies are standard. See for example [7] and
[2]. For any fixed p-block B of a finite group G, and any subgroup H of
G, we denote by BI(H, B) the set of those p-blocks b of H which satisfy
b¢=B. The sets of ordinary irreducible characters and Brauer irreducible
characters in B are denoted by Irr(B) and IBr(B), respectively. The
cardinalities of Irr(B) and IBr(B) are denoted by k(B) and I(B) as
usual. For yelIrr(B), we denote by d(x) the biggest integer m such that
p™ divides |G|/x(1). Thus the sum of d(x) and the height of y gives the
defect d(B) of B. In this paper, a p-chain means a chain C:
Py<P,<---<P, of p-subgroups of G with P,=0,(G). The above n is
called the lenth of C. If all P;’s are elementary abelian, then it is called
an elementary chain.

This paper is organized as follows. After stating Dade’s conjecture
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in Section 1, we review several results on tame blocks in Section 2. Most
of them are found in [4] or [8], or just easy exercises. Using the results
in Section 2 and some local analysis, we determine, in Section 3, the
related blocks which contribute the alternating sum. Section 4 is devoted
to studying some actions of automorphisms on Irr(B) and on the column
index set of the generalized decomposition matrix of B. Through
Brauer’s permutation lemma, one can see the relation between these two
actions. This may give a device for counting the number of invariant
elements in Irr(B) in terms of the action on local objects such as
subsections. However, we must also consider the action on IBr(B) since
irreducible Brauer characters appear as the column indices as well. This
is analyzed by, with Erdmann’s classification of tame algebras, looking
at the actions on the ordinary decomposition matrices, on the Cartan
matrices or on the stable Auslander-Reiten quivers of the modular block
algebras. Eventually, the number of invariant ordinary irreducible
characters is given completely in terms of the actions on local
objects. These are done in Section 5. We complete the proof of our
main result in Section 6.

ACKNOWLEDGEMENT. The first attempt to the subject in this paper
was to prove that the ordinary conjecture (the simplest form) holds for
tame blocks. It was Professor Dade who suggested the author that the
extended conjecture for tame blocks should also be handled. Thus, the
author would like to express his heartfelt gratitude to Professor Dade
for his suggestion. The result of this paper was obtained during the
stay at University of Essen. The author is also grateful to Professor
Michler and the Institute for Experimental Mathematics, University of
Essen for their hospitality, and to the Alexander von Humboldt Foundation
for its financial support.

1. Alternating sums

Let G be a normal subgroup of a finite group E, and let B be a
p-block of G. Here p is a prime. Assume that B is E-invariant. For
any p-chain C of G, let Ng(C) denote the intersection of the normalizers
in E of the subgroups appearing in C. Then N C)=NgC)NG is a
normal subgroup of Ng(C) and we have

N(C)G/G~NgC)/Ng4z(C).
For any subgroup F of E with G < F and any integer d, we denote by
k(NG(C)» B) d; F)
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the number of those irreducible characters ¥ of Ng(C) which lie in a
block & of Ng4(C) with b=B, d()=d and their inertia subgroups I in
Ng(C) satisfy IG=F. Notice that if F is not contained in N (C)G, then
the above number is zero. Also, if two p-chains C and C' satisfy
Ng(C)=Ng(C’), then the above numbers for C and C’coinside (for fixed
B, F and d). Moreover, it is clear that this number is invariant under
the action of G.

Take the family & of all the elementary p-chains in G. Let /G

denote a set of representatives of G-conjugacy classes of &. Then the
alternating sum

(1.1) S= ¥ (=1)°k(N&(C), B, d, F)

Ce€/G

is well defined, where |C| denotes the length of C. The -extended
conjecture can be stated as follows.

Conjecture 1.2. IfO,(G)=1andd(B)>0, then S=0 for all F and d.

By (3.6) and Proposition 3.7 of [5], the family & can be replaced by
some other natural families. As is mentioned in the introduction, our
main theorem is the following.

Theorem. Conjecture 1.2 holds for tame blocks.

In the case of G=E=F, we use k(NgG(C), B, d) instead of k(Ng(C),
B, d, F). Conjecture 1.2 in this case is called the ordinary conjecture
in [5]. (See Section 6 of [5].)

We now make the following easy remark which may be helpful.

(1.3) Let F, I and E' be subgroups of E such that GSF<E'G and
ENG<I<E'. Then IG=F if and only if [I=FNE'.

Proof. Notice first that F=(FNE)G. Conversely, suppose that
IG=F. Then IKFNE'. Let geFNE'. Then we may write g=hh' for
hel and eG. Now W =h"'g lies in E'. Thus 4 lies in GNE' and
hence in I. Hence g must lie in I. Therefore, we have I=FnE'. []

Let C be a p-chain of G and F a subgroup of E with GSF. Also,
let beBI(Ng(C), B) and ¢€elrr(b). If FSNg(C)G, then apply (1.3) to
E'=Ng(C) and the inertia group I of ¢ in Ng(C). Consequently, we
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may compute the number of characters in & whose inertia groups I satisfy
I=FANgC). Recallalso thatif F<Ng(C)G is not the case, then k(Ng(C),
B, d, F)=0.

2. Preliminaries for tame blocks

In this section, we summarize results on tame blocks. All of them
come from [4], [8] and [6]. First of all, we introduce several notations,
which will be used throughout this paper.

Let G be a finite group and B a tame block of G. We fix a defect
group D of B, and write |D|=2". Then D can be expressed as one of
the following.

(I) dihedral (#>2): D= <x, y[x*>" '=y?=1, yxy=x"1>

1

(II) quaternion (n>3): D= <x, y|x?" =92 y*=1, y lay=x"1>

(IIT) quasidihedral (n>4): D= <x, y|x*" '=p*=1, yxy=x"172""">

Let z denote x2""*. If n>3, then z is the unique central involution of
D. Also, let & be the set of D-conjugacy classes in <x>\<z>. (If
n=2, then & is empty.) Thus, for example, if D is dihedral or quaternion,
then we can take {x|1<i<2""?2—1} as a set of representatives of
. However, certainly this set does not work in the case of
quasidihedral! Moreover, we fix several automorphisms of D as
follows. In case of D dihedral or quaternion, the automorphism ¢
sends y to xy and fixes x. If n>3, the automorphisms 7 and ¢ fix y
and send x to x> and x/, respectively, where j is —1 if D is dihedral or
quaternion and —1+42""2 if D is quasidihedral.

The above three cases are further divided into, in total, ten
situations. (See [4], [8] and p.152-p.155 of [6].) Here we remark that
it can be described in terms of some local informations. Define subgroups
Q, and Q, of D by:

<z, y>,if Dis dihedral or quasidihedral
Ql = 2n-2 . . .

<x ,y>,if D is quaternion.

<z, xy>,if Dis dihedral
0,=

<«?"7? xy>,if D is quaternion or quasidihedral.

Note that they are four-groups or quaternion groups of order
eight. Moreover, if n=2 or if D is quaternion and n=3, then
0,=0,=D. Let us fix a Sylow B-subpair (D, b) for a moment, and
for each Q' of the above subgroups, take a block by of C5(Q’) such that
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(Q', by) is contained in (D, b). Let N(by) denote the stabilizer of bg
in Ng(Q). Then we say that;

(2.1) (1) B satisfies (aa) if N(by)\Cs(Q;) has an element of order
three for i=1, 2.

(i1) B satisfies (ab) if N(bg)\Cs(Q;) has an element of order three for
exactly one i when D 1is dihedral or quaternion, and for only i=1 when D
is quasidihedral.

(it1) When D is quasidihedral, B satisfies (ba) if N(by,)\C(Q;) has an
element of order three for only i=2.

(iv) B satisfies (bb) if N(bp,)\Cs(Q;) does not have an element of order
three (1=1, 2).

It should be noticed that if =2 or if D is quaternion and n=3,
then O, =0, and we are concerned with only (aa) and (bb) of the
above. The above notation is the same as the one used in [4] and
[8]. We usually write or refer to, for example, (IIaa) to indicate the
case where D is quaternion and B satisfies (aa). Also, sometimes n must
be restricted. For instance, (Iaa, 2) means the case (Iaa) with n=2 while
(Iaa, >3) means the case (laa) with n>3. Moreover, if we write (I),
for instance, then it means that we are treating the cases (Iaa) (Iab) and
(Ibb) simultaniously. The argument in this paper will be given in such
a way that, as long as they are pararell in certain cases, we discuss just
once indicating which cases are concerned.

Now we give representatives of G-conjugacy classes of B-subsections.
In the following, we only give conjugacy classes of G since the associate
block is uniquely determined. (See [1].) For the proof, see (4.A) of [4]
and Proposition 2.10 of [8].

Lemma 2.2. (i) Two elements in <x>\<2> are D-conjugate if
and only if they are G-conjugate.

(11) The following and representatives of & give representatives of
G-conjugacy classes of B-subsections.

case
(Iaa)(I1aa)(I1laa) : =
(Iab)(I1ab)(111ba) : =, y
(Ibb)(IIbbY(ILIbD) : =z, y, xy
(I11abd) : =z, xy

REMARK. In the cases of (Iab) and (IIab), one possibly has to take
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xy instead of y. However, it is essentially the same as above and we
consider only the above cases.

Now we give formulae of the number of irreducible characters in
B of given height. See p.231 of [8].

Lemma 2.3. In any case, k(G, B, n)=4, and if n#3, we have k(G,
B, n—1)=2""2—1. For all the other values of d, k(G, B, d)=0 except
for the following cases.

1, if (I1ab) (IIbb, 3) (IIIaa) or (IIIba)
kG, B, 2)= 12, if (Ilaa, >4)
3, if (Ilaa, 3)

The number of irreducible Brauer characters in B is also known.

Lemma 2.4. We have the following.

IB)= 2, {if (Iab) (IIab) (IIIab) or (I1Iba)

1, («f (Ibb) (1Ibb) or (I11bb)
3, { if (Iaa) (11aa) or (111aa)

Now, we give the results on automorphisms and centralizers of some
subgroups, which will be used in the paper.

Lemma 2.5. (i) If (I, 2) or (II, 3) is the case, then Out(D) is
isomorphic to the symmetric group of degree three. Otherwise, Out(D) is
an abelian 2-group, and in fact, Out(D)= <G> X <T> 1in cases of (I) and
(II), and Out(D)= <T> in case of (III), where the bars indicate the natural
tmages in Out(D).

(ii) Suppose that (I, 2) and (II, 3) are not the case. Then the
restriction to <x> gives a homomorphism from Aut(D) to Aut(<x>).
Moreover, it follows that Aut(<x>)= <t'> X <>, where v and ¢ are
the restrictions of T and ¢to <x>, respectively.

Lemma 2.6. Suppose that n>3 and let u be a non-central involution
of D. Then Cp(u)= <z, u> which is an elementary abelian group of order
four.

Finally, we determine G-conjugacy classes of elementary 2-
chains. (See Sect. 1.) As is remarked in [5, Lemma 6.9], for our
purpose it suffices to consider only those in D. In view of Lemma 2.2,
we have the following. For the proof, remark that any non-central
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involution u of D is G-conjugate to z if and only if Ng(<z, u>)\Cg(<z,

u>) contains an element of order three. (See also p.152-p.155 of [6]
and (2.1).)

Lemma 2.7. Assume that O,(G)=1. The following give represen-
tatives of G-conjugacy classes of elementary 2-chains whose final subgroups
lie in D. (In each case, we omit the trivial chain 1.)

Iaa,>23): 1<<2>, 1<<z2><<z, u> and 1< <z, u>, where u
is in {y, xy}.

(Iab): Those in (Iaa,>3) above and1 < <y> and 1< <y> < <z, y>.

(Ibb,>3): Those in (Iaa,>3) above and 1 < <u> and 1< <u> < <z,
u>, where u is in {y, xy}.

(Iaa,2): 1<D, 1<<x> and 1< <x><D.

(Ibb,2): Those in (laa,2) above and 1< <u> and 1< <u> < <D,
where u is in {y, xy}.

IDh: 1<<z>.

(I1laa) and (I111ab): 1< <2>,1<<z> <<z, y> and 1< <z,y>.

(I1Iba) and (111bb): Those in (I11aa) and (I11ab) above and 1 < <y>
and 1< <y>< <z, y>.

ReEMARK. Notice that in any case, the number of the conjugacy
classes of elementary 2-chains is even. We will put them into pairs so
that two 2-chains in every pair have length of opposite parity and give
the same number of characters which have to be taken into account.

3. Local blocks

We first consider the normalizer of 1 <<z> or 1<D.

Proposition 3.1. Let H=Cg4(2) if n>3 and H=Ng(D) if n=2.
Then, BI(H, B) consists of the unique block B which has a defect group
D. Moveover, the following hold.

If B satisfies (I,>3), then B, satisfies (Ibb).

If B satisfies (I, 2) or (II), then B and By satisfy the same property.

If B satisfies (I11aa) or (I11ba), then B, satisfies (I11ba).

If B satisfies (I11ab) or (I111bb), then B, satisfies (I111bb).

Proof. The first statement is clear from standard block theory.
Notice that, if #>3, z is central in H. Thus if (I, >3) is the case, then
z is not H-conjugate to ¥ nor xy. Hence (Ibb) holds for By. If n=2,
then the two cases are distinguished by the existance of an element of
order three in Ng(D)\Cg(D). Hence the result holds. In cases of (II)
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and (III), those properties are determined by the existance of an element
of order three in the normalizers of certain subgroups (see (2.1)) and H
contains such normalizers. Moreover, 2 is not H-conjugate to y. There-
fore, the conclusions on B, follow. (See also Lemma 3.1 of [8]. There
is a misprint in its statement. (ab) must be (ba) there. See its proof.) []

The next two results concern some involutions.

Proposition 3.2. Let u be an involution in D. If n>3, suppose that
u is not G-conjugate to 2. Let Q=<z, u> if n>3 and Q=D if n=2,
and let H=Cg(u) and N=HNNg Q). Then every block in BI(H, B) or
BI(N, B) has defect group Q. In particular, the first main theorem of
Brauer gives a bijection between BI(H, B) and BI(N, B). Moreover, those
blocks satisfy (Ibb).

Proof. Let b be a block in BI(H, B), and let Q' be a defect group of
b. Remark that u lies in ONQ’ and that the centralizer of uin any
G-conjugate of D containing Q' has order four. Thus since b° =B, there
is some g in G such that (Q'*=Q and thus ¥ Q. If u¥=u, thenge H
and Q is a defect group of b. So, assume that u¥#u. If n>3, then we
must have ¥ =uz. Thus, there is some v in Np(Q) such that u#’=u. If
n=2, then since u and u® are G-conjugate, b satisfies (Iaa) and thus there
is an element v of Ng(D) such that u¥*=u. In either case, gv lies in H
and we have (Q'¥’=0"=Q. Hence Q is a defect group of b. For a
block b, in BI(N, B), the block 5% lies in BI(H, B) and Q is contained
in a defect group of b,. Hence Q must be the defect group of b,. Finally,
since u is central in H, the last statement holds. This completesthe

proof. []

ReEMARK. It is known that BI(H, B), for H in the above proposition,
consists of a single element.

Proposition 3.3. Let u be a non-central involution in D, and let
H=Ngz(<z,u>) and N=HnNC4(z). (Note: n>3.) Assume that u is not
G-conjugate to z. Then, H=N.

Proof. Let geH. Then, 2% lies in <z, u>. However, since both
u and zu are not G-conjugate to 2z (note: u and zu are D-conjugate), we
must have 28=2. Hence geN. []

REMARK. It is easy to check, without assuming that u is not
G-conjugate to 2, that a block lying in BI(H, B) for the above H has a
defect group isomorphic to the dihedral group of order eight.
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4. The action of E

From now on we assume that G is a normal subgroup of a finite
group E and B is a tame block of G fixed by E. First remark that the
above yields E=Ng(D)G. Moreover, we have

(4.1.a) E/Cg(D)G=Ng(D)/Ng(D)NCg(D)G = Ng(D)/Cg(D)N4D).
Also, if n>3, then E=Cg(2)G and Ng(D)Cg(D)C4(z)=Cg(z), which

implies
(4.1.b) Cp(2)/Cg(D)C4(2) = Ng(D)/Cg(D)N4(D).

In this section, we consider the E-actions on several sets. Recall
that in view of Lemma 2.2, the set of all the conjugacy classes of G
intersecting with <x>\<z> can be indentified with . If (I,2) and
(I1,3) are not the case, then every automorphism of D must send x to
some odd power of x, and if (Ilaa,3) is the case, then x is G-conjugate
to y and to xy. Moreover, in case of (I,2), the set & is empty. Thus
we remark that;

Lemma 4.2. Unless (I1bb,3) is the case, the set of conjugacy classes
in G intersecting with <x>\<z> s E-stable.

In the rest of the paper, we identify & with the set of conjugacy
classes in G intersecting with <x>\<z>. Moreover, it will be identified
with a certain subset of the column index set of the generalized
decomposition matrix of B.

Now we show that E is naturally related to Aut(D) as follows.

Lemma 4.3. (i) There is a natural homomorphism p from E to
K/K' for some subgroups K and K' of Aut(D) with KI>K'>Inn(D) such
that Ker p=Cg(D)G.

(i) If (I,2) and (I11,3) are not the case, then the above u induces a
homomorphism y' from E to Aut(<x>)/<¢ > with Ker u'>Cg(D)G.

Proof. (i) Consider the natural homomorphism from Ng(D)/Cg(D)
to Aut(D). Let K and K' be the images of Ng(D)/Cg(D) and
Cg(D)Ng(D)/Cg(D), respectively, under this homomorphism. In view of
(4.1.a), this gives a homomorphism yu from E to K/K’ with Ker u= Cg(D)G.
Since

Cp(D)N¢(D)/Cp(D)= N¢(D)/C4(D) = DCg4(D)/Cg(D)=D/Z(D),
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it follows that K'>Inn(D).

(i1)) Assume that (I,2) and (II,3) are not the case. Then the
restriction to <x> gives a natural homomorphism from Aut(D) to
Aut(<x>). Letvbein Ng(D). Then x'is some power of x. However,
in view of Lemma 2.2, x” must be x or ¢ (x). Thus K  is mapped into
< ¢> by the above homomorphism. Moreover, the element y gives
the automorphism ¢. Hence < ¢ > is exactly the image of K'.
Therefore, the result follows. This completes the proof. []

REMARK. By some local analysis one can also show that, if (I,2)
and (II,3) are not the case, then the above K'=Inn(D). Thus, E/Cg(D)G
is isomorphic to a subgroup of Out(D).

In the rest of this section, we assume that n>4 and study the relation
between the E-actions on &% and on the set of height one characters in
B. First, we introduce some Galois actions on characters. Although
this is, in fact, not absolutely necessary, it might help us to understand
the situation.

Let L be the field extension of Q generated by a primitive |G|,-th
root of unity over Q. Let ¢ be 1 if D is dihedral or quaternion and —1
if D is quasidihedral. Moreover, let { be a primitive 2"~ !-th root of
unity. Then it follows from (5.A) of [4] and Proposition 4.1 of [8] that
all the values of irreducible characters in B lie in L({ +&{~'). In particular,
the Galois group I' of L({+&{"!) over L acts on Irr(B). Let us describe
I'. Let I'" be the Galois group of L({) over L. Then, it is isomorphic
to the ring R of units of Z/2" !Z, and in fact, there is a natural
isomorphism p from R to I'* such that

é’p(ﬁ) — Cm

for all odd m in Z, where 7 means the image of m in R. Moreover, I'
is a factor group of I'* and the above p induces an isomorphism

p': R/R-T.

Here, R’ is the subgroup of R generated by —1 if D is dihedral or
quaternion, and by —1+2""? if D is quasidihedral. In particular, T is
a cyclic group of order 2" 3. Now Theorem 3 of [4] and Propositions
4.2 and 4.5 of [8] assert that;

Lemma 4.4. Let n>4. Then, all the height zero and height n—?2
characters in B are I'-invariant. Moreover, the set of height one characters
in B has n—2 T-orbits F,, Fy, F,,---, F,_5 such that |F;|=2" for all i with
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0<i<n-3.

On the other hand, Aut(<x>)/< ¢> is also naturally isomorphic
to R/R’, and hence to I'. Thus by Lemma 4.3 (ii), the composite of

EL Aut(<x>)/<¢>=R/R 5T
gives a homomorphism
v: E-T
such that Kerv>Cg(D)G. Now we have the following.

Lemma 4.5. Suppose that n>4. Then y* '=%"® for all o in E
and all height one irreducible characters y in B.

Proof. Let aeE, and y a height one character in B. Let m be an
integer with p'(mR’)=v(a), and j denote —1 if D is dihedral or quaternion
and —1+2""2 if D is quasidihedral. Then for any integer k, we have
(%) = 1((x*)%), which is equal to y(x*") or x(x*™). Those are equal
to y*™(x*) and y?™)(x*), respectively. Thus it follows that y* '(x*)=
x” ™R (x*) = y*@(x¥). Hence the entries of the generalized decomposition
matrix for * ' and *® coincide on the column corresponding to x*. Then
noticing the difference of these entries corresponding to height one
characters, which can be found in (6C) of [4] and Proposition 4.6 of [8],
it follows that ¥* ' and x"® must be I'-conjugate. (Namely, they lie in
the same family F,. See Lemma 4.4.) Thus as is shown in Lemma 4.3
of [8], the entries for ¥* ' and ¥*® also coincide on the column indices
not corresponding to any x*. Therefore, they must be equal and this
completes the proof. []

The above implies the following.

Corollary 4.6. Suppose that n>4. Let F be a subgroup of E with
Kerv<F.

(i) Write |F/Kerv|=2". Then k(G,B,n—1,F)=2""3"" if E+F and
k(G,B,n—1,F)=2""2""—1 otherwise.

(i1) The E-actions on & and on the set of height one characters in B
are permutation isomorphic.

Proof. (i) The subgroup Kerv acts trivially on the height one
characters by Lemma 4.5. Moreover, since I is cyclic, v(F) is the unique
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subgroup of I' of order 2. On the other hand, if y€F,, then the inertia
group of y in I' is the unique subgroup of order 2" 3", Thus, if E#£F,
then k(G,B,n—1,F) coincides with the number of characteres in F,_;_,,
which is 237", If E=F, then the characters in F,, F,,---, F,_,_, are
exactly those height one characters which are E-invariant. Hence we get

k(G,B,n—l,E):l +2+...+2"‘3—t=2n—2—t_1'

(11) Since Kerv=Ker i, where u’ is the same as in Lemma 4.3 (ii),
Kerv acts trivially on &, too. Recall again that E/Kerv is cyclic by
Lemma 4.3 (ii). On the other hand, through the isomorphisms
Aut(<x>)/<¢>=T'=R/R, the R/R-actions on & and on the set of
height one characters are permutation isomorphic. (See Lemma 4.4 and
the paragraph following it.) Since E-actions are determined by v: E—> T,
the result follows. []

Now we turn to the E-action on the column index set of the generalized
decomposition matrix of B. Recall that the columns are indexed by
the G-conjugacy classes of (u,n)’s, where ueD and nelBr(b,) for
b,eBI(Cg(u),B). Since B is E-invariant, E can also act on this index
set. Notice also that for tame blocks, IBr(b,) consists of a single element
N, if v is not 1 nor 2. Thus, in view of Lemma 2.2, we can and will
identify & with a certain subset of the column index set. Let &’ denote
the complement of & in the set of column indices of the generalized
decomposition matrix. In general, |¥/|=k(B)—2""?+1 since |¥|=
2""2_1. For convenience, we give representatives of &' below. Here
and in the rest of this paper, #;’s and #';’s denote elements of IBr(B)
and IBr(B,), respectively, where B, is the unique block of Cg(2) with
B—B.

{3z 1)} if (Iaa)

{01000} if (Iab)

{1 0)E@DO M) @)}, if (Ibb)(LIbb) or (I11bb)
S = { {An)A ) A 03 (z0)=m5)(=z,05)},  if (11aa)

{000 )T M)} if (I1ab) or (I11ba)

() 0)An3)(=1)) (=05} if (111aa)

R R R A AR N if (I11ab)

The notation &’ is also applied even when n is 2 or 3. Finally, notice
that Cg(D)G acts on & trivially.

The final result in this section is as follows.
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Corollary 4.7. Suppose that n>4. Then the numbers of E-orbits in
{xelre(B)ld(x) #n—1} and in &' coincide.

Proof. Remark that the set of height one characters in B and Sare
E-stable. Since Corollary 4.6 (ii) implies that the numbers of E-orbits
in the set of height one characters and in & coincide, Brauer’s permutation
lemma yields the result. []

5. The action of E on irreducible characters

Now we consider the E-action on height zero or n—2 irreducible
characters. In some cases E must fix height zero characters. The
following gives which cases are such.

Proposition 5.1. In the following cases the four height zero irreducible
characters in B are E-invariant : (lab), (I1ab), (III).

Proof. First consider the cases (IIab) and (II1Iba). In these cases,
I(B)=2, there is only one character of height n—2 and |&'|=5. Then
by the table of possible algebras of tame type in [6], the Cartan matrix
must be one of the following.

( 2on on-1 ) (8 4 )
or
=1 gn=249 4 2240

Thus E must fix each element of IBr(B). Moreover, by the same reason,
the column indices corresponding to (2, #y) and (2, n,) are E-
invariant. (Note that the unique block B; in BI(C;(2), B) satisfies (I11ab)
or (IIIba) by Proposition 3.1.) Also, of course, the column index
corresponding to y must be fixed by E. Hence the number of E-orbits
in &' is five and therefore the result follows from Corollary 4.7.

Next we treat the cases (Iab), (IIIab) and (IIIbb). Note that in
these cases, there are only characters of height zero and one in B and
|#’|=4. Again by Corollary 4.7, it suffices to show that E fixes each
element in &’. (Note: In case of (Iab,3), k(G, B, 2)=1 and & consists
of a single element corresponding to x. Thus it suffices to prove that
E fixes each element of &', in this case, too. See Lemma 4.2.) Moreover,
in cases of (Iab) and (IIIbb), E=Cg(2)G and the fact that y and z are
not G-conjugate imply that y is not E-conjugate to 2. Also, any
automorphism of D can not send xy to any power of x. Thus looking
at the elements in %’ case by case, it then suffices to show that each
irreducible Brauer character in B are E-invariant. This is clear in case
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of (I1Ibb) since {(B)=1. In the case of (Iab), it follows from the table
of possible algebras of dihedral type in [6], the Cartan matrix must be

( 2" -1 > <4 2
or .
nm1l o gn=249 2 22y

Hence the two characters in IBr(B) are E-invariant. In the case of
(IIIab), there is one more possibility for the Cartan matrix, namely:

(2"—2+1 "2 —1 >

"2 1 2"y

(However, as far as the author knows, no example of a block having this
Cartan matrix is known at the present.) In this case, &’ has four elements
Corresponding to (1’ '71)) (1’ ’12)’ (2’, rlll)) (xy) nxy) with IBT(B)={’71’ '12}y
IBr(B,)={n}} and IBr(b,,)={#,,}. Thus the number of E-orbits in &’
is at least three and we can conclude by Corollary 4.7 that at least two
of height zero characters are E-invariant. On the other hand, if the
above is the Cartan matrix, then each height zero character is modularly
irreducible. (See the table in [6].) Hence at least one irreducible Brauer
character in B is E-invariant. However since I[(B)=2, the both must be
E-invariant. This completes the proof of these cases.

Finally, consider the case of (IIlaa). Then [(B)=3, I(B,)=2 and
|¥#'|=5. Here B, is the same as in the previous paragraphs. First of
all, since B, satisfies (IIIba) by Proposition 3.1, it follows from the first
paragraph that E fixes each column index corresponding to (2, #}) or
(2, n5). (Note that B, is also Cg(2)-invariant.) Again by the table in

[6], there are six possibilities for Cartan matrix. However, four of them
have the following diagonal entries.

(27, 27241, 2"7242), (4, 2"72+1, 2"7242),
(8, 27242, 22 41), (3, 277242, 272 41).

Hence if the Cartan matrix is one of the above four, then E fixes every
elemant in IBr(B). The remaining two are the following.

277242 2 2 2"7242 272 22
2 3 1 | and 2" 2"Tiel 27T
2 13 2" 2"Tioq 2"

The corresponding decomposition matrices are the transposes of the
following, respectively.
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101 0 1 1 1
1 1.0 010 0
0 01 110 0
and
1101 01 ... 1
010011 .. 1
001101 .. 1

Let us number the elements of Irr(B) and IBr(B) as y,, x, - and ny, 1,
and 75, respectively, according to the above matrices. Notice that y;
with 1 <i<4 are height zero characters. Consider the first decomposition
matrix. Clearly 5, is E-invariant. Thus the number of E-orbits in &’
is at least four, which yields that at least two height zero characters are
fixed by E by Corollary 4.7. If x, or y3 is E-fixed, then since n, is
E-fixed, E must fix 5, and 55, too. On the other hand, if y, or y, is
E-fixed, then 5, or 55 is so because the restrictions of y, and y, to
2-regular elements give 5, and 73, respectively. This implies that E fixes
n, and 15. Hence in any case, all the irreducible Brauer characters are
E-invariant, which together with Corollary 4.7 implies the result. Now
if the second decomposition matrix is the case, then consider the number
of height zero characters which have 7, as a constituent upon the restriction
to 2-regular elements. These numbers are different for #,, n, and
3. Thus those must be fixed by E. Therefore, Corollary 4.7 again
gives the result in this case. This completes the proof. []

In the cases which are not covered in the above proposition, in fact
there possibly exist characters which are not E-invariant. Those are
found for instance in the case where B is the principal block of D,
PSL,(q) or SL,(q) on which a suitable automorphism acts. Before we
consider those actions, we look at irreducible Brauer characters.

In the following lemma, we use some information on the stable
Auslander-Reiten quivers of the modular block algebras, which are found
in [6]. In this paper, modular block algebras mean those over some
algebraically closed field of characteristic 2. It is known that, if (Iaa) is
the case, then the stable Auslander-Reiten quiver has two 3-tubes, which
are stable under the action of Q. Here Q is the Heller operator. (See
V.4.1and V.5.6.1 of [6].) In this case, we denote 3-tubes by T'; and T',.

Lemma 5.2. Suppose that B satisfies (Iaa,>3). Let T and T, be
the 3-tubes in the stable Auslander-Reiten quiver of the modular block algebra
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of B. Then, E fixes exactly one irreducible Brauer character in B if T,
and T, are E-conjugate, and E fixes all the irreducible Brauer characters
otherwise.

Proof. We use several results in [6]. First of all, the possible
decomposition matrices are as follows. (Since we only need the rows
corresponding to height zero characters, we give only their first four rows.)

1
1
M
1

If the first one is the case, E must fix at least one irreducible Brauer
character. Moreover, even if the second one is the case, the same is
true when n>3 since the diagonal entries of the Cartan matrix are
(2,2""241,2""2+1). Thus our assumption yields that E fixes at least
one element in IBr(B). Let S;, S, and S; be non-ismorphic simple
modules over the modular block algebra of B, and let P; be the projective
cover of S; and J; the Jacobson radical of P;,, 1<i<3. We may assume
that S, is E-invariant. Then the modular block algebra of B is of
dihedral type in the sense of [6]. Thus J;/S; has at most two
indecomposable direct summands. For each 7, let U; be an indecom-
posable direct summand of J;/S; and U, an extension of S; by U;. (See
p.110 of [6].) Then in the stable Auslander-Reiten quiver of the modular
block algebra, we may assume that all U;’s lie at the end of some 3-tubes
and have Q-period three. (For the proof of these facts, see IV.4, IV.5
and V.3.1 of [6]. See also p.116, p.277 and p.293 of [6].)

Suppose that 7| and T, are E-conjugate. Then some o in E
interchanges T, and T,. Since (P,/S,)*~P,/S,;, the module J,/S; is
not indecomposable. Write J,/S;=U;@®V,. Then by VI.4.3 of [6],
the top factors of U, and V' are simple. Moreover, since we must bave

1=V, the element a interchanges their top factors. If « fixes S, and
S5, then the top factor of J, has some simple module with multiplicity
two. This implies that the quiver which gives the modular block algebra
of B has a doudle arrow. However, in the list of algebras of dihedral
type, there is no such. Hence we can conclude that S3=S,.

Conversely, suppose that .S; is E-invariant and S52.S; for some o
in E. 'Then we may assume that U3~ U,. If T, and T, are a-invariant,
then since U, # U, and since T’s are Q-invariant, we must have U, ~QU,
and U, =QU,. (Note: U,, U,, QU, and QU, lie in the same component,
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and U,=QU, is equivalent to U,~QU,.) Hence it follows that
U,=QU,~Q?U,, which gives a contradiction since the Q-period of U,
is three. Therefore, @ must interchange T, and T,. This completes
the proof. [

A similar assertion holds for the local block in the case of
(ITaa,>4). In the following lemma, we assume that B satisfies (I1aa, >4)
and let B, be the unique block of Cg(z) with B{=B. Consider the
block B, of C4(2)/ <z> corresponding to B,. Its defect group is D/ <z>,
a dihedral group of order 2"~ ! and B, satisfies (Iaa). (Note also that
I(By)=Ul(B,)=3.) In particular, the stable Auslander-Reiten quiver of
the modular block algebra of B, has two 3-tubes. Say T, and T,.

Lemma 5.3. Assume that B satisfies (Ilaa,>4). Inthe same notation
as above, Cg(z) fixes exactly one irreducible Brauer character in B, if T,
and T, are Cg(2)-conjugate, and Cy(z) fixes all the irreducible Brauer
characters otherwise.

Proof. Applying Lemma 5.2 to B,, we get the result. []

In several arguments thereafter we will again use the notations T,
T,, T, and T, appeared in the previous lemmas.

Proposition 5.4. (i) In the cases of (laa,>3), it follows that
k(G, B,n, E)=21if T, and T, are E-conjugate and k(G, B, n, E) =4 otherwise.

(i1) In the case of (Iaa,2), letting s be the number of Ng(D)-invariant
elements in 1Br(B,), where B, is the unique element in BI(Ngz(D), B), we
have kR(G, B, n, E)=s+1.

Proof. We have | ¥'|=4. If n>4, then by Corollary 4.7, it suffices
to consider the action of E on &’'. Also, in case of (I,3), notice that
k(G, B, 2)=1 and that & consists of one element corresponding to
x. Hence it also suffices to look at the action of E on &'. (See also
Lemma 4.2.) Furthermore, if n=2, then certainly the E-action on &’ is
enough to look at. Also, the element of & correspoding to z is
E-invariant. Hence in any case, we have to look at the E-action on
IBr(B). If n>3, then by Lemma 5.2, the number of E-orbits in &’ is
either 3 or 4 according as T'; and T, are E-conjugate or not. Therefore,
(i) holds.

(i1) Assume that n=2. First note that D is a defect group of B,,
I(B;)=3 and its decomposition matrix is (2) in the proof of Lemma
5.2. (In fact, it is known that the modular block algebra of B; is Morita
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equivalnet to that of the principal block of the alternating group of degree
four. See V.2.14 of [6].) In particular, its stable Auslander-Reiten quiver
has also two 3-tubes. Say T{ and T3,. Moreover, since modules in
3-tubes have D as their vertex, the Green correspondence gives a graph
isomorphism between T UT, and T{;UTj;, which commutes with the
action of Ng(D). The structure of 7";’s is well known and can be found
in [3]. In particular, if we let S7, S, and S3 be non-isomorphic simple
modules over the modular block algebra of B, and let U} be an extension
of S by S;+,, 1<i<3, where the indices are taken modulo three, then
it is known that U’s lie in the end of one 3-tube. We distinguish two
cases.

Suppose that the number s in the statement is zero. In this case
Ng(D) must rotate both T} and T and hence T; and T,. Now the
modular block algebra of B is also known to be Morita equivalent to
the block algebra of the principal block of the alternating group of degree
four or five, and thus its Auslander-Reiten quiver is well known. (See
6.6 of [3].) By those observations, one can conclude that the decomposition
matrix of B must be the same as that of B; (namely, (2) in the proof
of Lemma 5.2), and no element in IBr(B) is E-invariant. Thus we get
k(G, B, n, E)=1.

Suppose now that s>1. Thensis 1 or 3. In this case, the argument
in the proof of Lemma 5.2 works, and it follows that s=1 if and only
if T'; and T, are Ng(D)-conjugate. Moreover, this holds if and only if
T, and T, are E-conjugate. Thus by the structure of 3-tubes we can
determine the number of E-invariant irreducible Brauer characters in B
in each case. Namely, this number is 1 if s=1 and is 3 if s=3. This
yields the result. [

A similar consequence can be proved in the case of (Ilaa).

Proposition 5.5. Suppose that B satisfies (Ilaa).

(i) Assume n>4. Then k(G, B, n, EY=2 and k(G, B, 2, E)=0 if
T, and T, are Cg(z)-conjugate, and k(G, B, n, E)=4 and k(G, B, 2,
E)=2 otherwise.

(i1) Assume that n=3. Let s be the number of Cg(z)-invariant elements
in IBr(B,). (B, s the unique block in Bl(Cg(2), B).) Then we have
k(G, B, n, E)=s+1 and k(G, B, 2, E)=s.

Proof. Let % denote {yelrr(B)|d(y)=n or 2}. Consider the
E-actions on ¥ and &’'. We first list the possible Cartan matrices for
B which are found in [6].
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ot et 8 4 4\ /4 2 2
7t 24y 22 )[4 2242 2 ) (2 224 one2
27t o2 nm2ia ) \4 2 4) \2 22 g2y

Note that E must fix at least one element of I1Br(B) unless the third one
is the case and n=3.

We first assume that n>4. Then |¢|=|%'|=6. According to the
above Cartan matrices, the first six rows of the decompositior. matrices,
corresponding to the elements of €, are as follows.

100 100 100
110 110 010
101 101 001
t11) t11}) 111
010 211 110
001 001 101

Recall that, in any case, E must fix at least one element of IBr(B). Also,
if the remaining two are E-conjugate, then we must have k(G, B, n, E)=2
and k(G, B, 2, E)=0, and k(G, B, n, E)=4 and k(G, B, 2, E) =2 otherwise.

Suppose first that T, and T, are Cg(z)-conjugate. Then Lemma 5.3
yields that the number m of E-orbits in %’ is either 4 or 5. If m=S5,
then E fixes every element in IBr(B) and the above argument shows that
the number of E-ordits in € is six, contradicting Corollary 4.7. Hence
m=4 and we obtain the desired result.

If T, and T, are not Cg(z)-conjugate, then the above number m is
either 5 or 6 by Lemma 5.3. If m=35, then two elements in IBr(B) are
not E-invariant and the above argument implies that the number of
E-orbits in € is four, a contradiction. Hence m =6 and we get the result.

Now assume that n=3. Then ¥=Irr(B) and hence |¢|=7. The
block B, satisfies (Ilaa) and thus [(B)=3. The possibilities of
decomposition matrices are as follows.
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100 100
101 001
) 111 ) 111
010 110
001 Lo
211 011

(If n=3, then there is no block with the second Cartan matrix in the
first paragraph of this proof.) If the above (1) is the Cartan matrix,
then since E fixes at least one element of IBr(B), we have k(G, B, 3, E)=2
and k(G, B, 2, E)=1 if the remaining two are E-conjugate and k(G, B,
3, E)=4 and k(G, B, 2, E)=3 otherwise. On the other hand, if (2) is
the Cartan matrix, then we have one more possibility, namely, k(G, B,
3, E)=1 and k(G, B, 2, E)=0 if the three elements in IBr(B) are
E-conjutate.

Let m' be the number of Cg(2)-orbits in IBr(B;). (1<m'<3.) We
regard m’' simultaniously as the number of E-orbits in the subset
{(z, 1Y), (2, 13), (2, n3)} of #. In the following m denotes the number of
E-orbits in the entire column index set of the generalized decomposition
matrix. Since the index corresponding to x is E-invariant, we have
m +2<m<m'+4. For each possibility of m, the above argument yields
the following.

m m+2 m'+3 m+4
kG,B,3,E) 1 2 4
k(G,B,2,E) 0 1 3

The numbers of E-orbits in 4 are 3, 5 and 7, respectively. Thus by
Brauer’s permutation lemma, for each m' with 1<m' <3, there is only
one possibility for m. Namely, one of the following holds.

m' 1 2 3
m 3 5 7
k(G,B,3,E) 1 2 4
k(G,B,2,E) 0 1 3

Since m'=1, 2, 3 are equivalent to s=0, 1, 3, repectively, the result
follows. [
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In cases of (Ibb) and (IIbb) we have the following propositions.

Proposition 5.6. Suppose that B satisfies (Ibb,>3) or (IIbb,>4).
Then k(G, B, n, E)=2 if y and xy are E-conjugate, and k(G, B, n, E)=4
otherwise.

Proof. If n>4, then by Corollary 4.7, it suffices to consider the
action of E on &’. Also, in case of (I, 3), notice that k(G, B, 2)=1 and
that & consists of one element corresponding to x. Hence it also suffices
to look at the action of E on &’. (See also Lemma 4.2.) In both cases,
|&'|=4 and I(B)=1.

Since E'=Cg(2)G and since 2z is not G-conjugate to y or xy, it follows
that 2 is E-conjugate neither to y nor to xy. Thus the number of E-orbits
in & is 4 if y and xy are not E-conjugate, and is 3 otherwise. Hence
the result follows. [

Proposition 5.7. Let A denote E/Cg(D)G and suppose that B satisfies
(Ibb,2) or (IIbb,3). Then A is isomorphic to some subgroup of the symmetric
group of degree three. Moreover, we have the following.

1, if |4|=3 or 6
k(G, B, n, Ey= { 2, if |A|=2
4, if |A|=1

Proof. Since Out(D) is isomorphic to the symmetric group of degree
three, the first statement holds from Lemma 4.3.

In both cases, I(B)=1 Moreover, if (IIbb,3) is the case, I{(B;)=1,
where Bj is the unique block of C4(2) with B{ =B, and k(G, B, 2)=1. All
the other column indices correspond to x, y and xy. Hence in order to
determine the number m of E-orbits in the index set it suffices to consider
the action of 4 on the G-conjugacy classes containing x, y, or xy. Notice
also that m is at least n in either case. Thus the number of E-orbits in
the set of height zero characters is at least two. If |4| is 3 or 6, then
some element of E permutes the classes corresponding to x, y and xy
cyclically. Thus k(G, B, n, E) must be 1. If | A|=2, then the number of
E-orbits in the set of height zero characters in B is 3 and thus
k(G, B, n, E)=2. If |A|=1, we certainly obtain (G, B, n, E)=4. [J

ReEMARK. The possible values of k(G, B, d, E) which appear in the
statements of this section can actually be realized in some tame blocks.
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6. The extended conjecture

As in the previous sections, we assume that G is a normal subgroup
of E and B is a tame block of G fixed by E. In this section, we prove
our main theorem, namely, that the extended conjecture holds for tame
blocks. Thus we also assume that O,(G)=1. First we show that in
order to prove the extended conjecture it suffices to look at the block
B, appearing in Proposition 3.1;

Lemma 6.1. Let H be Cy(2) if n>3 and Ng(D) if n=2. If
*) k(G, B, d, F)=k(H, B, d, F)
holds for all d and all F with G < F < E, then the extended conjecture holds.

Proof. Fix F as above. Let u be an involution in D. Suppose
that u is not G-conjutate to z if n>3. Let C, and C, be 1< <u> and
1< <u> <Q, respectively, where Q is the same as in Proposition 3.2,
and let H;=Ng(C,) and N, =N4(C,). Then by the remark following
Proposition 3.2, each of BI(H,, B) and BI(N,, B) consists of a single
element. Say b and b, respectively. In particular, b (resp. b') is
Ng(C)(resp. Ng(C,))-invariant. Moreover, we have Np(C,)=Ng(C,)H;.
Now, since b is a tame block, applying (*) to b (with G, B and F being
replaced by Hy, b and Ny(C,), respectively) we obtain

k(Hl’ b, d, NF(CI))=k(N1> b, d, NF(CI))

for all d. Now, if F is not contained in Ngz(C,)G, then k(H,, B, d, F)=0,
and otherwise using (1.3) we have

k(H,, b, d, N(Cy))=k(H,, B, d, F)

for all d. On the other hand, since Ng(C,)H,;=NgC,), we have
Ng(C)G=NgC,)G. Thus, if F is not contained in Ng(C,)G, then
k(N,, B, d, F)=0, and otherwise we have

k(Ny, b, d, Np(Cy))=k(N,, B, d, F)
for all d. Hence we obtain
(**) k(Hl) B) d, F)=k(N1) B’ dy F')

for all d and F. Finally, let #' be a non-central involution in D. Let
H=Ngl1<<z, #'>) and N'=Ngl<<z><<z, u'>). Then since
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n>3 and E=Cg(z)G, the same arguments as above and as in the proof
of Proposition 3.3 impliy that

(F**) k(H NG, B, d, F)=k(N'nG, B, d, F)

for all F and d. Notice that in each of (*), (**) and (***), the two chains
in the both sides have length of opposite parity. Therefore, in view of
Lemma 2.7, the alternating sum (1.1) vanishes. This completes the
proof. [

By the above lemma we can now concentrate on the blocks B and
B,. Here B, is the unique block of H, where H is in Lemma 6.1, such
that B{ =B. In the rest of this paper, we fix these notations. In addition,
we let E' be Cg(2) if n>3 and Ng(D) if n=2. Remark that since B is
E-invariant, the Frattini argument yields that GE'=E. In particular,
E=F if and only if E=FnE'. When we check (*) in Lemma 6.1, we
distinguish the cases assording to the value d. First consider the case
where d=n—1 and n>4 (Lemma 6.2), then d=n (Lemma 6.3) and finally
d=2 (Lemma 6.4). Recall that for all the other values of d, the number
k(G, B, d, F) is zero. Also, recall that B, is E'-invariant and k(H, B, d, F)
is equal to k(H, B,, d, FNE').

Lemma 6.2. Suppose that n>4. Then k(G, B, n—1, F)=k(H, B,
n—1, F) for all F.

Proof. Through the natural homomorphism from Ng(D)/Cg(D) to
Aut(D), we can define a homomorphism vg.: E' - " in a way similar to v,
and E/Cg(D)G=FE'/CgD)H yields that E/Ker v=E'/Ker vy, and Ker v
NE =Ker vg.. (See (4.1.b).) Moreover, the conclusions similar to
Lemma 4.5 and Corollary 4.6 hold for vg. and k(H, B,, n—1, FNnE"). If
F does not contain Ker v, then it follows from Lemma 4.5 that both
k(G, B, n—1, F) and k(H, B, n—1, F) are zero. On the other hand, if
F>Ker v, then since F/Ker vE NnF/Ker v, the result follows from
Corollary 4.6. [J

Lemma 6.3. k(G, B, n, F)=k(H, B, n, F) for all F.

Proof. We distinguish several conditions which the block B
satisfies. (For example, case (IIab) below means that we treat the case
where B satisfies (11ab).)

Cases (IIab) and (I1I). Note that by Proposition 3.1, B, also satisfies
(IIab) or (III) accordingly. It follows from Proposition 5.1 that
k(G, B, n, F)=0 if E#F, and k(G, B, n, E)y=4. Since FE'=E, applying
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Proposition 5.1 to By, it also follows that k(H, B, n, F)=0 if F#E, and
k(H, B, n, E)y=4. 'Thus the result follows.

Case (Iab). Recall that B, satisfies (Ibb), and notice that n>3. By
Proposition 5.1 and the argument given in the cases of (IIab) and (III),
it suffices to show that all the height zero characters in B, are
E'-invariant. Thus by using Proposition 5.6, it then suffices to prove
that y and xy are not E’-conjugate. Suppose to the contrary that y and
xy are E’-conjugate. Then since z and xy are G-conjugate, we can
conclude that 2 and y are E-conjugate. However, since E= Cg(2)G and
since y is not G-conjugate to 2z, this derives a contradiction. Therefore,
the result holds.

Cases (Iaa,2) and (I1aa,3). Recall that B, satisfies (Iaa,2) or (I1aa,3)
accordingly. By Propositions 5.4 and 5.5, the values k(G, B, n, F) and
k(H, B, n, F) are both equal to s+ 1, where s is the number of irreducible
Brauer characters in B; whose inertia subgroups in E' are FNE'. There-
fore, the result follows.

Cases (Ibb,2) and (IIbb,3). B, also satisfies (Ibb,2) or (IIbb,3)
accordingly. If F does not contain Cg(D)G, then both k(G,B,n,F) and
k(H, B, n, F) are zero by Proposition 5.7. Assume that F>Cg(D)G.
Note that F/Cg(D)G=FnE'/Cg(D)H. We set s=|F/Cgx(D)G| and t=|E/
Cg(D)G|. Then it follows from Proposition 5.7 that

0, if (s,£)=(1,6) or (3,6)
1, if (5,0)=(2,6), (6,6) or (3,3)
k(G,B,n,F)=k(H,Bn,F)= < 2, if (s,)=(1,2) or (2,2)
ls, if (s,0)=(1,3)
4, if (s,0)=(1,1).

Thus the result holds.

Cases (Iaa,>3), (Ibb,>3), (Ilaa,>4) and (I1Ibb,>4). Recall that B,
satisfies (Ibb,>3) if B satisfies (Iaa,>3), and B and B, satisfy the same
property otherwise. Define a certain subgroup in each individual case
in the following way.

In case of (Iaa,>3), I, is the stabilizer of T, (and of T,) in E. (See
Lemma 5.2.)

In case of (Ilaa,>4), I,=IG, where I is the stabilizer of T; (and
of T,) in E'. (See the paragraph preceding Lemma 5.3.)

In cases of (Ibb,>3) and (I1Ibb,>4), I;=Cg(»)G.

In cases of (Iaa,>3), (Ibb,>3) and (IIbb,>4), I,=Cg()G.

Then by using Propositions 5.4, 5.5 and 5.6, we can conclude that
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. 0, if [#F#E#I, or [[=E#F
KG,BnF)= {2, if =F#E or I,#F=E
4, if [=E=F

holds for the following G’s and I}’s.

Case for B G I;
(Iaa,>3) G 1,
(Ilaa,>4) GandH I,
(1bb,>3),(I1bb,> 4) G 1

(Iaa,>3),(Ibb,>3),(11bb,>4) H 1,

The above shows that the result follows in case of (Ilaa,>4). In case
of (laa,>23), it suffices to prove that I, =1,. For each i,i=1,2, vertices
of all the modules in T; coincide and are equal to Q; or Q,. (See
[6,V.4.1].) However, by [6,V.5.13], O; and Q, are not G-conjugate.
Thus we may assume that for each i,i=1,2, all the modules in T; have
Q; as their vertex. Hence we have I, =Ng(Q,)G, and thus I,<I,. To
see that I, <I,, let ael;. Write a=0a'g, where o' € E’ and geG. Since
Q, and Q, are not G-conjugate, Q% is not G-conjugate to Q,. Then,
since o/ € E'= Ng(D)H, the group Q% must be H-conjugate to Q,. Hence
o =o,h for some ay € Ng.(Q,) and he H. Therefore, a=a'g=a,hg lies in
Ng(0Q,)G, and we get I; <Np(Q)G=1,.

In the cases of (Ibb,>3) and (IIbb,>4), we must show that
I,=1,. Clearly, I,<I;. Now, I3<I, can be proved by the same
argument as above replacing Q;, O, and Ng(Q,) by y, xy and Cg(y),
respectively. (Note that in these cases, ¥y and xy are not G-
conjugate.) This completes the proof of the lemma. []

Lemma 6.4. k(G, B, 2, F)=k(H, B, 2, F) for all F.

Proof. By Lemma 2.3 and Proposition 3.1, the result is clear unless
B satisfies (IIaa). However, in the case of (Ilaa), B, also satisfies
(ITaa). Using Proposition 5.5, k(G, B, 2, F) and k(H, B, 2, F) coincide by
an argument similar to the one given in the cases of (IIaa,3) and (II1aa, >4)
in Lemma 6.3. Therefore, the result holds. []
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