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Buckling and Ultimate St'rength Interactions of Plates and
Stiffened Plates under Combined Loads (1st Report)t

— Inplane Biaxial and Shearing Forces —

Yukio UEDA*, S. M. H. RASHED** and J. K. PAIK***

Abstract

The main portion of a ship structure is usually composed of stiffened plates. Between girders and floors, stiffeners
are furnished to plates in one direction, usually the longitudinal direction. Under various loads applied to a ship, such as
those due to waves, these stiffened plates are subjected to combined inplane and lateral loads.

In this report, buckling, ultimate and fully plastic strength interaction relationships of plates and unidirectionally
stiffened plates subjected to inplane biaxial and shearing forces, are derived and expressed in explicit forms based on the
result of theoretical investigation of the nonlinear behavior of plates and stiffened plates.

The accuracy of the interaction relationships is confirmed comparing with the result of analysis by other methods.

With the aid of these interaction relations, bucking load and ultimate strength, or fully plastic strength of this type of
stiffened plates subjected to inplane loads may be predicted by hand calculation.

KEY WORDS : (Plates) (Stiffened Plates) (Combined Loads) (Buckling) (Ultimate Strength) (Interaction Relationships)

1. Introduction

The hull of a ship is fundamentally regarded as a thin
walled box-girder whose major portion is usually
composed of stiffened plates. Stiffeners, furnished to
plates, are supported by girders and bulkheads. Under
various loads applied to a ship, such as those due to cargo
and waves, the hull is subjected to longitudinal shear,
bending and torsion. Locally, each portion of the
structure is subjected to lateral loads, axial forces,
bending moments and shearing forces.

Simple methods to accurately evaluate buckling, plasticity
and ultimate strength of components of such complicated
structures are very useful to examine their safety.

Plates and stiffened plates, as main components of
such structures, are considered. External loads acting on
them may be divided into two groups.

(1) Inplane loads, composed of axial forces (compression
or tension) directions, bending
moments and shearing forces.

(2) Distributed lateral loads, caused by water pressure or
pressure due to weather, liquid or bulk cargo.

In this report, only implane loads are considered. The
influence of distributed lateral loads is reported in a
following paper.

in two mnormal

As rectangular plate and stiffened plate panels are
small compared with the overall ship structure, inplane
bending moments acting on individual panels are
insignificant and may be neglected.

Therefore, rectangular plate and stiffened plate panels
are considered to be subjected to uniformly distributed
inplane axial forces in two normal directions and inplane
shearing forces. '

Development of buckling and ultimate strength
interaction relationships in the form of equations or
graphs for plates and stiffened plates has attracted a lot of
international interest for a long time. Works available in
the litrature may be divided into two classes. The first is a
presentation of results obtained by some numerical
techniques taking account of geometric and material
nonlinearities. Example of such results may be found in
Refs 1,2 and 3. The other class is rather analytical, in
which solutions are obtained based on suitable failure
criteria. Examples may be found in Refs 4 and 5. A
review of available material requires a paper devoted to
this purpose and it is not intended to present such a
review in this paper. The available information, however,
does not cover all the practical range with sufficient
accuracy and confidence, in particular with regard to
inplane shear effects.

T Received on October 31, 1989

Professor

Manager, Advanced Technology Department, Century Research
Center Corp., Osaka, Japan

Formerly, Graduate Student, Osaka University

Presently, Associate Professor, Pusan National University, Korea

* %k

%4 % Kk

105

Transactions of JWRI is published by Welding Research Institute
of Osaka University, Ibaraki, Osaka 567, Japan



(268)
Ay
‘ oy (ty)
HEEEERRE
 my ) —— —— —— — _
Y ||
4
O ) l A, 14\ t ] 9x
o[ l o ‘“—(Nu
| o A
| e

¥
— e — =T,y (Vy)

HEEEEEN

oy (Ny)
' —
! a

Fig. 1 Stiffened plate and applied loads

In this study, buckling strength, ultimate strength after
buckling and full plastic strength under combined inplane
biaxial forces and inplane shear are investigated. Strength
functions are derived and expressed in terms of applied
forces. Comparisons with published results and results of
analysis by the finite element method are presented.

2. Nonlinear behavior of stiffened plates

2.1 Object for analysis

A stiffened plate is consiered as a part of a large plate
structure such as a deck or a side shell of a ship as shown
in Fig.1. Length, breadth and thickness of this stiffened
plate is aXbXt, and plate bending stiffness D =Et%/12(1 -
v?), where E is the modulus of elasticity and y is
Poisson’s ratio.

N similar stiffeners in the x direction are attached to
the plate at equal intervals. The sectional area and the
moment of inertia of each stiffener is A and I (I includes
the effective breadth of the plating associated with the
stiffener). It is assumed that stiffeners do not buckle prior
to buckling of plates between adjacent stiffeners
(stiffeners are usually designed to satisfy this condition).
Stiffened plate panels are assumed to be simply
supported, inplane compressive or tensile
displacements are applied in the two axial directions x and
y (i.e. edges remain straight in the plane of the panel)
together with uniform shear stress.

In this paper, this loading condition is referred to as a
combined load of biaxial forces and inplane shear.-

uniform

2.2. Nonlinear behavior of stiffened plates

When a stiffened plate is subjected to a combined load
as mentioned above, uniform biaxial normal stresses (o,
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Fig. 2 Relation of buckling strength and ultimate strength of
axially compressed stiffened plates to the stiffness ratio of
stiffeners

and ¢,) and uniform shear stress (Tx;,) act on the plate,
while only a uniform normal stress in x direction, g, acts
on the stiffeners. Increasing this combined load, the
stiffened plate behaves in different ways according to its
dimensions and the combination of the applied load.

When the stiffened plate has a sufficiently low out-of-
plane bending stiffness, it buckles in one of two buckling
modes. One is overall buckling, and the other is local
buckling. This is controlled by the relative stiffness ratio y
of the stiffeners to the plate (y=EI/b'D). When 7y is
smaller than 5, %) the stiffened plate buckles in an
overall mode. The overall buckling strength increases
together with y.

When 7y is greater than 72, ®, local buckling takes
place instead of overall buckling and the buckling strength
reaches an upper limit regardless of higher values of y.
This g, ® is given as the point of intersection between
the two buckling curves representing the two buckling
modes as shown in Fig.2. After buckling, the stiffened
plate may support further increment of the load, though
with lower inplane stiffness, untill it reaches its ultimate
strength after plasticity prevails.

The collapse made at ultimate strength varies
according to the value of y. With compression in the x
direction, one of the following modes is produced.

a) When vy is smaller than yh,,, the stiffened plate
buckles in an overall mode, followed by overall collapse
produced with the same mode of deformation as that at
buckling.

b) When 7y is slightly greater than y%;,, the stiffened
plate buckles locally. As its effective stiffness decreases
due to buckling, overall collapse may occur either due to
spread of plasticity in the stiffeners or due to overall
buckling of stiffeners together with the associated
effective portions of the buckled plates.

In these two cases, a) and b), ultimate strength
increases together with y.
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c) When y is greater than 5, © stiffeners are strong
enough to prevent overall collapse after local buckling.
The stiffened plate reaches its ultimate strength by local
collapse of plate panels between stiffeners followed by
buckling or plastic collapse of stiffeners. In this case
ultimate strength does not significantly increase with .
Yuin is 30 to 50 % greater than yg,,.

Compression in the y direction causes one of the
following two modes.

a) When y is smaller than 5., the stiffened plate
buckles in an overall mode, then, it collapses in the same
mode.

b) When y is greater than y5,,, the stiffened plate
buckles locally, then, it collapses locally. In this case,
Yein=7y%, Values of 7k, and 7y, depends on the
properties of the stiffened plate as well as the ratio of
load components.

Therefore, the behavior of a stiffened plate may be
classified into 4 calsses depending on the values of ¥, ¥min
and y34,, as follows.

(1) y<y%:n (ultimate strength condition 1)

The stiffened plate buckles and collapses in an overall
mode.

(2) 72in<y<gin (ultimate strength condition 2)

Plates between stiffeners buckle locally; Utimate
strength is reached by plastification or buckling of
stiffeners.

(3) 7>y (ultimate strength condition 3)

After plates between stiffeners buckle locally, they
reach their ultimate strength. Buckling or plasticity of
stiffeners follows leading to collapse.

(4) When the stiffened plate has sufficient stiffness such
that buckling does not occur untill the fully-plastic
strength is reached under the specified loading
condition. (Ultimate strength condition 4)

3. Buckling, ultimate strength, and full plastic strength
interaction relationships of a rectangular plate subjected
to uniform axial stresses in the two principal
perpendicular directions and a uniform shearing stress.

The buckling and post-buckling behavior of a
rectangular plate between stiffeners or girders is discussed
in the following section. A rectangular plate subjected to
uniform normal stresses in the two principal perpendicular
directions and a uniform shearing stress is considered.
Buckling, ultimate and fully plastic’ strengths are
theoretically studied and expressed in 'explicit interation

relationsps. :
3.1 Buckling interaction

Buckling interaction relationships of a plate under a
combined load of uniform normal stresses ¢, and ¢, and
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Fig. 3 Buckling strength, ultimate strength and fully plastic
strength of a rectangular plate

shearing stress ¢, may be expressed by the following
equations based on analytical solutions”.

(1) When g, is tensile and g, is compressive, (g,<0,
0,>0),

(m*+p%)* ox , oy +<J_xi)2:1

mz(l +,82)2 Oxcr (313)

Oycr Txyer

(2) When ¢, is compressive and g, is tensile, (g,>0,
Uy<0),

(m? +,32)2 Oycr

Oz, U4BT o +(ﬁi>2=1 (3.1.b)

Oxcr Txyer

(3) When ¢, and 4, are compressive, (0, >0, ¢,>>0),

Ox/ Oxer ]m [ 0y/ Oyer :\ .
_ _ =1 3.1.¢c
[ 1_(Txy/7xyc'r)2 1—(Txy/'fxyc'r)2 ( )
Where, for 1/v2<8<+v2, m;=a,=1,
for >v2,
a;=0.02934°—0.03644°+1.58544—1.0596
a,=0.00494°—0.11834°40.61535+0.8522
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Ozers Oyer DA 7., are the buckling stresses when each
stress acts alone on the plate, g=qa(nl)/b=a/b : aspect
ratio of a plate between stiffeners, m is the number of
half waves of buckling when a plate of the aspect ratio g
buckles under compression in the x direction only.

Here, when a plate is subjected to compression in both
x and y directions, the buckling interation relation may be
expressed by several linear interaction equations each for
a certain region depending on 8 and the ratio of g, to g,.
Having many equations is, however,
Eq.(3.1.c) is continuous and yields a good approximation
for the entire region.

Adopting these equations, a buckling interaction
function Iy may be expressed in the following equations
as shown in Fig.3.

inconvenient.

(1) When N, is tensile, and N, is compressive. (N,<0,
N,>0)

To=, i g Mo

(W44 Na | Ny ( Ve )2—1 (3.2.a)

NyCT chr

(2) When N,x is compressive, and N, is tensile. (N,>0,
N, <0)

N: | (1+8) Ny +< |2 )2_1 '

I'y= T g
i Nxc’r (m2+,32)2 Nycr chr

(3.2.b)

(3) When N, and N,, are compressive. (N,>0, N,>0)

Ny/Nycr
1_( Vx/chr

FB=[ Ny/Nzer )2]‘*‘ [

a2
e )z} ~1 (329
Where, N, Ny, Ny, Nyer, Vi, Vi are obtained by
integrating oy, oxers Oys Owers Twys Tewer OVET the cross
sectional area of a plate between stiffeners (b't or at).

It is to be noted that when the four sides of a
rectangular plate are equally subjected to shearing stress
7xy, the shearing forces V, and V, in x and y directions
are proportional to the lengths of the sides, i.e.,
V,=atg,, V,=b'tr, and V/V =a/b'.

When [} is smaller than zero, it indicates that the
plate has not buckled. Buckling condition is

I's=0

I';>0 indicates that the plate has buckled.

(3.3)

3.2 Ultimate strength interaction relationships and stress
coefficients

3.2.1. Ultimate strength interaction relationships

When a plate buckles under two axial fprée_s inx and y
directions, normal stress distribution along a half buckling
wave becomes as shown in Fig.4. This stress distribution
is developed repeatedly along each half buckling wave
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Fig. 4. Stress distribution in a buckled plate

length of the plate. Under this kind of stress distribution,
the ultimate strength of the plate is assumed to be
reached when the resultant stress satisfies the yield
condtion at the four corners or at the edges and at the
middle of each half buckling wave. This ultimate strength
may be obtained as follows. First, denoting the uniaxial
yield stress by ¢,, Mises’ yield condition may be expressed
as follows for the case where a shear stress ¢, and
normal stresses ¢, and ¢, act simultaneously,

(3.4)

0'= o'+ 0, — opoy+ 312’

Introducing an  effective  yield stress, gy,

gw=+ 0’ —31y,° the above yield condition may be
rewritten as

UOUZ= 0_12_'_ O'yz_ Ox Oy (35)
Here, the normal stresses at each of the above

mentioned locations may be expressed in terms of the

axial forces, N and N,, and shearing force V, as follows.

—

7(1 + axma,x) 0 0]
Uz)y:o %(1 + axmin) 0 0
Ux)y= b/2 1 1 Nz
Gy)x:o == |0 —(1 + aymax) 0 Ny
t a
Uy)x:a'/z 1 V:::
Tey 0 ;(1 + aymin) 0
0 0 o
(3.6)
where
Ox)y=0, Oylx—o : the stresses at a corner of half buckling

wave,
Ox)y-v/5 Oyx=ays : the stresses at the center of a half
buckling wave,
Oxav, Ovay - the average values of the stresses perpendicular
the sides,

a’ : the length of one half buckling wave.

az and a, in the above equation are stress coefficients
which expreés the deviation of the stresses ¢, and ¢, from
the mean stresses oy, and oy, respectively, due to
buckling. Yielding locations vary-according to the loading
conditions with different values of g, and a, as follows,
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Fig. 5(a) Loading histories

a) In the case of yielding at the corner : ;e @ymax

b) In the case of yielding at sides parellel to the x axis

(Flgl) ' Qxmazs> Qymin

¢) In the case of yielding at sides parellel to the y axis

(F1g1) ' Qxminy Qymax

At the moment when a rectangular plate buckles, the
values of o, and q, are 0.0. Their values change according
to the value of the load and are evaluated in the next
section.

Denoting the post-buckling effective width by b,” and
a,” the relationship between the effective widths and the
above mentioned stress coefficients may be expressed as
follows.

b =b/(1+ a:rmax)} 3.7)
ae=a/(l+ aymax)

dividing Eq.(3.5) by ¢,
Oy \2 Oy \2 0x0y Uovz

(0’0) +< 0’o> - 0'02 - 0'02 (38)

The ultimate strength interaction relationship is
obtained by substituting Eq.(3.6) into Eq.(3.8)

[JJ\\&P(H%)]@[NL;(H%)T

NN, . . IAAY
- prNw',(l"*_ax)(l'*‘ay)_l—( pr) (39)

Wherey N,rpz b’ta'o, Nyp: atoy, Vzp: att, '['|)=0'Q/‘/:—3~
An ultimate strength function I", of the plate, may be
expressed as follows,

20 -
1 0,/0y=0.325
2 0.650
3 0.975
5 4 1.500
5 2.000
6 3.000 e
3 10 =
4
5
5 6
0 —
Txy/ Txycr
6
5
4
-5
3
£ 2
o Sxmax = “ymax
Smin = %ymin
]
-]5 L
Fig. 5(b) Effect of shear stress on stress coefficients
Ny 2 N, 2
o= jot+a) |+ fo+a)]
NN, (Vx >z
— ) — 3.10
NzyNyp(l + o)1+ ay)+ Ve 1 ( )
and the ultimate strength condition is expressed as,
I,=0 (3.11)

3.2.2 Stress coefficients

The stress coefficients, oxmax, @xmins> Qymax> aNd @ymin
which have been defined in the preceding section are
evaluated as follows.

When a rectangular plate has buckled under two axial
forces in x and y directions, maximum stresses are
developed at the corners of, and the minimum stress at
the edges at the middle of a half buckling wave, (Fig.4).
These maximum and minimum stresses may be
analytically evaluated and the stress coefficients may be
expressed as follows.

o* =g+ i&_”zsz L,
rmax= Th 7T 72 2 N, e %Na_c

* —_ ek
@ xmin= 7T @ xmax

a Nz at D a

=Ty N, 5 N, &1

* — %
Q@ ymin™ — @ ymax
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Fig. 6 Axial stress distribution
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e
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h

m in the above equations is the number of half
buckling waves which depend on the aspect ratio of the
plate, g=a/b’, and the ratio of axial forces, N,/N,. m is
evaluated as the minimum integer satisfying the following
equation.

B<[—P+(P*+4Q)/]"/*/2 ' (3.13)

where,
P=dm'—(m+1)*}/[2(m—2mc—c)+1]
Q=m (m+1)2m+1)/[2(m—2mc—c)+1]
c=(Ny/N )b /a)

In the above equations, when N, or N, is zero, the
corresponding stress coefficient, a, or a, becomes
infinite. Actually, when the average stress in one direction
is even zero, finite values of stresses in this direction are
produced in the plate due to the constraint of the edges.
The stress may be evaluated by the following equations.

N N 2 2D
0x*)y—o=(1+ ) b’a; + aty — :zlt /a3
Ny
Ux*>y=b'/2:27t'_‘ Ux*)y=0
N, ay Ny- ll'zD (314)
*) i R b LS A
Oy ):t=0 72 b’t+<1+m4b/4771> at b;zt I/

y
O'y*)x=a/ 2= 2? - Uy*)x=0

In the actual analysis, stresses are obtained as the
product of the stress coefficients and average stresses. In
order to avoid numerical troubles when N, or N, equals
to zero, infinitesimally small values of N, or N, may be
assumed instead of zero, such that stress coefficients of
finite values may be evaluated.

3.2.3. Effect of shearing force on stress coefficients

Vol. 18 No. 2 1989

In the following, the effect of shearing force on stress
coefficients is numerically examined. A parametric study
is carried out with a square plate. Loading histories of
axial compression in one direction and shearing force are
plotted in Fig.5(a).

At first, axial compression is applied. Then, keeping
the compression at a constant value, N*, shearing force is
applied. Six different levels of N* are considered and the
stress coefficients are calculated using the incremental
Galarkin’s method®. Results are shown in Fig.5(b). The
effect of shearing force may be classified into the
following two types, according to the relative value of
axial compression, N, to the buckling compression, Ny,

a) When N, >N,.,, (curves 4 to 6 in Fig.5(b))

When a rectangular plate is subjected only to an
increasing axial compression N, it buckles when
N,=N.,., and stress coefficients change as expressed by
Eq.(3.12) (N,=0).

Next, keeping N, constant and applying an increasing -
shearing force, the normal stress ¢, increases in the
vicinities of edges y=0 and y=b , and decreases in the
middle as shown in Fig.6(a). The stress coefficients change
gradually with the change of shear stress as shown in
Fig.5(b).

b) When N, is smaller than N_. (curves 1 to 3 in
Fig.5(b))

When a rectangular plate is subjected to an axial
compression, N_ smaller than N, it does not buckle.
However, keeping the axial compression constant and
applying an increasing shearing force, the plate buckles at
a certain value of shear stress. As the shear stress
continues to increase, normal stress g, increases near the
edges y=0 and y=b and decreases in the middle as
shown in Fig.6(b). The stress coefficients change gradually
as shown in Fig.5(b).

Changes of the stress coefficients (curves 1 to 6 in
Fig.5(b) ) may be accurately expressed by the following
equations.

Nxc’r
Qxmax — 1~_62—N7 v*i+ a*xmax(f( V)+ 1)

(3.15)
Nxcr 2.1 *
QAxmin=™ — IBTx_ v+ a xmin(O.S“U + 1)
where,
@* rmax <0 F(V)=0.62v
a*pmax >0, v<1 F(V)=1.32"
a*xmax>0) v>1 f( V)=13‘U

v=| Vi|/ Vier
The case mentioned above is a rectangular plate
subjected to axial force in one direction. When the plate
is subjected to compression in two directions, shearing
force is assumed to affect stress coefficients in x direction
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(xmax and aymin) and y direction (aymax and aymn) in the
same way as under compression in one direction. The
stress coefficients may then be expressed by the following
equations.

. Nzer
Cpmax = 1.627f,x— v+ a*zma(f(V)+1)

NICT

N, 2+ ¥ min(0.3v+ 1)

Qmin— — 1.3
(3.16)

Nycr
Cymaxz= 1.62%1}“4- *ymax(g(V)+1)

y

Nycr
Qymin= — 1.3N¢yvz1 + a*ymin(0.3v+1) -
where,

a*xmaxso f(

V)
@*max >0, v=1 F(V)=132"
V)

* zmax >0, v>1 f(V)=13v
¥ ymax <0 g(V)=0.62v
@™ ymax >0, v=<1 g(V)=1350"
¥ ymax >0, v>1 ¢(V)=13v
v=|Vx|/Vacr

Substituting these stress coefficients into the ultimate
strength interaction function, Eq.(3.11), "the ultimate
strength interaction relationship of a plate are obtained as
plotted in Fig.3.

3.3 Full plastic strength interaction

When a stiffened plate is stiff enough to prevent both
local and over-all buckling, it reaches its full plastic
strength. Normal stresses, ¢, and ¢,, and shear stress z.,
are regarded to be distributed uniformly in the flat plate
panels. Mises’ yield condition, Eq.(3.4), may be written
as follows.

)+ (G =5 () =
0o 0o 0o To

where, 7,=0,/v/3

Rewriting the above equation in terms of the axial
forces and shearing force, the -full plastic strength
interaction function of a plate [, is obtained in the
following form. (Fig.3).

(3.17)

N \2 Ny\z  NiN, Ve \2
= ) — - = 3.18
T (Nx) (we) =+ . -1 G
The full plastic strength condition is expressed as,
I',=0 (3.19)
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4. Buckling, ultimate strength and full plastic strength
interaction relationship of a stiffened plate subjected to
axial forces and shearing force

In this paper, as mentioned in 2.2, the behavior of a
stiffened plate is classified into four types according to the
value of the relative stiffness ratio y of the stiffener to the
plate. In this section, buckling, ultimate strength, and full
plastic strength interaction relationships of a stiffened
plate are derived for these four types of behavior.

4.1 Over-all overall

('}'S 'ylr;nin)

buckling followed by collapse.

A stiffened plate in this paper is considered to be
stiffened by many stiffeners. When a stiffened of this type
plate buckles in an overall mode, its behavior may be
approximated as that of an orthotropic plate. Therefore,
in this section, a stiffened plate is dealt with as an
equivalent orthotropic plate.

In the analysis, the properties of the equivalent
orthotropic plate may be taken as follows,

_ na _
Ex—E<1+ “ ) E,~E
Ar=bt, Ay=at
nl G (4.1)
Dy="2-+ Dy, Dy= Dy, 2Dzy="5-+(Dy+ D,)

D= Ef*/[12(1— %]

where, E : Young's modulus, D: flexural rigidity, and
I: moment of intertia of a stiffener together with the
corresponding effective breadth of plating. Directions are
indicated by suffix x and y, and the plate by pl.

4.1.1 Buckling interaction relationship

When a stiffened plate is dealt with as an orthotropic
plate, buckling interaction relationship may be expressed
by the same equation as for an isotropic plate, Eqgs.(3.2),
that is,

I'y=T4(B, Nzcr, Nycr, Vaer) (4.2)

However, the following expressions are to be
substituted for variables of Eq. (3.2).

B=a/b,

Nrer=0"ze{ bt +nd), @3)

Nyc'r: O'O:yc'r(at)

Vaer= Toxycr(at)

0°zcr, 0'yer and %, are the buckling stresses of an
orthotropic plate when subjected to normal stresses ¢, or
oy, OI shear stress ., acting separately.
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4.1.2 Ultimate strength interaction relationship

_ In the case where a stiffened plate reaches its ultimate
strength in an over-all collapse mode after over-all
buckling, an ultimate strength condition may be described
in the same form as for a flat plate, Eq.(3.10).

When Eq.(3.10) is applied, stress coefficients axmax,
Gxmin, @ymax and aymn are obtained by Eq.(3.16).
However, b’ in Eq.(3.10) and (3.16) is to be replaced by
b. Nyer, Nyer and V. are evaluated by Eq.(4.3), and
N,p=0y(bt+nA).

4.2 Local buckling, followed by over-all or local collapse.
(7> 7"nin)

A stiffened plate with n stiffeners is regarded as being
composed of n stiffeners and (n+1) plate panels whose
behavior and strengths are dealt with separately.

The behavior of plate panels between stiffeners has
already been studied in section 3. Results of this study are
used in the following.

4.2.1 Buckling interaction relationship

When a stiffened plate is subjected to axial forces N,
and N,, and shearing forces V, and V,, and until the
stiffened plate buckles locally, uniform stresses o5, o, and
7y act on each plate panel. The stiffeners are subjected
to uniform stress ¢, in x direction. This stress may be
evaluated by the condition that the strain ¢, on the
connecting line of a stiffener and the plate is the same in
the plate and the stiffener.

4.4

Oxs= Ox— V0Oy

Therefore, the relationship between the applied force
and the resulting stresses, may be expressed as follows.

Ny=o0{bt+ nA)— vo,nA

N,=oyat

4.
Vo= tyyat (4-3)
Vo= Ty bt

where, A: cross-sectional area of a stiffener.

When a stiffened plate buckles locally due to normal
stresses ¢, and ¢,, and a shear stress t,,, the buckling
interaction relationship is expressed by Eq.(3.1).
Substituting Eq.(4.5) into Eq.(3.1) the buckling
interaction function I can be represented in terms of'Nx,
N, and V, as f_ollo.ws. '

(1) When o, is tensile and ¢, is compressive. (;<0,
Qy>0)

= (m*+5%)2 Nx—(vnA/at)Ny
T w1+ Neer
N,y Ve \2
+Nucr+( chr> —1 (463)
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(2) When g, is compressive, and g, is tensile. (gz>0,
0,<0)

N,—(vnA/at)Ny
Nxc’r

gz

(1+6% Ny
(m2+,b’2)2 Nycr

FB=

(4.6.)

(3) When ¢, and ¢, are compressive. (g;>0, ¢,>0)

= [ [ Nz:—(vnA/at)Ny)/Nyer ]m
o 1_(Vx/vxcr)2

[—1:%]“— (4.6.c)
The buckling condition is expressed as,
=0 (4.7)
where,

" Nycr= oxel bt +nA)

Nycr= oyer *

Txver - the independent buckling stresses of a
plate between two adjacent stiffeners

at, Vecr= toyer * at

Oxcr, Oyers

4.2.2 Ultimate strength interaction relationship

When local buckling occurs in a stiffened plate, one of
two ultimate strength modes may take place, depending
on the relative stiffness ratio y of the stiffener to the
plate.
(D) 72pin<7<7"min

‘As described in section 2, ultimate strength in this case
is reached by buckling or yielding of the stiffeners
depending on the loading condition. After local plate
buckling, the effectiveness of plate panels decreases
gradually causing the neutral] axis of the stiffened plate to
move far from the plate. When the axial force N, always
acts at the neutral axis, a stiffened plate reaches its
ultimate strength due to buckling of stiffeners. On the
other hand, when the line of action of the axial force is
fixed, the stiffened plate becomes subjected to an
eccentric axial force causing bending of the stiffeners. In
this case, a stiffened plate reaches its ultimate strength
due to initial yielding of the stiffeners.

a) Buckling of stiffeners (central loading)

Euler buckling strength of a stiffener is given by the
following equation.

P,,="E]

a

(4.8)

The effective breadth considered here, corresponds to
the post buckling stiffness of a plate between two adjacent
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stiffeners. This is obtained by consideration of Ae/Ac,
and using b, of Eq.(3.7).

2m' b’ ]

4+ Ab/A(.f (4'9)

bes= b/[

f(V) in the above equation is defined by Eq.(3.16).
Now the ultimate strength, N,, may be obtained by
adding the ultimate strength of one plate panel to the
buckling strength of all stiffeners.

. bt [ N,
Nyw=nP,s+ N/x s N,x= (0'0 |: z (1+ay)

201+ o) L Nyp
+\/4—4( %ﬂ)z—s[fj]y (1+ay)|]

The ultimate strength function I, is expressed as,

(4.10)

Nz nPust N
pr pr

= (4.11)

b) Bending of stiffeners'(eccentric loading)

In this case a stiffener, together with its effective
breadth, is subjected to compression and bending. The
stress distribution in a stiffener and associated plate
becomes as shown in Fig.7. The continuity of strain of a
stiffener and the plate on the connection line is satisfied
by Eq.(4.12.a). However, the stress gymax in the plate is
different from that 4%y, Of a stiffener.

Oxmax— O a:ma.r+ Yoy (412&)

" The effective breadth b, changes according to the
change of oxmax (stress distribution), and can be obtained
from Eqs.(3.7) and (3.16). The effective breadth rat10 has

the following relationship.

be /b= Oxav” Oxmax )
A modified effective breadth b’,. is defined related to
the stiffener stress ¢%max. Using Eq.(4.12.a) and

considering the same axial force is acting on each plate
panel, b, may be expessed as follows.
be = b/ (1— v0y/ Oxmax) (4.13)
Ultimate strength .is- obtained ass‘umiﬁg the stiffener
with its effective breadth as a beam-column. First, the

neutral axis is quite colse to middle plane of the plate, SO
that the stress oymax in the plate, may be expressed as,
Oxmax =P/ Ar+ va, (4.12.b)

where, P: axial force acting on a stiffener with its effective
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Ogavy = P/AT

_ =g
]
STIFFENER< |

RN

b.
VAR

b'/2

bl

b'/2

b.
N

|
j}
! Sxav

— PLATING ASSOCIATED
WITH A STIFFENER

Fig. 7 Stress distribution in a stiffener and associated plating
(Eccentric loading)

breadth
Aq : total cross-sectional area of each stiffener with
modified effective breadth b’ Ab.t
The ultimate compressive load P,, of the beam-
column, is determined by the condition that either i)
plasticity of the outmost fibre of the stiffener or ii)
compressive collapse of the plate has occurred.
The ~ultimate strength conditions . corresponding to
these two criteria may be expressed as follows.

as—AiT——sec<x/_ %)

. (4.14.2)
a

O = A Z_pzsec<v §>

When g,=g, or ¢° xmaxu »

P=p, (4.14b)

where, e: the magnitude of eccentricity of loading

Z, : section modulus of theé beam-column
corresponding to the outmost fibre of the
stiffener

Z, : section modulus of the beam-column

corresponding to the middle plane of the plate

Ormazu; O xmazy: @Xial stresses acting on the plates with
effective breadth b, and modified
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effective breadth b,/, when plate
panels between stiffeners collapse

(onmaru: Oxmaxu ™ Vo'y)
The ultimate strength P, may be evaluated as the smaller
of those given by Eq.(4.14).

Substituting P, into Eq.(4.11), the ultimate strength
function I, may be derived.

Here, however, Eq.(4.14) contains A;, Z,, Z,, and I
which are functions of the modified effective breadth b,
which is expressed in terms of mean stresses. Therefore,
when the axial compression P reaches the ultimate
compressive load P, b, should be evaluated such that it
corresponds to the ultimate load. (Usually, it can be
obtained by iteration.)

@) 7>7"nin

In this case, the plate between stiffeners buckles and
collapses locally, while stiffeners do not buckle and may
reach their fully plastic state. The ultimate strength of a
stiffened plate can be obtained by the sum of the ultimate
strengths of the plate panels and the stiffeners. Here, the
stiffeners are subjected only to axial force and their
ultimate strength is represented by ¢,mnA, while the
ultimate strength of plate panels is as shown in section 3.

The ultimate strength function [, may now be
obtained as follows. When, N> g,nA +N,,

rel ot e <[ ve]

(Ny— 0onA)Ny Ve \2
(pr_ UonA)Nyp Vl’ﬂ> -1 (4 15)

(1+ @)1 a)—

a, and g, in the above equation may be evaluated by
Eq.(3.16).

When; Nx < UonA +Nx,

I'v=N,/Nyp—Ny/N,p (4.16)

where, N, and N, are the coordinates of the
intersection point of Eqgs.(3.11) and (3.19).

When eccentricity of the loading occurs after buckling,
stiffeners are subjected to bending and axial compression
according to increment of the over-all collapse mode
changes into the local mode.

The authors® have defined the stiffness ratio y at this
transition point as y*,, A stiffened plate collapses by
plasticity caused by bending of stiffeners (with their
effective breadths). In this case the ultimate strength is
evaluated by Eqs.(4.14) and (4.11).

Finally, the condition of the ultimate strength is
expressed by the following equation.
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=0 @.17)

4.3 Fully plastic strength interaction curve

When a stiffened plate does not buckle in neither local
or overall mode, it reaches its fully plastic strength. In
this case, each plate is subjected to uniform stresses g, o,
and 1z, such that ¢%,,= ¢’ —(37xy)*= 0"+ 0%y— 050, and
each stiffener is subjected to uniform stress equals to g,.

The fully plastic strength interaction relationship under
biaxial forces N, and N, and shearing stress tz, is
expressed in the following form,

<in aonA)z+<Eg>2_(NIi oonA)Ny ,

b e =G (4.18)

at

Representing the above equation by N,, N, and V,,
the fully plastic strength interaction function is derived as
follows.

1) (a) Ny>0, N;<N;— oond
or
Ny<0, N;< —Nz—amnA
_ sz—‘ oond \2 Ny 2
F"—< N+ oonA ) <Nyp)
(Nz+ gonA)Ny
(Nmp_ UoﬂA)Nyp
Vi \2
+ 7)1
(b) Ny>0, N;>No+oonA
or
Ny<0, N;>—Ny+aonA
r _(pr— oonA)z (ﬁ>2_ (Ny— gonA)Ny
7\ Ny—oonA Nyo (Nzy— UoﬂA)Ny,o
Vi \2
)
2) N,>0, N—0onA< N,< N+ oonA

I'o=Ny/Nyp—2¢/1—(Vo/ Vi /4/3

3) N,<0, — Ny— 0onA< N+ conA
To=—Ny/Nyy—20/1—(Vi/ Vot /43 (4.19.€)

where, N,=Nyop/1—(Vo/ Vel /4/3

The fully plastic condition is

(4.19.a)

(4.19.a)’

(4.19.b)

I',=0 (4.20)

Buckling strength, ultimate strength and fully plastic
strength relationships are schematically
illustrated in Fig.8.

interaction
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5. Procedure of analysis and accuracy of interaction
relationships

In the preceding sections, buckling strength, ultimate
strength and fully plastic strength interaction relationships
are derived for a plate and a stiffened plate subjected to
inplane biaxial forces and shearing force.

In this section, the procedure of analysis is described
and the accuracy of the proposed equations are examined
through comparisons with results obtained by other
methods.

5.1 Procedure of analysis

In this section, precedures are described to calculate
the loads which cuases buckling and ultimate strength of a
rectangular plate and of a stiffened plate whose sizes and
~ material properties are known.

Load is assumed to be either proportional loading, or
that only one of the load components is changing while
keeping the others constant. In this way, the load is
represented by only one parameter, p.

5.1.1 Rectangular plates

Load parameter p=p, at buckling strength may be
obtained by solving the appropriate equation of Eqs.(3.2)
under the condition ;=0 of Eq.(3.3). Limits of validity
are shown with each equation.

Next, the fully plastic strength is obtained by solving
Eq.(3.18) under the condition of I,=0 of Eq.(3.19).
After calculating the fully plastic strength load parameter
00, the possibility of buckling is examined by comparing g,
with the buckling load parameter p,. If the buckling load
parameter p; is smaller than p,, the plate buckles before
reaching its full plastic strength. In this case ultimate
strength after buckling is to be calculated.

Ultimate strength after buckling is obtained by solving
Eq.(3.10) under the condition I',=0 of Eq.(3.11).

. GgnA -~ ognA
1 Ny/Nyp YIELDING AT SHORT EDGES
~_ /' YIELDING AT -CORNERS
R N " . YIELDING AT LONG EDGES
T~~o / OR STIFFENERS COLLAPSE,
N

Ny/Nxp

BUCKLING STRENGTH

N

FULLY PLASTIC STRENGTH:

conA | conA

Fig. 8 Buckling strength, ultimate strength and fully plasic
strengths of a stiffened plate

Ultimate strength interaction function ", contains the
stress coefficients a, and @, of Eq.(3.16). These
coefficients are substituted into Eq.(3.10) depending on
the location of yielding after buckling. There are three
possible locations where yielding, of membrane stresses,
may occur, (1) at the four corners of the plate, (axmax and
aymax) (2) at the middles of half buckling waves along
sides parallel to the x axis (@xmax> @vmin), and (3) at the
middle of the side parallel to the y axis (axmin» @ymax)-
Ultimate loads corresponding to these yielding cases are
calculated and the lowest one is taken as the ultimate
strength.

In the actual process of calculation, the external load is
increased gradually. The stress coefficients and the
ultimate strength interaction function I, at the three
yielding cases are evaluated at each loading increment.
The relationship between the load and the ultimate
strength interaction function I, at each case is plotted as
illustrated in Fig.9 (a). External load satisfies the
condition I',=0 at the intersections of these relationships
with the ordinate axis. The smallest load of these
intersections is the ultimate strength.

5.1.2 Stiffened plates

At first, the buckling mode and buckling load are to be
obtained. .

The local buckling load parameter ps; which causes
buckling of the plate panels between stiffeners may be
obtained by the procedure described in Section 5.1.1. The
over-all buckling load parameter gz, may be obtained by
imposing the condition I';=0 on Eq.(4.2). Buckling
occurs at the smaller of these two buckling loads, in the
corresponding mode.

Next, the fully plastic load parameter p is evaluated
by solving Eq.(4.19) under the fully plastic condition of
Eq.(4.20). This load is compared with the buckling load
to classify the behavior of a stiffened plate.

(1) pso, 51> pr ’
Buckling does not occur and the stiffened plate reaches
its fully plastic strength.

(2) 080< 051, Op

Pcalculated

\45°

Passumed

o
e |
i=
o

(a) (b)

Fig. 9 [Iterative procedure to calculate ultimate strength
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Over-all buckling occurs and ultimate strength is
evaluated using the equations of Section 4.1.2. Procedure
of analysis is as shown in Section 5.1.1.

(3) s <50, 0°

Local buckling occurs and the stiffened plate collapses
under concentric or eccentric compressive loading
depending upon the type of loading.

a) Concentric loading

There are two cases, one is the case where stiffened
plate collapses in overall mode and reaches the
corresponding ultimate strength in terms of p,,, and the
other is where plate panels collapse locally and the
stiffened plate reaches the corresponding ultimate strength
load at p,;. p,, can be obtained by Eq.(4.10) as follows.
Increasing the load p gradually, the effective breadth may
be obtained by Eq.(4.9). Using this effective breadth, P,
and p,, may be obtained by Eq.(4.8) and Eq,(4.10),
respectively. The wused effective breadth, however,
depends on p. It corresponds to p,, only when p=p,,. To
find this load, p,, is plotted against o as in Fig.9 (b).

The point where the coordinates of the two axeses
become equal represents the ultimate strength.

On the other hand, p,, can be obtained by Eq.(4.15)
or Eq,(4.16) under the condition I",=0.

The procedure of analysis is as shown in 5.1.1. The
smaller of p,, and p,, is the ultimate strength.

b) Eccentric loading ‘

Local buckling reduces the effectiveness of plate panels
causing the neutral axis to ‘move away from the plate.
When the load is applied at a fixed point, an eccentricity
is produced. Ultimate strength in this case may be
obtained following conventional incremental load method.

Assuming a small value of the mean stress ¢, acting
on stiffeners, the plate stress gymq, and the effective
breadth b’, are obtained by Eqs.(4.12.b), (3.7) and (3.16).
Next b’ is obtained by modifying b’e by Eq.(4.13).

Calculating properties of the section of a stiffener using
this b’,., the axial load of a stiffener P is obtained by the
equation P=A ;g,,,.

0.8 |-

0.6} ey ~< )
© ) . : I - . ;
F . - 3 . -~
oal *° 1 =< FEM (NON~CONFORMING)
q ~~= FEM (CORRECTED BY ADDING 10%)

—--— FUJITA, REF. 2
———— PRESENT ANALYSIS -

0.2 B= (b/t)/o/E

) Y L 1 et 1 I 1
o 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
. -]

Fig. 10 Ultimate strength of square plates by different methods
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gs and ¢, are calculated by Eq,(4.14.a) using this axial
load P. These values are examined whether to satisfy
either of Eq.(4.14.b).

If they do not satisfy both, the analysis is to be
continued increasing the mean stress ¢y, P which
satisfies either of the condition g;=-0, OF 0, = 0’zmary, 1S
the ultimate strength P.

Now, the ultimate strength function [",, Eq,(4.11) may
be evaluated and the ultimate strength load is obtained as
the value satisfying the condition I",=0.

In this analysis, the stress coefficients and effective
breadth change according to the load. The ultimate load
has to be obtained using the stress coefficients and
effective breadth corresponding to this ultimate load.
Accordingly the analysis has to be iterative.

5.2 Accuracy of the present interaction relationships

The accuracy of the present ultimate strength
equations is examined comparing the result with those
reported in the litrature.

(1) Square and rectangular
compression in one direction.

Ultimate strength of square plates calculated by three
different methods, the finite element method?, the
combined’ elastic large deflection and plastic analysis®,
and the present method is plotted in Fig.10.

Results obtained by the finite element method and the
present method applied to a rectangular plate are plotted
in Fig.11.

In the analysis by the finite element method, an initial
deflection is assumed, which reduces the ultimate
strength, and the aspect ratio corresponding to the
minimum ultimate strength changes.

Therefore, both curves in Fig.11 may be regarded to
be in good agreement.

Considering both Figs.10 and 11, it may be seen that
the present method predicts the ultimate compressive
strengths of squaré and rectangular plates with good

plates subjected to

accuracy.
. E =21000 kg/nm?
1.0} . Ty = 28 kg/nm?
VPl ol pes b = 1000 mm
\ t = 12 om
0.8+
20 0.6
s B

0.4} LI 2 "3

~—=-— BUCKLING STRENGTH .
~=== ULTIMATE STRENG:H, FEM (wm/t=o.m)
— ULTIMATE STRENGTH, PRESENT ANALYSIS
1 - 1 L 1 B L 1
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
a/b

Fig. 11 Ultimate strength of reétangular plates
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0.2 0.4 0.6 0.8 1.0

0,/%

0 0.2 0.4 0.6 0.8 1.0 0

9,/%

---- FUJITA, REF. 4 PRESENT ANALYSIS

Fig. 12 Ultimate strength of square and rectangular plates
subjected to compression and shear

c:_y/co

o FEM
—— PRESENT ANALYSIS

E =21000 kg/mm?
G = 27 kg/mm?

Fig. 13 Ultimate strength of square plates subjected to braxral
loadmg ' .

) Square and rectangular plates subjected to combrned
loads L : SR L L

Ultlmate strength 1nteract10n relatronshrp of square
plates subjected to compressron in one direction and shear
is evaluated by the present method and compared to that
obtained by the combmed elastrc large deflectlon and
plastrc analysrs Results are plotted in ‘Fig. 12 :

Ultimate strength interaction - relatlonshlp of square
plates subjected to biaxial loads is evaluated by the f1n1te
element method and present method Results are plotted
in Flg 13. : ' o
3) Strffened plate sub]ected to compressron in one

Cdirection - : '

The relatronshlp between the ultrmate strength of a
st1ffened plate sub]ected to compress1on in one direction
and the relative stiffness ratio y of stiffeners is obtarned
by the finite element method ‘and the present method.
Results of analyses by both methods are plotted in Figs.14
and 15.
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1or 500 h E =21000 kg/m?
Rl - e
08 g i | a) P
w | i .T -
R ) 3.2 Plo [}
0.6 |+ (in mm) 1‘
2: ] _-BUCKLING STRENGTH
S ——= o —
0.44-——i0io—m—®—7 000/0
5 o o O FEM (NON-CONFORMING)
/ e FEM (CORRECTED BY
0.2 | ) - ADDING 15%)
‘ -——‘f’”(aucmm; STReNGTH | —— PRESENT ANALYSIS
1 - 1 1 1 1 1 1 1 1

0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 i6.0 18.0
. h/t
Fig. 14 Ultimate strength of compressed stiffened plates
(concentric loading)
1.00 500 :
e h
________ , ~ F, E =21000 kg/mm?
| H :
0.8 of I ! T %= 27 kg/m?
E i : T
R i 3.2
0.6} (in pm) i
il _-2
;: P _-BUCKLING STRENGTH
0.4}
/’ ® FEM
0.2 ,/<~ --- CRITERION OF P, REF. 5
BUCKLING P
STRENGTH PRESENT ANALYSIS
1 1 1 1 1 ] 1
0 2.0 4.0 6.0 8.0 10.0 12.0  14.0

h/t

Fig. 15 Ultimate strength of compressed
(Eccentric loading)

stiffened  plates

In.the ‘case shown in F1g 14, the compressive load. is
applied. always concentr1cally on a both- sided st1ffened
plate whrle in the case shown in F1g 15, eccentr1c1ty of
load is allowed to take place on a.one- 51ded stiffened
plate )
~In the case shown in F1g 14 non conformmg elements
are used in the’ analysrs by the ﬁmte element method. The
1mplane drsplacement of the edges is free These cause
plate strength to decrease

- Actually, the exact solut1on of buckhng strength of

,these,strf_fened plates is 15% hlgher_than that predicted by

the finite element meéthod. Accordingly, actual ultimate
strength is- assumed  to: be - higher by the same ratio.
Taking this 1nt0 consrderatlon the accuracy of the present

method is confirmed to be good enough.

6. ConcluSlons

"In thrs paper, rectangular plates and stiffened plates
with stiffeners attached at equal intervals in one direction
are studied. The interaction relationshiips of buckling

strength, ultimate strength and fully plastic strength are
derived theoretically under inplane biaxial forces and
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shearing force.

Ultimate strength may be reached in one of three
modes. The first is when a stiffened plate collapses in an
over-all mode. The second is when plate panels collapse
locally and the last is when no buckling occurs.
Interaction equations, as functions of biaxial and shearing
forces, are presented.

Comparisons of results obtained by these interaction
equations with results available in the litrature have
confirmed that these equations have sufficient accuracy
for practical use.
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